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ABSTRACT:

Change detection is one of the main topics in Earth Observation, due to its wide range of applications, varying from urban de-
velopment monitoring to natural disaster management. Most of the recently developed change detection methodologies rely on
the use of deep learning algorithms. These kinds of algorithms are generally focused on generating two-dimensional (2D) change
maps, thus they are only able to detect horizontal changes in land use/land cover, not considering nor returning any information on
the corresponding elevation changes. Our work proposes a step forward, creating and sharing a dataset where two optical images
acquired in different epochs are provided together with both the related 2D change maps containing land use/land cover variations
and the three-dimensional (3D) maps containing elevation changes. Particularly, our aim is to provide a dataset useful to address
and possibly solve the change detection task in 3D. Indeed, the proposed dataset, on the one hand, can empower a further devel-
opment of 2D change detection algorithms, and, on the other hand, can allow to develop algorithms able to provide 3D change
detection maps from two optical images captured in different epochs, without the need to rely directly on elevation data as input.
The proposed dataset is publicly available at the following link: https://bit.ly/3wDdo41.

1. INTRODUCTION

Change detection (CD), namely the task of identifying areas
of the Earth’s surface that have experienced changes by jointly
analysing two or more coregistered images captured at different
epochs (Bruzzone and Bovolo, 2013, Daudt et al., 2019), is one
of the main topics in Earth Observation (EO). CD algorithms
allow the assessment of changes that have occurred at ground
level and, for this reason, are applied to various real-world prob-
lems, such as natural disaster management (Chen et al., 2018),
identification of urban changes (Lyu et al., 2018, Huang et al.,
2013), crops and forests management (Khan et al., 2017), etc.
Nowadays, thanks to the unprecedented technological develop-
ment of EO sensors, it is possible to observe more and more
details at ground level and, consequently, to retrieve even more
precise change maps. Several scientific studies have led to the
development of algorithms capable of meeting the requirements
of CD applications; however, these algorithms are generally
focused on the generation of 2D change maps, thus they are
only capable of assessing land use and land cover (LULC) vari-
ations. In this context, deep learning (DL) is recently over-
taking traditional methods, proving to be a viable solution to
tasks such as semantic segmentation, object and change detec-
tion (Zhu et al., 2017, Ma et al., 2019). In particular, several
DL architectures are currently employed for solving CD tasks,
such as CDNet (Alcantarilla et al., 2018) or Siamese networks
(Daudt et al., 2018a). Nevertheless, the number of CD labelled
remote sensing (RS) datasets openly available are still limited,
due to their high production costs, requiring a lot of time and
specialised knowledge in the annotation of hundreds of images
(Marsocci et al., 2021). This scarce dataset availability rep-
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resents thus an obstacle to the implementation and testing of
new methods and the development of effective solutions to the
aforementioned CD tasks (Daudt et al., 2019). Moreover, to
the best of our knowledge, there are currently no labelled data-
sets that provide information about the elevation changes cor-
responding to the LULC variations observable in a pair of op-
tical images captured in different epochs (Qin et al., 2016, Zhu
et al., 2017, Ma et al., 2019). One interesting research line of
DL applied to RS is moving precisely towards this direction: to
infer 3D information from the smallest possible amount of 2D
information, usually extracted from optical images (Mou and
Zhu, 2018). Indeed, 2D CD algorithms can only detect plani-
metric changes such as appearing/disappearing buildings/trees,
shrinking/expanding structures; these results do not suffice to
fulfil the requirements of applications needing also the ver-
tical/volumetric information, such as quantitative estimation of
landslides volume, tree growth and building construction pro-
gress monitoring. 3D CD algorithms can hence offer numerous
advantages.
A critical review of the last developments and applications of
3D CD using RS and close-range data is given in (Qin et al.,
2016). More recently, (Okyay et al., 2019) carried out a sur-
vey of the airborne Light Detection and Ranging (LiDAR) CD
methods currently employed in Earth science applications. Fi-
nally, (Shirowzhan et al., 2019, de Gélis et al., 2021) are the
only available studies which have proposed a comparative ana-
lysis for 3D CD. In the first (Shirowzhan et al., 2019), five
methods were compared with respect to two criteria: the abil-
ity to detect demolished and new buildings, and the capabil-
ity to provide information about the magnitude of the changes.
However, no quantitative results were provided, and the evalu-
ation was carried out on a private dataset (de Gélis et al., 2021).
Moreover, this study did not employ any DL algorithms. On
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the other hand, (de Gélis et al., 2021) developed an original
simulator of multi-temporal aerial LiDAR urban point clouds.
The simulator was used to automatically build an annotated 3D
CD dataset consisting of pairs of 3D point clouds labelled ac-
cording to the synthetic changes imposed by the authors. Six
different 3D CD methods were assessed either by directly cop-
ing with the 3D point clouds or using the Digital Surface Mod-
els (DSMs) generated from their rasterization (de Gélis et al.,
2021). In particular, the authors compared traditional methods,
such as the use of different types of thresholding and filtering
algorithms on DSMs, with both a machine learning algorithm
(a random forest fed with hand-crafted features) and two DL
networks (consisting in a feed-forward network (FFN) and a
Siamese network).
Our work, however, goes one step further by creating and shar-
ing a dataset in which a 3D CD map, i.e. a map containing the
change in elevation, is provided together with the 2D CD map
and the corresponding pair of optical images. The main con-
tribution behind the production of this dataset is to allow the
development of DL algorithms that can automatically generate
3D CD maps using two aerial or satellite optical images ac-
quired in different epochs as input, without the need of DSMs,
as it will be highlighted in Section 3.

