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Abstract—Genetic instability is one of the hallmarks of cancer,
however mutations can occur for different causes and induce
different effects. Mutational signatures are characteristic patterns
of somatic mutations in cancer genomes, reflecting the underlying
mutational processes. A mutational signature can be determined
by studying the kind of mutations a patient has acquired during
their life: patient stratification based on mutational signatures
has become more and more useful in genomic studies, given
its possible clinical implications. In this work we focused on
Single Base Substitution (SBS) signatures to study a cohort of
115 metastatic melanoma patients. We inferred and identified
two mutational signatures characterizing the patients. Based
on these signatures we divided patients into two group: the
bigger group was characterized by a signature associated with
exposure to ultraviolet light, while the smaller group resulted
to be mostly composed of patients which did not respond to
immunotherapy (anti-PD1) and that presented a low mutational
count. More importantly this second group showed a significantly
worse survival outcome. The use of mutational signatures is
clearly a powerful tool to identify disease sub-types that have
a clinical relevance, however we believe that this topic needs
further investigation focused on the characterization of patient
subtypes with a multi-omics based approach.

Index Terms—mutational signatures, metastatic melanoma,
genomics, precision oncology, computational medicine, patient
stratification

I. INTRODUCTION

It is well established that genetic instability is one of
the hallmarks of cancer [1], however, somatic mutations are
present in all cells of the human body and occur throughout
life [2]; they can result from errors in DNA replication during
cell division, exposure to mutagens or a viral infection, or they
can be inherited. When mutations accumulate in a cell genome
they can lead to cancer cell survival and proliferation [12].
Different mutational processes generate unique combinations
of mutation types, that are called “Mutational Signatures”.
In the last decade large-scale analyses have showed several
mutational signatures across different human cancer types.
Currently, four different variant classes of signatures have been
defined [2]:
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o Single base substitutions (SBS) Signatures

« Doublet base substitutions (DBS) Signatures
« Small insertions and deletions (ID) Signatures
o Copy number signatures (CN) Signatures

Thanks to extensive previous studies, a curated resource of
mutational signatures [2] was created. COSMIC Mutational
Signatures is an online resource of signatures identified from
analyses of the PCAWG (Pan-Cancer Analysis of Whole
Genomes) dataset and through a curation of specific papers,
and it provides a catalogue of signatures that serve as a
reference set of high confidence signatures curated by experts
in the field [2].

In the field of personalized genomics, applying comprehen-
sive genomic approaches could prove to be most rewarding
[3]. Previous studies have proven how “mutational signatures
provide new insights into the causes of individual cancers,
revealing both endogenous and exogenous factors that have
influenced cancer development” [4]. By now conducting muta-
tional signature analyses has become a standard practice while
performing genomic studies. Indeed, this field is "heading
towards being used in a clinically meaningful way” [4].

In this work we investigated SBS signatures (the most ex-
plored and consolidated throughout the literature) in a cohort
of metastatic melanoma patients. The incidence of primary
cutaneous melanoma has been increasing steadily for several
decades; however, the overall survival rates have remained
relatively constant. To this day melanoma remains the most
lethal form of cutaneous neoplasm: almost 90% of patients
die, accounting for 65% of all skin cancer-related deaths [5].
Melanoma is distinct from non-melanoma skin cancers in that
it tends to spread locally, regionally, and distantly. An individ-
ual’s risk of metastasis is directly related to the depth of inva-
sion and ulceration of their primary lesion [6]. Approximately
4 percent of people are diagnosed with melanomas that have
spread to distant parts of the body, according to the American
Society of Clinical Oncology (ASCO). Common melanoma
metastasis sites include the lymph nodes, lungs, liver, bones
and brain. [7]. To this day immune checkpoint inhibitor-
based therapy is the most effective treatment for metastatic



melanoma; there are three immune checkpoint inhibitors have
been approved for the treatment of melanoma: two anti-PD-
1 antibodies and one anti-CTLA-4 antibody. However, anti-
PD-1 therapy does not effectively block tumour activity in all
patients. As a result, PD-1 and PD-L1 inhibitors have been the
major focus of research on the immunotherapy of melanoma
[5].

