
1 
 

Resistivity and full-decay IP inversion for imaging a coastal aquifer 1 

prone to saline intrusion: the Pontina Plain case study (Central Italy) 2 

Running title: ERT and full-decay IP for aquifer imaging 3 

Giorgio De Donno* and Michele Cercato  4 

“Sapienza” University of Rome – DICEA Via Eudossiana 18, 00184 Rome, Italy 5 

*Corresponding author: giorgio.dedonno@uniroma1.it 6 

Publisher version: https://onlinelibrary.wiley.com/doi/full/10.1002/nsg.12259  7 

 8 

Acknowledgments 9 

This research is funded by ‘Sapienza’ University of Rome – Grant no. 10 

RM11916B7EE0A1A8/2019 (P.I. Giorgio De Donno). The authors wish to thank 11 

Francesco Pugliese (‘Sapienza’ University of Rome) and former M.Sc. students Michela 12 

di Rosa, Filomena Rondinelli and Alessandro Tomasella (‘Sapienza’ University of Rome) 13 

for their help during field acquisition. The Circeo National Park Authority and the 14 

Carabinieri Biodiversity Group (Reparto Carabinieri Biodiversità di Fogliano) are 15 

warmly thanked for permitting site access. 16 

 17 

Conflict of interest 18 

The authors declare that they have no conflicts of interest related to this work. 19 

 20 

Abstract 21 

Many coastal areas are affected by groundwater salinization due to the unsustainable use 22 

of groundwater resources. For a cost-effective quantitative assessment of groundwater 23 

resources, electrical resistivity tomography is often used as a standalone geophysical 24 

technique. In this paper, we present an application of the integration of direct-current 25 
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electrical resistivity and full-decay induced polarization method at the Pontina Plain 26 

(Central Italy). The case study is a coastal area in Central Italy prone to salinization due 27 

to both geological and anthropogenic factors. 28 

To achieve these goals, we inverted full-decay time-domain electrical data for Cole-Cole 29 

parameters. The resulting multi-parameter model provides a first approximation 30 

prediction of the permeability, employing well-established empirical relationships with 31 

the electrical parameters. 32 

We demonstrated that our approach: i) can locate highly conductive zones directly related 33 

to saline intrusion inland using the resistivity as a fast proxy; ii) can remove the ambiguity 34 

in the detection of clay/silt layers in the near-surface and iii) permit a prediction of the 35 

permeability, employing full-decay inversion of time-domain electrical data. However, 36 

the extremely conductive environment prevents the use of induced polarization data for 37 

the reconstruction of deep layers or detection of the salt wedge front. Therefore, this 38 

approach can be used for hydro-geophysical screening and monitoring of salinization-39 

prone sites, where strong limitations to direct inspection exist due to external constraints 40 

(e.g. protected lands). 41 

Keywords: ERT; IP; hydrogeophysics; aquifer; permeability 42 
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Introduction 48 

The increasing global food production that occurred in the last decades has required an 49 

improvement in the diagnostic tools for monitoring agricultural and natural lands (FAO 50 

2017). About 15% of the total land area has been affected by physical and chemical 51 
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degradation, including soil and groundwater salinization (Wild 2003). However, only a 52 

limited number of maps are currently available in Europe and particularly in Italy, for 53 

areas subjected to salinization (Van Beek and Tóth 2012), even though it is well-known 54 

that large parts of the coastal territory have been damaged due to salinization. 55 

Groundwater salinization is mostly due to pumping rates, which exceed the rate of natural 56 

recharge so that seawater is drawn into the aquifer to make up the deficit. In most cases, 57 

this is caused by the lack of planning and control of groundwater abstraction (Greene et 58 

al. 2016). Furthermore, climate change is expected to worsen and accelerate this 59 

phenomenon in Mediterranean regions, by reducing the total amount of rainfall, 60 

increasing extreme events, and causing sea level rise thus contributing to saline water 61 

intrusion inland (Cramer et al. 2020). The latest EU directives regarding water resources 62 

(EU Water Framework Directive 2000 and linked legislation) require good chemical and 63 

quantitative status of groundwater to be achieved by 2027 at the latest. To this aim, 64 

electrical conductivity (EC), as well as its inverse electrical resistivity (ER), is recognized 65 

as a straightforward indicator of salinization, as high EC (low ER) values observed for 66 

shallow groundwater are a proxy for irreversible contamination (Greene et al. 2016). 67 

During the last decades, well monitoring has been the most used approach for mapping 68 

vulnerability in coastal aquifers (Melloul and Goldenberg 1997). However, this approach 69 

can lead to ambiguous results if the sample collection is too sparse when compared to the 70 

variability in the subsoil. This scenario is frequent in Italy where the subsoil is often 71 

extremely heterogeneous and information about the subsoil layering is often available 72 

only at scattered points. In this case, the correlation between borehole data and areal 73 

information given by non-invasive techniques can help to retrieve a high-resolution 74 

model of the coastal areas without any damage to the environment (Paillet 2003). 75 

Therefore, ER monitoring can potentially represent a powerful and robust tool to image 76 

and monitor salinization-prone zones. 77 
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Electrical resistivity mapping of coastal aquifers has often been accomplished during 78 

recent years employing airborne electromagnetic (EM) methods (e.g. Siemon et al. 2019) 79 

or, where increased resolution is needed, using the electrical resistivity tomography 80 

(ERT) on selected profiles (e.g. Costall et al. 2018). However, using ERT as a standalone 81 

may not be the best choice in complex scenarios where resistivity ranges related to 82 

different lithotypes may overlap, mainly due to variations in clay content, salinity and 83 

saturation levels (Samouëlian et al. 2005). 84 

Nowadays, the additional contribution given by the induced polarization (IP) technique 85 

is recognized to be pivotal for aquifer characterization, given the high polarization of clay 86 

minerals (Slater and Lesmes 2002). Therefore, the tomographic inversion of time-domain 87 

