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A B S T R A C T   

Introduction: differential diagnosis of tumor recurrence and radiation injury after stereotactic radiotherapy (SRT) is challenging. The advances in imaging techniques 
and feature-based radiomics could aid to discriminate radionecrosis from progression. 
Methods: we performed a systematic review of current literature, key references were obtained from a PubMed query. Data extraction was performed by 3 researchers 
and disagreements were resolved with a discussion among the authors. 
Results: we identified 15 retrospective series, one prospective trial, one critical review and one editorial paper. Radiomics involves a wide range of imaging features 
referred to necrotic regions, rate of contrast-enhancing area or the measure of edema surrounding the metastases. Features were mainly defined through a multistep 
extraction/reduction/selection process and a final validation and comparison. 
Conclusions: feature-based radiomics has an optimal potential to accurately predict response and radionecrosis after SRT of BM and facilitate differential diagnosis. 
Further validation studies are eagerly awaited to confirm radiomics reliability.   

Introduction 

Brain metastases (BM) develop in up to 30% of patients with cancer 
and, once appeared, patient’s outcome is generally dismal [1]. 
Notwithstanding every type of cancer can theoretically metastasize to 
the brain, three solid tumors such as lung and breast carcinomas and 
malignant melanoma, account for up to 75% of BM [2–4]. Survival of 
patients affected by BM is extremely variable, influenced by several 
factors and remarkably poor in absence of active treatment [2,3]. 
Neurologic sign and symptoms (including seizures, focal deficits, 
headache, cognitive or motor disorders) are common severely affecting 
patients’ quality of life [2]. 

The current cornerstones of BM treatment are surgery (S), whole 
brain radiotherapy (WBRT), and stereotactic radiotherapy (SRT) [5]. 

Regarding radiotherapy, although whole brain radiotherapy (WBRT) 
has been for long considered the mainstay of the treatment [6], in recent 
years there was a progressive shift towards SRT due to equivalent OS 
with improved local control and reduced cognitive deficits [6–10]. 
Stereotact radiosurgery (SRS) and hypofractionated SRT are today 
standard BM treatments when target lesions are small in size and limited 
in number, in patients with controlled extra-cerebral disease and an 
overall good performance status [11]. SRT is usually performed for a 
restricted number and/or limited total volume of BM and the delivery of 
the entire prescription dose in one or a few fractions of 8 to 30 Gy per 
fraction is foreseen in this approach [11]. 

Although the suitability of the classic linear-quadratic model for 
large doses per fraction remains an open question, clinical and pre-
clinical data obtained with SRT suggest that high dose per fraction SRT 
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provides a cell killing efficacy superior to those predicted from standard 
fractionation [12]. Referring to the outcome, SRT can ensure excellent 
local control of disease for intracranial neoplastic localizations, even 
though the optimal radiological assessment of the response to SRT 
treatment can often be challenging [13]. Indeed, the persistence of 
non-viable residual tissue is common and pseudoprogression (a transi-
tory apparent increase of the lesion due to treatment-induced benign 
changes, such as inflammation or edema) is frequently observed [14]. 

Radiology plays an essential role in oncology, remarkably concern-
ing the diagnosis and evaluation of treatment response [15]. The 
importance of imaging is as well crucial in radiation oncology [16], as it 
underlies every step of the diagnostic-therapeutic workflow: from tumor 
staging to definition of target volumes and organs at risk (OARs), the 
image-guided delivery and the evaluation of the response and toxicity in 
short and long-term follow up. 

Coherently, the evolution of radiotherapy has always been inextri-
cably linked to the introduction of new imaging techniques [17]. 
Essential milestones in clinical practice and in the subsequent advance 
of radiation oncology were the advent of computed tomography 
(CT)-scan, magnetic resonance imaging (MRI) and positron emission 
tomography (PET)-CT [18]. 

Particularly, the implementation of MRI has represented a radical 
revolution in neuro-oncology, as the high contrast for soft tissues 
allowed the precise definition of lesions that are hardly visible or un-
detectable on CT-scan [18–20]. In addition to its central role in the 
anatomical definition of cerebral lesions and in the contouring of the 
gross tumor volume (GTV) and intra-cranial organs at risk (OARs), MRI 
provides multiple functional studies that investigate different properties 
of the tissues [18]. 

These techniques encompass Diffusion-Weighted Imaging (DWI), 
which allows the evaluation of cellularity, perfusion and necrosis, and 
Perfusion-Weighted Imaging (PWI), which enables a detailed analysis of 
the perfusion [20]. Although to date PET is not routinely performed for 
the diagnosis of brain lesions, the use of tracers that have tissue speci-
ficity (such as 11C-methyl-L-methionine-MET) or related with func-
tional features (e.g. hypoxia or cell proliferation) could prove to be 
valuable to identify intra-tumoral heterogeneity and to characterize 
ill-defined lesions [21]. 

