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Abstract: In the last decades, climate change has led to increasingly frequent drought events within
the Mediterranean area, creating an urgent need of a more sustainable management of groundwater
resources exploited for drinking and agricultural purposes. One of the most challenging issues is to
provide reliable simulations and forecasts of karst spring discharges, whose reduced information, as
well as the hydrological processes involving their feeding aquifers, is often a big issue for water service
managers and researchers. In order to plan a sustainable water resource exploitation that could face
future shortages, the groundwater availability should be assessed by continuously monitoring spring
discharge during the hydrological year, using collected data to better understand the past behaviour
and, possibly, forecast the future one in case of severe droughts. The aim of this paper is to understand
the factors that govern different spring discharge patterns according to rainfall inputs and to present
a model, based on artificial neural network (ANN) data training and cross-correlation analyses, to
evaluate the discharge of some karst spring in the Umbria region (Central Italy). The model used
is a fully connected neural network (FCNN) and has been used both for filling gaps in the spring
discharge time series and for simulating the response of six springs to rainfall seasonal patterns from
a 20-year continuous daily record, collected and provided by the Regional Environmental Protection
Agency (ARPA) of the Umbria region.

Keywords: artificial neural network; karst spring; machine learning; karst modelling; groundwater
management

1. Introduction

Karst regions represent about 7–12% of the global continental area and host large
aquifers, representing one of the most important freshwater resources for agricultural and
drinking purposes all over the world. An estimated 10% of the global drinking water
supply comes from these resources [1,2].

The difficulty in the exploitation, management and protection of these regions, due to
the high heterogeneity in their hydraulic properties, makes them unique and represents a
continuous challenge for researchers, technicians and water managers to find new solutions
when they face issues in karst settings [3–6].

In this framework, the variability in the response of spring flowrates to rainfall patterns
is certainly one most challenging topics for karst modelers, because of the strong non-linear
characteristics in the inflow-outflow process within the aquifers. For this reason, but also
taking into account the climate change effects on karst groundwater, long-term exploitation
from these resources requires increasingly high performance models able to understand
and simulate complex behaviors related to multiple factors [7–11].

In Europe, karstified carbonate rocks constitute about 21.6% of the total land surface,
hosting significant groundwater resources that supply freshwater for most of the largest

Water 2024, 16, 2580. https://doi.org/10.3390/w16182580 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16182580
https://doi.org/10.3390/w16182580
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-7204-880X
https://orcid.org/0000-0003-0891-5021
https://doi.org/10.3390/w16182580
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16182580?type=check_update&version=1


Water 2024, 16, 2580 2 of 15

cities in the Mediterranean area [12–14]. However, especially in this region, climate change
issues and overexploitation are increasingly threatening karst aquifers, influencing human
freshwater dependency on these vulnerable resources [15–19].

A sustainable groundwater exploitation solution from karst springs would first need
quantitative evaluations coming from the water budget and long-term analyses, contin-
uously monitoring karst spring discharge with high-frequency recording to assess the
response to daily or even sub-daily rainfall events. However, many case studies and practi-
cal experiences have shown that this has not always been carried out, even to this day, for
several reasons ranging from low efficiency of institutional water management to practical
issues related to karst heterogeneity itself. If it is not possible to perform measurements
of karst spring flow and there is a lack of available data, the discharge estimation is the
only way to quantitatively assess the behavior of karst springs over time [20]. In the field
of hydrological simulation models, physically based, statistical and black box models have
been useful tools for experts in recent years, representing very different ways to obtain the
same useful results, sometimes improved by being used in combination. Models based on
physical laws are strictly related to the nature of the processes occurring and the present
equations that can be solved by analytical or numerical procedures. Data-driven, machine
learning and artificial neural network approaches, instead, are considered black box models
because they do not depend on the physical knowledge of the process, but they reconstruct
a purely empirical model related to relationships found between input and output vari-
ables. In the last decades, many approaches have been utilized to analyze the relationship
between the rainfall time series, mostly over the recharge area, and the spring flows [21–25].
Recession curve analysis is the oldest and most known physically based approach for
studying the behavior of a karst spring. It allows the understanding of variations in spring
discharge related to recharge events. The analysis of the recession curves focused on the
recession coefficient (α), which is qualitatively related to the degree of aquifer karstification
and to the size of the karst system too. Maillet [26] used this analytical model for the first
time to describe flow recession using a simple exponential equation. Later, new models
were proposed starting from this basis and considering the different flow mechanisms
related to conduits, fractures and voids [27,28].

