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KAWAMATA-VIEHWEG VANISHING FAILS FOR LOG

DEL PEZZO SURFACES IN CHARACTERISTIC 3

FABIO BERNASCONI

Abstract. We construct a klt del Pezzo surface in characteristic
three violating the Kawamata-Viehweg vanishing theorem. As a
consequence we show that there exists a Kawamata log terminal
threefold singularity which is not Cohen-Macaulay in characteristic
three.
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1. Introduction

In characteristic zero one of the main technical tool used to estab-
lish the Minimal Model Program (MMP for short) is the Kawamata-
Viehweg vanishing theorem. Unfortunately, vanishing theorems are
known to fail in general for varieties defined over fields of positive
characteristic and a great amount of work has been done to construct
examples of pathological varieties violating them and to study their
geography (see for example [Ray78], [Eke88], [Muk13] and [dCF15]).
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2 FABIO BERNASCONI

In this context, varieties of Fano type over perfect fields of charac-
teristic p > 0 violating Kodaira-type vanishing theorems seem rather
rare and in fact are conjectured to exist only for small primes in each
dimension. As far as the author knows, only two classes of varieties
of Fano type violating Kawamata-Viehweg vanishing have been con-
structed and both are in characteristic two (see [LR97] and [Kov18] for
a six-dimensional smooth example and [CT19] for a two-dimensional
one with klt singularities). Moreover, the only vanishing statement sup-
porting the above conjecture in every dimension is [PW, Theorem 1.9],
where it is proven that the classical Kodaira vanishing theorem holds
for the first cohomology group on a klt Fano variety X if p > 2 dimX .
In the case of surfaces, however, the situation is much better un-

derstood: it is known that the Kawamata-Viehweg vanishing theorem
holds for smooth del Pezzo surfaces over an algebraically closed field
(see [CT18, Appendix A]), for regular del Pezzo surfaces over a (pos-
sibly imperfect) field of characteristic p > 3 (see [Das, Theorem 1.1])
and for surfaces of del Pezzo type over an algebraically closed field of
sufficiently large characteristic (see [CTW17, Theorem 1.2]), although
we do not know an explicit lower bound on the characteristic.
In this article, inspired by an example of Keel and McKernan (see

[KM99, Section 9] and [CT19, Section 4]), we construct a klt del Pezzo
surface violating the Kawamata-Viehweg vanishing in characteristic
three:

Theorem 1.1 (See Theorem 3.6). Let k be a field of characteristic
three. Then there exists a projective normal k-surface T such that

(1) T has klt singularities and −KT is ample;
(2) ρ(T ) = 1;
(3) there exists an ample Q-Cartier Weil divisor A on T such that

H1(T,OT (−A)) 6= 0.

One important application of the Kawamata-Viehweg vanishing the-
orem for the MMP in characteristic zero is the proof due to Elkik
that klt singularities are Cohen-Macaulay and rational (see [Elk81]).
In characteristic p > 0, due to the failure of vanishing theorems, gen-
eral cohomological properties of klt singularities are still largely un-
known but, according to a local-global principle, they are expected to
be strictly related to vanishing theorems for varieties of Fano type.
In dimension three, the main result of [HW19] shows that klt three-

fold singularities are Cohen-Macaulay and rational in large character-
istic and the main ingredient of their proof is the Kawamata-Viehweg
vanishing for surfaces of del Pezzo type. As for low characteristic, in
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[CT19, Theorem 1.3] the authors give an example of a klt not Cohen-
Macaulay threefold in characteristic two. Using a generalized cone
construction and Theorem 1.1 we give the first example of a klt singu-
larity which is not Cohen-Macaulay in characteristic three, answering
a question of Hacon-Witaszek and Kovács ([HW19, Question 5.4] and
[Kov18]):

Theorem 1.2 (See Section 4). Let k be a field of characteristic three.
Then there exists a normal k-variety X such that

(1) X is a Q-factorial variety of dimension three;
(2) X is klt;
(3) X is not Cohen-Macaulay (and in particular the singularities

of X are not rational).

An open problem is whether the Kawamata-Viehweg vanishing holds
for surfaces of del Pezzo type over perfect fields of characteristic p ≥
5. Despite not being able to solve this problem, in the last section
we present a Kodaira-type vanishing theorem for big and nef Cartier
divisors on klt del Pezzo surfaces of characteristic p ≥ 5, answering a
question of Cascini and Tanaka (see [CT18, Remark 3.2]).

Theorem 1.3 (See Theorem 5.6). Let k be an algebraically closed field
of characteristic p ≥ 5. Let X be a klt del Pezzo surface over k and let
A be a big and nef Cartier divisor on X. Then,

H1(X,OX(A)) = 0.

Remark 1.4. After a preliminary draft of this paper was announced,
B. Totaro in [Tot19] constructed for every p > 0 a smooth Fano variety
of dimension 2p + 1 violating the Kodaira vanishing theorem. As a
consequence he constructs a terminal not Cohen-Macaulay singularity
of dimension 2p+ 2.