Innovative imaging techniques might be helpful to discriminate 
therapy induced modifications effects from actual disease progression, 
but the massive amount of information provided by modern anatomical 
and functional studies could be complex to be interpreted [22]. Indeed, 
the substantial increase in the volume and complexity of data limits the 
adoption of a large part of the studies to experimental settings, as vali-
dated systems to process them within a timing suitable for clinical 
routine are still limited [23]. 

In this framework, Radiomics has proven to be a particularly 
promising application. Radiomics is the field of artificial intelligence 
that allows the extraction of features from standard bioimaging and 
generation of predictive models [24]. Its potential applications are 
extensive, both for the interpretation of data resulting from modern 
imaging modalities and for the identification of new features undetect-
able through the human eyes, thus overcoming several limits of con-
ventional imaging and fostering a further advance in radiation oncology 
[24,25]. 

Promising possible directions of radiomics include the definition of 
potentially radio-resistant tumoral regions, early identification of 
neoplastic lesions before they could be visible with conventional imag-
ing, the discrimination of real and pseudo-progression, the evaluation of 
radiation-induced tissue damage and automated detection and con-
touring of OARs and targets [24–26]. 

Reliable and standardized criteria are needed in order to improve 
both therapeutic management and expectancy of life of patients with 
uncontrolled intracranial disease showing heterogeneous and unpre-
dictable response to radiotherapy. Thanks to the above mentioned ad-
vances in imaging techniques and the increasing interest in MRI-based 

texture analysis, a wide range of quantitative measures of radiological 
response has been characterized. In this regard, many authors have 
focused their efforts on the identification of these features as prognostic 
factors of further cerebral progression after SRT or differential diagnosis 
between progression and radionecrosis. We here review radiomics and 
its clinical application in BM management, summarizing the main lim-
itations and future perspectives of this innovative approach (Fig. 1). 

Materials and methods - evidence acquisition 

Between January and April 2021, key references were retrieved from 
a PubMed query, using the combination of the following keywords: 
<<radiomic>>AND <<stereotactic radiotherapy>>AND <<brain 
metastasis>>. The range of publication date was between 2015 and 
2021. 

Selection criteria included English language publications in humans. 
Hand searching included meeting proceedings of the European SocieTy 
for Radiotherapy & Oncology (ESTRO), European Society of Medical 
Oncology (ESMO), American Society of Clinical Oncology (ASCO) and 
American Society for Radiation Oncology (ASTRO). The website clin-
icaltrials.gov was also searched. Reference lists of the identified studies 
were explored and cross references were allowed. Data extraction was 
performed independently by three researchers (V.S, A.E.G and S.L) and 
disagreements were resolved on a case by case basis with a discussion 
among all the involved authors (C.G, L.B, V.N, F.D.F and I.D). 

Results 

Eighteen articles have been initially selected following the afore-
mentioned inclusion criteria, as per the PRISMA flow diagram (Fig. 1). 
Of these, we identified 15 retrospective series, one prospective trial, one 
critical review and one editorial paper. 

The radiological assessment of tumor response to SRT is often chal-
lenging, as tumor progression and radiation-induced damage might 
present with overlapping features. .In this context, feature-based 
radiomics can be applied to predict tumor recurrence (Table 1) and 
differential diagnosis between radiation injury and local progression 
(Table 2). We will discuss in the following paragraphs these two topics. 
Other papers retrieved are summarized in Table 3. 

Analysis of response to stereotactic radiotherapy for brain metastasis 

As previously described, the main factors implicated in the response 
to SRT include size of lesions and prescription dose of radiotherapy [27, 
28]. However, the radiological assessment of BM treated with ablative 
radiotherapy is still complex, mainly due to specific radiobiological 
determinants [29]. 

It is generally accepted that chronic hypoxic cancer cells localizing 
on the edge of necrotic regions of the metastasis may be characterized by 
radioresistance [30]. Moreover, the delivery time of the single-fraction 
radiosurgery presumably does not allow for sufficient reoxygenation 
during treatment. Coherently, the presence of tumor necrosis should 
strongly influence the local control rates and survival in patients 
affected by BM treated by SRT [31]. Considering that the biological 
aspects of BM contribute to determine the radiological appeareance of 
the tumor and surrounding tissues, feature-based radiomics can help to 
identify features that are not clearly visible by the naked eye, and thus 
accurately predict BM specific recurrence and local control. 

Radiomics involves a wide range of imaging techniques and het-
erogeneous features referred to radiological determinants such as the 
evidence of necrotic regions, the rate of contrast-enhancing area, or the 
measure of edema surrounding the secondary lesion [32]. According to 
literature, radiomic features are mainly defined through a multistep 
extraction/reduction/selection process and a final validation and com-
parison resulting in optimal quantitative biomarkers [33]. After pro-
cessing image and defining regions of interest of tumor and/or 
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surrounding edema regions, algorithms are applied to generate multi-
scale filter features. The geometrical and textural radiomic features can 
be extracted using different time points, such as the baseline and 
follow-up, and their modifications are used to develop prognostic 
models of outcome, in the framework of delta radiomics analysis [34]. 