Regarding the statistical models, flow duration curve (FDC) analysis is a measure of the
range and variability of spring discharge. FDC analysis represents the percentage of time
during which the flow rates of a given spring exceed a specified threshold. The discharges
were ordered and plotted from the highest to the lowest values, without considering their
chronological sequence [29,30]. Still in statistical methods, an interesting proposal came
from the DISHMET model (Discharge Hydro-Climatological Model) that was designed to
predict monthly spring discharges by only utilizing a statistical approach that focuses on
precipitation and climate variability [23].

Other kinds of analyses, coming from the theory of signals, include assessments of the
coherence and gain functions. The first measures the degree of linear correlation between two
signals at each frequency. It is the normalized version of the cross spectrum, providing a value
between 0 and 1, where 1 indicates perfect correlation and 0 indicates no correlation. The gain
function, on the other hand, can indicate the degree of the amplification or attenuation of aquifer
discharge based on different frequency components of rainfall [31–33].

Studies focusing on correlation analysis include autocorrelation and cross-correlation
analysis, as well as auto-spectral and cross-spectral analysis [34–37]. The autocorrelation
function (ACF) can evaluate the linear dependency of successive values of a single parame-
ter for a defined time series. Auto-spectral analysis explains the distribution of variance
in the signal x(t) as a function of frequency. The first is helpful in identifying the time
delay between related time series and understanding the temporal relationship between
them, whereas cross-spectral analysis is a frequency-domain method used to examine the
relationship between two time series [38].

In the field of modelling rainfall spring discharge or rainfall groundwater level transfer
processes, more focus has been recently put on continuous and discrete wavelet analysis,



Water 2024, 16, 2580 3 of 15

cross-correlation analysis or machine learning models [39–42]. Other studies, specifically
concerning karst springs, have employed time-series analysis studying the transfer function
between rainfall and spring discharge, obtained by black box models or artificial neural
networks [24,41].

In fact, with the recent application of big data and artificial intelligence (AI) to a variety
of disciplines—even daily routine activities—the tables have turned. The number of papers
related to AI models and neural networks has increased in multiple fields, including the
field of groundwater hydrology and hydrogeology.

An artificial neural network (ANN) is a machine learning model that makes decisions
in a way similar to the human brain, using processes like biological neurons which work
together to identify phenomena, weigh options and reach conclusions. Each neural network
consists of layers of nodes, or artificial neurons: an input layer, one or more hidden layers
and an output layer. Each node connects to others and has its own associated weight
and threshold. The neuron applies a linear transformation to the input vector through a
weight matrix.

ANN models that simulate hydrological processes learn from a significant amount
of data to capture complex nonlinear relationships between measured rainfall and runoff
values. In these kinds of applications, models are usually multi-layer feed-forward net-
works. However, obtaining the number of hidden layers and the number of neurons in
each hidden layer is not straightforward, and no rules are available to determine the exact
numbers. These numbers are usually determined by a trial-and-error procedure [24].

As the variability and heterogeneity of karst aquifers is a sensitive topic for water
service managers and researchers, the use of ANN models has been spread out to provide
reliable simulations of spring discharges [43–51]. A nonlinear autoregressive exogenous
(NARX) neural network model has been applied in the same study area of this work,
with satisfactory results and promising developments [41]. However, long short-term
memory (LSTM) models were shown to be particularly effective for karst spring discharge
forecasting and seem to be the most used method in these kinds of applications [43,51].

LSTM networks are a type of recurrent neural network (RNN) that may learn order
dependence in sequence prediction problems. The current RNN step uses the output from
the previous step as its input.