Acknowledgements: I would like to express my gratitude to my
advisor Paolo Cascini for his constant support and his useful sugges-
tions and to Hiromu Tanaka, since this project started from a con-
versation I had with him on Keel-McKernan surfaces and for answer-
ing my questions. I would also like to thank Ivan Cheltsov, Mirko
Mauri, Omprokash Das, Davide Cesare Veniani and Jakub Witaszek
for reading an earlier draft and for fruitful conversations. This work was
supported by the Engineering and Physical Sciences Research Council
[EP/L015234/1].

2. Preliminaries

2.1. Notation.
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(1) Throughout this article, k denotes a field of characteristic p ≥ 0.
If k is a perfect field of characteristic p > 0, we denote byWm(k)
the ring of Witt vectors of length m.

(2) By variety we mean an integral scheme which is separated and
of finite type over k. If X is a normal variety, we denote by KX

its canonical divisor class (for more details on how to define
the canonical class on singular varieties, we refer to [Kol13,
Definition 1.6]).

(3) Given a scheme X defined over a field k of characteristic p > 0,
we denote by F : X → X the absolute Frobenius morphism
and for any natural number e > 0 we denote the e-th iterate of
Frobenius by F e.

(4) We say that (X,∆) is a log pair if X is a normal variety, ∆
is an effective Q-divisor and KX +∆ is a Q-Cartier Q-divisor.
If k is perfect, we say the pair (X,∆) is log smooth if X is
smooth and Supp(∆) is a snc divisor. We refer to [KM98] and
[Kol13] for the definition of the singularities appearing in the
MMP (e.g. klt, plt, lc). We say f : Y → X is a log resolution
if f is a proper birational morphism, Y is smooth, Exc(f) has
pure codimension one and the pair (Y, Supp(f−1∆ + Exc(f)))
is log smooth.

(5) We say that a normal projective surface X is a surface of del
Pezzo type if there exists an effective Q-divisor ∆ such that
(X,∆) is klt and −(KX +∆) is ample. The pair (X,∆) is said
to be a log del Pezzo pair. We say X is a klt del Pezzo surface
if the pair (X, 0) is log del Pezzo.

(6) Let X be a normal variety. Given D a Weil divisor, we define
the reflexive sheaf OX(D) which to an open subset U ⊂ X as-
sociates H0(U,OX(D)) = {ϕ ∈ K(X) | div(ϕ)|U +D|U ≥ 0} .
If L is a reflexive sheaf of rank one on X , there exists a Weil
divisor D such that L ≃ OX(D). We denote by L[m] the dou-
ble dual of L⊗m, which is isomorphic to OX(mD). By Cl(X)
we denote the abelian group of Z-Weil divisors modulo linear
equivalence. If X is a proper variety over k, we denote by
ρ(X) := ρ(X/Spec k) the Picard number of X .

(7) For us, an (An)-klt (resp. (An)-canonical) singularity is a klt
(resp. canonical) surface singularity such that the exceptional
locus of its minimal resolution is a string of n smooth rational
curves.
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2.2. Frobenius splitting. We fix a perfect field k of characteristic
p > 0. For the convenience of the reader we recall the definition of
F -splitting.

Definition 2.1. Let X be a variety over k. We say that X is globally
F-split if for some e > 0 the natural map

OX
F e

// F e
∗OX

splits as a homomorphism of OX -modules.

Remark 2.2. In the definition of F -splitting for a variety X one can
equivalently ask that for all e > 0 the OX-module homomorphism
OX → F e

∗OX splits.

Being globally F -split implies strong vanishing results for the co-
homology of ample divisors on X . We will need the following result,
which is a mild generalization of [BK05, Theorem 1.2.9] to Q-Cartier
Weil divisors on surfaces:

Proposition 2.3. Let X be a normal projective surface over k. If X
is globally F -split, then for any ample Q-Cartier Weil divisor A

H1(X,OX(−A)) = 0.

Proof. By Remark 2.2 we know that for any large g ≫ 0 there exists a
splitting:

OX → F g
∗OX → OX .

Restricting to the regular locus U and tensoring by OU(−A) we have
the following splitting:

OU (−A) → F g
∗OU(−p

gA) → OU(−A).

Since X is a normal variety and each sheaf in the sequence is reflexive
we deduce that the splitting holds on the whole X :

OX(−A) → F g
∗OX(−p

gA) → OX(−A).

Passing to cohomology, we have an injection:

H1(X,OX(−A)) →֒ H1(X,OX(−p
gA)).

Let m be the Cartier index of A and let us write m = pfh where
gcd(p, h) = 1. Then for large enough and sufficiently divisible e we
have that m divides pf(pe − 1) and thus

pf(pe − 1)A is Cartier.