2. RELATED DATASETS

As already pointed out in the introduction (Section 1), to design
and build the proposed dataset, we considered the existing liter-
ature and, in particular, the open EO CD datasets already avail-
able to the scientific community. Particularly, we analysed the
main features of the open CD datasets explicitly designed for
the development of DL algorithms and containing optical im-
ages, annotated with 2D change maps, and/or LiDAR point
clouds, from which 3D changes can be deduced. In general,
there are many datasets that contain optical images, and thus
suited to perform 2D CD tasks, less that include LiDAR PCs.
Concerning this issue, the annotated 3D CD dataset released by
(de Gélis et al., 2021) – built through a simulator that intro-
duces synthetic changes to LiDAR point clouds – could be an
effective solution. However, at the best of our knowledge, no
CD dataset containing both optical images, 2D CD maps and
information about the corresponding elevation changes is cur-
rently available.
Among the 2D CD datasets designed for the development of DL
algorithms, the SZTAKI Air change benchmark (Benedek and
Szirányi, 2009, Benedek and Szirányi, 2008) was one of the first
openly available and it is currently one of the most used in the
RS community. It consists of 13 aerial image pairs, provided
by the Hungarian Institute of Geodesy, Cartography and Re-
mote Sensing or retrieved from Google Earth. The images have
a spatial resolution of 1.5 m and each pixel is labelled as sub-
jected to change or not.
The SEmantic Change detectiON Dataset (SECOND) (Yang et
al., 2021) is a pixel-level annotated semantic CD dataset, which
includes 4662 pairs of aerial images, with a size of 512×512
pixels, acquired from different platforms and sensors, covering
three Chinese cities. It is annotated with 6 LULC classes: (i)
non-vegetated area, (ii) trees, (iii) low vegetation, (iv) water, (v)
buildings and (vi) playing fields.
The Onera Satellite Change Detection (OSCD) (Daudt et al.,
2018b) is a dataset composed of 24 multispectral aerial image
pairs acquired by Sentinel-2, manually annotated as subjected
to change or not at pixel-level.
The Deeply Supervised Image Fusion Network (DSIFN)