Other kinds of ANNs and data-driven methods have successfully modelled spring flows
at the daily scale, being able to also solve issues related to karst flood forecasting [49,50]. The
use of these kinds of models can provide information not only about future values of karst
spring discharges, but also about past behavior in data-scarce karst springs [52].

In this study, the discharge values of six karst springs located in the Umbria region of
Central Italy have been assessed and simulated by using a black box model, implemented
in the Phyton coding language. The goal of this research is to determine the primary
factors that govern studied spring discharge patterns and behavior with an artificial neural
network technique able to fill gaps in data series and estimate spring discharge. More
specifically, the neural network used in this study is a fully connected neural network
(FCNN). It consists of a series of fully connected layers that link each neuron in one layer
to each neuron in the other layer. A transformation is then applied to the product through
the activation function.

The major advantage of fully connected networks is that there are no special assump-
tions needed to be made about the input. It is usually considered less suitable for long-term
predictions compared to other types of models like RNN or LSTM. However, it can be used
for short-term predictions with appropriate feature engineering and data pre-processing,
though the results might not be optimal, due to its natural lack of temporal dependencies.

2. Geographical, Geological and Hydrogeological Framework

The study area is in the Umbria region, in the central part of Italy, being the only
peninsular region that is not bordered by the sea. However, it is full of groundwater
due to the presence of the Apennines, a mountain chain characterized by the presence of
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thick limestone sequences. They outcrop in the eastern part of the region, where several
springs are present and there is a strong interaction between groundwater and surface
water (Figure 1). In fact, it has been assessed that almost 80% of the groundwater resource in
the hydrogeological basins of the study area comes out as linear springs, with the majority
of streams mostly fed by groundwater due to the interaction with saturated zones [53].
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permeable).

The geological formations hosting the aquifers that feed the selected studied springs
are mainly composed of calcareous and marly lithotypes (from the Triassic to Cretaceous
age). They belong to the so-called Umbria-Marche succession, taking this name from the
two regions (Umbria and Marche) and are present in many other Apennine areas of central
Italy. From a structural point of view, the Umbria–Marche Apennines are a thin-skinned
thrust belt with a hierarchy of multiple, superimposed detachments over a main basal
detachment at the level of Triassic evaporites. In terms of hydrogeology, this means that
the latter acts as an aquiclude, overlaid by the carbonatic sequence which presents multiple
aquifers characterized by different permeabilities and more or less of a presence of fractures,
joints and karst conduits according to the karstification degree [54,55]. This sequence, also
present in other regions in central Italy such as the Lazio and Abruzzo regions, has been
grouped in the same formation, where different limestone complexes are separated by less
thick and permeable layers of marl, considered to be almost impermeable (dark purple
area in Figure 1).

Different types of karst aquifers feed the most important springs in the area, including
the six considered in this study. As the outcropping geology of the reliefs is composed of
carbonate hydrostructures, groundwater recharge mainly occurs in the eastern inner areas,
thanks to the material having a high capability of infiltration [53]. The recharge area of the
springs under study was not taken into account for this specific research because of the
“blind” nature of the technique used, i.e., a black box model. However, several previous
studies have already obtained the extension of the recharge area of each spring based on
lithological, structural and hydrogeochemical studies [53,56–62].

3. Materials and Methods
3.1. Data Source

For setting up the model input and output data, rainfall and spring flowrates, as
well as coordinates and elevations of all the monitoring points, were taken from websites
related to institutional regional agencies of Umbria. The rainfall data were collected by
automated rain gauges and provided by the Hydrographic Service of the Umbria region
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at the following website link: “www.regione.umbria.it/ambiente/servizio-idrografico
(accessed date on 10 June 2024)”.

In this specific study, input data from a twenty-four year period were considered (from
1 January 2000 to 1 January 2024) for a total of more than 350,000 values.

