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Abstract: The gold-catalyzed cyclization of 2,2-bis(3-arylprop-2-yn1-yl)malonic acid has been pro-
posed as an efficient approach to substituted 3,8-dibenzyl-2,7-dioxaspiro[4.4]nonane-1,6-diones. The
reaction proceeds smoothly in mild reaction conditions to give the desired products in quantitative
yields in the presence of variously substituted starting materials. In addition, the synthesis of γ-
arylidene spirobislactone bearing different substituents on the two aromatic rings has been achieved.
This kind of compound could be of great interest in pharmaceutical science given the widespread
presence of this scaffold in bioactive natural and synthetic products.

Keywords: spirobislactone; spirolactone; spiro compounds; Au(I)-catalyzed cyclization; alkyne
activation; heterocyclization

1. Introduction

3,8-dibenzyl-2,7-dioxaspiro[4.4]nonane-1,6-diones are molecules endowed with a com-
plex γ-benzyl-spirobis-γ-lactone scaffold, which gained a great interest from researchers
due to their biological activity and appealing conformational features, which include the
presence of an element of chirality, namely a stereocenter or a chirality axis. A great number
of unique bioactive natural products are endowed with a spirolactone moiety [1]. Among
these, some compounds contain a spirobislactone unit or a very similar moiety, as α- and β-
levantenolides, biyouyanagin A and B, hyperolactones A and C, clionamide D, longianone
(Figure 1) [2]. Moreover, some natural products isolated from Carpesium abrotanoides bearing
a similar γ-dilactones scaffold, namely dicarabrol A, dicarabrone C, and dipulchellin A
(Figure 1), showed promising biological activities, including anti-inflammatory, antitumor,
antiplasmodial, and bactericidal effects [3]. In 2007 a patent reported, among the others, a
compound bearing a spirodilactone moiety (Figure 1) with antiviral activity against Fla-
viviridae family of viruses, in particular HCV [4]. More recently, a granted patent describes
the preparation and use of spirobislactones as useful crosslink reagents for the synthesis of
polymeric materials to be employed in coating processes for automotive applications [5].
Considering the preparation of spirobislactones, the first synthetic routes have been estab-
lished by simple methods, using multistep synthesis that includes the cyclization of the
two spirolactone rings in separate reaction steps, with low overall yields [6–9].
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Figure 1. Bioactive natural and synthetic products containing spirobislactone moiety or similar
scaffold.

Roland et al. reported in 1963 the preparation of spirolactones by the reaction of
dibromomalononitrile with two equivalents of ethylene, followed by acid hydrolysis [10].
Kotha et al. afforded spirobislactone scaffold by treating diethyl diallylmalonate with sulfu-
ric acid [11]. The diseleno-derivative of spirobislactone was obtained by a Japanese group as
a mixture of diastereoisomers by treating diethyl diallylmalonate with phenylselenyl chlo-
ride [12,13]. Maldemy et al. reported the cyclization of malonate derivatives with iodine(III)
reagents to afford the spirobislactone [14]. The use of acid, base, and metal catalysis played
a key role in the synthetic access to spirobislactones. Bronsted acids as triflic acid or concen-
trated sulfuric acid have been used in the dilactonization of tert-butyl diallylmalonate [15],
and diethyl diallylmalonate, respectively [11]. Fairlamb et al. discovered that the treatment
of dimethyl diallylmalonate with the Lewis acid SbF5 generated from HSbF6 during a Pd
catalyzed cycloisomerization of 1,6-dienes, afforded instead of the desired monocyclized
product a mixture of stereoisomer of the dimethyl spirobislactone [16]. Only one example
in literature reported the use of polymer-supported bases like PS-DMAP or PS-BEMP to
catalyze the spirodilactonization of phenyl glycidyl ether with dimethyl malonate, in a
solvent-free reaction [17]. The use of metal catalysts is without any doubt highly efficient
for the spirodilactonization process, starting from acyclic precursors. In 1980s two different
groups reported an oxidative spirodilactonization reaction of malonic acid in presence of an
alkene catalyzed by Mn(III) acetate [18–20]. Copper (II) or silver (I) triflates were used by
Adrio et al. [21] and Yang et al. [22], respectively, to afford dilactonization of diallymalonic
acid to the spirobislactone scaffold, by intramolecular addition of carboxylic acid to the
olefin moiety, which selectively led to a spiro-γ-bislactone.
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Recently, the use of gold (I) catalysts for the activation of C-C triple bond opened
new horizons for the construction of complex molecular scaffolds [23], including for the
synthetic access to spirobislactones starting from dipropargylmalonate derivatives. As
shown by the wide range of substrate and product scope reported by a recent review [23],
gold(I)-catalyzed activation of alkynes is a consolidated method for the construction of
molecular complexity. The first examples of gold(I) activation of alkynes were reported
by Teles [24] and Tanaka [25], demonstrating the potential of gold(I) in organic synthesis.
Currently, gold(I) complexes are the most efficient catalysts for the electrophilic activation
of alkynes, and the formation of new carbon−carbon or carbon−heteroatom bonds can
be achieved by using different nucleophiles [26–28]. Au(I) complexes usually are linear
and two-coordinate, as highlighted by a significant number of alkyne-gold complexes
that have been characterized and studied in solution or theoretically. Generally, the most
effective catalysts for the activation of alkynes are complexes [LAuL′]X or [LAuX], which
contain weakly coordinating neutral (L′) or anionic ligand (X−). These complexes can
enter catalytic cycles by ligand (often a nitrile) exchange with the unsaturated substrate.
Gold(I) complexes selectively activate π-bonds of alkynes in complex way, which has
been explained by relativistic effects. Generally, the nucleophilic Markovnikov attack
to η2-[AuL]+-activated alkynes 1 forms trans-alkenyl-gold complexes 2 as intermediates
(Scheme 1) [23].
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Scheme 1. Activation of alkynes by electrophilic Au(I) complexes and nucleophilic addition to the
C-C triple bond. A labile ligand (L′) is exchanged with the alkyne, forming a π-complex (2), followed
by the anti-addition of a nucleophile to the η2-[AuL]+-activated alkyne (2).

