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Abstract: The paper presents research on a specific approach to the issue of computed tomography
with an incomplete data set. The case of incomplete information is quite common, for example
when examining objects of large size or difficult to access. Algorithms devoted to this type of
problems can be used to detect anomalies in coal seams that pose a threat to the life of miners.
The most dangerous example of such an anomaly may be a compressed gas tank, which expands
rapidly during exploitation, at the same time ejecting rock fragments, which are a real threat to the
working crew. The approach presented in the paper is an improvement of the previous idea, in which
the detected objects were represented by sequences of points. These points represent rectangles,
which were characterized by sequences of their parameters. This time, instead of sequences in the
representation, there are sets of objects, which allow for the elimination of duplicates. As a result, the
reconstruction is faster. The algorithm presented in the paper solves the inverse problem of finding
the minimum of the objective function. Heuristic algorithms are suitable for solving this type of tasks.
The following heuristic algorithms are described, tested and compared: Aquila Optimizer (AQ),
Firefly Algorithm (FA), Whale Optimization Algorithm (WOA), Butterfly Optimization Algorithm
(BOA) and Dynamic Butterfly Optimization Algorithm (DBOA). The research showed that the best
algorithm for this type of problem turned out to be DBOA.

Keywords: computed tomography; inverse problem; optimization; incomplete data set

1. Introduction

Application of computed tomography can take place wherever there is a need to
examine the interior of a certain object without disturbing its structure. Medicine is a classic
example of using the computed tomography. In this field, the developed algorithms are so
reliable and efficient that reconstruction of the interior structure of the examined patient in
sufficient resolution in a short time is not a big challenge for modern computer tomographs.
A large part of the papers published in non-medical journals concerns the modification of
algorithms in such a way that reducing the dose of radiation received by the patient does
not deteriorate the quality of reproduction [1].

In this paper, we deal with a non-medical problem related to the issue of an incomplete
data set. Such phenomena are quite frequent, and an example of it may be the study of
coal seams. The natural process of coal seams formation may result in the formation
of undesirable, for economic reasons, excesses of other rocks or compressed gas tanks
hazardous to the health and life of the working crew. The current energy crisis may put
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pressure on mines to increase production. Higher production, in turn, may be related
to the exploitation of previously unexploited deposits. This, however, is associated with
the risk of hitting and unsealing such a tank. The uncontrolled gas outburst next to fires,
rock bursts and gas explosions is the most common cause of dangerous incidents in mines
(in the modern history of Polish hard coal mines, there were several such large incidents,
and, in 1979, in one of the Polish mines, almost 20 miners died due to uncontrolled gas
outburst). The proposed method of pre-exploitation coal seam examination has two greatest
advantages: it can detect dangerous anomalies in the seam, and such examination does not
interfere with the seam exploitation (the examination of further parts of the seam can be
performed during the operation of the already examined part).

Computed tomography algorithms, apart from the classic medical applications [2] and
the examination of coal decks [3,4] mentioned before, have a number of other applications,
almost classic, such as X-raying luggage, examining the construction of building materials,
or less obvious, such as examining flames, the earth’s crust, seas and oceans, objects in
motion or crash tests [5–8]. The authors studied the algorithms of computed tomography
focus on its non-standard approach to an incomplete data set, which occurs, for example, in
the case of coal seam research. The conducted research has shown that, despite much poorer
information about the interior of the tested object, with the appropriate approach to the
problem, the algorithms are convergent and stable, and thus they can be successfully used in
the problem of an incomplete data set [9]. The only problem with the algorithms developed
in this way is the high computation time, while in classical problems a dozen or so iterations
were enough (details are presented in Section 3); in the case of an incomplete data set,
this number may increase to several hundred. The authors took steps to prevent this
undesirable feature by using, inter alia, chaotic and block algorithms, parallel computing
or heuristic algorithms [3,4].

In the classic problem of computed tomography, e.g., in medical tomography, the
assumptions of Kotelnikov’s theorem are easily fulfilled. This means that enough X-rays
can be taken from sufficiently many angles. However, there are cases when such projections
cannot be made. Such a situation may take place, for example, when the tested object is
unavailable due to its location (ocean and space research), size (large building structures)
or lack of access. A good example of the latter case is the coal bed. The tests on such a coal
seam must be performed for economic reasons (then, the presence of undesirable scale in
the coal is checked) or for safety reasons. In the latter case, compressed gas is sought in
the coal seams, which can rapidly expand during extraction, ejecting rock fragments along
with the gas. This is a threat to the health and life of the mining crew. Currently, most of
the work to check the presence of such reservoirs of gas is carried out by drilling, but this
method is time-consuming and involves significant costs.

If the coal seam examination was performed using computed tomography methods,
then the works related to the extraction of coal and the works related to the examination
of the coal seam would be carried out in parallel and would not interfere with each other.
To prepare a mining wall, auxiliary structures are made for a given seam, on the walls of
which a system of sensors sending a beam of penetrating radiation can be placed on the one
side, and sensors (receivers) of this signal are placed on the other side (see Figures 1 and 2).
On the one hand, such an approach is economically beneficial, but on the other hand,
such projections differ significantly from the assumptions for the quality of projection in
computed tomography.
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Figure 1. Graphical interpretation of obtaining the projection vector B and the coefficient matrix A of
system (2).

Due to the unavailability of the coal seam, the obtained projections are “one-sided”,
thus they carry much less information about the examined object. The research carried
out so far shows that in such a case “quality” can be made up of with quantity. However,
this approach has a disadvantage; many more calculations are needed, and thus the
time needed to obtain a satisfactory accuracy is significantly extended. A series of work
devoted to eliminate this drawback has brought results, but it seems that the efficiency of
computed tomography reconstructive algorithms in the issue of incomplete data set can be
significantly increased, which is the goal of this study.