With respect to this, Karami et al. [35] analyzed a retrospective series 
of 38 patients with BM treated with hypofractionated SRT. Extrapolating 
quantitative MRI features from T1-weighted (T1w) and T2-FLAIR im-
ages, the authors reported that 6 month local control after treatment 
could be predicted with an area under the curve (AUC) of 0.80 and an 
accuracy of 82%. Similarly, an analysis of MRI texture features from 44 
BM of breast cancer patients undergoing SRT highlighted the prognostic 
ability of pretreatment contrast-enhanced T1-weighted (CE T1w) based 
kurtosis combined with age [36]. Nardone et al. [37] used an in-house 
developed software to perform a first-order texture analysis on pre-
treatment MRI images of consecutive non-small-cell lung cancer 
(NSCLC) patients with 1, 2 brain metastases who underwent SRT (me-
dian total dose 20 Gy, range 18–24 Gy in 3–5 fractions) or SRS (median 
dose 18 Gy, range 14–23 Gy). 

A significant positive correlation was observed between time to local 
progression (L-TTP) and entropy, with better results for patients with 
values over the median value. Conversely, a significant negative corre-
lation of L-TTP was obtained for uniformity. Kurtosis had a significant 
negative correlation with both L-TTP and time to new BM. Although no 
defined biological correlation has been established, authors speculated 
that entropy and uniformity could be an epiphenomenon of the radio-
sensibility and/or the vascularization of the BM and high kurtosis of the 
presence of a higher number of clonogenic cancer cells [37]. Moreover, 
the quantitative tissue enhancement in pretreatment cranial MRI was 
evaluated also in a series of singular brain secondary lesions treated with 
SRT [38]. Patients with high-level enhancement (>68.61% enhancing 
lesion volume) survived significantly longer and showed significantly 
longer intracranial progression-free survival (iPFS) rates. Patients with 
lesions that showed a higher percentage of enhancement in 
pre-treatment MRI demonstrated improved intracranial progression-free 
survival (iPFS) and overall survival (OS) compared to those with mainly 

hypo-enhancing lesion [38]. Additionally, data from 133 BM treated 
with SRT were retrospectively analyzed by Karami et al. [39]; the most 
represented tumor types were NSCLC (48.9%), breast cancer (23.3%) 
and melanoma (9%). 

MRI features T1w and T2-FLAIR images were acquired before SRT 
and every 2, 3 months. A total of 3072 imaging features were extracted 
and selected by machine learning algorithms and the relative change 
from the baseline was calculated for each feature. A support vector 
machine (SVM) classifier was used to predict outcomes of SRT in terms 
of local control or failure. The optimal quantitative MRI biomarkers 
resulted in an AUC of 0.80, 0.81, and 0.79 for the 6-month, 12-month 
and overall local control, with a cross-validated accuracy of 80%, 82% 
and 80%, respectively. Texture features mainly characterizing the het-
erogeneity from the edema and lesion margin showed higher prognostic 
performances compared to those extracted from the tumor itself, sug-
gesting that this variety could reflect the presence of malignant cells that 
are not yet enough to result in an evident image [39]. Mouraviev et al. 
[40] also investigated pretreatment T1-w and T2-FLAIR MRI sequences 
of BM treated with Gamma Knife. A total of 440 features were compared 
in their ability to predict local lesion control and selected using a ma-
chine learning algorithm by resampled random forest (RF) feature 
importance. The addition of any one of the top 10 radiomic features to 
the set of clinical features resulted in a statistically significant increase of 
approximately 19% in the AUC. Conversely, according to Karami et al. 
[39], 9 out of the top 10 radiomic features were T1-w based. This could 
be partly correlated with the automated method used to contour the 
region of interest on the T2-FLAIR sequences that may have reduced its 
accuracy and incremented image noise. 

The two radiomic features that emerged as significant on univariate 
analysis were related to T1-w core volume (a surrogate of tumor size, 
known predictor of local failure) and sphericity (generally correlated 
with higher probability of local failure for low values). Patients affected 
by NSCLC who underwent Gamma Knife radiosurgery (GKRS) for BM 
were retrospectively analyzed by Huang et al. [41]: 107 radiomic fea-
tures (14 shape, 18 first order and 75 texture features) of each brain 
metastasis were extracted and selected to reduce redundancy using 

Fig. 1. The PRISMA flow diagram.  
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Table 1 
The current literature on the role of feature-based radiomics for predicting response after stereotactic radiation therapy for brain metastases.  