Now consider g = f + e. We have

−pgA = −(pe+f − pf )A− pfA.
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Since X is a normal surface, any divisorial sheaf is Cohen-Macaulay
and thus we can apply Serre duality (see [KM98, Theorem 5.71]) to
deduce

H1(X,OX(−p
gA)) ≃ H1(X,HomOX

(OX(−p
gA),OX(KX)))

∗.

Being X normal, we have HomOX
(OX(−p

gA),OX(KX)) ≃ OX(KX +
pgA) since both sheaves are reflexive and they are isomorphic on the
regular locus U . Therefore

H1(X,OX(−p
gA)) ≃ H1(X,OX(KX + pgA))∗

= H1(X,OX(KX + pfA)⊗OX((p
e+f − pf)A))∗.

By choosing e sufficiently large and divisible we conclude that the last
cohomology group vanishes by the Serre vanishing criterion for ample
line bundles. �

2.3. A cone construction for Weil Q-Cartier divisors. For the
theory of cones on polarised algebraic varieties (X,L) where X is a
projective normal variety and L is an ample Cartier divisor, we refer to
[Kol13, Chapter 3]. In Section 4 we need to deal with a generalisation,
originally due to Demazure [Dem88], of the cone construction to the
case of ample Q-Cartier Weil divisors. We thus extend some of the
results explained by Kollár to this setting.
Let (X,∆) be a log pair of dimension n where X is a k-projective

variety and let L be an ample Q-Cartier Weil divisorial sheaf on X .
The variety

Ca(X,L) := Speck
∑

m≥0

H0(X,L[m])

is the cone over X induced by L. The closed point defined by the ideal
∑

m≥1H
0(X,L[m]) is called the vertex of the cone and we denote it by

v. Over X we consider the affine morphism:

π : BCa(X,L) := SpecX
∑

m≥0

L[m] → X.

The morphism π comes with a natural section X− defined by the van-
ishing of the ideal sheaf

∑

m≥1 L
[m]. The open subset of BCa(X,L)

SpecX
∑

m∈Z

L[m] = BCa(X,L) \X
−,
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is isomorphic to C∗
a(X,L) := Ca(X,L) \ v. We have the following

diagram:

(2.3.1) BCa(X,L)
π

//

f
��

X

Ca(X,L) .

The birational morphism f contracts exactly the section X− of π
with anti-ample Q-Cartier divisorial sheaf OX−(X−) ≃ L∨. Given a
Q-Cartier Q-divisor D on X , we can construct a Q-divisor DCa(X,L) =
f∗π

∗D on Ca(X,L).
The following result (originally due to [Wat81]) describes the divisor

class group of the cone and the condition under which the log canonical
class is Q-Cartier. For sake of completess, we present a proof.

Proposition 2.4 (cf. [Kol13, Proposition 3.14]). With the same nota-
tion as in diagram (2.3.1), we have

(1) Pic(Ca(X,L)) = 0,
(2) Cl(Ca(X,L)) = Cl(X)/〈L〉,
(3) m(KCa(X,L) + ∆Ca(X,L)) is Cartier if and only if there exists

r ∈ Q such that OX(m(KX +∆)) ≃ L[rm]. Moreover,

(2.4.2) KBCa(X,L) + π∗∆+ (1 + r)X− = f ∗(KCa(X,L) +∆Ca(X,L)).

Proof. Let Z be the locus where L is not a Cartier divisor and denote
the open set V := X \Z. Since X is normal, Z has codimension at least
two and thus Cl(V ) ≃ Cl(X) and Pic(V ) ≃ Pic(X). By construction,
π : π−1(V ) → V is an A1-bundle and thus Cl(π−1(V )) ≃ Cl(V ) and
Pic(π−1(V )) ≃ Pic(V ). Since π is equi-dimensional, we conclude that
the codimension of π−1(Z) is at least two and thus

Cl(BCa(X,L)) ≃ Cl(π−1(V )) ≃ Cl(V ) ≃ Cl(X),

and analogously we have Pic(BCa(X,L)) ≃ Pic(X).
We prove (1). Let M be a line bundle on Ca(X,L). Then f ∗M is

trivial on X−, thus concluding that M is trivial on Ca(X,L).
We prove (2). Since v has codimension at least two in Ca(X,L), we

have Cl(Ca(X,L)) ≃ Cl(C∗
a(X,L)). Thus we have

Z[X−] → Cl(BCa(X,L)) → Cl(C∗
a(X,L)) → 0.