In this paper, we focus on improving one of these approaches [4], where the detected
objects are represented by sequences of rectangles characterized by sequences of their
parameters. This time, instead of sequences in the representation, there are sets, which
allow for the elimination of duplicates of such representations. The considered algorithms
were adapted to the task in such a way that they do not operate on the argument sequence,
but on sets of fives, where the first pair in the five represents the lower left corner of the
rectangle, the second pair—the upper right corner, and the fifth argument is the desired
density. As a result, the reconstruction is faster. Additionally, other heuristic algorithms,
such as Aquila Optimizer (AO), Firefly Algorithm (FA), Whale Optimization Algorithm
(WOA) and Dynamic Butterfly Optimization Algorithm (DBOA) are tested for usability.

Figure 2. Illustrative drawing visualizing the operation of the anomaly detection system in coal seams.
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2. Ideas of Computed Tomography

Computed tomography can be used where there is a need for non-invasive examina-
tion of the interior of different objects. Such examination consists of X-raying (this is the
most common, but not the only method) of the examined object with penetrating radiation
and analyzing the energy loss after passing such radiation through the examined object.
Such an analysis can be useful due to the fact that each type of matter has its own individual
(different than for other types of matter) coefficient (capacity) of absorbing the energy of
penetrating radiation. The measure of this coefficient is often given in Hounsfield units
[HU]. Examples of the values of this coefficient for X-ray radiation can be found in [3].

The mathematical description of the measure of such a loss for one radius L (projection)
is given by the formula:

pL = ln
I0

I

∫
L

f (x, y) dL, (1)

where pL is the projection obtained on the path L of the given ray, I0 is the initial radiation
intensity, I is the final intensity (after passing along the path L of the ray through the
tested object), and the function f is the density distribution of the tested object. Obviously,
the information obtained from one ray does not allow for reconstructing the interior of
the examined object along the path of this ray. Such X-rays should be done sufficiently,
not only in terms of quantity, but also in terms of quality understood as the number of
X-rays angles. The first studies of computed tomography algorithms say that accurate
reconstruction requires infinitely many x-rays angles and infinitely many X-rays. In practice,
this is impossible.

An important result was the Kotelnikov theorem [10], which says how many X-rays
(scans) should be performed to obtain a reconstruction of satisfactory quality, of course for
a finite number of scan angles and for a finite number of rays for a given angle. After the
X-rays are performed, on the basis of the information obtained in this way, it is possible
to proceed to the process of reconstructing the internal structure of the X-rayed object.
Reconstructive algorithms are responsible for this process. These algorithms can be divided
into two main groups: analytical algorithms [11–13] and algebraic algorithms [14–16].

In the case of an incomplete data set, we obtain information (projections) of much
worse quality, mainly due to the range of scanning angles. Such projections do not satisfy
the assumptions of Kotelnikov’s theorem, so there is no guarantee that it would be possible
to obtain a reconstruction of satisfactory quality. The research carried out by the authors
showed that analytical algorithms cannot solve this type of problem (in terms of an incom-
plete data set), while algebraic algorithms, with appropriate adaptation to the problem of
an incomplete data set, allow for obtaining such a reconstruction.

3. Methodology

The ideas of analytical and algebraic algorithms arose long before the construction
of the first computer tomograph. Thus, in 1937, Stefan Kaczmarz presented an iterative
algorithm for solving a system of linear equations and proved its convergence [17] (as-
suming that a given square matrix system of linear equations has exactly one solution).
This algorithm was rediscovered in the 1970s by Gordon, Bender and Herman as a useful
tool for the problem of image reconstruction (after proving the convergence of Kaczmarz’s
algorithm also in [15]). Figure 3 shows a graphic interpretation of Kaczmarz’s algorithm.



Sensors 2022, 22, 7297 5 of 22

Figure 3. Geometric interpretation of the Kaczmarz’s algorithm.

Before we discuss the presented algorithm, let us first define the way in which the
system of linear equations to be solved arises. In algebraic algorithms, we initially assume
that the examined object is inscribed in a square (which of course is always possible), and
then we discretize this square by dividing it into n× n = n2 smaller congruent squares
(pixels). It is also assumed that this discretization is so dense (the number n is large enough)
that can be assumed the function f describing the density distribution of the examined
object is constant for each pixel. Such an assumption results in the fact that the energy loss
pi of the i-th ray is presented as the sum of energy losses along the path of this ray during
its passage through the tested object. Energy is only lost on those pixels that are in the path
of this ray. The energy loss on such a pixel is directly proportional to the change in length
(knowing the size of the square in which the tested object is inscribed, the discretization
density and the equation of the line along which a given radius runs, we can determine
this length) the common part of a given radius and a given pixel and to the unknown
energy absorption capacity of this pixel (constant value of the function f on this pixel). By
carrying out a number of such X-rays, each of them is an equation, the left side of which is
the sum of the above-mentioned energy losses, and the right side is the total loss. Value of
the function f for each pixel is an unknown. As a result, we get a system of equations:

AX = B, (2)

where A is the matrix of the r× n2 dimension (r is the number of X-rays), B is the matrix
(vector) of the r× 1 dimension of the energy loss of each ray, and X is the matrix (vector) of
the n2 × 1 dimension of unknowns.