Regarding the output, daily discharge values of six selected karst springs (Rasiglia, San
Giovenale, Nocera, Lupa, Acquabianca and Bagnara), monitored by the Regional Protection
Agency of the Umbria region (ARPA Umbria), were analyzed and elaborated to build up
the model, for a total of more than 43,800 values. These springs were selected because of
their long time series of data, freely available at the website “www.arpa.umbria.it (accessed
date on 10 June 2024)”. Unfortunately, they were not downloadable as a text or .csv file, so
it was necessary to manually copy and paste the values to create the dataset for the same
time window of the input data, constituting a huge amount of effort in terms of time and
data pre-treatment. The name, location in the WGS84 reference system and elevation of
both the springs and the rainfall stations are shown in Tables 1 and 2, respectively.

Table 1. Name, coordinates (WGS84) and elevation of the studied springs.

Spring Latitude Longitude Elevation (m asl)

Nocera 43.167 12.849 632
San Giovenale 43.103 12.811 456

Lupa 42.585 12.813 375
AcquaBianca 43.029 12.741 391

Bagnara 43.109 12.855 623
Rasiglia 42.983 12.852 665

Table 2. Name, coordinates (WGS84) and elevation of the rainfall stations.

Rainfall Station Latitude Longitude Elevation (m asl)

Nocera Umbra 43.11889 12.79111 535
Colfiorito 43.02639 12.88917 759

Gualdo Tadino 43.24083 12.78139 595
Armenzano 43.07333 12.70167 716
La Bolsella 43.03817 12.66732 923

Assisi 43.07098 12.61462 424
Casa Castalda 43.17750 12.65972 718

Branca 43.26028 12.68083 350
Torre dell’Olmo 43.31889 12.69500 550

Pianello 43.14389 12.56528 234
Nocera Scalo 43.09889 12.76722 392
Petrignano 43.10278 12.53778 244

Foligno 42.95314 12.67908 224
Spoleto 42.75583 12.73861 357
Azzano 42.81250 12.75694 240
Sellano 42.89083 12.93028 608
Forsivo 42.79972 13.01389 968
Norcia 42.79861 13.10500 700

Forca Canapine 42.76056 13.18889 1654
Sorgenti Pescia 42.67667 13.16444 1179

Castelluccio di Norcia 42.82933 13.21402 1452
Campi Altopiano 42.86861 13.11611 1141

Cascia 42.72004 13.02722 604
Monteleone di

Spoleto 42.64667 12.94917 935

San Vito 42.67639 12.85222 1006
Castagnacupa 42.67760 12.65389 778

Piediluco 42.53417 12.76722 370
S. Silvestro 42.75583 12.67389 383

Terni 42.55972 12.65028 130

www.regione.umbria.it/ambiente/servizio-idrografico
www.arpa.umbria.it
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3.2. Data Structure and Normalization

The dataset is structured as a single list of numerical data divided into the 5 available
features at the time, and as the output, the flowrate value for each spring. The dates were
divided into day, month and year components to increase the entropy, improve the quality
of the dataset and provide more data points for training the model.

In an attempt to capture some spatial relationships, feature engineering and inclusion
of spatial variables (latitude, longitude and elevation) were used. FCNNs are not inherently
suited for capturing spatial dependencies. Hence, incorporating them directly from the
dataset can help the model learn spatial relationships to some extent.

In summary, the dataset consists of multiple time series data, with each series repre-
senting a different spring. Each data point includes values for latitude, longitude, elevation,
day, month, year and the corresponding karst spring flow. This approach allows the model
to capture temporal and spatial patterns more effectively, leading to better performances.
To mitigate issues arising from the wide range of feature values, normalization was ap-
plied to be sure that each feature contributed equally to the training process. Preventing
features with larger numerical ranges from dominating the training process was funda-
mental, because it could lead to slower convergence, thereby worsening the overall model
performance. Normalization was performed using the standard normalization (z-score
normalization) formula:

x′ = (x − µ)/σ

where µ is the mean and σ is the standard deviation.

3.3. Data Splitting and Model Architecture

To ensure an unbiased evaluation of the model performance on unseen data, it is
common practice to split the dataset into two subsets:
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“validation” used as “values unknown by the model” in order to have unbiased
performance evaluation.