In this field, we recently investigated the gold-catalyzed intramolecular hydroarylation
reaction of N-ethoxycarbonyl-N-propargylanilines as effective tool for the preparation
of 4-substituted-1,2-dihydroquinolines [29], and the synthesis of polycyclic chromene
cores through gold (I)-catalyzed intramolecular hydroarylation reaction [30]. Based on
these studies, we evaluated the possibility to obtain a gold (I) synthetic approach to
spirobislactones. This class of compounds exhibit remarkable features which justify a
continue efforts in the development of synthetic procedures to access them. Additionally, at
the best of our knowledge, only few examples of gold(I) catalysis successfully employed for
the preparation of spirobislactones have been reported in literature. In 2013, Chiarucci et al.
reported the synthesis of γ-vinylbutyrolactones by intramolecular oxaallylic alkylation with
alcohols. Starting from dimethyl 2,2-bis((E)-4-hydroxybut-2-en-1-yl)malonate they afforded
the corresponding γ-methylenespirobislactone by using IMesAuCl/AgOTf as catalyst [31].
A similar γ,γ′-dibenzylspirobislactone was obtained by Zhu et al. by gold-catalyzed
homogeneous oxidative carboheterofunctionalization of diallylmalonic acid, in the presence
of phenylboronic acid, SIMesAuCl as catalytst, and selectfluor as an oxidant [32]. Gold
nanoparticles stabilized by PEG-tagged imidazolium salts have also been used as recyclable
catalysts for the cycloisomerization of γ-alkynoic acids into enol-lactones, among the other
products, a γ,γ-divinylspirobislactone was obtained starting from dipropargylmalonic
acid [33].

Finally, spirobislactones could be prepared as single enantiomers by using chiral Au(I)
complexes, as recently reported by Lin et al. [34]. The application of phosphine-nitrogen
chiral ligands and related gold (I) complexes used as catalytic systems for the asymmetric
reactions have been patented in Chine from the same group [35].

In this paper are reported the results of our studies that led to the development of
a method for the synthesis of spirolactones 5 starting from substituted dialkynylmalonic
acids 4 (Scheme 2).
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2. Results and Discussion

To start our work, we decided to investigated the Au-catalyzed cyclization of 2,2-
bis(arylprop-2-ynyl)malonic acids 4 affording 3,8-diarylidene-2,7-dioxaspiro[4.4]nonane-
1,6-diones 5 (Table 1). Our preliminary experiments to establish the best reaction conditions
for the conversion of 2,2-bis(3-phenylprop-2-ynyl)malonic acid 4a into the corresponding
spirolactone 5a are reported in the following Table 1. No cyclization was observed in
presence of palladium catalyst or in presence of Au(III) (Table 1, entry 1,2). In contrast,
the use of an electrophilic complex of Au(I) with the Buchwald’s sterically bulky biaryl
phosphine ligand JohnPhos and acetonitrile as catalyst (Figure 2), led the formation of
the desired product in quantitative yields, and in very mild conditions (Table 1, entry 5).
Indeed, the best results were obtained at room temperature, very likely due to the decrease
of decomposition reactions.

Table 1. Screening for the best catalyst and reaction conditions for the spirodilactonization to γ-
arylmethylene-spirobislactones 5: cyclization of 2,2-bis(3-phenylprop-2-yn-1-yl)malonic acid 4a to
3,8-benzylidene-2,7-dioxaspiro[4.4]nonane-1,6-diones 5a a,b.
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Entry Catalyst Base Solvent T (◦C) t (h) Yield 5a (%)

1 PdCl2(CH3CN)2 K2CO3
c MeCN 80 24 -

2 NaAuCl4 - EtOH 100 12 -

3 JohnPhosAu
(MeCN)SbF6

- DCM 80 1 90

4 JohnPhosAu
(MeCN)SbF6

d - DCM 40 1 99

5 JohnPhosAu
(MeCN)SbF6

d - DCM rt 1 100

a Reactions were carried out on a 0.5 mmol scale in 2.0 mL of solvent using 0.05 equiv. of catalyst. b Yields are
given for isolated compounds. c 2.0 equiv. of base were used. d 0.02 equiv of catalyst were used.
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Figure 2. Chemical structure of JohnPhosAu(MeCN)SbF6 catalyst.

The reaction scope was investigated by using other 2,2-bis(3-arylprop-2-ynyl)malonic
acids (4) (Table 2) in the same conditions optimized for substrate 4a. 2,2-bis(3-arylprop-
2-ynyl)malonic acids 4 used for these studies were prepared by alkylation of diethyl
malonate 6 with propargyl bromide, followed by two Sonogashira cross-coupling with two
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different aryl halides. Then, the hydrolysis of functionalized diethyl malonate completes
the sequences for the preparation of symmetrical or unsymmetrical substrates 4 to be
investigated in the gold-catalyzed spirodilactonization reaction (Scheme 3). Since the
substituted malonic acid 4a was obtained in a quantitative yield from the last step, the
hydrolysis reaction of the other esters 8 was then performed in sequence with the Au
(I)-promoted cyclization (Table 2), without isolating the acids 4.