IP (TDIP) data has been an emergent techniquein recent years for many environmental 88 

applications (see Binley and Slater 2020 for a review). However, it has still rarely been 89 

applied for mapping saline intrusion or in coastal areas (Kumar et al. 2022), due to the 90 

low signal-to-noise ratio in such conductive environments. The TDIP data processing is 91 

generally performed by a rapid inversion using an integral chargeability value (Oldendurg 92 

and Li 1994), discarding the whole information contained within the IP decay curves. 93 

Recently, a new technique to improve the interpretation of IP surveys has been 94 

developped by extracting the spectral information through a full-decay IP analysis 95 

(Fiandaca et al. 2012). The full-decay IP analysis can be used for predicting key 96 

parameters (i.e. porosity, permeability, etc.) for coastal aquifers, given the relationship 97 

between real and imaginary components of the complex conductivity and the 98 

permeability or the porosity of unconsolidated sediments established in the laboratory 99 

with IP measurements on small samples (Weller et al. 2015). 100 

In this work, we present an application of full-decay TDIP inversion at the Pontina Plain 101 

site (Lake Fogliano), which is a coastal area in Central Italy prone to salinization due to 102 

both geological and anthropogenic factors. We use electrical resistivity for mapping the 103 
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salinization of coastal areas and polarization properties for predicting the hydrogeological 104 

parameters (permeability) of the shallow groundwater aquifers and aquicludes. To 105 

achieve the proposed goals, a new inversion algorithm implemented in Matlab and based 106 

on inequality constraints and log-10 transformed parameters is used as a tool to gain 107 

information on the site under investigation.  108 

 109 

Methods 110 

We use a full-decay TDIP 2.5D forward mapping, achieved by a Fourier transformation 111 

of the frequency-domain solver in the algorithm proposed by De Donno (2013) to solve 112 

for the complex electric potential. The forward code permits the modelling of the full-113 

wave form of the electric potential, also incorporating the 50% duty cycle and the filter 114 

effect for IRIS Syscal instruments (used in the case study). We carry out data inversion 115 

for Cole-Cole (CC) parameters with a two-step Gauss-Newton algorithm, employing log-116 

10 transformed parameters and inequality constraints. Using log-transformation in the 117 

parameterization implies that relative changes (e.g. also at low magnitudes) in a parameter 118 

value are equally weighted in the inversion (Kemna 2000). We incorporate in the 119 

inversion process the a priori information available in the study area through inequality 120 

constraints, which help to improve the model reconstruction and facilitate the inversion 121 

procedure, if the bounds are not too restrictive (Kim and Kim 2011). In this study, we 122 

take advantage from the knowledge of expected lithotypes from previous geological 123 

campaigns and we set the ranges for resistivity, chargeability and relaxation time values 124 

accordingly, while the frequency exponent is limited to 0.6 because it is never much 125 

above 0.5 for sandy and clayey materials (Revil et al. 2014). 126 

Frequency-domain 2.5-D forward modelling 127 

The resistive and capacitive response of a medium to external current stimulation is 128 

defined by Ohm's law: 129 
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𝐉 =
𝐄

𝜌∗(𝜔)
=

𝐄

𝜌′(𝜔)+𝑖𝜌′′(𝜔)
 , (1) 130 

where 𝑖 = √−1, J and E are current density and electric field vectors and 𝜌∗ is the 131 

complex electrical resistivity (σ* = 1/ρ* is the complex conductivity), which generally 132 

depends on the angular frequency 𝜔 = 2𝜋𝑓, being f the frequency. The real part of 133 

complex conductivity (𝜎′) is related to the electrolytic conduction in the bulk pore 134 

solution, while the imaginary part (𝜎′′) to the polarization mechanisms. For 135 

environmental applications operating in the low-frequency range (< 103 Hz), the 136 

polarization dominant mechanism is the polarization of the ionic charge associated with 137 

the electrical double layer (EDL) that exists at the mineral-fluid interface (Binley et al. 138 

2005). We discard the electrode polarization effect, observed in presence of electronic 139 

conductors and utilized as a tool for mining exploration (Binley and Slater 2020), since 140 

we do not expect to encounter metals, pipes or other utilities in the National Park. 141 

The frequency dependence of the complex resistivity is generally described by 142 

phenomenological models (e.g. Cole and Cole 1941; Pelton et al. 1978). The complex 143 

resistivity for the Cole-Cole (CC) model, widely used for geophysical purposes, is given 144 

by: 145 

𝜌∗(𝜔) = 𝜌0 [1 − 𝑚0 (1 −
1

1+(𝑖𝜔𝜏)𝑐)],  (2) 146 

where ρ0 is the direct-current (DC) resistivity [Ωm], m0 is the intrinsic chargeability 147 

[dimensionless or mV/V], τ the relaxation time [s] and c the frequency exponent 148 

[dimensionless]. 149 

The resistive response of a 2.5-D subsoil (where conductivity varies only within the x-z 150 

plane, while the electric potential is three-dimensional distributed), is described within a 151 

domain D by the Fourier-transformed Poisson’s complex equation under the hypothesis 152 

of an external point source located at (𝑥𝑆, 𝑧𝑆): 153 
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−𝛻 ∙ [𝜎∗(𝑥, 𝑧, 𝜔)𝛻𝜙∗(𝑥, 𝑧, 𝜆, 𝜔)] + 𝜆2𝜎∗(𝑥, 𝑧, 𝜔)𝜙∗(𝑥, 𝑧, 𝜆, 𝜔) =154 

𝐼∗𝛿(𝑥𝑆)𝛿(𝑧𝑆) ∀(𝑥, 𝑧) ∈ 𝐷 (3) 155 

where, 𝜙∗ the electric transformed potential (complex-valued), λ the transformed variable, 156 

Ι the injected current and δ the Dirac’s delta. 157 

Eq. (3) is solved for each frequency in the range [10-4, 1010] using a logarithmic sampling 158 

with 5 points per decade and the finite-element method under Neumann- and Dirichlet-159 

type boundary conditions given on surface, on lateral and bottom boundaries located "far 160 

enough" from the source, respectively (De Donno and Cardarelli 2017). The complex 161 

electrical impedance 𝑍𝑞
∗(𝜔𝑗) is then obtained by the superimposition of potential 162 

distribution pertained to a single quadrupole 𝑞 = 1, … , 𝑁𝑞 and angular frequency 𝜔𝑗 (𝑗 =163 