Because matrix A has specific properties (it is a rectangular, sparse, asymmetric and
large-dimension matrix), classical algorithms are not useful in this case. However, the
Kaczmarz algorithm, or algorithms based on it, can be successfully used, e.g., the most
famous ART algorithm, in which, after selecting any initial solution x0 ∈ Rn2

, subsequent
approximations of the exact solution are determined by the formula:

xk+1 = xk + λk
pi − 〈xk, ai〉
‖ai‖2 ai, (3)

where k ∈ N0 is the solution index, λk is the relaxation coefficient (for λk = λ = 1, we
obtain the classic Kaczmarz algorithm), pi is the i-th projection (i-th element of vector B), ai

is the i-th row of the matrix A, 〈·, ·〉means the classical dot product, and ‖ · ‖ is the norm
of a vector. Trummer showed [18] that, for 0 < λk = λ < 2, i.e., for the constant value of
the λ parameter, or for 0 < lim inf λk ≤ lim sup λk < 2, i.e., for the variable value of the λ
parameter, the ART algorithm is convergent.
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In Ref. [4], the authors approached the issue of reconstruction the interior of the exam-
ined object in an innovative way. In this paper, authors significantly increase the efficiency
of this process through a new approach to the previously introduced idea. It was assumed
that detected objects were represented as rectangles. This approach has advantages and
is a good mathematical model of the studied phenomenon. Since there are relatively few
detectable undesirable objects in the coal seam, we can limit to a relatively small number of
rectangles representing these objects. The adopted shape is appropriate, despite the fact
that the actual objects may not be rectangles, and the difference between a rectangle and
a “non-rectangle” is negligible (small-size stone overgrowth is not a significant loss of the
output quality).

After X-rays, we obtain a system of linear equations (2) and in the classic approach, this
system of equations should be solved using the relationship (3). However, this step requires
a lot of computation and therefore a long time to reconstruction. Thus far, rectangles
representing the density distribution have been detected by using heuristic algorithms.
We use a similar approach in this paper. The innovation of this approach will be the
representation of these rectangles. Previously, order of rectangles was important, which
really does not matter. The representation of a single rectangle was also ambiguous (in
means of the order of the vertices). In this paper, we eliminate these two inconveniences,
thanks to which the time of finding the rectangles should be significantly shortened.

Such an approach is necessary for the possibility of using heuristic algorithms in a
computed tomography task. We can find articles (see, e.g., [19–21]) in which the authors
combine these two methods, but, in these approaches, heuristic algorithms are used to
analyze the image, after the system of equations (2) has been solved. The lack of works
in which heuristic algorithms were used was dictated by their feature—these algorithms
work well with the optimization of functions with a relatively small number of arguments.
In the standard approach, there would be as many arguments as there would be unknowns
in the system of equations (2). Thus, it would be enough to perform a not very dense
discretization (e.g., assuming n = 20, and the variables would then be n2 = 400), which
would make it impossible to use the heuristic algorithm. The innovative approach is
based on the fact that the unknowns (variables) are the features identifying the rectangles
that represent the searched objects in the considered area. These features are the position
of the rectangle and the value of the function f in the rectangle. Another advantage of
this approach is the insensitivity of the method to discretization density. If we place m
transmitters on one of the walls of the coal seam, and m sensors on the other, and if each
transmitter sends a beam to each sensor, the system of equations will have m2 of equations
and n2 of unknowns (increasing the discretization density forces an increase in the number
of sensor sources). In this approach, the complexity of the task does not directly depend
on the discretization density as much as in the classical approach. The heuristic algorithm
arranges rectangles (along with information about the value of the function f in these
rectangles) in the area in such a way as to minimize the value of the function:

F = ‖B− B∗‖2 =
m2

∑
i=1

(bi − b∗i )
2, (4)

where F is a minimized function, B is a projection vector (right side of the system 2), B∗ is
a projection vector created on the basis of the constant matrix A and a given approximation
of the solution X, m is the number of sources (and sensors), bi and b∗i , i = 1, 2, . . . , n2, are,
respectively, i-th element of vectors B and B∗; n2 is the number of pixels.

4. Heuristic Algorithms

This section presents the heuristic algorithms used in the calculations to minimize
the objective function (4) and reconstruction the sought rectangles. Algorithms of this
type are widely used in various types of engineering tasks [22–29]. In this paper, we
present and compare the following algorithms: Aquila Optimizer (AO), Firefly algorithm (FA),
Whale Optimization Algorithm (WOA), Butterfly Optimization Algorithm (BOA) and Dynamic
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Butterfly Optimization Algorithm (DBOA). In order to describe the methods, we introduce
the following notations:

N − population size, Dim− dimension size, T − number of iterations,

xt
j = [xt

j1, xt
j2, . . . , xt

jDim]− j-th solution in t-th iteration, j = 1, 2, . . . , N,

Fit− cost function.

4.1. Aquila Optimizer

Aquila is a type of bird from the hawk family (Accipitridae) found in Eurasia, North
America, Africa and Australia. The way in which these birds hunt their prey was the
inspiration for the creation of the algorithm of searching for a minimum of functions.
Aquila predators base their hunting behavior on four main techniques:

• Expanded exploration. The predator soars high in the air with a vertical tilt—this
method is used for hunting birds in flight, where the Aquila rises high above the
ground. Upon examining the prey, Aquila goes into a long, low-angle slide with
increasing speed. Aquila needs a height above its prey for this method to be effective.
Just before the attack, the wings and tail are spread out and the claws bent forward to
catch the prey. This process in the algorithm is described by the following equation:

xt+1 =

(
1− t

T

)
xt

best +
(
xt

m − rd xt
best
)
, (5)

where xt+1 is solution in t + 1-th iteration, xt
best is the best solution obtained in the

t-th iteration (so far) and reflects the approximate location of the prey (which is the
optimization goal). By xt

m, we denote the mean solution in the iteration number t and
calculate it as:

xt
m =

1
N

N

∑
i=1

xt
i . (6)

The expression 1− t
T is responsible for the scope of the search. The closer the value of

t is to the total iterations T, the more narrow the scope of the search. Value of rd is a
random number from [0, 1] interval.