Table 2. Substrate scope for the gold(I)-catalyzed spirodilactonization to γ-arylidenespirobislactones
5 a,b.
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9 4-Br-3-F-C6H3- 4-Br-3-F-C6H2- 0.5 5i 100
10 4-Cl-C6H4- 4-Cl-C6H4- 1 5j 100
11 4-Br-C6H4- 4-Br-C6H4- 1 5k 99
12 2-CH3,5-NO2-C6H3- 2-CH3,5-NO2-C6H3- 1 5l 98
13 4-Cl-C6H4- 4-OCH3-C6H4- 1 5m 97
14 2-OCH3-C6H4- 2-OCH3-C6H4- 1 5n 98

a Reactions were carried out on a 0.5 mmol scale in 2.0 mL of CH2Cl2 using 0.02 equiv. of catalyst at rt, under air.
b Yields are given for isolated compounds.

Molecules 2022, 27, x FOR PEER REVIEW 5 of 13 
 

 

 

Figure 2. Chemical structure of JohnPhosAu(MeCN)SbF6 catalyst. 

The reaction scope was investigated by using other 2,2-bis(3-arylprop-2-ynyl)malo-

nic acids (4) (Table 2) in the same conditions optimized for substrate 4a. 2,2-bis(3-ar-

ylprop-2-ynyl)malonic acids 4 used for these studies were prepared by alkylation of di-

ethyl malonate 6 with propargyl bromide, followed by two Sonogashira cross-coupling 

with two different aryl halides. Then, the hydrolysis of functionalized diethyl malonate 

completes the sequences for the preparation of symmetrical or unsymmetrical substrates 

4 to be investigated in the gold-catalyzed spirodilactonization reaction (Scheme 3). Since 

the substituted malonic acid 4a was obtained in a quantitative yield from the last step, the 

hydrolysis reaction of the other esters 8 was then performed in sequence with the Au (I)-

promoted cyclization (Table 2), without isolating the acids 4. 

 

Scheme 3. Synthesis of symmetrical or unsymmetrical diethyl diarylalkynylmalonates 8 and dia-

rylalkynylmalonic acids 4. 

Table 2. Substrate scope for the gold(I)-catalyzed spirodilactonization to γ-arylidenespirobislac-

tones 5 a,b. 

 

 

Entry Ar1 Ar2 t (h) Yield of 5 (%) 

1 Ph Ph 1 5a 100 

2 H H 1 5b 100 

3 4-OCH3-C6H4- 4-OCH3-C6H4- 0.5 5c 96 

4 3-OCH3-C6H4- Ph- 1 5d 98 

Scheme 3. Synthesis of symmetrical or unsymmetrical diethyl diarylalkynylmalonates 8 and diary-
lalkynylmalonic acids 4.

Under the optimized reaction conditions several derivatives bearing a variety of useful
functional groups have been prepared and obtained in a quantitative yield. The synthesized
compounds are summarized in Table 2.
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3. Materials and Methods
3.1. General Experimental Procedures

Melting points were recorded with a Büchi melting point B-545 and are not corrected.
1H and 13C NMR spectra have been acquired with a Bruker Avance 400 spectrometer
operating at 400.13 and 100.6 MHz, respectively, at 300 K in DMSO-d6, using 5 mm
diameter glass tubes. Chemical shifts were expressed in ppm and coupling constants (J)
in hertz (Hz), approximated to 0.1 Hz. The residual solvent peak was used as an internal
reference for 1H and 13C NMR spectra. Data for 1H NMR are reported as follows: chemical
shift, multiplicity (br = broad, ovrlp = overlapped, s = singlet, d = doublet, t = triplet,
q = quartet, m = multiplet, dd = double doublet), coupling constant, integral. Spectra were
processed with the program MestReNova version 6.0.2–5475, FT and zero filling at 64 K.
High-resolution (HR) mass spectra were obtained using a Thermo Fischer Exactive mass
spectrometer equipped with an ESI source and an Orbitrap analyzer: capillary temperature
275 ◦C, spray voltage 3.5 kV, sheath gas (N2) 10 arbitrary units, capillary voltage 65 V,
tube lens 125 V. Analytical TLC was performed using 0.25 mm Fluka F254 silica gel. The
compounds on TLC were revealed by quenching fluorescence (at 254 or 365 nm) using a 4W
UV lamp. Otherwise, TLC plates were stained with p-anisaldehyde acidic solution in EtOH
or a 10% solution of phosphomolybdic acid in EtOH and heated (T = 120 ◦C). The product
mixture purifications were carried out with silica column chromatography using Fluka
60 Å silica gel (0063–0200 mm, 70–230 mesh). Flash chromatography was performed using
200−400 mesh silica gel. Commercially available reagents and solvents were supplied by
Sigma-Aldrich (St. Louis, MI, USA) and used without further purification.

3.2. Procedure for the Screening of Optimal Catalyst, Temperature and Additive for the Gold
(I)-Catalyzed Synthesis of 3,8-Dimethylene-2,7-dioxaspiro[4.4]nonane-1,6-diones 5

In a 5 mL Carousel Tube Reactor (Radley Discovery Technology) containing a magnetic
stirring bar Au(I) catalyst (0.02 mmol) was dissolved in 1.0 mL of CH2Cl2. Then, 2,2-
di(prop-2-ynyl)malonic acid (0.5 mmol) was added and the reaction mixture was stirred
for a time ranging from 0.5 to 24 h at a temperature ranging from room temperature
to 100 ◦C. After this time, n-hexane was added to the reaction mixture and then it was
centrifuged. The precipitate was separated from the liquid layer to obtain 3,8-dimethylene-
2,7-dioxaspiro[4.4]nonane-1,6-dione.