1, … , 𝑁𝑓), being 𝑁𝑞 the number of quadrupoles and 𝑁𝑓 the number of frequencies. The DC 164 

response 𝑍𝑞(0) is computed using the same procedure for ω = 0. 165 

Time-domain transform and waveform modeling 166 

The TD step-off response 𝑉𝑆−𝑂𝐹𝐹(𝑡) is derived at any time t > 0 after the current switch-167 

off through an inverse Fourier sine transform of the frequency-domain response 168 

(Fiandaca et al. 2013): 169 

𝑉𝑞
𝑆−𝑂𝐹𝐹(𝑡) = 𝑍𝑞(0) −

2

𝜋
∫ Im (−

𝑍𝑞
∗(𝜔)

𝑖𝜔
) sin(𝜔𝑡) d𝜔

∞

0
 , (4) 170 

where the integral in (4) is evaluated in terms of a Fast Hankel transform, for 20 fixed 171 

log-spaced values of the variable t between 0.01 and 8 s, by developing and parallelizing 172 

the Matlab code after Ingeman-Nielsen and Baumgartner (2006), based on the filter 173 

values by Christensen (1990). The frequency-domain response is interpolated to 10 points 174 

per decade through cubic splines for ensuring the accuracy of the Hankel transform. Then 175 

we compute the real stacked potential by superimposing alternating pulse with proper 176 

signs, also modelling the 10 Hz analogue filter implemented to reduce noise on the IRIS 177 

Syscal Pro resistivity-meter (used in the field survey). In this work, the solution is given 178 
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for 2 s of on-time and off-time periods and 2 stacks with opposite polarity (50% duty 179 

cycle), which is a common configuration for field surveys, also adopted in our field 180 

survey. 181 

The numerical forward solution was compared with the analytical solution after Pelton et 182 

al. (1978) using a simple homogeneous model. The results (Fig. 1) show low errors 183 

0.01%, also for increasing decay times. 184 

Inversion procedure 185 

Our protocol encompasses a two-step procedure: firstly, we determine resistivity ρ and 186 

integral chargeability η models through a fast ERT/IP inversion using the linear 187 

approximation of Oldenburg and Li (1994), as implemented in the VEMI algorithm by 188 

De Donno and Cardarelli (2017). The obtained chargeability model is normalized by the 189 

resistivity (normalized chargeability - MN) to separate the surface polarization 190 

contribution from the bulk conduction (Slater and Lesmes 2002).Then, the spectral 191 

inversion is performed using the CC model (𝑚𝑘 = [𝜌0𝑘; 𝑚0𝑘
; 𝜏𝑘; 𝑐𝑘], k = 1, 2, …, M with 192 

M the number of elements). Starting 𝜌0 and 𝑚0 models are chosen to be the ρ and η 193 

models achieved at the last iteration using the fast ERT/IP inversion, while initial constant 194 

values for τ and c are set to 1 s and 0.3, respectively. Inequality constraints are set on 195 

model parameters such that: 𝐚𝑘 < 𝐦𝑘 < 𝐛𝑘, with 𝒂𝑘 = (0.1 Ωm, 0.1 mV/196 

V, 0.001 s , 0.1) and 𝐛𝑘 = (104 Ωm, 500 mV/V, 5 s , 0.6). We discard unrealistic values 197 

or values inconsistent with the near-surface geological scenario encountered for coastal 198 

areas. The log-transformed model vector is 𝐱𝑘 = log10 (
𝐦𝑘−𝐚𝑘

𝐛𝑘−𝐦𝑘
), with k=1,2, …, M. 199 

The dataset is expressed for each quadrupole in terms of stacked electric potential 200 

(Fiandaca et al. 2012), measured before (referred to as DC voltage) and after (IP voltage) 201 

the current switch-off at the different time gates 𝑖 = 1, 2, … , 𝑁𝑔 (𝐝 = [𝑉𝑞
𝐷𝐶 , 𝑉𝑞,𝑖

𝐼𝑃]). 202 
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We employed a Gauss-Newton iterative formulation for inverting TDIP data for CC 203 

parameters, where the modified model update vector 𝛿𝐱 is calculated by: 204 

𝛿𝐱(𝑛) = [(𝐏T𝐉)T 𝐖T𝐖(𝐏T𝐉) + 𝛽(𝑛)𝐑T𝐑 + 𝜆(𝑛)𝐈]−1{(𝐏T𝐉)T𝐖T𝐖[ 𝐝 − 𝑔(𝐦(𝑛))] −205 

𝛽(𝑛)𝐑T𝐑(𝐦(𝑛) − 𝐦0)} , (5) 206 

being 𝐉 the Jacobian matrix, 𝐏T =
𝜕𝐦

𝜕𝐱
=

ln 10(𝐛−𝐦)(𝐦−𝐚)

(𝐛−𝐚)
, 𝐖 = diag(

1

𝐬2) the data weight 207 

matrix (s are the observed standard deviations), R the smoothness matrix (second-208 

difference operator using the four neighbors of the kth block), I the identity matrix, 209 

𝑔(𝐦(𝑛)) the predicted data vector and 𝛽 and  regularization parameters at the n-210 

iteration. 211 

Once the model update vector the new model 𝐦(𝑛+1)is: 212 

𝐦(𝑛+1) =
𝐚(𝐛−𝐦(𝑛))+𝐛(𝐦(𝑛)−𝐚)eln 10𝛿𝐱(𝑛)