Since OX−(X−) ≃ L∨, we conclude (2).
We prove (3). We have π−1(V ) \ X− → V is a Gm-bundle. Thus

there is a natural linear equivalence Kπ−1(V )+X
−|π−1(V ) ∼ π∗KV which

extends to a natural linear equivalence KBCa(X,L)+X
− ∼ π∗KX . Thus
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KBCa(X,L) + π∗∆ + X− ∼ π∗(KX + ∆). By assertion (2), the divisor
mKCa(X,L)+m∆Ca(X,L) is Cartier if and only if mKC∗

a(X,L)+m∆C∗

a(X,L)

is linearly equivalent to zero. This is equivalent to m(KX +∆) ∼ rmL
for some r ∈ Q. As for the last equality, we have

KBCa(X,L) + π∗∆+ (1 + a)X− = f ∗(KCa(X,L) +∆Ca(X,L)),

for some a. By restricting to X− we have

0 ∼Q (KBCa(X,L)+π
∗∆+(1+a)X−)|X− ∼Q (KX+∆+aX−)|X− ∼Q rL−aL,

thus concluding. �

From the point of view of the singularities of the MMP we have the
following

Proposition 2.5 (cf. [Kol13, Lemma 3.1]). With the same notation as
in diagram (2.3.1), let us assume that KX +∆ ∼Q rL for some r ∈ Q.

(1) If L is Cartier, then the pair (Ca(X,L),∆Ca(X,L)) is terminal
(resp. klt) if and only if the pair (X,∆) is terminal (resp. klt)
and r < −1 (resp. r < 0).

(2) If L is Cartier, then the pair (Ca(X,L),∆Ca(X,L)) is dlt if the
pair (X,∆) is dlt and r < 0.

(3) If X is Q-factorial and char(k) = 0, then (Ca(X,L),∆Ca(X,L))
is klt if and only if (X,∆) is klt and r < 0.

Proof. Assertions (1) and (2) are proven in [Kol13, Lemma 3.1]. We
prove assertion (3). Since X is Q-factorial we have that BCa(X,L)
is Q-factorial. Since (X,∆) is klt, we conclude by inversion of ad-
junction (see [KM98, Theorem 5.50]) that the pair (BCa(X,L), π

∗∆+
X−) is plt and the unique plt centre is X−. Since r < 0, we have
(BCa(X,L), π

∗∆ + (1 + r)X−) is klt and thus by Proposition 2.4 we
conclude the proof. �

We will be interested in understanding whether the singularity at
the vertex of the cone is Cohen-Macaulay or not. For this reason, we
show that the local cohomology at the vertex of the cone is controlled
by the cohomology groups of L and its multiples:

Proposition 2.6. For i ≥ 2,

H i
v(Ca(X,L),OCa(X,L)) ≃

⊕

m∈Z

H i−1(X,L[m]).

Proof. Since Ca(X,L) is affine, we have that the cohomology groups
H i(Ca(X,L),OCa(X,L)) vanish for i ≥ 1. Thus, by the long exact se-
quence in local cohomology (see [Har77, Chapter III, ex. 2.3]) we de-
duce

H i
v(Ca(X,L),OCa(X,L)) ≃ H i−1(U,OU) for i ≥ 2,
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where U := C∗
a(X,L) ≃

∑

m∈Z SpecXL
[m]. Since π is an affine mor-

phism, we have

H i−1(U,OU ) = H i−1(X,π∗OU ) = H i−1(X,
⊕

m∈Z

L[m]) =
⊕

m∈Z

H i−1(X,L[m]),

thus concluding. �

3. A Keel-McKernan surface in characteristic three

In this section and in the following we fix k to be a field of charac-
teristic three. We prove Theorem 1.1 by constructing a klt del Pezzo
surface of Picard rank one not satisfying the Kawamata-Viehweg van-
ishing theorem.

3.1. Construction. In [KM99, Section 9], the authors construct a
family of klt del Pezzo surfaces in characteristic two violating the Bogo-
molov bound on the number of singular points. In [CT19] it was noted
that their example gives various counterexamples to the Kawamata-
Viehweg vanishing theorem. We adapt their construction to the case
of characteristic three.
Let us consider the smooth rational curve C inside P1

x × P1
y defined

by the equation:

C :=
{

([x1 : x2], [y1 : y2]) | x2y
3
1 − x1y

3
2 = 0

}

.

We denote by πx : P
1
x × P1

y → P1
x the natural projection onto the first

coordinate and we say Fp = π−1
x (p) for p ∈ P1

x is the vertical fibre over
p.
The main property of C we are interested in is that, since the char-

acteristic of the field k is three, the morphism πx|C : C → P1
x is the

geometric Frobenius morphism. Geometrically, the curve C has the
following “funny” property: every vertical fibre Fp is a triple tangent
to C.
Fix a closed k-point p1 on C and consider the vertical fiber F1 pass-

ing through this point. Since such a fiber is a triple tangent to C at the
point p1 we perform three successive blow-ups to separate C from F1.
The order of the blow-ups is as follows: at each step we blow up the in-
tersection point of the strict transform of F1 and the strict transform of
C. After these birational modifications the strict transforms of C and
F1 (which, by abuse of notation, are denoted by the same letter) and
the exceptional divisors E1, G1, H1 are in the following configuration:



10 FABIO BERNASCONI

E1

F1

H1

G1

C

where all the curves are smooth and rational with the following inter-
section numbers:

H2
1 = −2, G2

1 = −2, F 2
1 = −3, E2

1 = −1,

C · E1 = 1, E1 · F1 = 1, E1 ·H1 = 1, H1 ·G1 = 1.