3.3. Procedures for the Synthesis of Stating Materials

Diethyl 2,2-di(prop-2-yl)malonate (7) has been synthetized according to known proce-
dures and their characterization data match our own in all respects [36,37].

diethyl 2,2-di(prop-2-yn-1-yl)malonate (7): colorless oil, 83%. 1H NMR (400 MHz, CDCl3)
δ 4.21 (q, J = 7.1 Hz, 4H), 2.96 (d, J = 2.6 Hz, 4H), 2.01 (m, 2H), 1.24 (t, J = 7.1 Hz, 6H). 13C
NMR (CDCl3): δ 168.7, 78.5, 71.8, 62.2, 56.4, 22.6, 14.1.

3.4. Typical Procedure for the Preparation of 2,2-Bis(3-phenylprop-2-yn-1-yl)malonate (8a)

Compounds 8a, b, c, f, g, h, i, j, k, l, n have been prepared according to the typical
procedure described below, by using suitable aryl iodides.

A flask equipped with a magnetic stirring bar was charged with PdCl2(PPh3)2
(42 mg, 0.06 mmol, 0.02 equiv.) and CuI (22.8 mg, 0.12 mmol, 0.04 equiv.) dissolved
in diisopropylamine (12 mL) and N,N-dimethylformamide (6 mL). The resultant solution
was stirred under nitrogen at room temperature for 10 min before adding iodobenzene
(1346 mg, 736 µL, 6.6 mmol, 2.2 equiv.) and diethyl 2,2-di(prop-2-yn-1-yl)malonate (7)
(709 mg, 3.0 mmol, 1.0 equiv.) and stirred for 4 h at room temperature. After this time, the
reaction mixture was diluted with Et2O and washed with a saturated NH4Cl solution, HCl
2 N, and with brine. The organic layer was dried over Na2SO4, filtered, and concentrated
under reduced pressure. The residue was purified by chromatography on SiO2 (25–40 µm),
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eluting with an 80/20 (v/v) n-hexane/AcOEt mixture to obtain 1106 mg (90% yield) of
diethyl 2,2-bis(3-phenylprop-2-yn-1-yl)malonate 8a.

3.5. Typical Procedure for the Preparation of Diethyl 2-(3-(3-methoxyphenyl)prop-2-yn-1-yl)
-2-(3-phenylprop-2-yn-1-yl)malonate (8d)

Compounds 8d, e, m were prepared according to the typical procedure described
below, by using suitable aryl iodides.

A flask equipped with a magnetic stirring bar was charged with a solution of PdCl2(PPh3)2
(42 mg, 0.06 mmol, 0.02 equiv.) and CuI (22.8 mg, 0.12 mmol, 0.04 equiv.) in diiso-
propylamine (12 mL) and N,N-dimethylformamide (6 mL), iodobenzene (673 mg, 368 µL,
3.3 mmol, 1.1 equiv.) and diethyl 2,2-di(prop-2-yn-1-yl)malonate (7) (709 mg, 3.0 mmol,
1.0 equiv.). The reaction mixture was stirred at room temperature under argon for 4 h
before adding 1-iodo-3-methoxybenzene (772 mg, 3.3 mmol, 1.1 equiv.). After 6 h, the
mixture was diluted with Et2O and washed with a saturated NH4Cl solution, HCl 2 N,
and with brine. The organic layer was dried over Na2SO4, filtered, and concentrated
under reduced pressure. The residue was purified by chromatography on SiO2 (25–40 µm),
eluting with an 80/20 (v/v) n-hexane/AcOEt mixture to obtain 628 mg (50% yield) of
2-(3-(3-methoxyphenyl)prop-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonate (8d).

diethyl 2,2-bis(3-phenylprop-2-yn-1-yl)malonate (8a): yellow pale oil. 1H NMR (400 MHz,
CDCl3) δ 7.44–7.37 (m, 4H), 7.30 (m, 6H), 4.30 (q, J = 7.1 Hz, 4H), 3.30 (s, 4H), 1.31 (t,
J = 7.1 Hz, 8H). 13C NMR (101 MHz, CDCl3) δ 169.0, 131.8, 128.3, 128.1, 123.2, 84.2, 83.8,
62.1, 57.2, 23.8, 14.2.

diethyl 2,2-bis(3-(4-methoxyphenyl)prop-2-yn-1-yl)malonate (8c): yellow pale oil. 1H
NMR (CDCl3): δ 7.33 (d, J = 8.3 Hz, 4H), 6.82 (d, J = 8.3 Hz, 4H), 4.28 (q, J = 7.0 Hz, 4H),
3.81 (s, 6H), 3.25 (s, 4H), 1.30 (t, J = 7.0 Hz, 6H). 13C NMR (CDCl3): δ 169.2, 159.4, 133.1,
115.4, 113.9, 83.5, 82.7, 62.0, 57.3, 55.4, 23.8, 14.2.

diethyl 2-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonate (8d):
yellow pale oil. 1H NMR (CDCl3): δ 7.45–7.36 (m, 2H), 7.31 (m, 1H), 7.21 (t, J = 7.9 Hz, 1H),
7.01 (d, J = 7.4 Hz, 1H), 6.94 (br s, 1H), 6.87 (m, 1H), 4.30 (q, J = 7.1 Hz, 4H), 3.81 (s, 3H),
3.29 (s, 4H), 1.31 (t, J = 7.2 Hz, 6H). 13C NMR (CDCl3): δ 169.0, 159.4, 131.8, 129.4, 128.3,
128.1, 124.4, 124.3, 123.2, 116.7, 114.6, 84.2, 84.1, 83.8, 83.7, 62.1, 57.2, 55.3, 29.8, 23.8, 14.2.

diethyl 2,2-bis(3-(4-methylphenyl)prop-2-yn-1-yl)malonate (8f): yellow pale oil. 1H NMR
(400 MHz, CDCl3): δ 7.30 (d, J = 8.0 Hz, 4H), 7.10 (d, J = 7.8 Hz, 4H), 4.29 (q, J = 7.1 Hz, 4H),
3.28 (s, 4H), 2.35 (s, 6H), 1.30 (t, J = 7.1 Hz, 6H). 13C NMR (CDCl3): δ 169.0, 138.1, 131.6,
129.0, 120.2, 83.8, 83.5, 62.0, 60.4, 57.3, 23.8, 21.5, 14.2.