(𝐛−𝐦(𝑛))+(𝐦(𝑛)−𝐚)eln 10𝛿𝐱(𝑛)  . (6) 213 

The parameters 𝛽0 and 𝜆0 are set to be equal to the initial misfit level and to 214 

max(diag((𝐏T𝐉)T 𝐖T𝐖(𝐏T𝐉) + 𝛽0𝐑T𝐑)), respectively and then decreased at successive 215 

iterations by a cooling factor of 0.5, if the error decreases. Conversely, if error increases 216 

at the n-iteration, an inner loop starts with λ ranging from [5𝜆(𝑛−1), 0.1𝜆(𝑛−1)] and the 217 

optimal λ-value is chosen to be the highest value for which the error decreases. Usually 218 

from 5 to 15 iterations are required for achieving convergence of the process. 219 

The Jacobian matrix J [𝑁𝑞 ∙ (𝑁𝑔 + 1) 𝑥 𝑀] is calculated by using the same time-220 

transform (eq. 4) used for the forward computation, where the FD Jacobian (JFD) is 221 

derived by matrix multiplication of the FD sensitivity with the partial derivative of the 222 

complex resistivity with respect to the CC parameters using the chain-rule (see Kemna, 223 

2000): 224 

𝐽𝑞,𝑘
𝐹𝐷 =

𝜕𝑍𝑞
∗(𝜔)

𝜕𝜌𝑘
∗(𝜔)

∙
𝜕𝜌𝑘

∗(𝜔)

𝜕𝑚𝑘
.  (7) 225 
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We fully evaluate the complex-valued FD sensitivity for the first iteration using the 226 

procedure after De Donno (2013), then update sensitivity only for elements having 227 

cumulative sensitivity values higher than 10-5 (Nguyen et al. 2009), thus reducing the 228 

computational time by about 40%, without affecting significantly stability and 229 

convergence. We also apply parallel computation to speed up the computational time 230 

required by the TD transform of the Jacobian.  231 

The comparison between numerical and analytical Jacobian is shown in Fig. 2 only for 232 

derivative with respect to m0, τ e c (for DC resistivity Jacobian please refer to De Donno 233 

2013). The comparison is made using the same homogeneous model as per the forward 234 

solution (Fig. 1). A maximum absolute error of 3.3% is obtained, which is enough to 235 

ensure convergence of the iterative process.  236 

Permeability prediction 237 

During recent years, empirical relationships between the hydraulic permeability k and 238 

induced polarization parameters have been derived in laboratory studies (e.g. Attwa and 239 

Gunther 2013) based on the strong connection between the imaginary component of the 240 

surface conductivity (𝜎𝑠𝑢𝑟𝑓
′′ ) and the surface area normalized to the pore volume. 241 

Recently, Weller et al. (2015) directly correlated k and the electrical parameters 242 

investigating a large database of unconsolidated sediments: 243 

𝑘 = 3.47 ∙ 10−16 𝜎0(𝜎𝑓)1.11

𝜎𝑠𝑢𝑟𝑓
′′ (𝜎𝑓)2.41

 ,  (8) 244 

where 𝜎0 = 1/𝜌0 is the DC conductivity and 𝜎𝑓 the conductivity of a reference fluid equal 245 

to 100 mS/m. 246 

Both 𝜎0 and 𝜎𝑠𝑢𝑟𝑓
′′  should be corrected for the actual water conductivity and water 247 

chemistry (Weller et al. 2015). The value of 𝜎𝑠𝑢𝑟𝑓
′′  should be calculated at 1 Hz. However, 248 

as shown by Fiandaca et al. (2018a), minor differences exist between 𝜎𝑠𝑢𝑟𝑓
′′ (𝑓 = 1 𝐻𝑧) 249 

about:blank
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and the maximum imaginary conductivity (𝜎𝑚𝑎𝑥
′′ ). Since 𝜎𝑚𝑎𝑥

′′  is directly linked to the 250 

CC parameters by (Fiandaca et al. 2018a): 251 

𝜎𝑚𝑎𝑥
′′ =

−𝑚0𝑑

𝜌0(1−𝑚0)
 ,  (9) 252 

with 𝑑 = Im (
1

1+(1𝑖)𝑐), we derived it from inverted models, then using eq. (8) for 253 

predicting permeability. 254 

 255 

Case study: the Pontina Plain (Central Italy) 256 

Site description, data acquisition and processing 257 

The study site is located near Lake Fogliano, the largest coastal lake of the Pontina Plain 258 

(Central Italy), included within the Circeo National Park with an area of about 5 km2. 259 

This region presents a high variety of anthropogenic and natural factors whose 260 

combination has a great influence on the development and the extension of the 261 

salinization process, as stated in previous hydrogeological studies conducted close to the 262 

study area (e.g. Sappa and Coviello 2012). In addition to the climate changes and the rise 263 

in the mean sea level, reclamation activities of the last century led to the transformation 264 

of the wetlands into a plain (because of the limited elevations of the topography to the sea 265 

level) but also to a gradual settlement of population and economic activities in the coastal 266 

areas. These factors together with the lack of a sustainable management system of water 267 

resources cause groundwater qualitative and quantitative impoverishment, due to the loss 268 

of the dynamic interactions between fresh groundwater and seawater with high salt 269 

content. In recent years, rapid agricultural development and increased tourism activities 270 

have led to well-pumping rates not related to those of natural recharge and mapping 271 

aquifer vulnerability is now required. 272 

The Pontina Plain is affected by a strong tectonic instability, which drove the deposition 273 

of Quaternary sediments (mainly sands but also clays, silts and gravels) in combination 274 
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with the sea-level variations of the Quaternary glaciations. The study site hosts a multi-275 

aquifer system: a near-surface unconfined aquifer, multiple confined deep aquifers and 276 

the basal aquifer in the calcareous bedrock (Manca 2014 and references therein). 277 

Figure 3 shows the geological setting of the study area. The near-surface (0-60 m below 278 

the sea level) geology (Fig. 3a) is dominated by sandy deposits, which host different 279 

silt/clay content for thin layers at different depth and distance from the sea throughout the 280 

Plain (Fig. 3b). The transition between sands and marine clays is located at about 35-40 281 

m b.s.l., but can be variable throughout the Plain. The lagoon silt (sandy silt) formation 282 