• Narrowed exploration. In this method, when the aquila is high above the prey, it
begins to circle around it and prepare to land and attack. This technique is called short
stroke contour flight. Aquila narrowly explores the selected area where the prey is
located and prepare to attack. This behavior is mathematically represented by the
equation:

xt+1 = LevyD xt
best + xt

r + rd (r cos φ− r sin φ), (7)

where xt+1 is solution in iteration t + 1, xt
best is the best solution obtained in the

iteration t, xt
r is a random solution from iteration t, and rd is random number from

range [0, 1]. Levyd is value of the Levy flight distribution function. We compute the
values of this function as follows:

LevyD =
s u σ

|v|
1
β

, (8)

where s, β are constants u, v are random numbers from interval [0, 1], and σ is com-
puted by formula [30]:

σ =
Γ(1 + β) sin(πβ

2 )

Γ( 1+β
2 )2

β−1
2 β

. (9)
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The expression r cos φ− r sin φ is intended to simulate a spiral flight. Parameters r
and φ are calculated as follows:

r = r1 + V D1, θ = −ξ D1 +
3π

2
, (10)

where r1 is a fixed integer from {1, 2, . . . , 30}, V, ξ are small constants, D1 is an integer
from {1, 2, . . . , Dim}.

• Expanded exploitation. In this step, the prey is already located and the aquila launches
an initial vertical attack to see the victim’s reaction. Here, the aquila exploits a selected
target area to get as close to its prey as possible. We transfer this behavior to the
mathematical description of the method with the following equation:

xt+1 = α
(
xt

best − xt
m
)
− rd + δ (rd (uBound− lBound) + lBound), (11)

where xt+1 is the solution in the next iteration after t, xt
best is the best solution ob-

tained in the iterations so far, and xt
m is the population mean solution defined by

the Formula (6). As before, rd is a random number between [0, 1], lBound, uBound
define the problem domain (lower and upper bound), and α and δ are exploitation
adjustment constants’ parameters.

• Narrowed exploitation. In this technique, the aquila has already approached the
prey and attacks with stochastic movements, approaching and grabbing the victim.
Mathematically, this process is described by the equation:

xt+1 = QF xt
best −

(
G1 rd xt

m
)
− G2 LevyD + rd G1, (12)

where xt+1 is solution in t + 1 iteration, and QF denotes the so-called quality function:

QF = t
2rd−1
(1−T)2 . (13)

G1 and G2 are calculated by:

G1 = 2rd− 1, G2 = 2(t− T)2. (14)

These parameters reflect the way the predator flies, and in the case of the algorithm,
we can fine-tune the algorithm with it.

In nature, all these techniques are mixed in hunting prey, and in the case of the
algorithm described here, the Formulas (5)–(14) form the set of four transformations that
make up the AO algorithm. Pseudocode Algorithm 1 shows steps of the AO algorithm.
Details related to the Aquila Optimizer and application of it can be found in [30–32].
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Algorithm 1 Aquila Optimize (AO) pseudocode.
1:

Initialization part.

2: Setting up parameters of AO algorithm.
3: Random initialization of starting population {x0

0, x0
1, . . . , x0

N}.
4:

Iterative part.

5: for iteration t = 0, 1, . . . , T − 1 do
6: Calculate the values of the cost function Fit for each element in the population.
7: Determine the best individual xbest in the population.
8: for k = 1, 2, . . . , N do
9: Update mean individual xm in the population.

10: Update algorithm parameters based on population number and random
11: values (G1, G2, QF).
12: if iteration t ≤ 2

3 T then
13: if rd < 0.5 then
14: Do the step expanded exploration (5) updating solution xt

k, obtaining
15: xt+1

k
16: if Fit(xt+1

k ) < Fit(xt
k) then xt

k = xt+1
k

17: end if
18: if Fit(xt+1

k ) < Fit(xt
best) then xt

best = xt+1
k

19: end if
20: else
21: Do the step narrowed exploration (7) updating solution xt

k.
22: Then, obtain xt+1

k
23: if Fit(xt+1

k ) < Fit(xt
k) then xt

k = xt+1
k

24: end if
25: if Fit(xt+1

k ) < Fit(xt
best) then xt

best = xt+1
k

26: end if
27: end if
28: else
29: if rd < 0.5 then
30: Do the step Expanded exploitation (11) updating solution xt

k.
31: Then, obtain xt+1

k
32: if Fit(xt+1

k ) < Fit(xt
k) then xt

k = xt+1
k

33: end if
34: if Fit(xt+1

k ) < Fit(xt
best) then xt

best = xt+1
k

35: end if
36: else
37: Do the step narrowed exploitation (12) updating solution xt

k.
38: Then, obtain xt+1

k
39: if Fit(xt+1

k ) < Fit(xt
k) then xt

k = xt+1
k

40: end if
41: if Fit(xt+1

k ) < Fit(xt
best) then xt

best = xt+1
k

42: end if
43: end if
44: end if
45: end for
46: end for
47: return xbest.
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4.2. Firefly Algorithm

The firefly algorithm is a swarm metaheuristics developed in 2008 by Xin-She Yang [33].
It is inspired by the social behavior of fireflies (insects from the Lampyridae family) and
the phenomenon of their bioluminescent communication. The algorithm is intended to
constrained continuous optimization problems. It is dedicated to minimize cost function
Fit, i.e., finding x∗ that:

Fit(x∗) = min
x∈S

Fit(x), (15)

where S ⊂ Rn.
Now, we present the basics assumptions of the fireflies algorithm:

• Assume that there is a swarm of N agents (fireflies) solving the optimization problem
iteratively, where xt

j represents the solution for the firefly j in the k iteration, and

Fit(xk
i ) stands for its cost.