Prediction of local response after stereotactic radiotherapy of brain metastases  

Study Year N◦

of 
pts 

Type of 
study 

Study 
population 

Features Outcomes Results Main conclusions 

Karami 
et al. 
[35] 

2019 38 Retrospective BM treated 
withhypo- 
fractionated 
SRT 

Quantitative MRI features of 
tumor and edema (T1w and 
T2-FLAIR images) 

6-month LC/LF LF after SRT could be 
predicted with an AUC =
0.80 and an accuracy 
of82% 

Biomarkers extracted from 
T1w and T2-FLAIR images 
have a good potential to 
predict the LC/LF outcome 
of SRT early after the 
treatment 

Zheng et al. 
[36] 

2020 44 Retrospective BCBM treated 
with GKRS 

Texture features BCBM-specific 
progression-free 
survival 

Age and CE-T1W-based 
kurtosis were the 
independent predictors. 
The combination of CE- 
T1W-based kurtosis and 
age displayed a higher C- 
index: 0.70 (95% CI 
0.63–0.77) than did CE- 
T1W-based kurtosis or 
age alone. 

Pretreatment CE-T1W- 
based kurtosis combined 
with age could improve 
prognostic ability in 
patients with BCBM 
undergoing GKRS. 

Nardone 
et al. 
[37] 

2016 38 Retrospective 1, 2 BM (<3 
cm) treated 
with SRT 

ROI contoured by a 
radiation oncologist in 
consensus with a 
neuroradiologist, using the 
T2w sequences 

Mean, standard 
deviation, 
skewness, 
kurtosis, 
entropy, and 
uniformity.OS, 
LF, L-TTP 

A significant positive 
correlation (p = 0.013) 
was shown between L- 
TTP and entropy.A 
significant (p = 0.013) 
negative correlation of L- 
TTP for uniformity. 
Kurtosis had a significant 
negative correlation with 
both L-TTP and time to 
new BM (p = 0.046 and p 
= 0.023, respectively). 

Entropy and uniformity 
could be an 
epiphenomenon of the 
radiosensibility and/or the 
vascularization of the BM 
and high kurtosis of the 
presence of a higher 
number of clonogenic 
cancer cells. 

Della Seta 
et al. 
[38] 

2020 48 Retrospective Singular BM 
treated with 
SRT 

quantitative tissue 
enhancement in pre- 
treatment cranial MRI 

OS, iPFS The enhancing tumor 
volume is significant for 
OS.Pts with high-level 
enhancement (>68.61% 
enhancing lesion volume) 
survived longer (4.9 vs. 
10.2 months) and showed 
longer iPFS rates 
(univariable: P < 0.001). 

Lesion enhancement may 
be a radiomic marker, 
useful in prognostic indices 
for survival prediction, in 
patients with singular BM. 

Karami 
et al. 
[39] 

2019 100 Retrospective BM patients 
treated with 
SRT 

Geometrical and textural 
features from T1w and T2- 
FLAIR images 

Overall LC/LF6- 
month LC/LF12- 
month LC/LF 

The optimal quantitative 
MRI biomarker consisted 
of 5 features that predict 
LF (AUC: 0.79), and a 
cross-validated 
sensitivity and specificity 
of 81% and 79%, 
respectively. The 
difference in LC 
(p<0.0001) and OS (p =
0.01)is statistically 
significant. 

The majority of the features 
in the optimal quantitative 
MRI biomarkers 
characterize the 
heterogeneity in the 
surrounding regions of 
tumor including edema and 
tumor/lesion margins. 

Mouraviev 
et al. 
[40] 

2020 87 Retrospective BM treated 
with GKRS 

Radiomic features were 
extracted from the tumor 
core and the peritumoral 
regions, using the baseline 
pretreatment volumetric 
post-contrast T1 (T1c) and 
volumetric T2 fluid- 
attenuated inversion 
recovery (FLAIR) MRI 
sequences. 

LF An optimized 
combination of radiomic 
and clinical features 
resulted in a 19% higher 
resampled AUC (mean =
0.793; 95% CI =
0.792–0.795) than 
clinical features alone 
(0.669, 0.668–0.671). 

The addition of radiomic 
features provides 
complementary 
information to standard 
routinely available clinical 
variables for the prediction 
of local failure in BM after 
SRS. A PM based on 
radiomic and clinical 
features shows promise for 
pretreatment outcome 
prediction. 

Huang et al. 
[41] 

2020 161 Retrospective BM treated 
with GKRS 

Shape features, first order 
features, and texture 
features 

LC of BM after 
GKRS 

Higher low GL zone 
emphasis (HR 0.757; P =
0.068) and higher zone 
percentage (HR 0.673; 
P= 0.005) of BMs are 
associated with a better 
LC.Higher zone 
percentage (HR 0.712; P 
= 0.022) is independently 

Radiomic features indicate 
the biological basis and 
characteristics of tumors 
and could potentially be 
used as surrogate 
biomarkers for predicting 
tumor prognosis following 
GKRS. 