(depth: 0-10 m, with highly variable thickness in the site) is expected to amplify the IP 283 

response. 284 

We found the water table in the well P (Fig. 3a) at shallow depths (~ 0 m b.s.l.), while the 285 

mean electrical conductivity of groundwater was between 0 and 5.5 m b.s.l. (maximum 286 

well depth) is around 130 mS/m (ρw ~ 7.5 Ωm), thus displaying a moderate salt content 287 

although being still labeled as freshwater. We assume that the materials below the 288 

maximum well depth are fully saturated by the same (salt-rich) freshwater and then by 289 

saltwater using hydrogeological information derived from neighboring deeper wells 290 

(Manca 2014). Surface waters located in the NW zone highlight higher salinization 291 

(between 1 and 30 g/l) compared to the SE area (< 1 g/l), according to electrical 292 

conductivity measurements performed within the Allacciante Canal (Manca 2014). 293 

Five TD DC/IP lines were executed approximately normally to the seashore (Fig. 3), 294 

using the SyscalPro resistivity-meter, with 48 electrodes spaced 5 m apart and a multiple 295 

gradient array with a potential electrode separation a = [1,5] and a separation factor s = 296 

9. The current electrode separation is (s+2)a and therefore s represents the maximum 297 

number of potential readings for each current injection. The spatial distribution of the 298 

ERT lines was mainly constrained by the need to have proper coverage given the National 299 

Park’s limitations to the geophysical survey. The multiple gradient array is chosen due to 300 
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its efficiency in a multichannel acquisition system and because it minimizes the effect of 301 

electrode polarization (Dahlin and Zhou 2006). 302 

Since the SyscalPro can collect only one standard deviation value in case of combined 303 

acquisition of DC and IP data (only related to the IP data) we performed an acquisition 304 

of a DC voltage dataset only and then a combined dataset with DC and IP decay voltages, 305 

to record a standard deviation value for both datasets. We set the amplitude of the input 306 

voltage to 400 V (for an example of voltage and current sections see supplementary 307 

material), with a current injection time of 2 s (2 stacks), a time delay of 20 ms and a 308 

logarithmic sampling of the IP decay curve using 20 gates (first gate centered at 30 ms, 309 

last gate at 1.75 s after current switch-off). We filtered raw data for outliers (clear isolated 310 

data points, data with a relative standard deviation from stacking measurements higher 311 

than 20%, where the latter threshold was set on the basis of empirical knowledge on high-312 

conductivity environments), negative DC and/or IP voltage values or decay curves with 313 

increasing voltage. Only for full-decay inversion, unreliable IP decay curves were also 314 

canceled out, if large deviations between adjacent gates were displayed. At the end of 315 

inversion process, pixels having both low values (< 0.5%) of the model resolution matrix 316 

(MRM) and high values (> 0.1) of the depth of investigation (DOI) index at last iteration 317 

(see Caterina et al. 2013 for a review of the appraisal tools for electrical tomography) are 318 

discarded from the models. 319 

For permeability prediction, we apply directly eq. (8) using 𝜎𝑚𝑎𝑥
′′  derived from the CC 320 

models instead of 𝜎𝑠𝑢𝑟𝑓
′′ (𝑓 = 1 𝐻𝑧) and without applying any corrections due to water 321 

conductivity and water chemistry. In fact, concerning the former effect, the conductivity 322 

logged in the P-well (average value of 130 mS/m) is close to that of the reference fluid 323 

and previous studies pointed out the minor effect of water conductivity changes on 324 

permeability estimation (Fiandaca et al. 2018b). The latter correction should take into 325 

account the effective mixture of cations and anions, even though the original suggestion 326 
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is based on a sparse data set and numerous cations and anions are present in the field-327 

collected water samples with varying molecular concentrations, so it is difficult to apply 328 

an appropriate correction. 329 

 330 

Results 331 

Preliminary results 332 

The extremely high conductive environment in the NW zone (mean ρ~1.5 Ωm) leads to 333 

very low voltage signals recorded for the L1 and L2 lines, compared to the SW lines 334 

(mean ρ~15 Ωm), as shown in Fig. 4, where L2 dataset (Figs. 4a-d) is compared to L3 335 

(Figs. 4e-h). Therefore, we restrict the DC/IP inversion only to L3, L4 and L5 datasets, 336 

while measurements acquired on L1 and L2 were inverted only for resistivity, discarding 337 

the IP datasets. For the L3 line, a strong 3D effect due to the bridge on the Allacciante 338 

Canal (x = 80-100 m) is also visible. Two electrodes were grounded directly on the bridge 339 

to cross the canal (approx. 8 m long), thus displaying an increased value of resistivity in 340 

the corresponding zone. 341 

Since the maximum elevation observed is approximately 1 m a.s.l. for the L3, while L4 342 

and L5 are located approximately at sea level, we can have a very thin unsaturated or 343 

partially saturated layer close to the surface having a maximum thickness of 1 m (the 344 

water table is located approximately at the sea level), where the results of the application 345 

of the permeability prediction can be biased. 346 

 347 

Saline intrusion 348 

The DC resistivity model for the L1 line (Fig. 5a) show approximately a four-layer model, 349 

where resistivity values vary in a high-conductive narrow range (0.5-2 Ωm), related to 350 

the presence of saltwater along the whole investigated line. The surface layer, which 351 

extends down to 3 m b.s.l., is extremely conductive (ρ < 0.5 Ωm), mainly due to fine-352 
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grained (clay and silt) marshy soil, peat with gravelly or pebbly fractions soaked in 353 

saltwater from the lake. Low resistivity values (ρ < 1 Ωm) were also found between 10 354 

and 35 m b.s.l., due to saltwater-saturated sands. Conversely, a slight increase in 355 

resistivity is found between 3 and 10 m b.s.l. and from 35 m b.s.l. to the bottom of the 356 

model (ρ = 1-5 Ωm); this trend can be due to an increase in the fine fraction causing a 357 

variation of the electrical properties of these layers. The former layer can be associated 358 

with the lagoon silts, while the latter with the transition to the marine clays, both reported 359 

in the geological cross-section at comparable depths (Fig. 3). This layering is also 360 

confirmed on the L2 model (Fig. 5b), even though with some significant lateral variations. 361 

