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Abstract. Since the very first observations, the Cosmic Microwave Background (CMB)
has revealed on large-scales unexpected features known as anomalies, which challenge the
standard Λ cold dark matter (ΛCDM) cosmological model. One such anomaly is the “lack-of-
correlation”, where the measured two-point angular correlation function of CMB temperature
anisotropies is compatible with zero, differently from the predictions of the standard model.
This anomaly could indicate a deviation from the standard model, unknown systematics, or
simply a rare realization of the model itself. In this study, we explore the possibility that the
lack-of-correlation anomaly is a consequence of living in a rare realization of the standard
model, by leveraging the potential information provided by the cosmological gravitational
wave background (CGWB) detectable by future gravitational wave (GW) interferometers.
We analyze both constrained and unconstrained realizations of the CGWB to investigate
the extent of information that GWs can offer. To quantify the impact of the CGWB on
the lack-of-correlation anomaly, we employ established estimators and introduce a new
estimator that addresses the “look-elsewhere” effect. Additionally, we consider three different
maximum multipoles, denoted as ℓmax, to account for the anticipated capabilities of future
GW detectors (ℓmax = 4, 6, 10). Summarizing our findings for the case of ℓmax = 4, we identify
the angular range [63◦ −180◦] as the region where future observations of the CGWB maximize
the probability of rejecting the standard model. Furthermore, we calculate the expected
significance of this observation, demonstrating that 98.81% (81.67%) of the constrained GW
realizations enhance the current significance of the anomaly when considering the full-sky
(masked) Planck SMICA map as our CMB sky.

Keywords: CMBR theory, primordial gravitational waves (theory)
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1 Introduction

The Planck satellite is widely recognized as a major milestone in modern cosmology [1–4]. Its
unprecedented precision measurement of the temperature and polarization anisotropies of
the Cosmic Microwave Background (CMB) allowed us to severely constrain the Λ cold dark
matter (ΛCDM) model, which today is considered the standard description of our Universe.

Despite the success of a spatially flat ΛCDM, there are intriguing anomalies in the
large angular scales of the CMB sky that we observe. For example, the alignment of low
multipole moments [5–7], the hemispherical power asymmetry [8], the low CMB variance [9],
the parity asymmetry [10–12], and the cold spot [13, 14] (see also [15–17]). Their statistical
significance lies between 2–3σ depending on which estimator is used and which anomaly
is considered. Another interesting anomalous feature of the CMB is its topology [18–20].
It can be studied employing a zoology of different tests, such Minkowski functionals [21–
23] or the skeleton length [24], and have also shown a relatively high significance [25–30].
In this work, we focus on the anomaly that historically was noticed first. Unlike what
was expected, we observed a strange feature in the so-called two-point angular correlation
of the CMB temperature anisotropies C(θ): it is almost zero when evaluated on large
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angular scales (see section 2.3 below). For this reason, it was named “lack-of-correlation”
anomaly [31–36]. This characteristic of C(θ) was able to survive the test of time, since it
was first observed by COBE [31, 37, 38], then reassessed with WMAP [9, 39, 40], and further
confirmed by Planck [4, 41, 42], suggesting that it is not the consequence of some unknown
systematic effect.

In order to assess the significance of these anomalies, a number of different techniques
have been employed. These can be based on some two-point statistic (such as the angular
power spectrum), or on peak statistics, and N-point correlation functions (see [4] and the
references therein). Independently from the analysis, the fundamental question one tries to
answer is: are these features the consequence of a rare realization of the standard ΛCDM
model, or do we need to abandon it in favor of a more complex one? One of the obstacles that
this question poses is where to search for new information on the anomalies. In fact, CMB
temperature has been observed in a cosmic variance-limited fashion on low and intermediate
multipole scales; thus, we cannot unveil any new information from the temperature alone. To
determine whether these are the consequence of a physical phenomenon, we must exploit other
observables, correlated with the CMB temperature, such as the CMB polarization [43–48].