(Zhang et al., 2020) is a DL method, proposed along with a
dedicated dataset for the validation task. It is composed of
6 high resolution bi-temporal images, extracted from Google
Earth. Specifically, it is made of 3600 image tile pairs for train-
ing, 340 for validation and 48 for testing. All the image tiles are
characterised by a size of 512×512 pixels.
The Sentinel-2 Multitemporal Cities Pairs (S2MTCP) (Leenstra
et al., 2021) consists of 1520 pairs of Sentinel-2, level 1C, im-
ages covering different urban areas around the world, with a
spatial resolution of 10 m and a size of 600×600 pixels. This
dataset was originally used in the paper for the self-supervised
training step. The trained model was then validated on the
aforementioned OSCD (Daudt et al., 2018b).
The Sun Yat-Sen University Change Detection (SYSU-CD)
(Shi et al., 2021) dataset was built to validate a deeply super-
vised (DS) attention metric-based network (DSAMNet). It con-
sists of 20000 pairs of 0.5 m aerial images of size 256×256
captured between 2007 and 2014 in Hong Kong. The dataset
is annotated with six classes of LULC changes: (i) new urban
buildings; (ii) suburban expansion; (iii) pre-construction earth-
works; (iv) vegetation change; (v) road expansion; (vi) sea con-
struction.
The S2Looking (Shen et al., 2021) is a building CD dataset,
which consists of 5000 recorded bi-temporal image pairs of
rural areas worldwide and more than 65,920 annotated change
instances, indicating separately newly constructed and demol-
ished buildings. The images are characterised by a size of
1024×1024 pixels, with a spatial resolution ranging from 0.5
to 0.8 m/pixel.
Finally, the dataset provided in (Lebedev et al., 2018) is a syn-
thetic database containing 12,000 triples of synthetic images
without object shift, 12,000 triples of model images with ob-
ject shift and 16,000 triples of real RS image fragments.

3. DATASET DESCRIPTION

The proposed dataset covers the urban area of the city of Val-
ladolid in Spain (Figure 1). The area of interest includes the
historical and urban centre of the city and the surrounding com-
mercial areas. The agricultural areas were not considered since
no significant changes in elevation were found for these areas.
Moreover, we selected and annotated only the changes affecting
artificial manufacts, such as the construction and the demolition
of buildings.

Figure 1. Area included in the dataset

In particular, the dataset contains 472 (i) pairs of images
cropped from optical orthophotos acquired through two differ-
ent aerial surveys, performed respctively in 2010 and in 2017,
(ii) the corresponding LULC variation maps in raster format,
i.e. the 2D CD maps, and (iii) the corresponding elevation vari-
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ation maps in raster format, namely the 3D CD maps. The im-
ages contain three bands corresponding to the Red, Green and
Blue channels. The main features of the data contained in the
proposed dataset are described in Table 1.
To build the dataset, we started from several pairs of aerial
orthophotos freely available in the website of the (Organismo
Autónomo Centro Nacional de Información Geográfica, 2021),
acquired in 2010 and in 2017, and covering the area of Vallad-
olid. The original orthophotos are characterised by a Ground
Sample Distance (GSD) of 0.25 m. To produce the DSMs
needed for the generation of the 3D CD maps, we exploited
the LiDAR data freely available in the website of (Organismo
Autónomo Centro Nacional de Información Geográfica, 2021)
for the same years and the same area. The DSMs were pro-
duced within QGIS (QGIS, 2022b), by rasterizing the original
point clouds contained in the LAS files. The GSD of the DSMs
is 1 m.
The first step of the dataset preparation was an automatic pre-
processing phase, in which the images, both the optical ones
and the corresponding DSMs, were cropped into smaller tiles
covering a size of 200 m × 200 m. In addition, to make the GSD
of the orthophotos more similar to the GSD of the DSMs, the or-
thophotos were downsampled, degrading their GSD from 0.25
m to 0.50 m. At the end of this operation, 472 pairs of ortho-
photos with a size of 400×400 pixels were produced together
with the corresponding pairs of DSMs with a size of 200×200
pixels. An example is shown in Figure 2.

Figure 2. Example of the data used to produce the dataset; a:
Ortophoto referring to 2010; b: Ortophoto referring to 2017; c:

DSM referring to 2010; d: DSM referring to 2017

After the aforementioned automatic phase of tile cropping, the
raster 3D CD maps containing the elevation changes were gen-
erated through a simple difference between the DSMs (Figure
3):

∆H = H2017 −H2010 (1)

In particular, we considered all the elevation changes charac-
terised by values lower than one metre in absolute value as
negligible with respect to the entity of elevation variations usu-
ally affecting buildings, and for this reason they were ignored
(i.e. their value was set to zero). Then, a manual control step
was carried out on the resulting 3D CD maps: by means of a
visual comparison with the corresponding pair of orthophotos,

Figure 3. 3D change detection map obtained through difference
of the DSMs. The colour bar is expressed in meters

only the pixels affected by a real change in elevation were con-
sidered, while the pixels in which no real change had occurred,
and thus containing only noise, were set equal to zero. An ex-
ample can be observed in Figure 4. A further check was carried
out to assess the absence of coregistration errors, both in the
orthophotos and in the DSMs.