The most significant is the sharp increase of resistivity (ρ > 5 Ωm), highlighted from x > 362 

190 m (dashed white line in Fig. 5b), which is the transition surface between the salt 363 

wedge and the inland environment, where higher resistivity due to freshwater saturation 364 

is expected. 365 

The L3 and L4 resistivity models (Figs. 6a and 6b) display a completely different 366 

electrical behavior (ρ = 5-100 Ωm), because of the absence of saltwater in these areas. 367 

Both lines can be interpreted as a four-layer model, where the resistive surface thin layer 368 

(0-2 m b.s.l.), is due to the vadose zone, as confirmed by the piezometric levels logged in 369 

the well P. Below, down to a depth of about 5-7 m b.s.l., the resistivity values vary 370 

between 5 and 15 Ωm, as of a water-saturated (with the above-mentioned conductive 371 

water) layer. Referring to the respective normalized chargeability models at the same 372 

depths (Figs. 7a and 7b), this layer can be the sandy silt layer (lagoon silt), as identified 373 

by the increase in normalized chargeability values (0.5-1 mS/m). Down to 35-40 m b.s.l., 374 

we found higher resistivity values (30-70 Ωm), without a significant IP effect, likely 375 

associated to the saturated sandy deposits, which overlie the marine clays in which a 376 

strong polarization is also visible. The effect of the canal on the L3 line is visible at x =80-377 
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100 m, and it is also reflected in a higher RMS error (15%), due to an increased amount 378 

of noisy readings. 379 

The surface layering of the L5 resistivity and normalized chargeability models (Figs. 6c 380 

and 7c) is comparable to the L3 and L4 ones, while a steep drop of resistivity (ρ < 5 Ωm) 381 

is seen below 12-15 m b.s.l. on the left part of the section (x < 120 m in Fig. 6c, dashed 382 

white line), due to the effect of the salt wedge intrusion inland. The right part of the L5 383 

model, showing higher resistivity values (10-20 Ωm), can be related to brackish water 384 

(with a gradual reduction in saline content inland) or lithological changes, with an 385 

increase in the fine-grained fractions likely to be attributed to the marine clays, as 386 

previously shown on the L3 and L4 lines. The graphical reconstruction of the saline 387 

intrusion in the study area is depicted in Fig. 8, where the front of the salt wedge (ρ < 5 388 

Ωm, white lines) is located approximately at a distance of 1.3-1.5 km from the seashore. 389 

 390 

Near-surface aquifer characterization 391 

Cole-Cole models are extended down to 35, 22 and 20 m for L3, L4 and L5 respectively, 392 

because of the above-mentioned further filtering procedure implemented for DC/IP 393 

voltage. Lower lateral resolution is also expected because the filtering procedure affects 394 

also the density of data points. Therefore, neither the high-conductive bottom left zone 395 

on the L5 line related to the saline intrusion nor the marine clays (L3-L4) were reached 396 

by these models. 397 

The DC resistivity models (Figs. 9a, 10a and 11a) confirm the near-surface three-layer 398 

(resistive-conductive-resistive) geology at the site, except for the L3 line. In fact, in this 399 

model (Fig. 9a), the shallow layer shows high lateral variability, with transitions between 400 

the conductive to the resistive zone, already seen also in Fig. 6a. 401 
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The chargeability sections in Figs. 9b, 10b and 11b show low polarization for the bottom 402 

layer (as expected for clean sands), with a minor variability on L4 and L5 likely due to 403 

silt lenses within the sandy deposits. The thin shallow layer displays moderate (L5) to 404 

high (L3, L4) polarisation since it is expected to have a significant silt/clay fraction.  405 

The τ sections (Figs. 9c, 10c and 11c) show a mean decay time around 0.9-1.1 s, slightly 406 

longer for L5 (1-1-1.3 s). Lower τ are reconstructed for the shallow (silty) layer on the L3 407 

line (τ ∼ 0.75-1 s) and partially on the L4 (x = 120, 150 and 180 m), while this effect is 408 

not visible on L5. These differences are mainly related to the different grain sizes, since 409 

the relaxation time increases with grain size, even though the shorter decay times in the 410 

shallow soil could also be caused by the reduced water content (Binley et al. 2005). 411 

The frequency exponent (Figs. 9d, 10d and 11d) is mostly in the range of 0.3-0.45, 412 

therefore showing low variability, with the highest c anomalies located in the shallow 413 

layer. Although these anomalies could correspond to a broader frequency spectrum, likely 414 

caused by different relaxation times due to clay/silt inclusions in a sandy background, this 415 

effect is likely due to the known correlation between c and m0 (Madsen et al. 2017). 416 

The resulting permeability cross-sections for the three lines, shown in Fig. 12, show low 417 

values (~10-12-10-13 m2 or less) for the sandy silt sediments, as expected, while higher 418 

values (10-10-10-11 m2) are found for beach and aeolian sands. The L5 line displays slightly 419 

lower k values, likely as an effect of low silty content within the sandy matrix. 420 

 421 

Discussion 422 

The investigation of saline intrusion in coastal aquifers is often conducted using electrical 423 

resistivity as the main proxy (e.g. Nguyen et al. 2009). As confirmed in this work, the DC 424 

resistivity is certainly a straightforward parameter to understand the physical processes 425 

undergo, since the highly conductive zones, where the resistivity is well below 5 Ωm, can 426 

be soundly attributed to saline intrusion. We chose a resistivity threshold of 5 m for 427 



18 
 

locating the saltwater-saturated sediments, which was previously used in similar coastal 428 

scenarios (e.g. Goebel et al., 2017). Nevertheless, ambiguity could arise in salt wedge 429 

detection since brackish water has similar resistivities of low permeable formations such 430 

as clay or silt (Choudhury and Saha 2004), as seen, for instance, in the L5 line (Fig. 6b) 431 

where we have a transition between salt wedge and clayey lithotype. Furthermore, the 432 

interpretation of the groundwater system as a whole should encompass also the 433 

reconstruction of the near-surface region including geological layering, detection of water 434 

table level and prediction of key hydraulic parameters such as permeability. In fact, in the 435 