The training and validation ratio was about 80/20. This choice represents an op-
timal balance between the need to have a sufficiently large sample for model training
and the need to have an adequate validation set to independently evaluate the model
performance [63,64]. This is a crucial compromise to reduce the risk of overfitting and to
ensure a good generalization of the model on the validation data not considered during
training. Among the empirical studies that confirm this, Kohavi (1995) showed that this
splitting ratio is effective in providing reliable estimates of the model performance, mini-
mizing the impact of fluctuations in the data; in particular, for moderately sized datasets
such as the one under consideration, an 80/20 split allows a sufficiently representative
validation set to be maintained without excessively compromising the amount of data
available for training [65].

The data’s temporal dependence was maintained by choosing the samples for the two
subsets sequentially from the complete dataset: temporally we had data prior to a certain
date in the training set, and data following a certain date in the validation set.

The sequential FCNN model was trained on all available springs in the training
set and tailored to avoid overfitting issues due to the small size of the dataset; in total,
the architecture included 10 fully connected layers with the ReLu activation function,
interspersed with 6 batch normalization layers. ReLu is a function defined as follows:

Y(x) = 0, if x ≤ 0

Y(x) = x, if x > 0
(1)

The structure ended with a single fully connected layer of neuronal output using a sim-
ple linear activation function. In particular, the maximum number of neurons in the hidden
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layers reached 1024, allowing the network to capture complex patterns while managing the
risk of overfitting (Table 3). The code was implemented in Python version 3.12.3.

Table 3. Detailed structure of the FCNN model code.

Layer Output Shape Activation Function

Dense Fully Connected (Input) 64 ReLu
Batch Normalization 64

Dense Fully Connected 128 ReLu
Dense Fully Connected 256 ReLu

Batch Normalization 256
Dense Fully Connected 512 ReLu

Batch Normalization 512
Dense Fully Connected 1024 ReLu

Batch Normalization 1024
Dense Fully Connected 512 ReLu

Batch Normalization 512
Dense Fully Connected 128 ReLu
Dense Fully Connected 64 ReLu
Dense Fully Connected 32 ReLu

Batch Normalization 32
Dense Fully Connected 16 ReLu

Dense Fully Connected (Output) 1 Linear

The structure of the layers was:

1. Input Layer:

• Purpose: Matches the number of input features (5 in this case)
• Activation function: ReLu

2. Hidden Layers:

• Purposes: capturing features, spatial and temporal relations, hidden variables
• Activation Function: Rectified Linear Unit (ReLu), which allows the network to

capture complex, non-linear patterns: ReLu (x) = max(0,x)
• Batch Normalization: Applied to stabilize the learning process, accelerate training

and reduce internal covariate shift

3. Output Layer:

• Purpose: A single neuron with linear activation, suitable for regression tasks
where the output is a continuous value.

• Activation function: Linear

4. Results and Discussion

The results refer to the cross correlation analyses of the discharge time series of the
springs under study and the application of the FCNN model. Regarding the latter, the
raw dataset was initially pre-processed by the model, using the discharge values of other
springs to infer the missing values of a single spring. This was done to obtain a new
dataset in which there were no longer any gaps present. Subsequently, the same model
was applied to all of the dataset, this time considering the rainfall values provided by the
30 meteorological stations as input.

4.1. Cross Correlation Analyses

After creating the dataset for the model setting, some simple cross correlation analyses
on the six spring discharge time series were performed. The correlation coefficients (ρxy)
between the daily discharge values of the springs have been calculated (Table 4).
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Table 4. Cross-correlation coefficients for the discharge time series from the six karst springs
(2000–2024).

