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ABSTRACT
Cheap commercial off-the-shelf (COTS) drones have become widely
available for consumers in recent years. Unfortunately, they also
provide low-cost capabilities for attackers. Therefore, effective
methods to detect the presence of non-cooperating rogue drones
within a restricted area are highly required. Approaches based on
detection of control traffic have been proposed but were not yet
shown to work against other benign traffic, such as that generated
by wireless security cameras. In this work, we propose a novel
drone detection framework based on a Random Forest classification
model. In essence, the framework leverages specific patterns in
video traffic transmitted by drones. The patterns consist of repet-
itive synchronization packets (denoted as pivots) which we use
as features in the proposed machine learning classifier. We show
that our framework can achieve up to 99% detection accuracy over
an encrypted WiFi channel using only 20 packets originated from
the drone. Our system is able to identify drone transmissions even
among very similar WiFi transmission (such as a security camera
video stream) and in a noisy scenario with background traffic.
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1 INTRODUCTION
The widespread availability of commercial drones and their use in a
myriad of applications pose serious security and privacy concerns.
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For instance, unauthorized drones may be operated in restricted
or crowded areas such as airports and stadiums, where they can
collide with airplanes or land/crash on people. Moreover, most
Commercial-off-the-Shelf (COTS) drones are equipped with cam-
eras to enable First-Person View (FPV), which allows real-time
video transmission from the drone’s camera back to the controller
(or any separate viewing device). Intuitively, this feature can eas-
ily lead to privacy violations. These issues motivated a surge of
research efforts whose objective is the detection of unauthorized
drones entering restricted airspace or private areas. Toward this
goal, many recent contributions (e.g., [6, 14]) detect drones by ana-
lyzing their radio signals.

The majority of COTS drones employ WiFi chips that allow the
drone to act as WiFi Access Point (AP). The user can install an
app in a smartphone/tablet to connect to the AP, and establish
a bidirectional data stream to receive the FPV video stream and
control the drone. Most prior work uses the FPV stream and an-
alyzes traffic patterns from a statistical perspective. For instance,
in [14] the authors presented a framework to detect drones’ FPV
streams based on channel use. That approach proved challenging,
as video bit rates can widely vary in response to the specific cap-
tured area and drone motion. The authors also use the Received
Signal Strength Indicator (RSSI) as a feature to discern moving vs.
stationary devices. However, this latter approach was unable to
differentiate drones from other moving radio sources. In [6], the
authors presented a framework that used features extracted from
WiFi frames exchanged between the drone and its controllers. Sim-
ilar to the previously mentioned paper, the approach is not tested
with changing bit rates emitted over the FPV channel and may
be unable to differentiate drones’ FPV streams from other WiFi
video streams. Furthermore, the framework also required to have
both the drone and its controller in the detection range. In [4], the
authors trained a machine learning model to detect drones with
high accuracy using at least 50 captured packets with a training set
composed of drone and controller traffic. Despite using controller
traffic in the dataset, the authors left the problems of "recognition
of new UAV types" and "modified video patterns" as open problems.

In this work, we propose a novel drone detection framework
that overcomes these shortcomings by leveraging specific packets
we identified in the encrypted FPV stream sent by drones over the
WiFi channel. We refer to these specific packets, which appear in
video streams at periodic intervals for synchronization purposes, as
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“pivots”. We use pivot patterns to build drone features and train a
Random Forest machine learning model. The model is expected to
produce high drone detection accuracy under challenging settings,
including (i) the scene being captured by the drone’s camera is
highly dynamic which produces varying bit-rates, (ii) the drone,
but not its controller, is within the packet capture range, (iii) the
network traffic of the drone is completely encrypted, and (iv) there
are other IoT devices in the environment actively emitting video
streams that exhibit a FPV packets pattern similar to those gener-
ated by drones.

Under the aforementioned constraints, we can summarize our
contributions as follows: (i) We introduce the concept of a Pivot as
well as a Fast Pivot Estimation algorithm that quickly searches a
stream of 20-packets to identify and extract pivots for each detected
device. (ii) We provide an implementation of the detection frame-
work based on a Random Forest algorithm using features created
from pivot packets with accuracy near 100%. (iii) We demonstrate
that our solution detects drones the model has never trained on.

1.1 Related Works
Drones detection is a research topic which is capturing considerable
attention from the research community. Mainly, drone detection
techniques fall under four different categories: (i) Radar-Based De-
tection [19]: based on active radars that send electromagnetic pulses
toward the area to be monitored to detect the electromagnetic en-
ergy reflected by any flying objects. (ii) Vision-Based Detection:
based on computer vision devices (such as regular or Thermal cam-
eras) to detect flying objects [11, 16]. (iii) Acoustic Detection: that
detects the high-pitched sound frequency generated by the rotating
propellers of the drone [7, 8]. And lastly (iv) RF/WiFi Detection
techniques that monitor the wireless communication links between
the drone and its controller (the Ground Control Station, or GCS)
[15] [14]. Since our paper proposes a newWiFi detection technique,
we focus on related works on RF/WiFi detection of drones. We also
summarize some previous results on detection of WiFi cameras due
to the similarities between the streams transmitted by the drones
and those transmitted by fixed WiFi cameras.