(continued on next page) 
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consensus clustering with dedicated software. The zone percentage of 
BM, derived from pre-GKRS CE-T1w MRI, was found to be an inde-
pendent prognostic factor of local tumor control. Higher zone percent-
age, indicating a finer texture and thus a more homogeneous 
enhancement pattern, was independently associated with superior LC on 
univariate analysis, multivariate Cox proportional hazards model and 
multivariate cause-specific proportional hazards model [41]. 

A recent experience [42] provided a model to predict the response of 
BM treated by GKRS using a machine learning process with radiomics 
features. Using MRI sequence data extracted from CET1w, the local 
response of 157 brain metastases was classified into two groups (Group 
I: responder and Group II: non-responder). The authors used the least 
absolute shrinkage and selection operator (LASSO) regression to reduce 
the total number of extracted features (700) in order to build a neural 
network predictive model. The accuracy, sensitivity and the AUC of the 
prediction model of local recurrence (LR) were analyzed. The perfor-
mance of the machine learning process was compared with a visual 
evaluation method. Seven radiomic features were found to be useful for 
the classification through the LASSO analysis of the training data. The 
accuracy and sensitivity of the visual evaluation approach were 44 and 
54%, respectively, while they were 78 and 87% in the neural network 
predictive model that achieved an AUC of 0.87 [42]. Adopting a 
different approach, Cha et al. [43] utilized planning CT-scan images of 
89 patients with 110 BM to develop a convolutional neural network 
(CNN)-based radiomics model. The lesions had a maximum diameter of 
1–3.5 cm and SRT was performed with CyberKnife or RapidArc at a 
median dose of 23 Gy. The CNN model was able to predict response to 
SRT with an AUC ranging from 0.60 to 0.82. The AUC of ensemble 
models, which averaged prediction results of 10 individual models 
within the same group, ranged from 0.76 to 0.85, with a sensitivity and 
specificity for response prediction of, respectively, 82% and 83%. 

Differential diagnosis between radiation necrosis and brain metastasis 
recurrence 

Radiation damage of the brain tissue after radiosurgery may occur in 
approximately 5–20% of BM treatments [44]. The diagnosis of radiation 
induced injury can be suspected when the new contrast-enhancing 

lesion is within the GTV or close to its edge. The differential diagnosis 
between radiation induced necrosis and disease recurrence is often hard 
to define using conventional MRI alone. The increasing integration of 
radiomic frameworks in the radiological diagnostics of BM may there-
fore improve the appropriate detection of radionecrosis after SRT and 
successfully support clinicians in their decision making process [45]. 

With regards to this, Zhang et al. [46] retrospectively analyzed the 
feature-based radiomic profile of 87 patients with pathologically 
confirmed necrosis or progression after SRT for brain metastasis. “Delta” 
radiomic features, defined as the change in features from baseline to the 
next time points, were extracted for each MRI sequence. The combina-
tion of 5 radiomic features from both CE-T1w and T2 MR images were 
demonstrated to be helpful in differential diagnosis between radiation 
injury and progression lesions, More specifically, delta radiomic features 
was found to have an overall predictive accuracy of 73.2% and AUC 
value of 0.73. Coherently, a promising model for assessing the appro-
priate radiomic framework to support decision-making in brain oligo-
metastases was recently reported by Hettal et al. [47]. 1766 features 
were selected using IBEX software from CE T1-W MRI sequences after 
SRT comparing them with baseline radiomic determinants. The authors 
analyzed 7 feature-selection processes and 12 classification methods in 
order to identify the respective predictive power. The classification with 
the best predictive ability, measured by Cohen’s kappa, was found to 
have a score of 0.68 with an accuracy of 85%. Radionecrosis and pro-
gression of lesions were predicted with an accuracy of 75% and 91%, 
respectively. Similarly, Peng et al. [48] developed a method to distin-
guish true progression from post-treatment changes after SRT for BM in 
patients affected from different histology of primary tumor (i.e. NSCLC, 
melanoma and breast cancer). Most lesions were treated with Cyber-
knife at a median dose of 20 Gy (range 14–25 Gy) delivered in one 
fraction. Among 82 identified lesions with suspect progression after 
treatment, 77 underwent surgical resection for histopathologic diag-
nosis resulting in 63% of progression confirmed by histopathology and 
the remaining labeled as treatment effect. 51 radiomic features were 
extracted from T1/T2-FLAIR MRI sequences. A hybrid machine-learning 
selection/classification algorithm was assessed by 10-fold 
cross-validation with 100 repeats. All the cases were independently 
reviewed by an expert board-certified neuroradiologist for comparison. 

Table 1 (continued ) 

Study Year N◦

of 
pts 

Type of 
study 

Study 
population 

Features Outcomes Results Main conclusions 

associated with the 
favorable LC of BMs. 