Previous studies have already focused on mutational signatures
of melanoma patients: Shi et al. [8] analyzed 631 melanoma
patients treated with immune checkpoint inhibitors (ICIs),
found a total of four mutational signatures and noticed that
male patients with signature SBS4 had an inferior ICI response
rate and overall survival. They also found a immune sub-
type (based on mutational activities) that was associated with
poor ICI survival in female patients. Kim et al. [9] considered
splitting cutaneous melanomas (CMs) in two subgroups based
on mutational signatures: UV-high and UV-low. They also
showed that CMs belonging to the UV-low cluster showed
significantly worse overall survival and landmark survival at
1-year than those in the UV-high cluster. Similar observations
had previously been made by Trucco et al. [10] and Vicente
et al. [11]. However these studies focused either on primary
tumors or on samples of mixed nature (both primary and
metastatic). Moreover, as Kim et al. state, patients belonging
to the low-UV group have not been fully characterized yet.
With this work we aim at further investigating this topic by

leveraging the insights provided by mutational signatures as
well as extending this study to metastatic melanoma patients.

II. MATERIALS AND METHODS
A. Data

The data used in this study can be found in the “Metastatic
Melanoma (DFCI, Nature Medicine 2019)” dataset [12], freely
available for download on the cBioPortal for Cancer Ge-
nomics, an open-access and open-source resource for interac-
tive exploration of multidimensional cancer genomics data sets
[13]-[15]. The dataset consists of whole-exome and whole-
transcriptome sequencing of pre-treatment tumors for a cohort
of patients with metastatic melanoma treated with anti-PD1
immune-checkpoint blockade. For our purposes we only used
mutational and clinical data. Mutational data was available for
118 patients.

B. Methods

Assessment of SNP mutational counts, estimation of SBS
mutational signatures and patients’ exposures were performed
for all patients with the mutSignatures R package [16], a
framework based on non-negative matrix factorization (NMF)
to decompose a mutation matrix that contains the 96 base
substitution classes with trinucleotide sequence pattern. These
base substitution types are the permutation and combination
of six main mutational categories (i.e., C > A, C > G, C >
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Fig. 1. SBS Mutational signatures extracted from the patients’ SNP (Small nucleotide polymoprhism) mutations



T, T>A,T>C, and T > G) and their surrounding adjacent
bases. The estimated signatures were compared with the ones
validated by COSMIC.

All statistical tests and data analyses were performed using R.
Patient survival analyses were performed using the survival
R package [17]. To asses patient enrichment in the clinical
variable “Best Response” (BR), we divided patients into
“Responders” if they were classified as "Complete Response”,
“Partial Response” or "Mixed Response” and “Non respon-
ders” if the case of ”Stable disease” or “Progressive Disease”.
Enrichment analysis was performed using hypergeometric test
with a significance threshold of 0.05.

III. RESULTS
A. Mutational signatures

The considered dataset contains a total of 14703 with SNP
mutations related to 118 patients. After removing mismatch
mutations and aggregating count mutation types, we obtained
a cohort of 115 patients and we were able to estimate two
signatures (Fig. 1). The first one is dominated by the presence
of C > T mutations, while the second one presents a wider
range of SNPs. By checking the patients’ exposure to the
signatures we noticed that, while most patients were mostly
exposed to the first signature, there was a small group mostly
exposed to the second one (Fig. 2). This was found among the
patients with smaller mutational count (Fig. 3).
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Fig. 2. Histogram showing the patients’ exposure to the extracted signature.
Every bar represents a patient (ordered by amount of mutations) and the color
shows how many mutations of that patient can be attributed to a signature.
In the bottom histogram the same information is represented as percentage
over the total mutations of that patient. Signature 1 is shown in green and
signature 2 in red.