Detection of Drone Traffic. The authors of [14] propose de-
tecting drones by their FPV streams. The bit rate of a FPV stream
emitted by a drone is compared with the bit rate of a well known
and previously recorded FPV data streams. However, the more the
scene changes, the higher the bit rate would be, and a drone record-
ing a highly dynamic scene might not always match any known
FPV bit rates. The authors also argue that since the drones move,
the RSSI of their FPV channels would be different from those of
other WiFi video streaming services. However, they did not take
into account video streaming devices that might be moving such
as VoIP applications on smartphones.

In [6], drones are detected by monitoring their FPV stream sent
over WiFi and applying Machine Learning models. They extracted
features from WiFi frames exchanged between the drone and its
controllers. As in [14], the authors do not consider either the prob-
lem of detecting drones FPV streams with changing bit rates or
that of differentiating between drones FPV streams and other WiFi
video streams. The same authors, in [5], took the previous work a
step further by improving the robustness of the algorithm. Precisely,

they aim to detect a drone flying in stealth mode (i.e., a drone that
is not transmitting video).

In [12], a framework is proposed to fingerprint drone WiFi com-
munications for the identification of specific drone models. Firstly,
drones are discerned by other devices via their speed (exploiting
the signal strength information used to calculate the acceleration).
Once a WiFi session is associated with a drone, it is further clas-
sified using different features (i.e., pattern of probe messages and
information in a Frame Header). However, this detection is based on
the assumption that other devices cannot move at the same speed
as the drone. In some scenarios, a device could be inside a vehicle
(i.e., phone inside a car) that moves at comparable or higher speeds
than of a drone.

In [17, 18], standard classification algorithms are used on eaves-
dropped traffic exchanged between a drone and its remote controller
to analyze extracted features such as packets’ inter-arrival times
and sizes. The main aim is to detect a drone and its status i.e., flying
vs. resting.

In [4], Alipour et al. use classical features as those used in [17, 18]
for differentiating FPV drones from other devices, and hence for
detecting drones. The authors show that their framework detects
with high accuracy drones using features extracted from packet
samples of at least 50 packets exchanged between the drone and
controller. The authors left the problems of "recognition of new
UAV types" and "modified video patterns" as open problems. Our
work aims to improve the results in [4] and to close the problem of
recognizing new UAV types.

Detection of WiFi Cameras. In [9], the authors detect hidden
wireless cameras using smartphones. Their system, DeWiCam, au-
tomatically analyzes wireless traffic for recognizing camera trans-
missions, specifically relying on physical and MAC layer features.
Importantly, camera traffic streams have relatively stable volume
and packet size pattern. Besides, wireless cameras can work contin-
uously without interruptions in the stream.

In [13], the main objective is to identify hidden WiFi cameras by
altering the ambient light captured by the cameras to induce varia-
tions in the camera’s packet flow (caused by the video compression
algorithm) which can be identified by statistical techniques. Both
papers exploit the compression mechanism that cameras use for
video transmissions, discussed below in Section 2. In our work, we
are also interested in investigating characteristics of video trans-
missions, but for detecting drones under challenging scenarios.

1.2 Contribution
Our main contribution is the ability to detect drones for which
the classifier has not been trained on while other video streaming
devices exist in the environment. Our paper shows that it is possible

Table 1: Characteristics of the proposed framework.

Alipour et al. [4] Proposed Framework

Packet Sample Size 50 20
Captured Packet Flow Drone + Controller Drone
WiFi Capture Mode Promiscuous Monitor
Extracted Packet Features Packet Size + Inter-Arrival Packet Size + Inter-Arrival
ML Features Used Statistical Pivots
Detecting New Drones No Yes
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to detect a new drone type by just extracting three specific features,
defined by exploiting the characteristics of the drone traffic, from
samples of 20-packets. Such specific features will be referred from
now on as unique-features. The unique-features are based on prop-
erties of the size and inter-arrival time of the packets transmitted
by the drone. Note that it is not possible to accurately detect a
new drone type by just using standard statistical features similar
to those adopted in [4]. Using the same specific three features, we
can achieve overall detection with high accuracy (i.e., detection of
classified drones) by just using 20 packets. Note that for the overall
detection, the previous classifier proposed in [4] achieved a lower
accuracy compared to the one we propose using a larger number
of packets (i.e., 50). Additionally, our framework works even when
the drone’s controller is not in the monitored area. In summary, the
method we propose is faster, more accurate than the previous clas-
sifier based on WiFi monitoring, and can detect new drone types
on which the model has not been trained on, thus solving an open
problem posed in [4]. Table 1 summarizes the differences between
our framework and [4].

The paper is organized as follows. Section 2 provides an overview
of the properties of the communication traffic involved in our sce-
nario. In section 3 we give an introduction into our uniquely defined
features, a novel algorithm for extracting these features, and a com-
parative analysis of the features behavior between FPV drones and
other video streaming devices. Section 4 describes the data collec-
tion phase, our packet processing strategy, feature extraction, and
the implementation of our Random Forest classifier. Field experi-
ments and a thorough evaluation are presented in Section 5, while
Section 6 concludes the paper.