Nocera San Giovenale Lupa Acquabianca Bagnara Rasiglia

Nocera - 0.55 0.74 0.57 0.81 0.60
San Giovenale 0.55 - 0.67 0.61 0.60 0.67

Lupa 0.74 0.67 - 0.82 0.74 0.84
AcquaBianca 0.57 0.61 0.82 - 0.72 0.78

Bagnara 0.81 0.60 0.74 0.72 - 0.74
Rasiglia 0.60 0.67 0.84 0.78 0.74 -

The results show that all of the correlation coefficients obtained are higher than 0.5, due
to the same seasonal pattern of rainfall, but also due to the karst nature of the aquifers, with
a reduced lag time between inputs and outputs. However, some similarities related to the
specific karstification degree and the main type of groundwater circulation in the feeding
aquifers could be noticed by the higher value of the correlation coefficient obtained for
specific springs. That is the case of the following couples: Bagnara–Nocera, Lupa–Rasiglia
and Lupa–Acquabianca. In all of these three cases, the correlation coefficient ρxy is more
than 0.8, indicating a strong correlation (almost linear) between the discharges of the two
springs. A clear example is the case of the Acquabianca–Nocera couple. Although they
are very close (Figure 1), they actually show a rather low correlation coefficient (equal to
0.57), highlighting that in a very small area the two springs could drain from different karst
systems, or in correspondence with a specific threshold value, an overflow from one system
to another can occur.

4.2. FCNN Model Results
4.2.1. Filling Gaps in the Spring Discharge Time Series

In some cases, the measurement instruments were out of service during the 24 years
under study. This leads to a lack of continuity, with serious consequences for the training
of the model and potentially generating divergence and accuracy loss in the process. In
the historical measured data of all six springs analyzed, a total of 2408 missing or not
determined (n.d.) values were present. In particular, they were distributed among the
springs as follows: 793 for San Giovenale, 371 for Acquabianca, 151 for Lupa, 208 for
Bagnara, 356 for Rasiglia and 608 for Nocera. This required a tool to pre-process the data
and obtain a continuous homogeneous dataset to be used for the model. Raw data were
pre-processed using the FCNN model, using all the available information and discharge
values of the other springs to infer the missing values of a single spring on the selected
time interval (Figure 2).

Water 2024, 16, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 2. Conceptual structure of FCNN for filling gaps within the discharge time series. 

The results are shown in Figure 3, where raw data (Figure 3a) and processed data 
with gaps filled (Figure 3a) are presented for all six springs considered in this study. A 
few spikes and oscillations are visible in specific time intervals, such as the case of San 
Giovenale in the winter of 2013, but except this the dataset is continuously filled with 
reasonable discharge values, following the usual behavior of karst springs to both 
seasonal and high intensity rainfall patterns. 

 
(a) 

 
(b) 

Figure 3. Karst spring discharge time series: (a) raw data with gaps and (b) post-processed data after 
filling gaps. 

4.2.2. Simulating Karst Spring Flowrate Behavior 
For the simulation of the responses of the six karst springs to rainfall inputs, the same 

model was applied to the new dataset obtained after the gap-filling procedure. This time, 

Figure 2. Conceptual structure of FCNN for filling gaps within the discharge time series.

The results are shown in Figure 3, where raw data (Figure 3a) and processed data
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few spikes and oscillations are visible in specific time intervals, such as the case of San
Giovenale in the winter of 2013, but except this the dataset is continuously filled with
reasonable discharge values, following the usual behavior of karst springs to both seasonal
and high intensity rainfall patterns.
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4.2.2. Simulating Karst Spring Flowrate Behavior