Note that the self-intersection of C has dropped by three. Performing
the same operation with other two k-points p2, p3 on the curve C we
construct a birational morphism f : S → P1

x × P1
y where the strict

transform of C has become a (−3)-curve. Over each point pi we have
the exceptional curves Hi, Gi, Ei and the strict transform of the fibre
Fi in the same configuration as the one described above for p1.
On S there are the (−3)-curves F1, F2, F3 and three disjoint strings

of two (−2)-curves formed by Hi and Gi for i = 1, . . . , 3. Let ψ : S → T
be the birational contraction of the curves Fi, Hi, Gi for i ∈ {1, 2, 3} and
C. We can construct ψ by running a suitable log MMP (see [Tan14])
for the log pair

(S,∆ :=
3

∑

i=1

2

3
Fi +

3
∑

i=1

1

2
(Hi +Gi) +

2

3
C),

which at each step of the MMP we contract exactly one of the curves
appearing in Supp(∆). We denote, with a slight abuse of notation, the
pushforward of a divisor D via ψ with the same letter D.
On T we have the following configuration of curves and singular

points:

E1E2 E3

= A2-canonical singularity

= A1-klt singularity
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Remark 3.1. The singularity at the points of type A2-canonical (resp.
A1-klt) is formally isomorphic to the quotient of A2

k by the action of
the group scheme µ3 with weights (1, 2) (resp. (1, 1)).

The following proposition justifies why this surface is a generalization
of Keel-McKernan’s example in characteristic three:

Proposition 3.2. The surface T is a klt del Pezzo surface of Picard
rank one. Moreover, −KT ≡ E1.

Proof. It is straightforward to see that ρ(T ) = 1. Since we contract
only cycle of (−2)-curves and (−3)-curves, T has klt singularities. We
are only left to show that −KT is an ample divisor. By an explicit
computation we have

(3.2.1) ψ∗KT = KS +

3
∑

i=1

1

3
Fi +

1

3
C.

Since ρ(T ) = 1 and h1(T,OT ) = 0 it is enough to prove that the
anticanonical divisor has the same intersection as E1 when intersected
with any effective curve.
Let Fp be the fibre of the the map πx ◦ f : S → P1

x over a general
point p ∈ P1

x. By the projection formula we have:

−KT · ψ∗Fp = −ψ∗KT · Fp = −KS · Fp −
1

3
C · Fp = 1. �

Again by the projection formula, we also have

E1 · ψ∗Fp = ψ∗E1 · Fp =
1

3
C · Fp = 1.

Remark 3.3. It is possible to perform a similar construction for higher
characteristic, but the resulting surface will have ample canonical divi-
sor class.

Remark 3.4. In [KM99, Section 9] the authors prove the Bogomolov
bound: a klt del Pezzo surface of Picard rank one over an algebraically
closed field of characteristic zero has at most six singular points. The
bound was later improved to four singular points in characteristic zero
in [Bel09]. The surface T has seven singular points and thus shows
that the Bogomolov bound does not hold in characteristic three. It is
an open question whether the Bogomolov bound holds for large char-
acteristic.

We show that there are no anticanonical sections on T :

Proposition 3.5. H0(T,OT (−KT )) = 0.
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Proof. By formula (3.2.1) we have

H0(T,OT (−KT )) = H0(S,OS(−KS −

3
∑

i=1

Fi − C)).

A direct computation shows

−KS −

3
∑

i=1

Fi − C ∼ f∗(−KP1
x×P1

y
−

3
∑

i=1

Fi − C) +

3
∑

i=1

(Gi + 2Hi + 3Ei).

Therefore

H0(T,OT (−KT )) = H0(P1
x × P1

y,O(−KP1
x×P1

y
−

3
∑

i=1

Fi − C))

= H0(P1
x × P1

y,O(−2,−1)) = 0.

�

3.2. Failure of the Kawamata-Viehweg vanishing theorem. We
show that the Kawamata-Viehweg vanishing theorem fails on the sur-
face T .
We consider the following ample Q-Cartier Weil divisor

A := E2 + E3 − E1.

Theorem 3.6. The Kawamata-Viehweg vanishing theorem fails for the
Weil divisor A; i.e.

H1(T,OT (−A)) 6= 0.

Proof. The strategy is to pull-back the divisor to the minimal resolution
S and compute there the cohomology groups. Let us consider the pull-
back of A to S as a Q-divisor:

−ψ∗A = E1+
1

3
F1+

2

3
H1+

1

3
G1−E2−

1

3
F2−

2

3
H2−

1

3
G2−E3−

1

3
F3−

2

3
H3−

1

3
G3−

1

3
C;

thus

⌊−ψ∗A⌋ = E1 − E2 − F2 −H2 −G2 − E3 − F3 −H3 −G3 − C.