2 BACKGROUND AND MOTIVATION
Our main objective is to detect drones entering a restricted area
defined under the threat model described in Section 2.1. The detec-
tion process is accomplished by listening to the wireless channel.
When a First-Person View (FPV) drone operates, a bi-directional
connection is established between the drone and its controller. The
downlink channel is a video stream sent by the drone to the con-
troller, while the uplink channel carries control commands sent
from the controller to the drone. Each channel has its own charac-
teristics that will be described in Section 2.2 and 2.3 respectively.

2.1 Attacker and Defender Model
We consider a restricted area within which unauthorized drones
need to be detected as soon as possible. We also assume that the
drone controller might be outside of the monitored area (Figure 1).
We do not use optical or audio measurements, but only radio spec-
trum monitoring using nodes deployed in the area. Different from
prior work, we consider that other IoT devices such as cameras,
that produce real-time video over WiFi might be present in the
restricted area.

2.2 Video Encoding & FPV Channel:
The FPV channel transports a compressed video from the drone to
the controller. A video is a stream or a sequence of still pictures. In
order to decrease the portion of channel capacity used to transport

the video over wireless channels, almost all video encoders include
a compression algorithm.

Typically, compression algorithms exploit the – possibly high
– correlation along the spatial and temporal dimensions within
Group of Pictures (GoP). In brief, while JPEG compression is used
in the spatial domain, the core idea to harness temporal correlation
is to encode differences compared to reference frames within each
GoP. We, then, have 3 frame types: Intra-Coded Frames (I-Frames),
Predicted Frames (P-Frames), and Bi-directional Frames (B-Frames).
I-Frames are Intra-coded frames that exploit spatial redundancy
(correlation among the pixels in the frame) to achieve compression
at individual frame-level. P-Frames and B-Frames are Inter-coded
frames that exploit temporal redundancy prediction. P-Frames only
encode pixels that are changed compared to the last reference frame,
while B-Frame considers both previous and future reference frames.
These frames are grouped into a single GoP, which starts and ends
with an I-Frame.

Intuitively, scene characteristics and the motion of the drone
heavily influence the compression rate achieved by the scheme
described above, as well as the temporal structure of the data stream.
If the captured scene is dynamic, then, the encoding scheme will
generate I-Frames more frequently, which in turn results in shorter
GoPs or larger P-/B-Frames, that is, a decreased compression rate.

Typically, video stream applications rely on well-known video
codecs such as H.264 to compress raw images captured by some
camera and turn them into compressed frames for faster trans-
mission. In general, B-Frames are used on prerecorded videos and
real-time streaming applications often do not use B-Frames as this
would introduce a delay in the stream, and instead, only use P and
I-Frames. The size of these frames is larger than a WiFi MTU (Max-
imum Transmission Unit) which is 2304 bytes. Network interfaces
translate all packets sent and received from the OS into Ethernet,
which has an MTU of 1500 bytes. Therefore, each individual video
frame that is larger than the MTU is fragmented into a series of
packets of size equal to the maximum MTU size, except for the last
packet, which contains the residual of the frame.

FPV video streams also include other messages – such as syn-
chronization information for maintaining the state of the channel.
Typically, these messages are small and fit a single WiFi packet
and are sent periodically at predicted intervals. Packets from the
compressed video stream are emitted more frequently compared to
sync packets, which then, have a higher probability to be buffered
right after the last less-than-MTU sized frame packet.

The resulting pattern contains rather unique packet sequences.
The fixed-size of the sync packets, make them suitable to act as
pivots which are used to build FPV drone features for a detection
model.

2.3 Control Channel:
The control channel carries flight commands from the controller
to the drone. Overall, the control channel comprises of 2 different
network flows, periodic control packets and “heartbeats” packets.
In case of controllers that receive a video stream over TCP, a flow
of acknowledgments (ACKs) will be sent out back to the drone as
well. Note that even if ACKs are encrypted, they can be easily iden-
tified by the packet size (20 bytes TCP header without options + 20
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Figure 1: Attacker and Defender Model

bytes IP header without payload). Some control applications embed
heartbeat messages within the stream of periodic control packets.
Both streams (heartbeats and control packets) have rather unique
sizes and inter-arrival times. Therefore, a simple detection system
can easily differentiate between the controller’s traffic and other
background traffic. In our framework, we reflect a more realistic
scenario where we assume that controllers are not always present
within the range of the detection system and their traffic cannot be
captured and classified (Figure 1).

Motivation: Intuitively, the packet pattern generated over the
control channel is quite unique: short periodic packets. Although
this approach can lead to robust detectors [5, 6, 10, 17], the main
source of those packets is the controller, which might be out of
range of the monitoring station/s (Figure 1). On the other hand, ap-
proaches focused on the FPV channel analyze statistical properties
of this data stream. Specifically, they look at the timing and size of I-
and P-Frames [9, 14]. However, drones generate data streams that
are statistically similar to those of other IoT devices emitting video
streams. Moreover, those characteristics widely vary as environ-
mental and trajectory parameters change. We contend, thus, that
many existing approaches would fail to provide robust detection
in many relevant conditions. Therefore, the framework we pro-
pose is based on traffic emitted over the FPV channel to detect the
drone even when the controller is out of the framework detection
range and uses features robust to a wide spectrum of scenarios and
parameters.