• Each firefly has a distinguishing β attractiveness, which determines how strongly it
attracts other members of the swarm.

• As attractiveness of the firefly, a decreasing distance function should be used, e.g., as
suggested by Yang, the following function:

β = β0e−γr2
ij , (16)

where β0 ∈ [0, 1] and γ are the algorithm parameters, respectively: maximum attrac-
tiveness and absorption coefficient. Distance function is denoted by rij = dist(xi, xj).
It is common that dist can be taken as ||xi − xj||2. Often, the absorption coefficient is
γ = γ0

rmax
, where γ0 ∈ [0, 1], and rmax = max

i,j
dist(xi, xj).

• Each swarm member is characterized by the luminosity lj, which can be directly
expressed as the inverse of the value of the cost function Fit(xj).

• Initially, all fireflies are placed in the search space S (randomly or using some deter-
ministic strategy).

• To effectively explore the solution space, it is assumed that each firefly j changes its
position iteratively, taking into account two factors: attractiveness of other members
of the swarm with greater luminosity li > lj, ∀i = 1, . . . , N, i 6= j, which decreases
with distance, and a random step uj.

• For the brightest firefly, only the above-mentioned random step is applied.
• The movement of the firefly j to the brighter firefly i is described by equation:

xt+1
j = xt

j + β(xt
i − xt

j) + uj, (17)

where the second term corresponds to the attraction, and the third term is a random
number from interval (minuj , maxuj).

The pseudocode Algorithm 2 describes in steps the fireflies algorithm. More about the
firefly algorithm can be found in [33,34].
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Algorithm 2 Firefly algorithm (FA) pseudocode.
1:

Initialization part.

2: Setting up parameters of FA algorithm parameters N, β0, γ, min uj, max uj, for j =
1, . . . , Dim, Dim− dimension size.

3: Random initialization of starting population {x0
0, x0

1, . . . , x0
N}.

4:

Iterative part.

5: for iteration t = 0, 1, . . . , T − 1 do
6: Determine xt

best = min
xk

Fit(xt
k) and kbest = min

k
Fit(xt

k).

7: for k = 1, 2, . . . , N do
8: if k 6= kbest then
9: for j = 1, 2, . . . , N do

10: if Fit(xt
j) < Fit(xt

k) then

11: Calculate: rkj, β = β0e−γr2
kj , uk = rand(min uk, max uk).

12: Transform k-th solution xt
k according to the Formula (17).

13: end if
14: end for
15: else
16: Calculate ukbest

= rand(min ukbest
, max ukbest

)

17: Convert the best solution xt
best based on the formula:

xt+1
best = xt

best + ukbest
.

18: end if
19: end for
20: end for
21: return xbest.

4.3. Whale Optimization Algorithm

Whale Optimization Algorithm (WOA) discussed in this paragraph is inspired by
the hunting behavior of whales. These huge mammals hunt their prey in a specific way,
which is called the bubble-net feeding method. It has been observed that this foraging
takes place by the formation of characteristic bubbles along a circle or spiral shaped path.
Whale-watching scientists noticed two maneuvers related to the bubble and called them
“up spirals” and “double loops”. In the first method, predators dive approximately 12 m
downwards and then begin to form a spiral-shaped bubble around their prey and swim
towards the surface. The second hunting technique involves two different steps: coral
loop and capture loop. It is worth mentioning here that the bubble-net feeding method is
a unique behavior that can only be observed in whales. In this paper, the whale hunting
technique serves as an inspiration for the minimum cost function search algorithm. Below,
we present the basic principles of the Whale Optimization Algorithm.

• Since the position of the optimal solution in the search space is unknown, the WOA
algorithm assumes that the target victim is currently the best candidate for a solution
or is close to the optimum. Once the best search agent is defined, the remaining
agents try to update their positions towards the best search agent. This behavior is
represented by the following equations:

r = |c · xt
best − xt|, (18)

xt+1 = xt
best − a · r, (19)
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where xt is a certain solution in the t-th iteration, xt
best is the best solution in iteration t,

a, c are vectors of coefficients, and operation · is defined:

c · xt = [c1xt
1, . . . , cDimxt

Dim], Dim− dimension size.

Vectors a, c are calculated by formula:

a = 2v · rd− v, c = 2rd, (20)

where v is the Dim length vector of numbers which decrease from iteration to iteration.
In the case under consideration, we assume vi = 2 T−t

T for all i = 1, 2, . . . , Dim, where
T is total number of iterations. rd denotes the vector of length Dim random numbers
from interval [0, 1].

• The mathematical model of the bubble-net behavior is based on the following two as-
sumptions:

– shrinking encircling mechanism is reducing the value of the vector v from itera-
tion to iteration. As a result, the value range of the vector a in Equation (20) also
becomes smaller;

– spiral updating position describes a relation between the whale’s and the prey’s
position to mimic the spiral-shaped movement of the whale. We describe this
process mathematically with the following equation:

xt+1 = |xt
best − xt|ebl cos(2πl) + xt

best, (21)

where constant b and random number l ∈ [−1, 1] define the shape of the spi-
ral movement.