We have

ψ∗OS(⌊−ψ
∗A⌋) = OT (−A),

and we compute the cohomology group using the Leray spectral se-
quence

(3.6.2) Ei,j
2 = Hj(T,Riψ∗OS(⌊−ψ

∗A⌋)) ⇒ H i+j(S,OS(⌊−ψ
∗A⌋)).
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We show that Riψ∗OS(⌊−ψ
∗A⌋) = 0 for i > 0. By the Kawamata-

Viehweg vanishing theorem for birational morphism between surfaces
(see [Kol13, Theorem 10.4]) we just need to check that ⌊−ψ∗A⌋ is ψ-nef:

⌊−ψ∗A⌋ · C = 2,

⌊−ψ∗A⌋ · F1 = 1, ⌊−ψ∗A⌋ ·H1 = 1, ⌊−ψ∗A⌋ ·G1 = 0,

⌊−ψ∗A⌋ · Fi = 2, ⌊−ψ∗A⌋ ·Hi = 0, ⌊−ψ∗A⌋ ·Gi = 1 for i = 2, 3.

Therefore the Leray spectral sequence (3.6.2) degenerates at the E2-
page and we have for all i ≥ 0:

H i(T,OT (−A)) ≃ H i(S,OS(⌊−ψ
∗A⌋)).

By a direct computation we have

KS · ⌊−ψ∗A⌋ = −2 and ⌊−ψ∗A⌋2 = −6.

Therefore, by the Riemann-Roch theorem on S, we deduce

χ(T,OT (−A)) = χ(S,OS(⌊−ψ
∗A⌋)) = −1,

which implies h1(T,OT (−A)) 6= 0. �

We now conclude that the surface T is neither F -split or admits a
log resolution lifting to the second Witt vectors, giving thus a general-
ization of [CTW17, Theorem 1.3] to characteristic three.

Corollary 3.7. Over any perfect field k of characteristic p = 3 there
exists a log del Pezzo surface T which is not globally F -split and such
that for any log resolution µ : S → T the log smooth pair (S,Exc(µ))
does not lift to W2(k).

Proof. The surface T constructed above is not globally F -split by Propo-
sition 2.3 and Theorem 3.6. By Proposition 3.6 and Serre duality we
have

H1(T,OT (KT + A)) 6= 0.

If the pair (S,Exc(µ)) lifted toW2(k), we could apply [CTW17, Lemma
6.1] to the Z-divisor D := KT + A, thus getting a contradiction with
the non-vanishing above. �

4. A klt threefold singularity not CM in characteristic

three

In this section we construct an example of a klt threefold singularities
in characteristic three which is not Cohen-Macaulay.
With the same notation as in Subsection 2.3, let us consider the cone

over the klt del Pezzo surface T constructed in Section 3:

X := Ca(T,OT (A)),
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where A is the Q-Cartier Weil divisor of Theorem 3.6.
We now prove that X has klt singularities. If we were working over

a field of characteristic zero we would conclude immediately by Propo-
sition 2.5. However, since we are working in positive characteristic, we
need to further study the singularities of X to conclude it is klt. We
start by studying the singularities of its partial resolution:

Y := SpecT
∑

m≥0

OT (mA)
f
−→ X.

The exceptional locus of the birational morphism f is the prime divisor
E, which is isomorphic to T . We denote by π the natural affine map
π : Y → T . We thus have the following diagram:

Y
π

//

f
��

T

X .

Proposition 4.1. The variety Y is a Q-factorial threefold with isolated
singularities and the pair (Y,E) is toroidal (hence log canonical).

Proof. To check that Y is Q-factorial it is sufficient to work in an
analytic neighbourhood of the singular locus by [Mat80, (24.E)]. The
same is true to compute the discrepancies. Thus we can reduce to
study the preimage π−1(U) ⊂ Y of an analytic neighbourhood U of
the singular points of T because outside the preimage of those points
the pair (Y,E) is log smooth.
As explained in Remark 3.1, there are two different types of singular

points in T . We show the result is true for the A2-type singular points;
for the A1-type singular points the computation is similar.
Let us consider a singular point p ∈ T , which is formally isomorphic

to the quotient of A2
u,v by the group µ3 with weight (1, 2). In local

coordinates,

A2
u,v // µ3 = Speckk[u

3, v3, uv] ≃ Speckk[x, y, z]/(z
3 − xy),

and the Weil divisorial sheaf OT (A) is isomorphic to the Weil divisorial
ideal D := (x, z). In this case we have

Y = SpecA2//µ3

∑

m≥0

OT (mD)

≃ Speck
k[x, y, z, a, b, c, d]

(z3 − xy, a2 − cx, ab− cz, a3 − dx2, ac− dx, b3 − dy, bc− dz)
.
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The fibration f is the natural morphism associated to the k-algebra
homomorphism

k[x, y, z]

(z3 − xy)
→

k[x, y, z, a, b, c, d]

(z3 − xy, a2 − cx, ab− cz, a3 − dx2, ac− dx, b3 − dy, bc− dz)
,

and the section E is the subvariety defined by the ideal (a, b, c, d).
A more conceptual way to understand the A1-fibration Y → T and

its singularities is to see it locally as a quotient of the trivial A1-bundle
over A2. Let us consider the line bundle

L := SpecA2

∑

k≥0

(u)k ≃ Speckk[u, v, s]

together with the section S = (s = 0). We have a natural action of µ3

on L of weight (1, 2, 1) and we can construct the quotient

p : L → L // µ3.