3 THE PIVOT APPROACH
One of the main contributions of the paper is introducing the pivot
concept, which is a special packet found in the drone’s FPV traffic
which will be utilized as a drone feature. In this section, we first
analyze the FPV stream emitted by the drone in order to define
what exactly is the pivot and how it appears within the FPV stream.
Note that, defining the pivot, we have access to the packet content.
Secondly, once the pivot has been defined, we introduce the Fast
Pivot Estimation algorithm that searches in linear time the stream of
encrypted packets for potential pivots. Note that the fast pivoting
algorithm works on encrypted streams and hence must discover
the pivot without exploiting the packet content.

To define the pivot, we analyzed data collected from 3 FPV drones
from 3 different brands: the EACHINE E58 WiFi FPV Quadcopter,
Spacekey DC 014 FPV WiFi Drone, and Ryze Tello Quadcopter
Drone. In the following, the 3 drones are referred to (according
to their paint color) as Black (BLK), Red (RED), and White (WHT)
drone, respectively.

Each drone has a First-Person-View (FPV) capability. Upon pow-
ering up, the drone creates an Access Point (AP) and the user con-
nects his smartphone/tablet to that AP. Each drone has its own
app that can be downloaded from Google Play and Apple’s App
Store. When the user connects to the drone’s AP, a video stream
can be received and viewed on the smartphone through the drone’s
designated app.

For every one of the 3 drones, we captured decrypted network
traffic (for easier initial analysis) of the drone’s FPV using an ex-
ternal WiFi adapter set into Monitor Mode from 5 meters away
for 30 seconds. We consider 2 different video states: the first state
corresponds to the drone’s camera capturing a stable scene (STB),
and the second state corresponds to a highly unstable (shaking)
drone flight (SHK) where the camera rapidly points in different
directions. The latter state induces fast changes in the captured
video stream.

Pivot Definition via FPV Traffic Analysis: For the BLK drone, we
observed that before the drone transmits a series of full-sized pack-
ets (which we assume is a video frame), the drone transmits a
46-bytes packet. This packet includes an ASCII-readable command
called lewei_cmd, and it appears to be responsible for transferring
media files from the drone to its associated app on the controlling
smartphone [20]. The app associated with the BLK drone also sends
some lewei_cmds to the drone, but only a few of them once ev-
ery second. The RED drone, instead, sends 4-bytes packets (with
identical payloads) to its RED-app right before sending a video
frame. The RED-app sends the same 4-byte packet to the drone,
but only 4 times in the entire 30 seconds network trace. Finally,
the WHT drone sends an identical 35-bytes packet (except for the
last 2 bytes in the payload) to its WHT-app between some video
frames. These 35-bytes packets are sent at uniform intervals (every
0.1 of a second) which is independent of the varying FPV frames
transmission times. This behavior was observed for both SHK and
STB video states for all of the 3 drones.

We leverage these packets, which are repetitive and identical in
length for each type of drone, and we call them the pivot packets
that will be used to create our specific features.

Behavior of Pivot: We now study the appearance of the pivot
and how it relates to the two different video states: SHK and STB.
For each drone, for both the shaking state (SHK) and the stable state
(STB), we computed the average bit-rate and the pivot appearance
rate (pivot per second). The results are compiled in Table 2.

As one can see in Table 2, when the video state went from STB to
SHK, the FPV bit-rate of the BLK drone on average has increased by
55 kbps (25%), while the number of pivots observed per second has
increased by 2 (25%). For the RED drone, instead, the FPV bit-rate
has increased by 4 kbps (2%), while the number of pivots observed
per second has increased by 2 (13%). For the WHT drone, although
the FPV bit-rate has increased by 42 kbps (13%), the number of
observed pivots has remained almost constant.
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Table 2: Pivot frequency & bit-rate change

Drone FPV Bit-Rate Pivot/Second ∆ FPV Bit-Rate ∆ Pivot/Second

BLK-SHK 269.567 kbps 9.080 55.437 kbps ≈ 2BLK-STB 214.130 kbps 7.308

RED-SHK 215.342 kbps 18.379 4.128 kbps ≈ 2RED-STB 211.214 kbps 16.200

WHT-SHK 360.968 kbps 7.701 42.097 kbps ≈ 0WHT-STB 318.871 kbps 7.760

Although the collected data from the BLK drone seems to support
a dependence of the number of pivots on the FPV bit-rate (both
increased by almost the same percentage), the behavior of the RED
andWHT drones instead supports the hypothesis that the pivots are
not necessarily tied to the bit-rate. Especially for the WHT drone
since the inter-arrivals of the pivot packets are constant (10 seconds
per packet), the number of pivot packets are almost the same for
both the video states, independently of the bit-rate increase. The
deviation in the number of pivots in the other two drones might be
due to (i) the nonuniform inter-arrivals of pivots and (ii) the inherit
packet loss in the wireless environment for packets captured via
WiFi Monitor Mode. To this end, we can safely assume that the
pivots are not necessarily tied to the bit-rate (i.e., number of video
frames) of the FPV stream and, as such, the pivots can provide a
new angle for feature extraction that will lead to drone detection.