Cha et al. 
[43] 

2018 89 Retrospective BM treated 
with SRS 

Models including10 
individual NN 

SRS response No significant differences 
between responders and 
non-responders in terms 
of MTD, tumor’s 
intracranial position, age, 
sex, KPS, total dose of 
radiation, BED, or 
treatment platform.AUC 
range: 0.761–0.856 

A NN-based ensemble 
radiomics model that 
learned SRSfrom planning 
CT images for BMs and 
known earlyresponses 
predicted the SRS 
responses of unlearned 
imagesof BMs with high 
accuracy. 

Kawahara 
et al. 
[42] 

2021 88 Retrospective Patients with 
BM 

700 features; NN prediction 
model 

LC 7 features with the 
accuracy and sensitivity 
of 44 and 54%.The 
accuracy and sensitivity 
of the proposed NN model 
were 78 and 87%, AUC: 
0.87. 

The proposed NN model 
using the radiomics 
features can help 
physicians to gain a more 
realistic expectation of the 
treatment outcome than 
the traditional method 

Abbreviations: patients (pts), stereotactic radiotherapy (SRT), stereotactic radiosurgery (SRS), area under the curve (AUC), brain metastasis (BM), Magnetic Resonance 
Imaging (MRI), contrast-enhanced T1-weighted (CE T1w), T2-weighted (T2w), Gamma Knife radiosurgery (GKRS), Breast cancer BM (BCBM), region of interest (ROI), 
overall survival (OS), time to local progression (L-TTP), local failure (LF), local control (LC), predictive model (PM), hazard ratio (HR), confidence interval (CI), 
maximum tumor diameter (MTD), Karnofsky performance status (KPS), biologically. 
effective dose (BED), progression disease (PD), gray level (GL), gray level run length matrix (GLRLM), neighborhood gray tone difference matrix (NGTDM), gray level 
co-occurrence matrix (GLCM) not specified (NS), not applicable (NA), Least absolute shrinkage and selection operator (LASSO), Neural network (NN), intracranial 
progression-free survival (iPFS). 
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Table 2. 
The current literature on the role of feature-based radiomics for differential diagnosis between tumor progression and radiation injury after stereotactic radiation 
therapy for brain metastasis.  

Differentiation of radiation injury from local brain metastasis relapse  

Study Year N◦

of 
pts 

Type of 
study 

Study population Features Outcomes Results Main conclusions 

Zhang 
et al. 
[46] 

2018 87 Retrospective Pathologically 
confirmed necrosis or 
progression BM 

285 Textural features:- 
GL co-occurrence matrix- 
GLRLM- geometric 
shape;- NGTDM- 
histogram of oriented 
gradients2280 radiomic 
features1140 delta 
radiomic features 

Radionecrosis 
vs PD 

Delta radiomic features 
with a RUSBoost 
ensemble classifier had an 
overall predictive 
accuracy of 73.2%, AUC: 
0.73 in leave-one-out 
cross-validation. 

Delta radiomic features 
extracted from MRI 
images have potential 
for distinguishing 
radiation necrosis from 
PD after SRS for BM 

Hettal 
et al. 
[47] 

2020 20 Retrospective BM Quantitative imaging Radionecrosis 
vs PD 

Clinical relevance of 1766 
radiomics features (T1-w 
MRI) after SRT showing a 
lesion modification: 7 
feature-selection methods 
and 12 classification 
methods in terms of 
respective predictive 
performance. 75% of 
prediction accuracy for 
radionecrosis, and 91% 
for PD. 

Radiomics method is 
able to discriminate 
radionecrosis from 
progression in an 
accurate, early and 
noninvasive way. 

Peng et al. 
[48] 

2018 66 Retrospective BM treated with SRS Radiomic features from 
T1c or FLAIR imaging 
sequence.5 categories:- 
first-order statistics (14)- 
GLCM (18)- GLRLM (11)- 
NGTDM (5)- 
morphologic features (3) 

Treatment 
effect after SRS 

An optimized Iso SVM 
classifier based on top- 
ranked radiomic features 
had sensitivity and 
specificity of 65.38% and 
86.67%, respectively, 
AUC: 0.81 on leave-one- 
out cross-validation. 73% 
of cases were classifiable 
by the neuroradiologist, 
with a sensitivity of 97% 
and specificity of 19%. 

Radiomics holds 
promise for 
differentiating between 
treatment effect and true 
progression in BM 
treated with SRS. A 
predictive model built 
on radiomic features 
from an institutional 
cohort performed well 
on cross-validation 
testing. 