Lake Folgiano area, the interpretation of the resistivity dataset alone may be 436 

unsatisfactory, mainly due to the high variability of the electrical response in the near 437 

surface due to different grain size distributions, porosity and saturation (Lesmes and 438 

Friedman 2005) related to changes in the fine-grained fraction of the shallow sediments 439 

of the Plain. 440 

To these aims, IP methods have tremendous potential, as demonstrated particurarly by 441 

the L3 line (Fig. 9), since: i) normalized chargeability can be directly correlated to the 442 

magnitude of polarization phenomena, mainly driven by an increasing clay/silt content 443 

near surface, as for the sandy silt unit at a depth between 2 and 10 m or for the deep 444 

marine clays (depth > 30 m); ii) if the full voltage decay curves are properly modelled 445 

(e.g. with a CC model o better a CC re-parametrization) also petrophysical parameters 446 

can be inferred, but limited to the shallow layers (maximum DOI ~ 30 m) and only if the 447 

mean resistivity is much higher than 1 Ωm (only for lines L3, L4 and L5). In fact, where 448 

data are acquired in a highly conductive environment (i.e. L1 and L2 with mean resistivity 449 

≈ 1-2 Ωm), such as close to the sea, the signal-to-noise ratio could be very low, thus 450 

preventing the acquisition of reliable decay curves at noteworthy depths, as demonstrated 451 

on the L2 line in this case and previously by other works (e.g. Bording et al. 2019). In 452 

such case, the effect of the decrease of ionic mobility becomes dominant with respect to 453 
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the increase of charge density which prevails at lower salinity (see Binley and Slater 2020 454 

for a review of the salinity dependence of IP measurements). This phenomenon is 455 

reflected in a slight reduction of the imaginary conductivity as a function of the salinity 456 

as previously observed for laboratory samples, in contrast with the increase observed for 457 

low-salinity values. Therefore, for a proper estimation of the formation factor or the 458 

surface conducitivity , multisalinity IP measurements should be collected, though which 459 

are unfeasible for surface-based applications of geophysical techniques (Weller et al. 460 

2015). This is the main reason IP has rarely been applied in such geological scenarios. 461 

Conversely, where resistivity increases up to one order of magnitude, that is where TDIP 462 

lines are acquired inland  or because the salt wedge is deeper (the case of L3-L4 and partly 463 

L5 lines with mean resistivity ≈ 15-35 Ωm), good quality TDIP data can be collected and 464 

a CC inversion can be feasible down to satisfactory depths (maximum DOI ~ 30 m). 465 

We chose to invert TDIP data for CC parameters because the CC model is easy to 466 

implement and largely used in many geophysical applications. Since we invert TDIP data 467 

acquired in a narrow frequency range (time window = 20-2000 ms), we do not expect 468 

significant differences from inverting only for a constant phase value as per e.g. Flores-469 

Orozco et al. (2022) or using the integral chargeability models of Fig. 6. Nevertheless, 470 

since the code is potentially valid also for other instruments and to deal with a wider 471 

frequency range, we present in this paper the full decay inversion for CC parameters. 472 

Where the classical CC model is chosen, m0 and c are likely to be correlated (Madsen et 473 

al. 2017) and this can be reflected in a lower accuracy in the permeability estimation, 474 

mainly for areas where low c-values are observed (Maurya et al. 2018). Additionally, 475 

since the sensitivity of  is lower compared to the other parameters (Fig. 2), also the 476 

expected DOI will be lower and interpretation is feasible only for the shallow layers. 477 

Moreover, since distinct fractions (sand, clay, silt) are likely to produce distinct relaxation 478 

times (Revil and Florsch 2010), that can be seen as multi-peaks on the SIP spectra and 479 
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the CC model could not be able to fit well data in regions with strong grain size 480 

heterogeneity, as the shallowest layer in this case study. These disadvantages could be 481 

overcome in a future release of the code by replacing m0 with i.e. 𝜎𝑚𝑎𝑥
′′  or 𝜌𝑚𝑖𝑛

′′ , as 482 

proposed by Fiandaca et al. (2018a) and by implementing different models. 483 

Nonetheless, the approach proposed in this paper still allows a reliable prediction of the 484 

permeability, since also eq. (8) is a semi-empirical model well calibrated and validated 485 

through measurements in controlled conditions spanning a wide range of unconsolidated 486 

sediments and therefore can be potentially applied to many geological scenarios with an 487 

approximate order of magnitude effectiveness. Other attempts to predict permeability 488 

through TDIP data with different approaches used in recent years (e.g. Revil et al. 2020), 489 

required the estimation of petrophysical parameters such as cementation exponent and 490 

grain density. Since these parameters are estimated through laboratory measurements on 491 

soil samples (Steiner et al. 2022), this method cannot be applied at the Circeo National 492 

Park, where drilling boreholes was unfeasible. Although the formation factor plays a 493 

critical role in the equations predicting hydraulic conductivity from induced polarization 494 

measurements (Flores-Orozco et al. 2022), it can be conveniently estimated in equation 495 