3.1 Fast Pivot Estimation Algorithm
Although the pivot packets are repetitive packets that are sent
within an FPV stream, and since the stream is assumed to be en-
crypted, pivots must be identified somehow. One possibility is to
use their payload size. As different drones (even beyond the ones
we considered) may have different pivot packets’ structure, the
challenge is how to discover the size of the pivot packets from the
network trace itself. For this, we exploit the observation that pivot
packets are sent more frequently compared to the other packet
types. Based on this observation, we computed the occurrence fre-
quency of packet sizes within drones’ traces. We observed that the
highest occurring packet size is the maximum packet size (MTU)
for all of the drones we considered. Then, we observed the second-
highest occurring packet size for all three drones (BLK, RED, and
WHT) is the size of the pivot packet in all the cases.

So our initial approach to discover the size of the pivot in an
encrypted stream has been to equate the size of the pivot with the
size of the second-highest occurring packet. However, the size of
the second-highest occurring packet is not stable when the the
number of collected packets is too small. So, we studied the mini-
mum number of packets required for the size of the second most
frequent packet to become stable and equal to the size of the pivot
that we know from our experiments.

In order to determine such a minimum number of packets, we
computed the occurrence frequency of packet sizes across different
ranges of packets (from 2 packets up to 1500 packets). We then
computed the Cumulative Distribution Function (CDF) of all packet
ranges. From the CDF plot (Figure 2), we found out that at least 170
packets are needed to be collected in order to correctly identify the
pivot packet size for a given FPV trace with a probability of 0.95.
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Figure 2: Cumulative Distribution Function of packets
needed to acquire pivot size

Hence, using the occurrence frequency as a pivot size estimation
approach would require a long observation period (sample of at
least 170 packets), which clashes with the need to quickly detect
drones as they enter the monitored area. Therefore, it is not possible
to quickly determine the pivot size by discovering which is the
second-highest occurring packet.

We then passed to a different approach which pin-points pivots
within short samples of packets (no more than 20 packets). The
new approach utilizes the video frames within the FPV stream as a
guiding pattern. As discussed in Section 2.2, video frames are pack-
etized by the Network Interface Card (NIC) such that each packet
size does not surpass the Maximum Transmission Unit (MTU) of
the transmitting NIC. Typically, the WiFi protocol has an MTU
of 2304 bytes whereas Ethernet has an MTU of 1500 bytes. Since
Operating Systems tend to translate all sent and received packets
to and from the WiFi card into Ethernet, all packets have to adhere
to the Ethernet’s MTU which is 1500 bytes. Therefore, video frames
that are larger than 1500 bytes are packetized into a series of 1500
bytes packets where the last packet size is typically less than 1500
bytes.

Besides packetized video frames, in our scenario, the NIC also re-
ceives pivot packets from the drone application which, we recall, are
synchronization packets sent periodically with large inter-arrivals
between them (30 ms to 100 ms). On the other hand, each processed
video frame is packetized and buffered at the NIC’s transmission
queue where each packet is sent out as soon as the wireless channel
is cleared (inter-arrivals of packets belong to the same frame ≈ 0.01
ms). Therefore, there is a high probability that pivot packets are
buffered between 2 packetized video frames. In other words, since
each packetized video frame ends with a less-than-MTU packet
and begins with an MTU packet, a pivot is most likely to appear
after a less-than-MTU packet and before an MTU packet. From this
observation, we established that a group of less-than-MTU packets
between 2 MTU packets might include a pivot packet where the last
packet is most likely the pivot. A pivot packet might also appear
after 2 less-than-MTU packets or slip individually between 2 MTUs.
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Based on these observations, we developed a Fast Pivot Estima-
tion Algorithm that moves a sliding window across a stream of
packets and records any continuous list of packets that have the
following properties: (i) the list is less than 4 packets, (ii) the list is
between 2 MTU packets, and (iii) each packet in the list has a size
less-than-MTU.

Each recorded list of packets is denoted as a pivot fingerprint and
might include a pivot packet (Figure 3). Therefore, there are 3 types
of fingerprints: type 1 contains a single packet, type 2 contains 2
packets, and type 3 contains 3 packets. For each fingerprint, the
last packet in the fingerprint is marked as a candidate pivot. From
such candidate pivots, we can derive the pivot size.

It remains to explain how efficiently estimate the MTU packet
size for a given sample of packets. The algorithm declares the size of
the first packet in the sample as the MTU size and proceeds to find
the next MTU packet. Whenever a packet size that is higher than
MTU is detected, the Fast Pivot Estimation algorithm declares the
new packet as the MTU and resumes the pivot estimation process.

Our Fast Pivot Estimation algorithm has correctly identified up
to 95% of pivot packets within a packet trace in O(n) time where
n is the number of packets in the sample which in our framework
would be 20 packets. Thus, the Fast Pivot Estimation can with high
probability correctly identify the pivot size.

In the rest of this section, we analyze the video streams emitted
by IoTs in order to compare them with the video streams emitted
by FPV drones with respect to the pivots.

3.2 Pivots in Other Real-time Video Streaming
Real-time video streaming devices, such as IoT cameras, generate
streams of packets that resemble a similarity to FPV drones’ video
streams. Namely, like FPV drones, video streams emitted by IoT
cameras are unidirectional. That is, an IoT camera forwards a video
stream to its designated app while the app maintains the video
connectivity with the camera via heartbeats and keepalivemessages.
Note that this is unlike the video stream of VoIP applications (e.g.
Skype), where the video streams are bidirectional.