For the simulation of the responses of the six karst springs to rainfall inputs, the same
model was applied to the new dataset obtained after the gap-filling procedure. This time,
in the input vector there was no more information about the discharge, but the rainfall
values of the 30 meteorological stations in the study area were considered to directly train
the model on the output vector (Figure 4).
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The results for the entire dataset related to the six springs is presented in Figure 5.
The loss function was minimized after 332 epochs, even if an initial rapid training was
clearly visible and no divergence occurred. The final scatter plot, indicating the accuracy of
results compared to the measured discharge values, confirmed the good performance of
the proposed model.
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The obtained results showing the measured and simulated values of flowrates for each
spring are presented in Figure 6 for the Rasiglia (Figure 6a), Nocera (Figure 6b) and San
Giovenale (Figure 6c) springs and in Figure 7 for the Lupa (Figure 7a), Bagnara (Figure 7b)
and Acquabianca (Figure 7c) springs.
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The model’s performance on simulating spring discharge was assessed by calculating
the R-squared coefficient (R2) for the simulated time series according to the measured
time series (Table 5). The best results were found for the Rasiglia and San Giovenale
springs, which were also the springs with higher values of average annual flowrates,
higher storage capacity in the feeding aquifer and shorter lag time in the spring response
to seasonal rainfall inputs. On the contrary, in the case of Lupa the model showed the
worst performance, with some of the maximum discharge during the driest years not
being matched by the model simulation. However, most of the minimum values (the
ones of interest for groundwater management during shortages) are well simulated and,
even in this case, the overall results showed a value of R2 equal to 0.89, which is still high.
Regarding the mean absolute error (MAE) and root mean squared error (RMSE), the highest
obtained values were those related to San Giovenale, whereas the lowest were for Nocera.
However, these results refer to springs with large differences in the average discharge; for
example, San Giovenale produces several hundreds of liters per second, while Acquabianca
only produces a few tens.

This case study highlights that the smallest and more karstified springs are the most
difficult to be modelled (Bagnara, Lupa and Acquabianca), but very good results could
be obtained with those characterized by higher average discharge (San Giovenale) and
lower variability (Rasiglia). Anyway, the performance results confirm the suitability of the
FCNN model to provide useful insights into the six karst springs present in the study area
of Umbria, in Central Italy. Focusing on their dependence on each other in terms of time
and space (coordinates and altitude) and using daily recorded rainfall values of 30 stations
spread all over the area, the model has been able to successfully simulate the response of
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each spring, obtaining results potentially useful for the groundwater management of the
local water agencies.

Table 5. Evaluation metrics for spring discharge simulations obtained by FCNN model.

Spring R2 MAE RMSE
(-) (L/s) (L/s)

Nocera 0.95 17.5 23.1
San Giovenale 0.98 49.8 68.6

Lupa 0.89 46.1 56.5
AcquaBianca 0.91 19.7 25.1

Bagnara 0.92 35.6 45.4
Rasiglia 0.99 19.8 24.8

5. Conclusions

The proposed study aimed to understand and evaluate the behavior of six karst
springs located in the Umbria region (central Italy) using cross correlation analyses and
a fully connected neural network (FCNN) implemented in the Phyton coding language.
Cross correlation analyses between the different karst spring discharge time series came out
to be helpful in recognizing similarities related to the hydraulic properties of the feeding
aquifers, focusing on the groundwater circulation type.

The FCNN model used dates as input (day, month and year), as well as the coordinates
and elevation data of the springs and meteorological stations, considering rainfall and
training the model on spring discharge values as output. The proportions of the dataset
was 80% for training and 20% for validation, randomly chosen in the entire time series.

Results showed that the FCNN model was effective in simulating karst spring flowrates
with the amount of data available in this study and can be used for short-term predictions
with appropriate feature engineering and data pre-processing. However, predictions be-
yond the historical data of the dataset more than a few days push the model to divergence.
The feasibility study of the model, with the small quantitative data available, is useful
for preliminary analysis and the understanding the phenomenon. The model has given
positive feedback and results both as a tool for filling gaps within the data set, and by
providing insights into the computational and modelling characteristics of the phenomenon.
Hopefully the proposed model will drive the analyses to more complex forecasting models
such as RNN and LSTMs that are the future steps of this project, with the aim of improving
results and adaptability.

Neural networks and artificial intelligence models could be useful and important
tools for water management in karst regions, but one must not forget that no matter how
good the model is, it will be always a black box: it does not care about the physics. For
this reason, some “hidden” relationships that the ANN might find could be related to
the phenomena, even if one is not able to see them with ordinary physical and analytical
approaches. Furthermore, many other relationships might not be found if the right amount
and nature of input is not considered in the ANN model.
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