• The whales move around the prey in a contracting circle and at the same time along
a spiral path. To model this behavior, we assume that there is a 50% probability to
choose between a contracting, orbiting mechanism or a spiral model to update the
position of the whales during optimization. The mathematical model is described by
the following equations:

xt+1 = xt
best − a · r, for p < 0.5, (22)

xt+1 = |xt
best − xt|ebl cos(2πl) + xt

best, for p ≥ 0.5, (23)

where p is a random number from range [0, 1].
• A similar approach was applied, based on the range variability of the vector a, for

the exploration phase. Hence, we use a with random values greater than 1 or less
than −1 to force the agent to move away from the best position. In practice, we obtain
|ai| > 1, for all i = 1, 2, . . . , Dim. Unlike the exploitation phase, here we update the
agent position according to a randomly chosen solution instead of the best one found
so far. Since |ai| > 1, this mechanism places emphasis on exploration and allows the
WOA to perform a global search. This process mathematically can be described with
the following equation:

r = |x · xt
rand − xt|, (24)

xt+1 = xrand − a · r, (25)

where xrand is a random agent.

More about the algorithm and its applications can be found in the papers [35,36].
Based on the above rules, we now present the pseudocode Algorithm 3 of the WOA.
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Algorithm 3 Whale optimization algorithm (WOA) pseudocode.
1:

Initialization part.

2: Setting up parameters of WOA.
3: Random initialization of starting population {x0

0, x0
1, . . . , x0

N}.
4: Calculating the value of the cost function Fit for each individual x0

i (i = 1, 2, . . . , N) in
the population.

5: Determining the best agent in the population x0
best.

6:

Iterative part.

7: for iteration t = 0, 1, . . . , T − 1 do
8: for k = 1, 2, . . . , N do
9: Determine values of a, c, l, p.

10: if p < 0.5 then
11: if |a| < 1 then
12: Determine a new solution according to the Formula (19).
13: end if
14: if |a| ≥ 1 then
15: Determine a random solution xrand.
16: Determine a new solution according to the Formula (25).
17: end if
18: end if
19: if p ≥ 0.5 then
20: Determine a new solution according to the Formula (23).
21: end if
22: end for
23: Calculating the value of the cost function Fit for each individual xt+1

i (i =
1, 2, . . . , N) in the population.

24: Determine the best agent in the population xt+1
best.

25: end for
26: return xbest.

4.4. Butterfly Optimization Algorithm

Butterflies use their sense of smell, taste and touch to find food and partners. These
senses are also helpful in migrating from one place to another, escaping from a predator,
and laying eggs in the right places. Among senses, the smell is the most important one
that helps the butterfly find food, usually nectar—even if it is far away. To find a source of
nectar, butterflies use sense receptors scattered throughout the butterfly’s body (e.g., on
foreheads, legs). These receptors are in fact nerve cells on the surface of the butterfly’s body
and are called chemoreceptors.

Based on scientific observations, it was found that butterflies can sense, and therefore
locate, the source of an odor very accurately. In addition, they can distinguish smells as
well as sense their intensity. These abilities and behavior of butterflies were used to develop
the Butterfly optimization algorithm (BOA) [37]. The butterfly produces a scent of a certain
intensity, which is related to its ability to move from one location to another. The fragrance
is sprayed from a distance and other butterflies can sense it and thus communicate with
each other, creating a collective knowledge network. A butterfly’s ability to sense the
scent of another butterfly became the basis for the development of algorithm to search
a global optimum. In another scenario, when the butterfly cannot sense the smell of its
surroundings, it will move randomly. In the proposed algorithm, this phase is referred to
as local search.
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In order to understand how fragrance is computed in the BOA, one first needs to
understand how modality, smell, sound, light, temperature, etc. are processed by the
stimulus. The whole concept of sensing and modality processing is based on three param-
eters: sensory modality (c), stimulus intensity (I) and power exponent (a). By modality,
we can understand smell, sound, light or temperature. In the case of BOA, the modality is
fragrance. I is the stimulus intensity. In the BOA, I is correlated with butterfly fitness. This
means that, when a butterfly emits more smell, the remaining butterflies in that environ-
ment can sense it and become attracted to a highly scented butterfly. Fragrance f is directly
proportional to the power of intensity I with the exponent a:

f = cIa, (26)

where f is fragrance, c is the sensory modality, I is the stimulus intensity, and a is the power
exponent depending on the modality. In most cases, in implementation, we can take a
and c from the [0, 1] interval. The a parameter is a modality dependent power exponent,
which means that it has absorption variability. Thus, the a parameter controls the behavior
of the algorithm. Another important parameter is c, which is also a key parameter in
determining BOA behavior. Theoretically, c ∈ [0, ∞), but, in practice, it is in the [0, 1] range.
The a and c values have a decisive influence on the convergence speed of the algorithm.
The selection of these parameters is important and depends on the characteristics of the
problem under consideration.

The BOA algorithm is based on the following rules:

• Each of the butterflies gives off a fragrance with a different intensity. Thanks to the
smell, butterflies can communicate.

• The movement of the butterfly occurs in two ways: towards an individual emitting a
stronger smell, or at random.

• Global search move is represented by the formula:

xt+1 = xt +
(

r2 xt
best − xt

)
f , (27)

where xt denotes the location of butterfly (agent) in the t-th iteration, xt+1 is the
transform location of butterfly in the t + 1-th iteration t + 1, xbest is the position of the
best butterfly in the t-th iteration, f is a fragrance of xt, and r is a random number
from [0, 1].

• Local search move is described by the following equation:

xt+1 = xt +
(

r2 xt
r1 − xt

r2

)
f , (28)

where xt
r1 i xt

r2 are randomly chosen agents from iteration t.

Information about applications of BOA can be found in [38,39]. Scheme Algorithm 4
presents a pseudocode of BOA.
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Algorithm 4 Butterfly optimization algorithm (BOA) pseudocode.
1:

Initialization part.

2: Setting up parameters of BOA algorithm. N, Dim, c, a and p.
3: Random initialization of starting population {x0

0, x0
1, . . . , x0

N}.
4: Calculating the value of the cost function Fit (thus the intensity of the stimulus I = Fit)

for every agent x0
i (i = 1, 2, . . . , N) in population.