To understand if our pivot approach could be able to distinguish
IoT cameras from FPV drones, we collected video traces produced
by 3 different IoT cameras: Wyze Cam, EZVIZ C1C, and LefunMIPC.
Just like the drones, we collected traces for each camera in a stable
(STB) and dynamic motion (SHK) state, resulting in a total of 6
camera traces. We then calculated how many pivots were recorded
per second and for each pivot type, in which type of fingerprint it
was found.

In Figure 4 for each device (drone and camera), we computed
the average number of pivots found per second for each fingerprint

Figure 3: Candidate positions of pivot packets.

type. From the results, we can see that fingerprint type 3 has a very
low potential for having a pivot in drones. On the other hand, each
drone has at least 4 pivots per second that are located in fingerprint
type 2. Both the Wyze Cam and Lefun MIPC cameras have some
pivots in fingerprint types 2 and 3 (≈ 2.5 pivots), but almost no
pivots of fingerprint type 1 were detected in their packet traces.
Instead, the EZVIZ camera in shaking state has on average about
20 pivots of fingerprints type 1, but almost no pivots of fingerprints
type 2 and 3 in its packet trace.

From the results, we can conclude that other network devices
that have network traffic patterns similar to drones might have
different pivot patterns. Therefore, we are confident that the pivot
approach will enable a robust drone detection.

4 IMPLEMENTATION
In this section, we provide an overview of our setup, the devices
that are used for generating network traffic, and the datasets cre-
ated for our Machine Learning model. Then, we summarize the
configuration parameters of the proposed Machine Learning model.

4.1 System Setup
To observe the traffic emitted by WiFi devices, we used an Acer
Aspire F5-573G-759N laptop and Alfa AWUS036ACH WiFi adapter.
We used Kali Linux 64-Bit version 2020.1 which was installed as a
virtual machine using Oracle VirtualBox version 6.0.14. The WiFi
adapter was set to Monitor Mode and tuned to the operating fre-
quency of the AP being monitored. We used the Android app WiFi
Analyzer [2] to find the correct operating frequency of the drone’s
AP. The network traces were collected using Wireshark [3] and
parsed using Scapy [1].

4.2 Data Collection
In the data collection campaign, we collected network traffic traces
from different devices and applications under different conditions
and scenarios. All data are collected overWiFiMonitorMode (rather
than on-device traffic capture) to include packet loss and other
distortion effects created by real-world environments.

For each captured WiFi packet Pi transmitted by device D j , we
extract from the packet header the transmitter’s MAC address,
fragment number, sequence number, header flags, payload size Si, j ,
and packet’s arrival time Ii, j . We also extract the RSSI from the
radiotap header that is added by the WiFi card upon receiving
the packet. In case of fragmented packets, we used the sequence
number, fragment number, and the “more fragments” flag in the
header to put fragmented WiFi packets back into a complete packet.
This was needed as WiFi adapters set into Monitor Mode do not
reconstruct fragmented packets, and pass them individually to
the operating system. The sequence number helped us identify
retransmitted packets that were already captured. We keep track
of the last 8 captured packets for each D j and whenever a new
packet is received, the new packet is checked whether it exists
in the last 8 received packets. Note that in this way we partially
solve the problem of the retransmitted packets. Namely, if a packet
is retransmitted within 8 packets, it is discovered; otherwise, it
is not. After capturing the WiFi packets, we reconstruct them if
they are fragmented, then we group them as a list of packets based
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(a) Drones Fingerprints.
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(b) Cameras Fingerprints.

Figure 4: Average number of Fingerprint types per second for Drones (4a) and Cameras (4b).

on the transmitter’s MAC address such as D j = {P1, j , ..., Pn, j }.
For each packet, we only save 1) the packet size and 2) its arrival
time. Therefore, each device’s packet list is transformed into D j =

{(S1, j , I1, j ), ..., (Sn, j , In, j )} where Pi, j = (Si, j , Ii, j ). Then, we add
each device list D j to our Packet Dataset DSp = {D1, ...,Dm }.

The data collection strategy is then performed on the following
devices and network services:

4.2.1 VoIP Apps. To test the performance of our framework, we
ensured that our datasets include samples extracted from network
devices that have traffic patterns similar to FPV drones’. In addition
to the IoT camera traces collected in Section 3.2, we also collected
traces of video traffic originated by Skype, Google Duo, and Discord
VoIP apps while making video calls for 5 minutes. In Figure 5, we
can clearly see that bit-rates of drones, IoT cameras, and VoIP
applications have similar traffic patterns.

4.2.2 Non-Drone Background Devices. To ensure the completeness
of our dataset, we collected 6 different traces of network traffic
originated by network services for 3-minutes each. These traces are
collected during file downloading, non real-time video streaming
(YouTube), live video streaming (Twitch), Internet browsing, and
social media browsing (Twitter and Facebook). The bit-rate of each
application is plotted in Figure 5b.

4.2.3 Drones & IoT cameras. The traces collected from drones and
IoT cameras in section 3 are collected for initial analysis and are
recorded under 2 different extreme cases, a completely stable video
scene (STB) and a highly dynamic video scene (SHK). To include
network traffic generated from a more realistic video pattern, we
place all of the 3 drones and all of the 3 cameras in front of a
screen playing a 5-minutes documentary video that contains slow,
moderate, and fast-moving scenes. From each device, we captured
the emitted video traffic which resulted in an additional 6 network
traffic traces.