Tiwari 
et al. 
[49] 

2016 21 Retrospective Brain tumor MR 
imaging performed 9 
months post- 
radiochemotherapy 

Radiomic features from 
MRI imaging sequence: 
CE T1w, T2w, and FLAIR 

Radionecrosis 
vs PD 

AUC was highest for 
FLAIR (0.79) 

Radiomic features may 
provide complementary 
diagnostic information 
on routine MR imaging 
sequences that may 
improve the distinction 
of radiation necrosis 
from recurrence for both 
primary and BM. 

Lohmann 
et al. 
[51] 

2018 47 Retrospective New or progressive 
contrast-enhancing 
brain lesions on MRI 
after radiotherapy 
(predominantly SRS) of 
BM 

Textural 
featuresextracted from 
CE-MRIFET PET 
texturalfeatures 

Radionecrosis 
vs PD 

Textural features from 
CE-MRI had a diagnostic 
accuracy of 81% 
(sensitivity, 67%; 
specificity, 90%).FET PET 
textural had a slightly 
higher diagnostic 
accuracy of 83% 
(sensitivity, 88%; 
specificity, 75%).The 
combination of CE-MRI 
and FET PET features: 
accuracy, 89%;sensitivity, 
85%; specificity, 96%. 

Findings suggest that 
combined FET PET/CE- 
MRI radiomics using 
textural feature 
analysisoffers a great 
potential to contribute 
significantly to the 
management of pts with 
BM. 

Larroza 
et al. 
[52] 

2015 73 Retrospective Patients with BM 
treated with SRS 

Texture features were 
extracted from CE T1w 

Radionecrosis 
vs PD 

7 features with an AUC of 
0.94 

High classification 
accuracy was obtained 
using texture features 
and a support vector 
machine classifier in an 
approach based on 
conventional MRI to 
differentiate between 
BM and radiation 
necrosis. 

Takami 
et al. 
[53] 

2020 30 Prospective Patient with BM treated 
with neoadjuvant SRS 

NS LC and 
radiation 
toxicity 

Clinical trial Protocol Assessment of toxicity 
associated with SRS and 
provide additional 
quantitative metrics of 

(continued on next page) 
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The radiomic-based machine learning algorithm improved differen-
tiation between true progression and treatment effect: sensitivity and 
specificity were, respectively, 65.4% and 86.7% (machine learning) 
versus 97% and 19% (neuroradiologist assessment). Moreover, non- 
uniformity parameter was higher in true progression cases, high-
lighting the possible use of tissue heterogeneity as a biomarker for 
malignancy. 

A preliminary study by Tiwari et al. [49] investigated a small sample 
‘training’ cohort’ of 43 patients with either primary or metastatic brain 
lesions recurring after radiotherapy, developing a machine-learning al-
gorithm based on radiomic texture features from CE-T1w, T2w, and 
FLAIR MRI sequences. All the patients underwent resection or biopsy of 
the recurrent lesion to discriminate progression from radionecrosis. 
Among patients of the metastatic group, 12 lesions were true progres-
sion and 9 radionecrosis. 119 2-D radiomic textural features were 
extracted using in-house developed software. The minimum redundancy 
and maximum relevance (mRmR) were used to select the top 5 most 
discriminative features that were included in a SVM classifier algorithm. 
The best performing radiomic framework was obtained for FLAIR with 
accuracy and AUC values of 0.75 and 0.79, respectively. This model was 
validated in a cohort of 15 ‘test’ patients enrolled in a second institution, 
unfortunately including only 4 metastatic lesions, that were as well 
evaluated by two board-certified neuro-radiologists. Accuracy for these 
four lesions was 50% for both the two radiologists and the evaluated 
algorithm. 

In addition to MRI, some authors focused their efforts on the 
extraction of radiomic features from amino acid PET, aiming to improve 
the diagnosis of treatment-related injury from BM progression [50]. 
With this regard, Lohmann et al. [51] retrospectively evaluated 47 pa-
tients (mainly affected by lung or breast cancer) with BM treated with 
SRT alone (16–25 Gy) or in combination with WBRT performing a 

dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) PET. 56% of le-
sions were classified as recurrent BM and 44% as radiation injury. 
Tumor-to-brain ratios (TBRs) of 18F-FET uptake and 62 textural pa-
rameters were determined, as well as kinetic parameters. Textural pa-
rameters resulted in a slight increase of diagnostic accuracy in 
combination with TBRs, while there was no improvement of diagnostic 
accuracy in combination with kinetic PET parameters. The accuracy of 
TBR mean and max were found to be 81% and 83%, increased to 85% 
after combining with the textural parameters Coarseness or Short-zone 
emphasis. On the other hand, an increase of specificity up to 100% 
was observed when the standard parameters were combined with 
textural parameters. Consistently to the previous experience, Larroza 
et al. [52] retrospectively analyzed a cohort of 73 patients with a total of 
115 BM treated with SRT. Texture features were extracted from CE-T1w 
images, to determine the differential diagnosis between radiation ne-
crosis and metastatic progression. A subset of 7 optimal features were 
found and the Receiver operating characteristic (ROC) curves provided 
high classification accuracy (AUC > 0.9). 