Figure 4. 3D change detection map obtained through difference
of the DSMs (see Figure 3), after the manual removal of the

noise. The colour bar is expressed in meters

Thus, for each pair of optical images, two CD maps were pro-
duced, focusing on the changes affecting only artificial manu-
facts (i.e. buildings, Figure 4). The first one is the 2D CD map,
in which we annotated the pixels belonging to areas where a
change in elevation occurred. These maps were constructed
using the software QGis (QGIS, 2022a), taking the 400×400
orthophotos as reference and comparing them with the DSMs
difference maps. Then, pixels belonging to the areas affected
by a change in elevation over the years were delineated. In par-
ticular, two classes were identified: (i) no change; (ii) changes
due to construction (positive elevation change) or demolition
(negative elevation change) of artefacts/buildings. The 2D CD
maps are characterised by the same resolution (400×400 pixels)
of the orthophotos from which they derive, with a GSD of 0.50
m (Figure 5).

The second CD map is the 3D CD map (Figure 4), obtained
from the difference between the DSMs as aforementioned, with
a resolution of 200×200 pixels and a GSD of 1 m.
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Figure 5. 2D change detection map

Once the dataset was produced, the 472 quadruplets of images
(Figure 9: two ortophoto tiles – one for the 2010 and one for
the 2017 –, one 2D CD map and one 3D CD map) were divided
into train, test and validation (val) subsets to permit their dir-
ect use for benchmarking, hence avoiding reproducibility issues
potentially deriving from a random split of the dataset. Spe-
cifically, the division was carried out to ensure that the percent-
age of pixels with and without variations was similar in all the
three subsets (Table 2), assuring also that the images included
in the train subset contained pixels with all the elevation vari-
ation values (ranging from -25 m to 35 m, Figure 6). In par-
ticular, the train subset contains 320 images (∼ 68%), the test
subset 110 images (∼ 23%) and the validation subset 42 images
(∼ 9%). Finally, Table 2 shows the percentages, averaged over
all the images contained in each subset, of the pixels affected
by change and the pixels where there was no change over the
years. To sum up, two full examples of the proposed dataset are
shown in Figure 9.

Table 1. Main features of the data contained in the proposed
dataset

Image Number of pixels GSD
Orthophotos from 2010 400×400 0.50 m
Orthophotos from 2017 400×400 0.50 m

2D CD maps 400×400 0.50 m
3D CD maps 200×200 1.0 m

Table 2. Percentage of pixels characterised by ’change’ and ’no
change’ for each subset

Subset Number of Images Change No change
Train 320 5% 95%
Test 110 4% 96%
Val 42 5% 95%

Figures 6, 7, 8 show the pixel elevation distribution for the
three subsets.
Two different kinds of algorithms can be applied to the
proposed dataset. On one hand, the well known 2D CD
algorithms, such as CDNet, Fully Convolutional Network-CD
(FCN-CD) (Alcantarilla et al., 2018) and Fully Convolutional
Neural Network (FCNN) (Daudt et al., 2018a), could be used
to provide 2D baseline benchmark metrics, with respect to
other datasets and methods available in literature. Furthermore,
innovative 3D CD algorithms could be developed to retrieve,
automatically from the two optical images, 3D CD maps
without the need of relying on elevation data as input. To
conclude, in the next section (Section 4), some details about

Figure 6. Pixel distribution in train

Figure 7. Pixel distribution in test

Figure 8. Pixel distribution in val

the research line we are following and the algorithms that are
being developed are provided.
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Figure 9. Two examples from the proposed dataset. a) 2010 optical image, b) 2017 optical image, c) 2D CD map, d) 3D CD map,
where the colour bar is expressed in meters