diethyl 2,2-bis(3-(naphthalen-1-yl)prop-2-yn-1-yl)malonate (8g): yellow pale oil. 1H NMR
(CDCl3): δ 8.34 (d, J = 8.2 Hz, 2H), 7.82 (dd, J = 12.2, 8.2 Hz, 6H), 7.65 (d, J = 7.0 Hz, 2H),
7.60–7.46 (m, 6H), 7.40 (t, J = 7.7 Hz, 2H), 4.33 (q, J = 7.1 Hz, 4H), 3.54 (s, 4H), 1.31 (t,
J = 7.1 Hz, 6H). 13C NMR (CDCl3): δ 169.3, 133.6, 133.3, 130.7, 128.6, 128.4, 126.9, 126.5,
126.4, 125.3, 121.0, 89.2, 82.0, 62.3, 57.3, 24.5, 14.3.

diethyl 2,2-bis(3-(4-bromo-3-fluorophenyl)prop-2-yn-1-yl)malonate (8i): yellow pale oil.
1H NMR (CDCl3): δ 7.47 (t, J = 7.7 Hz, 1H), 7.13 (d, J = 9.1 Hz, 1H), 7.05 (d, J = 8.2 Hz, 1H),
4.29 (q, J = 7.1 Hz, 2H), 3.23 (s, 2H), 1.30 (t, J = 7.1 Hz, 3H). 13C NMR (CDCl3): δ 168.8,
160.0, 157.5, 133.5, 128.7, 128.7, 124.2, 124.1, 119.7, 119.5, 109.6, 109.4, 86.3, 82.1, 62.3, 56.9,
23.9, 14.3.

diethyl 2,2-bis(3-(4-chlorophenyl)prop-2-yn-1-yl)malonate (8j): yellow pale oil. 1H NMR
(CDCl3): δ 7.32 (d, J = 8.6 Hz, 4H), 7.29–7.23 (m, 4H), 4.29 (q, J = 7.1 Hz, 4H), 3.25 (s, 4H),
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1.30 (t, J = 7.1 Hz, 6H). 13C NMR (CDCl3): δ 168.9, 134.2, 133.0, 128.7, 121.7, 85.3, 82.8, 62.2,
57.1, 23.9, 14.2.

diethyl 2,2-bis(3-(4-bromophenyl)prop-2-yn-1-yl)malonate (8k): yellow pale oil. 1H NMR
(CDCl3): δ 7.43 (d, J = 8.2 Hz, 4H), 7.26 (t, J = 8.8 Hz, 4H), 4.28 (q, J = 7.1 Hz, 4H), 3.25 (s,
4H), 1.29 (t, J = 7.0 Hz, 6H). 13C NMR (CDCl3): δ 168.9, 139.2, 133.6, 133.2, 131.6, 122.4,
122.1, 85.5, 82.9, 62.2, 57.0, 23.9, 14.2.

diethyl 2,2-bis(3-(2-methyl-5-nitrophenyl)prop-2-yn-1-yl)malonate (8l): yellow pale oil.
1H NMR (CDCl3): δ 8.18 (d, J = 1.8 Hz, 2H), 8.02 (dd, J = 8.4, 1.9 Hz, 2H), 7.33 (d, J = 8.4 Hz,
2H), 4.28 (q, J = 7.1 Hz, 4H), 3.34 (s, 4H), 2.49 (s, 6H), 1.29 (t, J = 7.1 Hz, 6H). 13C NMR
(CDCl3): δ 168.7, 147.8, 146.1, 130.3, 127.0, 124.4, 122.9, 90.6, 80.8, 62.4, 56.7, 24.1, 21.1, 14.2.

diethyl 2-(3-(4-chlorophenyl)prop-2-yn-1-yl)-2-(3-(4-methoxyphenyl)prop-2-yn-1-yl)
malonate (8m): yellow pale oil. 1H NMR (CDCl3): δ 7.30 (d, J = 3.6 Hz, 2H), 7.28 (d,
J = 3.6 Hz, 3H), 7.23 (d, J = 8.5 Hz, 3H), 6.78 (d, J = 8.7 Hz, 2H), 4.25 (q, J = 7.1 Hz, 4H),
3.77 (s, 3H), 3.22 (d, J = 9.1 Hz, 4H), 1.32–1.19 (J = 7.1 Hz, 6H). 13C NMR (CDCl3): δ 169.0,
159.5, 134.1, 133.1, 133.0, 128.6, 121.8, 115.3, 113.9, 85.5, 83.7, 82.7, 82.5, 62.1, 57.2, 55.3, 23.9,
23.8, 14.2.

diethyl 2,2-bis(3-(2-methoxyphenyl)prop-2-yn-1-yl)malonate (8n): yellow pale oil. 1H
NMR (CDCl3): δ 7.33 (dd, J = 7.5, 1.4 Hz, 2H), 7.25–7.20 (m, 2H), 6.86–6.81 (m, 4H), 4.24 (q,
J = 7.1 Hz, 4H), 3.83 (s, 6H), 3.33 (s, 4H), 1.26 (t, J = 7.1 Hz, 6H). 13C NMR (CDCl3): δ 169.1,
160.2, 133.8, 129.4, 120.4, 112.7, 110.8, 88.7, 79.9, 62.0, 57.5, 55.8, 24.1, 14.2.