4.2.4 Flying Drones. To further ensure that our dataset includes
realistic samples, we recorded the FPV video of our drones while

flying them. Before collecting the data, we performed an experiment
to determine the maximum distance from the monitoring station
at which a drone can be detected.

Detection Range Experiment:We set up a laptop as a monitoring
station in the center of the university football field. Then we set up 7
waypoints in a straight line starting 10 meters from the monitoring
station. The distance between each consecutive waypoint is 10
meters. We then flew each drone starting from the monitoring
station in a straight line to the first waypoint while collecting the
packets sent by the drone. Then, we flew the drone from the first
waypoint to the second, up to the seventh while collecting the sent
packets at each step. The drones we used are considered “micro-
drones”, and move at a relatively low speed with a rather small
tilting of the drone body during motion.

Results: We noticed that the RSSI severely drops after 40 meters
at waypoint 4 and the received power level at the monitoring station
antenna is below −80 dBm. This is expected, as these drones are
low-power devices with limited battery capacity. The packet loss
between waypoint 3 and waypoint 4 was excessively high (around
70%). Therefore, we concluded that the effective detection distance
for the micro-drones is 30 meters.

Data Collection from Flying Drones: We set up our monitoring
station in the center of the football field and flown each drone for
3 minutes inside a detection area of radius equal to 30 meters. For
each drone, we collected the emitted video traffic which resulted in
3 network traffic traces.

4.3 Feature Creation
From the collected packet traces DSp from the previous section
(Section 4.2), we created a series of 20-packets samples collected
from each D j ∈ DSp . We used a sliding-window strategy with
8 packets offset where each sample interleaves with its adjacent
sample by 8 packets such that the first sample from D j is SM1, j =
{P1, j , ..., P20, j } and SM2, j = {P8, j , ..., P28, j }. Then for each sample,
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Figure 5: Data-Rate for Drones, Background Devices, Cameras and VoIP applications over 30 seconds.

two sets of features are computed over the samples, statistical fea-
tures (derived from [4], referred as standard-features) and features
based on the pivot, referred as unique-features. Precisely, the unique-
features are: (i) the computed pivot size, (ii) the ratio between the
pivot size and the MTU size, and (iii) the ratio between the pivot
size and the total sample size. Therefore, the samples of all devices
are grouped together as a single list where each sample SMi is trans-
formed into a dataset record Ri to create the ML Dataset DSML .
Each record Ri = {Ftpv1 , ..., Ftpv3 , Ftst1 , ..., Ftst12︸            ︷︷            ︸

packet size

, Ftst1 , ..., Ftst12︸            ︷︷            ︸
inter-arrivals

}

stores the three unique-features Ftpvs , with 1 ≤ s ≤ 3, and the 12
standard-features Ftst r , with 1 ≤ r ≤ 12 repeated twice. Namely,
each standard feature is computed twice, once on the packet sizes
and once on the inter-arrivals. The set of standard-features are
described in Table 3 while the set of unique-features, based on the
pivot, are described in Table 4.

4.4 Machine Learning Model
Our detection system is a ML-based system. The ML algorithm we
adopt for the detection task is the Random Forest (RF). This is moti-
vated by its low complexity and good performance in many settings.
Moreover, RF is widely used in literature for similar problems.

Usually, ML algorithms require a training phase, a validation
phase, and a final test phase. For each phase, a different chunk of
the original dataset is used. Therefore, before we feed it to the ML
algorithm, the dataset is divided into a training set for the training
phase, and test set for the final test phase. We do not directly use a
validation set because we employ a Cross Validation (CV) technique
where we repeatedly divide the training set in a new training and
validation set.

In the proposed detection system, we combine the RF algorithm
with Grid Search; a technique where different hyperparameters
are tested for a fine-tuning process. The hyperparameters that we
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Table 3: Standard-features calculated for both inter arrival
time and size of packets.

Standard-features Description

standard deviation
√

1
N−1

∑N
i=1(xi −mean(x))2

variance σ = 1
N−1

∑N
i=1(xi −mean(x))2

root mean square
√

1
N

∑N
i=1(xi )

2

m_square 1
N

∑N
i=1(xi )

2

p_skewness 3(mean(x) −median(x))/σ

kurtosys 1
N

∑N
i=1((xi −mean(x))/σ )4

skewness 1
N

∑N
i=1((xi −mean(x))/σ )3

min (Min(xi )|i=1, ...,N )

max (Max(xi )|i=1, ...,N )

mean 1
N

∑N
i=1(xi )

median
⌈N+1

2
⌉
|(Sorti=1, ...,N )

medianAD median(|xi −median(x)|)

Table 4: Unique-features calculated from the pivot.

Unique-features Description

pivot size See Section 3.1
PM pivot size/MTU size
PT pivot size/total sample size

used are: the maximum depth of the tree, the minimum number of
samples required to split an internal node, the minimum number
of samples required to be at a leaf node, and the number of trees
in the forest. The basic idea is that the RF is repeated multiple
times, with different hyperparameters, and the combinations of
those hyperparameters that gives the best results in the validation
set inside the Grid Search, are used for the final test using the test
set.