4. FURTHER DEVELOPMENTS

To complete the proposed dataset, we are currently developing
baseline algorithms that can solve the 3D CD task. In partic-
ular, we are considering some families of models that can ap-
proach the 3D CD task simultaneously with the 2D CD task.
This strategy, in fact, would allow to output two masks contain-
ing a more complete information, useful for different RS ap-
plications, such as those reported in Section 1. In particular, we
are testing models based on a Siamese U-Net network, similar
to the one developed in (Alcantarilla et al., 2018). However, as
previously stated, the models we are developing will differ from
the above-mentioned models, as the loss will be composed of
two terms: one classification term (eg.: cross entropy to solve
the 2D CD task) and one regression term (eg.: mean squared er-
ror to solve the 3D CD task). Finally, an attention-based model
(Vaswani et al., 2017) is under development as well, given the
effectiveness of such family of models also for RS CD applic-
ations (Bandara and Patel, 2022). Moreover, we are already
considering to integrate the dataset with new pairs of optical im-
ages, accompanied by the respective 2D and 3D change masks,
on areas already identified and subjected to elevation variations.
In conclusion, 3D CD is one of the main topics in the field of
DL applied to RS, and the availability of open datasets, such
as the one proposed in this work, is essential to develop and to
validate algorithms able to solve this challenging task. With
this contribution, we aim to show the robustness and effect-
iveness of the proposed dataset, emphasising its construction
and validation process. Moreover, in parallel to the release of
the dataset, we are developing models able to solve the 3D
CD task in addition to the well studied 2D CD task. In order
to support further researches on 3D CD, especially with DL
methods, the dataset is publicly available at the following link:
https://bit.ly/3wDdo41.
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Geográfica, 2021. Digital elevation models and maps in
image format. http://centrodedescargas.cnig.es/
CentroDescargas/buscadorCatalogo.do?codFamilia=
LIDAR# .

QGIS, 2022a. Qgis documentation. https://docs.qgis.org/
3.22/en/docs/index.html .

QGIS, 2022b. QGIS documentation: DEM from LiDAR Data.
https://docs.qgis.org/3.22/en/docs/training manual/

forestry/basic lidar.html .

Qin, R., Tian, J., Reinartz, P., 2016. 3D change detection–
approaches and applications. ISPRS Journal of Photogram-
metry and Remote Sensing, 122, 41–56.

Shen, L., Lu, Y., Chen, H., Wei, H., Xie, D., Yue, J., Chen,
R., Lv, S., Jiang, B., 2021. S2Looking: A Satellite Side-
Looking Dataset for Building Change Detection. Remote Sens-
ing, 13(24), 5094.

Shi, Q., Liu, M., Li, S., Liu, X., Wang, F., Zhang, L., 2021. A
deeply supervised attention metric-based network and an open
aerial image dataset for remote sensing change detection. IEEE
Transactions on Geoscience and Remote Sensing.

Shirowzhan, S., Sepasgozar, S. M., Li, H., Trinder, J., Tang,
P., 2019. Comparative analysis of machine learning and point-
based algorithms for detecting 3D changes in buildings over
time using bi-temporal lidar data. Automation in Construction,
105, 102841.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., Polosukhin, I., 2017. Attention is all
you need. Advances in neural information processing systems,
5998–6008.

Yang, K., Xia, G.-S., Liu, Z., Du, B., Yang, W., Pelillo,
M., Zhang, L., 2021. Asymmetric Siamese Networks for Se-
mantic Change Detection in Aerial Images. IEEE Transactions
on Geoscience and Remote Sensing.

Zhang, C., Yue, P., Tapete, D., Jiang, L., Shangguan, B., Huang,
L., Liu, G., 2020. A deeply supervised image fusion network for
change detection in high resolution bi-temporal remote sensing
images. ISPRS Journal of Photogrammetry and Remote Sens-
ing, 166, 183–200.

Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F.,
Fraundorfer, F., 2017. Deep learning in remote sensing: A com-
prehensive review and list of resources. IEEE Geoscience and
Remote Sensing Magazine, 5(4), 8–36.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1349-2022 | © Author(s) 2022. CC BY 4.0 License.

 
1354

https://www.mdpi.com/2072-4292/13/13/2629
https://www.mdpi.com/2072-4292/13/13/2629
https://www.mdpi.com/2072-4292/10/3/471
https://www.mdpi.com/2072-4292/10/3/471
https://www.mdpi.com/2072-4292/13/16/3275
http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=LIDAR#
http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=LIDAR#
http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=LIDAR#
https://docs.qgis.org/3.22/en/docs/index.html
https://docs.qgis.org/3.22/en/docs/index.html
https://docs.qgis.org/3.22/en/docs/training_manual/forestry/basic_lidar.html
https://docs.qgis.org/3.22/en/docs/training_manual/forestry/basic_lidar.html

	Introduction
	Related datasets
	Dataset description
	Further developments