3.6. General Procedure for the Synthesis of 3,8-Dimethylenespiro[4.4]nonane-1,6-diones (5)

In a 10 mL round bottom flask, 2,2 disubstituted diethyl malonate (8) (0.5 mmol) was
dissolved in 2 mL of EtOH and 1 mL of NaOH 2N was added. The reaction mixture was
heated at reflux and stirred for one hour. After cooling, the reaction mixture was acidified
with conc. HCl, diluted with Et2O, and washed with brine. The organic layer was dried
over Na2SO4, filtered, and concentrated under reduced pressure. The residue was used
without further purification in the next step. In a 5 mL Carousel Tube Reactor (Radley
Discovery Technology) containing a magnetic stirring bar JohnPhos Au(MeCN)SbF6 cat-
alyst (0.02 mmol) was dissolved at room temperature in 1.0 mL of CH2Cl2. Then, 2,2-
disubstituted malonic acid (0.5 mmol) was added and the reaction mixture was stirred
for 1 h at room temperature. After this time, n-hexane was added to the reaction mixture
and then it was centrifuged. The precipitate was separated from the liquid layer to ob-
tain 3,8-dimethylene-2,7-dioxaspiro[4.4]nonane-1,6-dione or the corresponding substituted
derivative in 96–100% yield.

3,8-dibenzylidene-2,7-dioxaspiro[4.4]nonane-1,6-dione (5a): 1H NMR (DMSO): δ 7.52 (s,
2H), 7.38 (d, J = 6.2 Hz, 2H), 7.25 (s, 1H), 5.87 (s, 1H), 3.63 (d, J = 16.3 Hz, 1H), 3.37 (d,
J = 22.0 Hz, 2H). 13C NMR (DMSO): δ 171.8, 146.0, 133.6, 128.6, 128.1, 126.9, 104.5, 36.4.
HRMS (ESI Orbitrap) m/z 333.11245 [M + H]+ (calcd for C21H17O4

+, 333.11214), 355.09397
[M + Na]+ (calcd for C21H16O4Na+, 355.09408).

3,8-dimethylene-2,7-dioxaspiro[4.4]nonane-1,6-dione (5b): white solid; mp: 60–61 ◦C. 1H
NMR (DMSO): δ 4.82 (m, 2H), 4.54 (br s, 2H), 3.41 (d, J = 17.3 Hz, 2H), 3.14 (d, J = 17.3 Hz,
2H); 13C NMR (DMSO): δ 168.6, 131.7, 128.2, 62.1, 56.8, 36.1. HRMS (ESI Orbitrap)
m/z 181.04937 [M + H]+ (calcd for C9H9O4

+, 181.04954), 203.03167 [M + Na]+ (calcd
for C9H8O4Na+, 203.03148).

3,8-bis(4-methoxybenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5c): white solid; mp:
50–51 ◦C. 1H NMR (DMSO): δ 7.26 (t, J = 8.0 Hz, 2H), 7.10–7.05 (m, 4H), 6.80 (dd,
J1,2 = 6.0 Hz, J2,3 = 2.0 Hz, 2H), 5.81 (s, 2H), 5.73 (s, 1H), 3.73 (s, 6H), 3.58 (d, J = 17.6 Hz,
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2H), 3.32 (d, J = 17.6 Hz, 2H); 13C NMR (DMSO): δ 172.2, 159.8, 146.6, 135.3, 130.1, 121.1,
114.2, 112.7, 104.9, 55.5, 50.6, 36.9. HRMS (ESI Orbitrap) m/z 393.13553 [M + H]+ (calcd for
C23H21O6

+, 393.13326), 415.11464 [M + Na]+ (calcd for C23H20NaO6
+, 415.11521).

3-benzylidene-8-(3-methoxybenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5d): white
solid; mp: 40–41 ◦C. 1H NMR (DMSO): δ 7.53 (d, J = 7.2 Hz, 2H), 7.39–7.25 (m, 4H),
7.13–7.08 (m, 2H), 6.84 (d, J = 7.2 Hz, 1H), 5.87–5.85 (m, 2H), 3.76 (s, 3H), 3.62 (d, J = 17.2
Hz, 2H), 3.37 (d, J = 17.2 Hz, 2H); 13C NMR (DMSO): δ 172.2, 159.8, 146.6, 146.4, 135.3,
134.0, 130.1, 129.1, 128.6, 127.3, 121.1, 114.3, 112.7, 105.0, 104.9, 55.5, 50.6, 36.9. HRMS (ESI
Orbitrap) m/z 363.12143 [M + H]+ (calcd for C22H19O5

+, 363.12270), 385.10529 [M + Na]+

(calcd for C22H18NaO5
+, 385.10464).

3-(4-acetylbenzylidene)-8-benzylidene-2,7-dioxaspiro[4.4]nonane-1,6-dione (5e): white
solid; mp: 45–46 ◦C. 1H NMR (DMSO): δ 7.97 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H),
7.52 (d, J = 7.2 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.6 Hz, 1H), 5.98 (s, 1H), 5.88 (s, 1H),
3.69–3.61 (m, 2H), 3.43–3.35 (m, 4H); 13C NMR (DMSO): δ 197.7, 172.2, 172.1, 148.9, 146.4,
138.8, 135.3, 134.0, 129.1, 129.1, 128.6, 127.3, 105.0, 104.2, 50.6, 37.1, 36.9, 27.1. HRMS (ESI
Orbitrap) m/z 375.12211 [M + H]+ (calcd for C23H19O5

+, 375.12270), 397.10425 [M + Na]+

(calcd for C23H18NaO5
+, 397.10464).