5:

Iterative part.

6: for iteration t = 0, 1, . . . , T − 1 do
7: for k = 1, 2, . . . , N do
8: Calculate value of fragrance for xt

k using formula (26).
9: end for

10: Determine the best agent xt
best in the population.

11: for k = 1, 2, . . . , N do
12: Determine a random number r from interval [0, 1].
13: if r < p then
14: Transform solution xt

k according to the Formula (27).
15: else
16: Transform solution xt

k according to the Formula (28).
17: end if
18: end for
19: Change the parameter value a.
20: end for
21: return xbest.

4.5. Dynamic Butterfly Optimization Algorithm

Now, we present an improved version of the BOA called in the literature Dynamic
Butterfly Optimization Algorithm (DBOA) [40]. This improvement consists of adding
a novel local search algorithm based on mutation operator (LSAM) at the end of the
BOA main loop. LSAM transforms the population (best solution first) using the mutation
operator. If the new solution (obtained after mutation) turns out to be better than the
previous one (before mutation), then it replaces the previous one. This will transform the
agents population. The LSAM algorithm is presented in the scheme Algorithm 5. In the
literature, there are many papers about the applications of the butterfly algorithm and its
modifications (see [41–43]).

The mutation operator occurring in the schema Algorithm 5 transforms each coordi-
nate of the solution x = [x1, x2, . . . , xDim] substituting it with a random number from the
normal distribution, as shown in the formula below:

xi
new ∼ N(xi, σ), (29)

where xi is mean and σ = 0.1(uBound− lBound) is standard deviation. Pseudocode of
DBOA is shown in the scheme Algorithm 6.
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Algorithm 5 Novel local search algorithm based on mutation operator (LSAM) pseudocode.

1: xbest – current best solution from BOA.
2: Fitbest = Fit(xbest) – value of objective function for current best solution.
3: I – number of iterations, mr – mutation rate.
4:

Iterative part.

5: for iteration i = 0, 1, . . . , I − 1 do
6: Calculate: xnew = Mutate(xbest, mr), Fitnew = Fit(xnew).
7: if Fitnew < Fitbest then
8: xbest = xnew, Fitbest = Fitnew.
9: else

10: Determine a random solution xrnd from the population, different from xbest.
11: Calculate the value of the objective function Fitrnd = Fit(xrnd).
12: if Fitnew < Fitrnd then
13: xrnd = xnew
14: end if
15: end if
16: end for

Algorithm 6 Dynamic butterfly optimization algorithm (DBOA) pseudocode.
1:

Initialization part.

2: Setting up parameters of BOA algorithm. N – population size, Dim – problem dimen-
sion, c – sensor modality, parameters a and p.

3: Random initialization of starting population {x0
0, x0

1, . . . , x0
N}.

4: Calculating the value of the cost function Fit (thus the intensity of the stimulus I = Fit)
for every agent x0

i (i = 1, 2, . . . , N) in population.
5:

Iterative part.

6: for iteration t = 0, 1, . . . , T − 1 do
7: for k = 1, 2, . . . , N do
8: Calculate value of fragrance for xt

k using formula (26).
9: end for

10: Determine the best agent xt
best in the population.

11: for k = 1, 2, . . . , N do
12: Determine a random number r from interval [0, 1].
13: if r < p then
14: Transform solution xt

k according to the Formula (27).
15: else
16: Transform solution xt

k according to the Formula (28).
17: end if
18: end for
19: Change the parameter value a.
20: Apply the LSAM algorithm to transform the agents population.
21: end for
22: return xbest.

5. Results

Selected algorithms are quite commonly used in various types of optimization prob-
lems, as evidenced by a large number of scientific publications. A lot of numerical experi-
ments and research have shown that these algorithms can be adapted to the requirements
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of the considered problem. Numerical experiments were performed for all the heuristic
algorithms presented in the previous section. All algorithms were implemented by the
authors and then tested on the following functions: Bent Cigar Function, Rosenbrock
Function, Rastrigin Function and HGBat Function.

Fine-tuning of the algorithms, based on the literature, own experiences and experi-
ments on test functions, consisted of determining the range of values for each parameter.
From this range, 20 values were uniformly selected and tested on numerous examples
relating to the detection of a single object. Numerical experiments were performed for
testing all possible combinations of selected parameters multiple times with the same data
set. As a result, the best sets of parameters were selected for each of the algorithms. Further
calculations were performed for them.

The essential step of the research is a series of numerical experiments for tomography
tasks. First, 50 tests were prepared for which the problem of tomography comes down to
the detection of one object. These tasks were primarily used to calibrate the parameters of
individual algorithms. At this stage, it was found that the AO algorithm is not suitable for
this type of issue. Numerous attempts to select algorithm parameters led to unsatisfactory
results, and the best approximate solution of the problem finally obtained was burdened
with an unacceptable error of 2%. The second stage of the experiments was to find a
solution in the form of two disjoint anomalies. In this case, a random set of test tasks
was also generated. Each of them consisted of identifying two separate anomalies in the
form of rectangles. In this case, all algorithms were called for the parameters (except for
the size of the population and the number of iterations) calibrated in the first stage of the
research. For this significantly more complex task, where the functional depends on 10
parameters, the size of the population and the maximum number of iterations were selected
by means of a numerical experiment. Tasks of this type turned out to be significantly
more difficult for WOA and BOA algorithms. This stage turned out to be too difficult for
these algorithms and, in an acceptable time, these algorithms failed to find a satisfactory
approximate solution.

Figure 4 presents a comparison of the dependence of the functional value on the
number of calls to the objective function for the examples with one and two detected
objects. The left figure shows that the value of the functional for the AO algorithm is too
large (not at all zero). In the case of tasks with two searched objects, the WOA and BOA
algorithms are not able to deal with, which is illustrated by the graphs in the figure on
the right.