A direct computation shows that the quotient pair (L // µ3, p(S)) is
isomorphic to (Y,E). With this description, we deduce that Y is a
Q-factorial variety by [KM98, Lemma 5.16] and that the singularities
of Y are isolated.
Moreover we have shown that, near the preimage via f of the singular

points of T , the pair (Y,E) is toroidal and thus by [CLS11, Proposition
11.4.24] we conclude it has log canonical singularities. �

Theorem 4.2. The variety X has Q-factorial klt singularities and it
is not Cohen-Macaulay.

Proof. By Proposition 2.6 and Theorem 3.6 we deduce

H2
v (X,OX) ≃

∑

m∈Z

H1(T,OT (mA)) 6= 0,

thus proving X is not Cohen-Macaulay. We are left to check it is klt.
We have −KT ∼Q A by Proposition 3.2. Thus by Proposition 2.4, KX

is Q-Cartier and KY ∼Q f
∗KX .

By Proposition 4.1, Y is a Q-factorial variety and the pair (Y,E) is
toroidal. Therefore by [CLS11, Proposition 11.4.24] Y is klt and since
X is crepant to Y we conclude that X has klt singularities. �

5. Kodaira-type vanishing for klt del Pezzo surfaces

The aim of this section is to collect some Kodaira-type vanishing
results for big and nef line bundles on klt del Pezzo surfaces for arbitrary
p > 0 and to prove Theorem 1.3. In particular, we answer a question
of Cascini and Tanaka in the case of characteristic p ≥ 5 (see [CT18,
Remark 3.2])).
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We start by discussing the case of klt del Pezzo surfaces with few
non-canonical singular points. Let us recall the following result.

Lemma 5.1. Let k be an algebraically closed field of characteristic
p > 0. Let X be a surface of del Pezzo type over k. Then X is a rational
surface and H i(X,OX) = 0 for i > 0. In particular, χ(X,OX) = 1.

Proof. The surface X is rational by [Tan15, Fact 3.4 and Theorem
3.5]. Let Y be the minimal resolution. By the Kawamata-Viehweg
vanishing theorem for birational morphism between surfaces, we have
H i(X,OX) ≃ H i(Y,OY ). Since Y is a smooth rational surface we
conclude. �

Proposition 5.2. Let k be an algebraically closed field of characteristic
p > 0. Let X be a klt del Pezzo surface over k with at most three
non-canonical singular points. Suppose that all of them are formally
isomorphic to the quotient of A2

k by the action of a group scheme µm

for some m > 0. Then for any big and nef Cartier divisor A we have

H1(X,OX(A)) = 0.

Proof. Let us recall that given a Weil divisor D on a surface X with
only µm-quotient singularities we have

χ(X,OX(D)) = χ(X,OX) +
1

2
D · (D −KX) +

∑

P∈NotCart(D)

cP (D),

where cP (D) is a rational number depending on the type of singularity
of the pair (X,D) near P (for more details see [Rei87]). In [PV07,
Corollary 4.1], the authors prove that cP (−KX) > −1 (let us note that
the assumption on the characteristic of the base field is unnecessary).
Applying the Riemann-Roch formula we have

h0(OX(A−KX)) ≥ 1 +
1

2
(A2 − 3A ·KX + 2K2

X) +
∑

P∈NotCart(KX)

cP (−KX)

≥ 3 +K2
X − 3 > 0.

Since h1(X,OX) = 0, we can apply [CT19, Proposition 3.3] to show
that h1(X,OX(KX − A)) = 0. Thus, by Serre duality we conclude
h1(X,OX(A)) = 0. �

Remark 5.3. By [PV07, Corollary 4.1], we have that cP (−KX) ≥ −1
3

if the singularity P is formally a quotient of A2
k by µ3. Then the same

proof of the previous Proposition shows that vanishing theorems for
big and nef Cartier divisors hold on the surface T we constructed in
Section 3. This explains why we had to look for a Q-Cartier Weil
divisor violating the vanishing theorem.
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Remark 5.4. Let us note that the Kawamata-Viehweg vanishing the-
orem is not valid for del Pezzo surfaces with canonical singularities in
characteristic two by [CT19, Theorem 3.1].