5 EVALUATION
In this Section, we assess and discuss the performance of our system,
tested in different scenarios. In Section 5.1 we test the capability
of our system to detect drones that have not been observed before,
while in Section 5.2, we report the results in the overall detection,
that is, the detection in a standard scenario with known drones.

5.1 Unknown Drones
As claimed, one of our goals is to test the performance of our
system on detecting unknown drones. For this purpose, we tested
our detection model under a scenario in which an unknown drone
approaches our detection range. To prove the effectiveness of our
system in this case, we trained our system as the following: we
split the dataset DSML into a train and test set (as described in
Section 4.4), but in this specific case the train set is composed
only by the data of two drones and background traffic, while the
test set is composed with the data from the remaining third drone
mixed with background traffic. For example, to detect the WHT
drone, we train our framework on the traffic of the RED and the
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Figure 6: Accuracy in detecting anunknowndronewith stan-
dard and unique-features.

BLK drones, completed with background traffic. We repeated this
experiment for all the drones we have. The detection accuracy
of each different drone is reported in Figure 6. For each unknown
drone, we repeat the detection experiment using either the standard-
features or our unique-features. The standard-features have good
results for the RED and BLK drones, but poor accuracy for the
WHT drone. Instead, the unique-features perform well for all the
drones, and in particular for the WHT one. This shows that the
unique-features are able to capture some specific properties of
drones that, instead, the standard-features miss. The accuracy of
the unique-features is always above 80%. Since the unique-features
perform better than the standard-features in detecting a new drone
for which the classifier was not trained, we can conclude that our
unique-features provide a different angle at measuring drones’ FPV
traffic characteristics and contribute in advancing the open problem
set in [4] which is detecting unknown drones.

5.2 Overall Detection
Wealso test the capability of our framework to detect drones that are
known beforehand. For this experiment, we use a dataset composed
of all the data we collected from drones and background traffic (i.e.,
all the devices and applications presented in Section 4.2) that are
randomly mixed together. As described in Section 4.4, we divided
the dataset in training and test set, where the training set is roughly
80% of the whole dataset.

Using our unique-features based on pivots, the system achieves
an accuracy of 98%, which is slightly less than the accuracy of
99% achieved using the standard-features. Nonetheless, our unique-
features achieve overall better performance in detecting new drones,
as shown in the previous Section 5.1, and so we believe that the
loss of 1% in the accuracy can be overlooked.

It is worthy to note that these results show that the system is
able to correctly discern almost all the drones’ traffic from the back-
ground traffic in the test set. Moreover, being the background traffic
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Table 5: Comparison of achieved accuracy.

# Packets Features Accuracy

Proposed Framework 20 Standard- 99%
Unique- 98%

Alipour et al. [4] 50 Standard ≈ 88%

made from various types of devices and applications that resem-
ble similar traffic patterns to drones’ (as shown in Figure 5 and
explained in Section 4.2), our system is able to discern the drone
traffic among traffic produced by VoIP applications and cameras.
To better support this statement, we report the result of an ulterior
test (Figure 7) in which we detect drones traffic between only cam-
era traffic or VoIP traffic. In the VoIP traffic case, the dataset was
heavily unbalanced due to the number of drone samples far greater
compared to the number of VoIP samples. For this reason, only for
this test, the drone samples are reduced in number (equally between
the three drones) to match the VoIP samples, thus the dataset can
be considered balanced.

Finally, we compared our results on overall detection with those,
found in the literature, obtained by applying the state-of-the-art
algorithm in [4]. Our framework using samples of 20-packets is
able to overall discern the drones from similar applications with
accuracy higher than 98% independently of the kind of features
used. Instead, the state-of-the-art [4] using samples of 50 packets
has an accuracy of 88%, which is lower than that achieved by our
framework just using 20 packets (see Table 5). In conclusion, our
framework works better and requires fewer packets than [4] when
it is used to discover the presence of known drones.

6 CONCLUSIONS
In this paper, we proposed a COTS Drone detection framework
solely based on FPV packets. In particular, we introduced the no-
tion of “pivot”, that is, drone-specific synchronization packets that
are interleaved with the video stream. The pivots are used as a
guideline to identify unique-features that are then used to train a
ML-based system built from a Random Forest classifier. We also
proposed a Fast Pivot Estimation algorithm that quickly searches a
sample of packets for pivots in linear time. Our experiments demon-
strated that our unique-features are able to detect new drones. That
is, the model is able to correctly classify drones whose features are

not included in the model’s training set. Furthermore, our frame-
work is able to detect new drones among other devices that exhibit
similar behavior to drones’ FPV such as IoT cameras and VoIP
video calls. Our implementation and evaluation of the framework
demonstrated an overall detection accuracy up to 98% with our
unique-features, for a maximal distance of 30m between the detec-
tor and the drone (without optimized antennas). We conclude that
it is possible to detect non-cooperating third-party COTS drones
with only 20 packets based on their FPV traffic with third-party
controllers enabling operators of critical infrastructure (such as
airports) to set up a perimeter for early detection. We address, then,
a critical weakness of prior solutions, which require that, for ev-
ery new drone released on the market, a new data collection and
training phase is performed to include that drone in the dataset.
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