3,8-bis(4-methylbenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5f): white solid; mp:
55–56 ◦C. 1H NMR (DMSO): δ 7.42 (d, J = 7.8 Hz, 4H), 7.19 (d, J = 7.2 Hz, 4H), 5.81 (s, 2H),
3.60 (d, J = 16.8 Hz, 2H), 3.36 (d, J = 16.8 Hz, 2H), 2.30 (s, 6H); 13C NMR (DMSO): δ 172.3,
145.6, 136.6, 131.2, 129.6, 128.5, 104.9, 50.7, 36.9, 21.2. HRMS (ESI Orbitrap) m/z 361.14517
[M + H]+ (calcd for C23H21O4

+, 361.14344), 383.12479 [M + Na]+ (calcd for C23H20NaO4
+,

383.12538).

3,8-bis(naphthalen-1-ylmethylene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5g): white solid;
mp: 45–46 ◦C. 1H NMR (DMSO): δ 8.20 (d, J = 7.6 Hz, 2H), 7.96 (d, J = 7.4 Hz, 1H), 7.87
(d, J = 8.2 Hz, 1H), 7.79 (d, J = 7.1 Hz, 1H), 7.57 (m, 6H), 6.61 (s, 1H), 3.80 (d, J = 17.2 Hz,
1H), 3.55 (d, J = 17.2 Hz, 1H); 13C NMR (DMSO): δ 172.4, 147.9, 133.8, 131.1, 130.4, 128.9
127.8, 127.1, 126.7, 126.4, 126.0, 124.6, 101.7, 51.3, 36.9. HRMS (ESI Orbitrap) m/z 433.14383
[M + H]+ (calcd for C29H21O4

+, 433.14344), 455.12643 [M + Na]+ (calcd for C29H20NaO4
+,

455.12538).

3,8-bis(3-methoxybenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5h): white solid; mp:
65–66 ◦C. 1H NMR (DMSO): δ 7.30 (t, J = 8.0 Hz, 2H), 7.13 (d, J = 7.7 Hz, 2H), 7.09 (s, 2H),
6.88–6.82 (m, 2H), 5.85 (s, 2H), 3.77 (s, 3H) 3.62 (d, J = 17.4 Hz, 2H), 3.37 (d, J = 17.4 Hz,
2H); 13C NMR (DMSO): δ 172.2, 159.8, 146.6, 135.3, 130.1, 121.1, 114.3, 112.8, 104.9, 55.5,
50.6, 36.9. HRMS (ESI Orbitrap) m/z 393,13415 [M + H]+ (calcd for C23H21O6

+, 393,13326),
415.11583 [M + Na]+ (calcd for C23H20NaO6

+, 415.11521).

3,8-bis(4-bromo-3-fluorobenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5i): white
solid; mp: 65–66 ◦C. 1H NMR (DMSO): δ 7.72 (t, J = 8.0 Hz, 2H), 7.46 (d, J = 10.4 Hz, 2H),
7.33 (d, J = 8.4 Hz, 2H), 5.92 (s, 2H), 3.64 (d, J = 17.6 Hz, 2H), 3.38 (d, J = 17.6 Hz, 2H); 13C
NMR (DMSO): δ 171.8, 159.9, 157.5, 148.4, 136.0, 135.9, 134.1, 126.2, 116.2, 116.0, 106.4, 106.2,
103.1, 50.5, 36.9. HRMS (ESI Orbitrap) m/z 524.91356 [M + H]+ (calcd for C21H13Br2F2O4

+,
524.91432), 546.89517 [M + Na]+ (calcd for C21H12Br2F2NaO4

+, 546.89626).

3,8-bis(4-chlorobenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5j): white solid; mp:
65–66 ◦C. 1H NMR (DMSO): δ 7.51 (d, J = 7.6 Hz, 4H), 7.41 (d, J = 7.6 Hz, 4H), 5.86 (m, 2H),
3.59 (d, J = 17.2 Hz, 2H), 3.34 (d, J = 17.2 Hz, 2H); 13C NMR (DMSO): δ 172.0, 147.2, 133.0,
131.7, 130.2, 129.1, 103.8, 50.6, 36.9. HRMS (ESI Orbitrap) m/z 401.03474 [M + H]+ (calcd for
C21H15Cl2O4

+, 401.03419), 423.01581 [M + Na]+ (calcd for C21H14Cl2NaO4
+, 423.01614).
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3,8-bis(4-bromobenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5k): white solid; mp:
67–68 ◦C. 1H NMR (DMSO): δ 7.58 (d, J = 8.4 Hz, 4H), 7.48 (d, J = 8.4 Hz, 4H), 5.88 (s, 2H),
3.62 (d, J = 18.0 Hz, 2H), 3.35 (d, J = 18.0 Hz, 2H); 13C NMR (DMSO): δ 172.0, 147.3, 133.3,
132.0, 130.5, 120.2, 103.9, 50.6, 36.9. HRMS (ESI Orbitrap) m/z 488.93451 [M + H]+ (calcd for
C21H15Br2O4

+, 488.93316), 510.91493 [M + Na]+ (calcd for C21H14Br2NaO4
+, 510.91511).

3,8-bis(2-methyl-5-nitrobenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5l): white
solid; mp: 57–58 ◦C. 1H NMR (DMSO): δ 8.46 (d, J = 2.4 Hz, 2H), 8.03 (dd, J1,2 = 6.0 Hz,
J2,3 = 2.4 Hz, 2H), 7.53 (d, J = 8.8 Hz, 2H), 6.09 (s,2H), 3.75 (d, J = 18.0 Hz, 2H), 3.46 (d,
J = 18.0 Hz, 2H), 2.45 (s, 6H); 13C NMR (DMSO): δ 171.9, 149.0, 146.4, 144.2, 134.1, 131.8,
123.2, 122.0, 100.9, 50.9, 37.0, 20.4. HRMS (ESI Orbitrap) m/z 451.11426 [M + H]+ (calcd for
C23H19N2O8

+, 451.11359), 473.09627 [M + Na]+ (calcd for C23H18N2NaO8
+, 473.09554).