We recall a result of Kollár (see [Kol96, Theorem II.6.2, Remark
II.6.2.4 and Remark II.6.7.2]), which is a combination of Ekedahl’s
purely inseparable trick and Bend and Break techniques.

Theorem 5.5. Let k be an algebraically closed field of characteristic
p > 0. Let X be a projective normal surface over k. Let L be a big and
nef Weil Q-Cartier divisor on X such that H1(X,L∨) 6= 0. Assume
that X is covered by a family of curves {Dt} such that X is smooth
along the general curve Dt and such that

((p− 1)L−KX) ·Dt > 0.

Then for every point x ∈ X there exists a rational curve Cx passing
through x such that

L · Cx ≤ 2 dimX
L ·Dt

((p− 1)L−KX) ·Dt
.

As an application we deduce an effective vanishing for the H1 of a
positive line bundle on a klt del Pezzo surface:

Theorem 5.6. Let k be an algebraically closed field of characteristic
p > 0. Let X be a klt del Pezzo surface over k and let A be a big and
nef Cartier divisor. Then

(1) H1(X,OX(−A)) = 0;
(2) If p ≥ 5, then H1(X,OX(A)) = 0;
(3) If p = 3, then H1(X,OX(2A)) = 0;
(4) If p = 2, then H1(X,OX(4A)) = 0.

Proof. To prove (1), it is enough to show that H0(X,OX(A)) 6= 0
by [CT19, Proposition 3.3]. So denoting by f : Y → X the minimal
resolution, we have

H0(X,OX(A)) = H0(Y,OY (f
∗A)).

Since Y is a rational surface by Lemma 5.1 we have h2(Y,OY (f
∗A)) =

h0(Y,OY (KY − f ∗A)) = 0 and therefore

h0(Y,OY (f
∗A)) ≥ 1 +

1

2
f ∗A · (f ∗A−KY ) = 1 +

1

2
(A2 −KX · A) > 0.

To prove (2), let us note that ifH1(X,OX(A)) 6= 0 we haveH1(X,OX(KX−
A)) 6= 0 by Serre duality. Let us define a Weil Q-Cartier ample divisor

L := A−KX .
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Considering a covering family {Dt} of curves for X belonging to a very
ample linear system we have that

(p− 1)(L ·Dt)−KX ·Dt > 0.

Therefore we can apply Theorem 5.5 for every point x ∈ X we can find
a curve Cx passing through x such that

L · Cx ≤ 4
L ·Dt

(p− 1)L ·Dt −KX ·Dt
<

4

p− 1
.

Moreover, if x ∈ X is chosen to be generic we have that A · Cx ≥ 1
since A is big Cartier divisor and therefore

L · Cx = A · Cx −KX · Cx > 1.

Thus concluding that p < 5.
In the case where p = 3, we apply the same proof to L = 2A−KX

with the same notation to the curves Dt. In this case by Theorem 5.5
we can find that for any point x there exists a rational curve Cx passing
through x such that

L · Cx <
4

p− 1
= 2.

However choosing x generic enough we have

L · Cx = 2A · Cx −KX · Cx > 2,

thus getting a contradiction. The proof for the case p = 2 is analogous.
�

We conclude by discussing the special case where the linear system
induced by A is birational.

Proposition 5.7. Let k be an algebraically closed field of characteristic
p > 0. Let (X,∆) be a log del Pezzo pair over k. Let A be a big and nef
Cartier divisor such that the linear system |A| is base point free and
birational onto the image. Then

H1(X,OX(A)) = 0.

Proof. Let f : Y → X be the minimal resolution. We have for a certain
effective boundary divisor ∆Y :

KY +∆Y = f ∗(KX +∆).

Since klt surface singularities are rational, we have R1f∗OY (f
∗A) =

R1f∗OY ⊗OX(A) = 0. Thus we deduce

H i(Y,OY (f
∗A)) = H i(X,OX(A)).
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By hypothesis, there exists an integral curve C ∈ |f ∗A|. The curve C
is Gorenstein with dualizing sheaf:

ωC = OY (KY + C)⊗OC .

Consider the following short exact sequence:

0 → OY → OY (C) → OC(C) → 0.

Since Y is a smooth rational surface by Lemma 5.1 we haveH i(Y,OY ) =
0 for i = 1, 2. Thus taking the long exact sequence in cohomology we
have

H1(Y,OY (f
∗A)) = H1(Y,OY (C)) ≃ H1(C,OC(C)).

Now, using Serre duality on C we have

H1(C,OC(C)) ≃ H1(C, ωC ⊗OC(−KY |C))) ≃ H0(C,OC(KY |C))
∗.

It is easy to see that KY |C is an anti-ample divisor because

KY · C = (f ∗(KX +∆)−∆Y ) · f
∗A = (KX +∆) · A−∆Y · f ∗A < 0.

Therefore
H0(C,OC(KY |C)) = 0,

thus concluding the proof. �
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