Lastly, Takami H et al. designed a multi-center, non-randomized, 
open phase II clinical trial which investigated a novel strategy using 
neoadjuvant SRS (NaSRS) followed by resection in a small series of 30 
patients with up to 10 BM. Interestingly, authors reported a lower rate of 
postoperative leptomeningeal dissemination and symptomatic radiation 
injury for the NaSRS group compared to the cohort of patients treated 
with postoperative SRS. Among the study’s outcomes reported in the 
clinical trial protocol, the tertiary analyses will assess the correlation 
between local control and radiation toxicity with pretreatment clinical 
factors, serum markers, radiomic features and molecular analysis of the 
resected BM [53]. Main limitations of the studies analyzed in our work 
are the retrospective nature of the series, the non-standardized pool of 
selected radiomic features, the common absence of an external 

Table 2. (continued ) 

Study Year N◦

of 
pts 

Type of 
study 

Study population Features Outcomes Results Main conclusions 

efficacy for future 
comparative trials 

Others 

Abbreviations: patients (pts), stereotactic radiotherapy (SRT), stereotactic radiosurgery (SRS), area under the curve (AUC), brain metastasis (BM), Magnetic Resonance 
Imaging (MRI), contrast-enhanced T1-weighted (CE T1w), T2-weighted (T2w), Gamma Knife radiosurgery (GKRS), Breast cancer BM (BCBM), region of interest (ROI), 
overall survival (OS), time to local progression (L-TTP), local failure (LF), local control (LC), predictive model (PM), hazard ratio (HR), confidence interval (CI), 
maximum tumor diameter (MTD), Karnofsky performance status (KPS), biologically. 
effective dose (BED), progression disease (PD), gray level (GL), gray level run length matrix (GLRLM), neighborhood gray tone difference matrix (NGTDM), gray level 
co-occurrence matrix (GLCM) not specified (NS), not applicable (NA), Least absolute shrinkage and selection operator (LASSO), Neural network (NN), intracranial 
progression-free survival (iPFS). 

Table 3. 
Other papers regarding potential roles of feature-based radiomics in the treatment of brain metastases or central nervous system primary tumors.  

Study Year N◦

of 
pts 

Type of 
study 

Study 
population 

Features Outcomes Results Main conclusions 

Kocher 
et al. 
[26] 

2020 NA Critical 
review 

Malignant 
glioma or BM 

Feature-based 
radiomics and 
deep learning- 
based machine 
learning methods 

LC after 
SRTRadiation 
necrosis vs 
recurrent BM 

Radiomics can detect smaller BM, 
accurate segmentation of 
multiple larger BM, prediction of 
LC after SRS, and differentiate 
radiation injury from LF.High 
diagnostic accuracies of 80–90% 
can be achieved by most 
approaches. 

Clinical application of radiomics 
and artificial intelligence has a 
great potential for improving 
radiotherapy in patients with 
malignant brain tumors. A 
common problem is the large 
variability and the lack of 
standardization. 

Hu et al. 
[54] 

2020 NA Editorial 
paper 

Glioblastoma 
or multiple BM 

Machine-learning 
algorithms 

NS NS Radiomics models run the risk of 
extrapolation which underscores 
the importance of quantifying the 
uncertainty of each model 
prediction 

Abbreviations: not applicable (NA), brain metastasis (BM), local control (LC), stereotactic radiotherapy (SRT), stereotactic radiosurgery (SRS), local failure (LF), not 
specified (NS). 
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validation cohorts, and the relatively small sample size. Although the 
obtained results seem promising, remarkably in terms of specificity, the 
above mentioned pitfalls can limit the performance of classification al-
gorithms and the replicability using independent datasets [54]. 

Conclusion 

Despite the remarkable progress in the field of diagnostic imaging, 
differential diagnosis between tumor progression and treatment-related 
effects is often challenging. Moreover, clinical parameters might be sub- 
optimal to predict response to treatment and prognosis. Multiple expe-
riences highlighted the strong correlation between quantitative imaging 
features and outcomes after radiation therapy, with the potential to 
generate predictive models that could improve the diagnostic and 
therapeutic process of personalized cancer care. Hence, a multidisci-
plinary approach involving clinicians, medical physicists, and computer 
scientists becomes necessary to integrate feature-based radiomics and 
deep learning-based machine learning methods in the medical decision- 
making and radiation therapy workflow of BM. The imaging biomarkers 
extracted from MRI or PET images show an optimal potential to predict 
with high classification accuracy the local control/failure after SRT and 
as well to aid in the differential diagnosis between radiation necrosis and 
tumor progression after SRT treatment. 

In this respect, further validation studies of the existing predictive 
models are strongly awaited to confirm radiomics reliability. 
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