The last third stage of the research was to identify three disjoint anomalies. At this
stage, the experiments were carried out for two algorithms: FA and DBOA because only
these algorithms reconstruct two anomalies in a satisfactory time. In this case, similar
to previous cases, experiments were also carried out for 50 different test tasks. For these
tasks, the minimized functional depended on 15 arguments. The threefold increase in the
number of parameters in relation to the first task significantly influenced the extension
of the algorithm’s operation time, which was associated with the need to multiply the
population size and the number of iterations.

Now, we present a comparison of the obtained results for the two tested algorithms at
this stage of the experiments. Figure 5 presents comparisons of the exact solution (areas
bordered with a solid line) with the approximate solution (areas bordered with a dashed
line) obtained with the FA algorithm for selected iterations. The height of the areas (they
are cuboids) has been marked according to the color scale. The presented results show
that the FA algorithm, after a relatively short number of iterations (it = 20), “approaches”
the exact solution, and obtaining a satisfactory result requires the performance of another
80 iterations.
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Figure 4. Comparison of the value of the objective function depending on the number of calls to the
objective function for detecting one object (left figure) and detecting two objects (right figure).

Figure 5. Graphical presentation of the results obtained with the FA algorithm for the population
n = 200 in selected iterations, where the reconstructed areas are outlined with a dashed line while
the exact solution is outlined with solid line, and the area height is marked by color.

Similarly, Figure 6 presents a summary of results in selected iterations for the second
tested algorithm DBOA in the third stage of numerical experiments.

Figure 6. Graphical presentation of the results obtained with the DBOA algorithm for the population
n = 800 in selected iterations, where the reconstructed areas are outlined with a dashed line while
the exact solution is outlined with solid line, and the area height is marked by color.
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Comparing the obtained results, we can see that the convergence of both algorithms
significantly decreases with the increase of successive iterations. In order to compare
the effectiveness of the DBOA algorithm and the FA algorithm, Figure 7 compares the
values of the objective function depending on the number of iterations (left figure) and the
comparison of the objective function values depending on the number of calls the objective
function (right figure). Comparing the number of iterations performed would indicate
that the FA algorithm requires 10 times less iteration, but such a comparison does not
indicate into the algorithm execution time, which in the case of the analyzed algorithms
depends primarily on the number of calls to the objective function. As we can see, this
number in the case of the DBOA algorithm is significantly smaller than in the case of the
FA algorithm. In order not to blur the readability, the figure has been drawn in the range
[0, 106] of calls to the objective function. It should be mentioned that the FA algorithm
obtained a values of objective function close to zero only for 5 · 106 calls to the objective
function. Such comparisons show that the DBOA algorithm is definitely more effective in
determining anomalies.

Figure 7. The left figure shows a comparison of the dependence of the objective function value on
the number of iterations, while the right one shows the dependence of the objective function value on
number of calls to the objective function. The results obtained with the DBOA algorithm are marked
in red, and the results in blue are marked for the FA algorithm.

Table 1 presents the values of the objective function together with the number of calls
to the objective function depending on the number of detected objects, which translates
into the number of unknowns. The inscription “no results” means that the algorithm
parameters were not selected so as to obtain repeatable results for many samples. The
presented data clearly show that the DBOA algorithm turned out to be the best algorithm
in the optimization problem presented in the paper.

Table 1. Comparison of the number of calls to the objective function (n f ) and the value of the F
function depending on the number of detected objects for the analyzed algorithms.

Number of 1 (5 Variables) 2 (10 Variables) 3 (15 Variables)

Detected Objects n f F n f F n f F

al
go

ri
th

m

AO 1.23 · 106 0.62 no results no results

FA 3.33 · 105 1.01 · 10−11 3.88 · 106 8.56 · 10−6 5.19 · 106 1.01 · 10−3

WOA 4.33 · 105 4.82 · 10−9 4.23 · 107 0.81 no results

BOA 8.77 · 105 2.29 · 10−10 6.31 · 107 0.32 no results

DBOA 2.21 · 105 5.02 · 10−10 5.02 · 105 1.63 · 10−6 1.00 · 106 8.01 · 10−4

6. Conclusions

The conducted research has shown that not all of the analyzed algorithms are suitable
for the task formulated in this paper. The identifying of a larger number of anomalies is
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a complex process and the correct selection of the optimization method plays a crucial
and important role. The experiments showed significant difficulties with the selection of
appropriate parameters for the heuristic algorithms under study. The presented research
results show that the DBOA algorithm handles the problem under consideration best.
Analyzing the plot of the dependence of the value of the objective function on the number
of its calls, it can be noticed that these algorithms quite quickly obtain solutions similar to the
exact ones but require many calculations to obtain results close enough to the exact solution.
Therefore, the DBOA method could be an initial method in a hybrid solution combining a
heuristic algorithm for determining the starting point for classical computed tomography
methods. The authors of this paper have future plans for research on the improvement and
development of existing methods, as previously mentioned by creating a hybrid algorithm
in which the DBOA algorithm would perform an exploratory function and the exploitation
phase would be performed by classical computed tomography. The minimized functional
turned out to be too difficult for some of the analyzed algorithms. It should be emphasized
that this function, due to the qualitative nature of the detected anomalies (description
by rectangles), should be generalized in further works by introducing a more complex
geometry of the searched objects. Another point of research is therefore to change the
geometry of the detected objects from rectangles to convex polygons. With this in mind,
an important point of this stage of the research was to find an algorithm that allows for
effectively detecting anomalies in the studied areas. It can be assumed that, for more
geometrically complex objects, this task will be even more computationally difficult.
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