(8) by the low-frequency conductivity σ0 (Weller et al. 2015). The advantage of the 496 

permeability prediction from TDIP data proposed in this paper is dual: i) lithology is 497 

better resolved in coastal areas since it is less sensitive to changes in fluid conductivity 498 

compared to imaginary conductivity or phase shift (Weller and Slater 2012) and ii) well-499 

established permeability ranges are available in the literature for characterizing lithology, 500 

compared to the IP parameters (Maurya et al. 2018).  501 

The achieved results for the case study presented in this paper are comparable to those 502 

reported by Weller et al. (2015): as an example, they reported values around 10-11 m2 for 503 

sands, while permeability decreased to 10-13 m2 for sand/clay mixtures and 10-14 m2 for 504 

saprolites (50% sand, 30% silt and 20% clay). As a comparison, our formations show 505 
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values of 10-10-10-11 m2 for the third layer (sand), while the permeability of the 506 

intermediate layer (sandy silt) is 10-12-10-13 m2 or less, both consistent with previous 507 

results. On the other hand, the permeability of the shallow layer is extremely variable. As 508 

an example, for L3 very low permeability values (10-13 m2 or less) are also extended to 509 

the shallow layer in the central area (x = 50-180 m) and also relaxation times are lower 510 

in these zones (< 1 s), likely because of the prevalence of the very fine fractions related 511 

to marshy clays and peats near surface instead of sandy sediments related to the beach 512 

sands. Moving towards the southeast direction (L4 and L5) there is a progressive increase 513 

of the coarse fraction as demonstrated by permeability increases to around 10-11 m2. 514 

A further improvement of these results, with much better areal coverage, can be achieved 515 

with a large-scale EM survey, even though the high variability of unconsolidated 516 

sediments in this geological scenario claims for high-resolution reconstruction of the 517 

near-surface layering, better achieved by ERT/IP methods. 518 

 519 

Conclusions 520 

We presented an integrated application of ERT and full-decay IP techniques for imaging 521 

saline intrusion and inferring petrophysical properties (permeability) on a coastal aquifer 522 

located in Central Italy. We demonstrated that the benefit of our approach is twofold: i) 523 

using the resistivity as a fast proxy can locate highly conductive zones directly related to 524 

saline intrusion inland; ii) integrating ERT models with IP data and spectral CC 525 

parameters can remove the ambiguity in the detection of clay/silt inclusions in the near-526 

surface. Conversely, using IP for detecting salt wedges or reconstructing deep clay layers 527 

is not feasible due to the low signal-to-noise ratio observed in extremely conductive 528 

environments, such as those encountered in this geological scenario. 529 

Although using CC parameters the chargeability models could be biased for low values 530 

of the frequency exponent, our results can be viewed as a first approximation 531 
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reconstruction of the permeability, used for fast hydro-geophysical screening. These 532 

pieces of evidence should be validated by direct measurements even though at sites where 533 

drilling boreholes is strictly limited, as for protected lands like the Circeo National Park, 534 

the role of non-invasive methods is certainly predominant. 535 

 536 
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Figure 1. Accuracy of the numerical solution tested for a model with 𝜌0 = 1 𝛺𝑚; 𝑚0 =670 

100
𝑚𝑉

𝑉
;  𝜏 = 2 𝑠 ; 𝑐 = 0.5. (a) Comparison between numerical (solid line) and analytical 671 

(circle points) solution after Pelton et al. (1978), (b) Percentage absolute error. 672 

 673 

Figure 2. Accuracy of the Jacobian calculation tested for a model with unitary DC 674 

resistivity and 𝑚0 = 100
𝑚𝑉

𝑉
; 𝜏 = 2 𝑠 ; 𝑐 = 0.5. Subscripts M, T and C indicate 675 

sensitivities calculated for 𝑚0, 𝜏 and c respectively. (a) Comparison between numerical 676 

(solid line) and analytical (circle points) solutions after Pelton et al. (1978), for 677 

chargeability (red), relaxation time (blue) and frequency exponent (green). 678 

 679 
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 680 

Figure 3. Hydrogeological setting of the study area. (a) Geological map where TD 681 

ERT/IP lines are superposed (black solid lines). (b) A-A’ geological cross-section (after 682 

Manca 2014, modified). 683 

 684 

Figure 4. Example datasets: L2 (a-d), L3 (e-h), plotted in terms of apparent resistivity 685 

and chargeability and related errors. Apparent resistivity values (a and e) and related 686 

standard deviations (b and f); apparent chargeability values (c and g) and related 687 

standard deviations (d andh). 688 
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 689 

Figure 5. Resistivity models for the L1 (a) and L2 (b) lines. RMS error is 1.78 and 2.28% 690 

respectively. The limit of saline intrusion inland (ρ < 5 Ωm) is marked with the white 691 

dashed line. White pixels are discarded due to low values of MRM and DOI. 692 

 693 
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 694 

Figure 6. Resistivity models for the L3 (a), L4 (b) and L5 (c) lines. RMS error is 15.14, 695 

2.88 and 7.31%, respectively. The limit of saline intrusion inland (ρ < 5 Ωm) is marked 696 

with a white dashed line. White pixels are discarded due to low values of MRM and DOI. 697 
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 698 

Figure 7. Normalized chargeability models for the L3 (a), L4 (b) and L5 (c) lines. RMS 699 

error is 0.68, 1.78 and 0.84 mV/V, respectively. White pixels are discarded due to low 700 

values of MRM and DOI. 701 

 702 

Figure 8. ERT lines at the Lake Fogliano. White lines indicate the limit of saline water 703 

intrusion inland (dark blue pixels). The depths are in meters. 704 
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 705 

Figure 9. Cole-Cole spectral inversion of the L3 line. (a) DC resistivity, (b) chargeability, 706 

(c) relaxation time, (d) frequency-exponent. RMS error is 10.26 mV for DC voltage and 707 

0.37 mV for IP voltage. Vertical exaggeration is 2. 708 

 709 

Figure 10. Cole-Cole spectral inversion of the L4 line. (a) DC resistivity, (b) 710 

chargeability, (c) relaxation time, (d) frequency-exponent. RMS error is 19.53 mV for DC 711 

voltage and 0.59 mV for IP voltage. Vertical exaggeration is 2. 712 
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 713 

Figure 11. Cole-Cole spectral inversion of the L5 line. (a) DC resistivity, (b) 714 

chargeability, (c) relaxation time, (d) frequency-exponent. RMS error is 17.67 mV for DC 715 

voltage and 0.43 mV for IP voltage. Vertical exaggeration is 2. 716 

 717 

Figure 12. Permeability sections computed using the prediction after Weller et al. (2015): 718 

(a) L3, (b) L4, (c) L5.  719 

 720 