3-(4-chlorobenzylidene)-8-(4-methoxybenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione
(5m): white solid; mp: 55–56 ◦C. 1H NMR (DMSO): δ 7.54 (d, J = 8.4 Hz, 2H), 7.46 (t,
J = 7.2 Hz, 4H), 6.95 (d, J = 8.8 Hz, 2H), 5.89 (s,1H), 5.80 (s, 1H), 3.76 (s, 3H), 3.60 (d,
J = 18.0 Hz, 2H), 3.46 (d, J = 18.0 Hz, 2H); 13C NMR (DMSO): δ 171.7, 171.6, 158.1, 146.7,
144.0, 132.5, 131.1, 129.7, 129.4, 128.6, 126.1, 125.7, 114.1, 114.0, 104.2, 103.4, 103.3, 97.3,
55.1, 50.2, 36.5, 36.3. HRMS (ESI Orbitrap) m/z 397.08365 [M + H]+ (calcd C22H18ClO5

+,
397.08373), 419.06529 [M + Na]+ (calcd for C22H17ClNaO5

+, 419.06567).

3,8-bis(2-methoxybenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5n): white solid; mp:
61–62 ◦C. 1H NMR (DMSO): δ 7.69 (dd, J = 7.8, 1.4 Hz, 2H), 7.29–7.22 (m, 2H), 7.03 (d,
J = 8.3 Hz, 2H), 6.99 (t, J = 7.8 Hz, 2H), 6.04 (s, 2H), 3.82 (s, 6H), 3.67 (dd, J = 17.3, 1.6 Hz,
2H), 3.38 (dd, J = 17.3, 1.6 Hz, 2H). 13C NMR (DMSO): δ 172.3, 156.0, 146.3, 129.4, 128.8,
122.2, 120.9, 111.5, 98.9, 56.0, 50.8, 37.1. HRMS (ESI Orbitrap) m/z 393.13428 [M + H]+ (calcd
for C23H21O6

+, 393.13326), 415.11581 [M + Na]+ (calcd for C23H20NaO6
+, 415.11521).

4. Conclusions

The activation of alkynes by gold(I) complexes is a versatile tool for the selective
functionalization of C-C triple bond with several nucleophiles, including heteroatoms.
The intramolecular version of this reaction leads to cyclic or heterocyclic intermediates,
that are useful for the synthesis of high value pharmaceutically relevant compounds. We
demonstrated that functionalized symmetric or unsymmetric biarylacetylenic malonic
acids may be efficiently cyclized under extremely mild conditions at room temperature
in presence of JohnPhosAu(MeCN)SbF6 catalyst, and without any additives. The corre-
sponding γ-arylmethylene-spirobislactones were isolated in excellent yields (96–100%).
This process constitutes an easy and efficient access to highly valuable building blocks of
natural products or biologically active compounds. The high reactivity of gold(I) catalyst
towards the activation of C-C triple bond, associated with very mild reactions conditions
would allow further synthesis of lactones.
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NMR of 3,8-bis(4-methoxybenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5c); Figure S7: 1H NMR
of 3-benzylidene-8-(3-methoxybenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5d); Figure S8: 13C
NMR of 3-benzylidene-8-(3-methoxybenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5d); Figure S9:
1H NMR of 3-(4-acetylbenzylidene)-8-benzylidene-2,7-dioxaspiro[4.4]nonane-1,6-dione (5e); Figure S10:
13C NMR of 3-(4-acetylbenzylidene)-8-benzylidene-2,7-dioxaspiro[4.4]nonane-1,6-dione (5e);
Figure S11: 1H NMR of 3,8-bis(4-methylbenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5f);
Figure S12: 13C NMR of 3,8-bis(4-methylbenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5f);
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Figure S13: 1H NMR of 3,8-bis(naphthalen-1-ylmethylene)-2,7-dioxaspiro[4.4]nonane-1,6-dione
(5g); Figure S14: 1H NMR of 3,8-bis(naphthalen-1-ylmethylene)-2,7-dioxaspiro[4.4]nonane-1,6-dione
(5g); Figure S15: 1H NMR of 3,8-bis(3-methoxybenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione
(5h); Figure S16: 13C NMR of 3,8-bis(3-methoxybenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione
(5h); Figure S17: 1H NMR of 3,8-bis(4-bromo-3-fluorobenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-
dione (5i); Figure S18: 13C NMR of 3,8-bis(4-bromo-3-fluorobenzylidene)-2,7-dioxaspiro[4.4]nonane-
1,6-dione (5i); Figure S19: 1H NMR of 3,8-bis(4-chlorobenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-
dione (5j); Figure S20: 13C NMR of 3,8-bis(4-chlorobenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-
dione (5j); Figure S21: 1H NMR of 3,8-bis(4-bromobenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione
(5k); Figure S22: 13C NMR of 3,8-bis(4-bromobenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5k);
Figure S23: 1H NMR of 3,8-bis(2-methyl-5-nitrobenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (5l);
Figure S24. 13C NMR of 3,8-bis(2-methyl-5-nitrobenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione
(5l); Figure S25: 1H NMR of 3-(4-chlorobenzylidene)-8-(4-methoxybenzylidene)-2,7-dioxaspiro[4.4]
nonane-1,6-dione (5m); Figure S26: 13C NMR of 3-(4-chlorobenzylidene)-8-(4-methoxybenzylidene)-
2,7-dioxaspiro[4.4]nonane-1,6-dione (5m); Figure S27: 1H NMR of 3,8-bis(2-methoxybenzylidene)-
2,7-dioxaspiro[4.4]nonane-1,6-dione (5n); Figure S28: 1H NMR of 3,8-bis(2-methoxybenzylidene)-2,7-
dioxaspiro[4.4]nonane-1,6-dione (5n).
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