As a consequence, we divided patients into two groups based
on their exposure to the found signatures; each patient was as-
signed to the signature if their exposure to said signature (and
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Fig. 3. Boxplot showing the difference in terms of amount of mutations
between the two identified groups

therefore the contribution of the signature to their mutations)
was grater or equal than 50%. We then focused on the 21
patients which belong to the smaller group associated to the
second signature. We noticed that 12 of them are women and 9
men (even thought the dataset contains more men than women)
and that they do not respond to treatment (p-val = 0.021).
Additionally, they have worse mortality rate and tendency to
lower LDH values. Finally, the majority of them had also
already undergone a CTLA4 treatment (Fig. 4).
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Fig. 4. Stackbar plots comparing the 21 identified patients to the rest of the
samples in terms of clinical information (sex, high ldh, therapy response and
prior CTLA4 therapy)
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To better understand the mutational signatures we had found,
we compared them to COSMIC signatures (Fig. 5). By setting
a threshold of 0.7 on the cosine similarity (cs), we can
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Fig. 5. Heatmap showing the cosine similarity score between the identified signatures and the 87 COSMIC signatures

highlight that signature 1 is highly similar to both SBS7a (cs
=0.91) and SBS7b (cs = 0.88), as well as presenting a strong
affinity with SBS30 (cs = 0.76). The first two signatures are
likely to be due to exposure to ultraviolet light, while SBS30
is due to deficiency in base excision repair due to inactivating
mutations in NTHL1. On the other hand, for signature 2 we
identified only one relevant similarity with SBS6 (cs = 0.71)

Strata

which is associated with defective DNA mismatch repair and
is often found in microsatellite unstable tumours.

B. Survival analysis

As a second step of our analysis we compared the survival
of the 21 patients characterized by signature 2 with the survival
of the other patients. As we can see from Fig. 6, the smaller
subgroup has a significantly worse survival outcome (pval =

Sig1-patients == Sig2-patients
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Fig. 6.

Survival curve of the 21 identified patients compared with the others. The p-value of this significant survival difference is also reported in the image



0.0062). By inspecting the survival curve we can notice how
the survival of these patients is worse from the first months.

IV. DISCUSSION

Melanoma is currently the most lethal form of skin cancer,
with a 90% mortality rate. Previous studies have shown that
melanoma patients could be clustered based on their muta-
tional information; however these studies focused either on
primary melanoma or on mixed dataset, with samples related
both to primary and metastatic melanoma. In this work, we
extended these analysis on SBS mutational signatures and
patients’ survival by focusing only on metastatic melanoma
patients. Similarly to Kim et al. [9], Turcco et al. [10] and
Vicente et al. [11], we highlighted two different groups of
patients based on two mutational signatures that we identified.
A first group is composed of 94 patients: they are characterized
by high number of mutations and strongly associated to a
signature extremely similar to COSMIC signatures 7a and 7b,
known to be caused by ultraviolet light exposure and with
a predominance of C-to-T nucleotide transition. The second
group (21 patients), on the other hand, was characterized by
a mutational profile not associated with UV-light exposure
and presented a quite low number of mutations. This proves
that this signature-based classification can also be applied
to metastatic melanoma. Moreover, the difference in survival
outcome is also confirmed. The smaller group (the one not
associated with ultraviolet light exposure) showed, in fact, a
worse overall survival. To better characterize these patients, we
saw that they are enriched in being non responders to anti-PD1
therapy. Moreover, by comparing their mutational signature
to known COSMIC signatures we found an affinity with
SBS6 (whose proposed aetiology is “defective DNA mismatch
repair”’), while the already mentioned study by Kim et al.
[9], who found similar results but focused mostly on primary
tumors, had instead found a similarity with SBS1 (spontaneous
or enzymatic deamination of 5-methylcytosine) and SBS5
(unknown). We can conclude that as in primary melanoma,
it is possible to distinguish different sub-types with different
prognosis. These sub-types also show different responses to
anti-PD1 immunotherapy. We believe that this topic, and
specifically the characterization of the sub-type with worse
prognosis, needs further investigation: their genomic profile
might be the result a mixture of joint causes therefore a multi-
omics approach might lead to insightful results. Therefore,
further steps of this investigation will focus on integrating also
transcriptomics data.
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