In the same spirit, we want to explore the capabilities of a cosmological gravitational
wave background (CGWB) to shed light on the lack-of-correlation anomaly. Indeed, we know
that a fundamental prediction of any inflationary model is a stochastic background of GWs [49].
This CGWB can be explored indirectly through CMB thanks to the relic polarization it
sources. Indeed, we know that primordial GWs produce the divergenless component of
the CMB polarization, the B-modes [50]. Many ongoing and upcoming experiments are
targeting this feature, such as BICEP/Keck Array (BK) [51], Simons array [52], Simons
Observatory [53], Stage-IV [54] and the Light satellite for the study of B-mode polarization
and Inflation from cosmic microwave background Radiation Detection (LiteBIRD) [55, 56]
(see [57] for the updated constraints on the primordial GWs spectrum). In addition, there are
well motivate models of inflation that can produce a CGWB that can be the target of future
GW detectors like LISA [58–62] and the Einstein Telescope [63–65], becoming a window on
high-energy phenomena that are not accessible in any other way. Such a background will be
characterized by its frequency dependence [61, 66], and by other peculiar observables, e.g.
spatial anisotropies of their energy density [67–72]. These are generated both at the time
of the GW production and during the propagation in a very similar way as CMB photons.
Future GW interferometers, both on the ground and in space, will have limited angular
sensitivity (ℓ ∼ 15) [73], however, as we will see, this does not limit our findings.

Recently in [74], CGWB has also been used to explore a dipolar modulation model
trying to describe the hemispherical power asymmetry [48, 75]. This has shown that the great
degree of correlation between the CGWB and the temperature of the CMB [76] is key to
enhancing our ability to probe the physical origin of these anomalies. Despite a lower degree
of correlation, also the cross-correlation between the CMB and the astrophysical GWB can be
used to probe early universe initial conditions [77]. We will show that in the lack-of-correlation
context, this correlation is even more crucial.

Another nontrivial limitation in assessing the physical nature of the CMB anomalies is
the fact that one typically uses “a posteriori” statistics. Indeed, estimators are often designed
to maximize the significance of a certain anomaly under some a posteriori assumption on the
data. Thus, one has to face the following antithesis: neglecting the assumption made on the
data, is the evidence of the anomaly still significant? This is often called the “look-elsewhere
effect” [4]. In this work, we will take care of this aspect of the lack-of-correlation anomaly.
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To address these issues, we investigate the fluke hypothesis, exploring the possibility
that we inhabit a rare realization of ΛCDM, considering both CMB temperature and CGWB
anisotropies. We develop an estimator to determine if a specific value of the lack-of-correlation
anomaly excludes the fluke hypothesis. Our analysis includes constrained and unconstrained
realizations of the CGWB [76, 78–82], utilizing Planck’s SMICA for temperature observations.
Additionally, we provide a forecast of the expected improvement in significance from GWs,
accounting for the look-elsewhere effect.

The structure of this paper is as follows: section 2 outlines our methodology, including
dataset definitions, computation of CMB temperature and CGWB realizations, and quantifica-
tion of the lack-of-correlation anomaly using information from the CGWB. We also introduce
the aforementioned new estimator. In section 3, we present the results of our analysis, focusing
on the very realistic (in some sense pessimistic) case of ℓmax = 4 and providing additional
cases with ℓmax = 6 and ℓmax = 10 in appendix C. Section 4 contains our conclusions.

2 Datasets and methodology

As mentioned before, in this work we want to study and build an estimator which is able to
reject the fluke hypothesis of the lack of correlation anomaly. Therefore, we investigate the
idea that what we observe in the CMB sky is just a rare realization of the standard ΛCDM
model. In particular, we want to use the CGWB and try to forecast its ability to shed some
light on the physical origin of the anomaly.

Before presenting the results, we describe the datasets used for our analysis (see sec-
tion 2.1). In addition, we provide more information on our methodology, with a focus on
specific key aspects. This includes developing a procedure to simulate the CGWB sky (as
outlined in section 2.2), gaining a deeper understanding of the crucial quantity that results in
the lack of correlation in our data (as described in section 2.3), defining an estimator that
measures the anomaly (outlined in section 2.4), and specifying the analysis that we performed
in this study (as presented in sections 2.5 and 2.6). Indeed, the final goal of this analysis is to
be able to associate a value with the lack of correlation anomaly; for each value, we want to
be able to conclude whether it is compatible or not with the fluke hypothesis.

2.1 Datasets
We use the Planck SMICA temperature map as our observation for CMB [83].1 It comes at a
resolution of ≈ 5 arcmin, which corresponds to a pixelization of the sky in ≈ 5×107 equal-area
pixels.2 Furthermore, masking the galactic plane enhances the discrepancy between the data
and the ΛCDM predictions [4, 40, 84, 85], therefore, it is important to treat the cut-sky case.
To capture this feature, we will consider the full-sky SMICA map and a masked version, where
we use the Planck common mask for intensity.3 In the latter case (and whenever a mask
is involved in the computations), we use the pseudo-Cℓ formalism to recover the unbiased
angular power spectra (NaMaster [86]).4

Regarding the CGWB, we obtain the theoretical angular power spectrum with a modified
version of CLASS [87, 88].5 Specifically, we use the expressions shown in [76] and set the

1http://pla.esac.esa.int/pla/#maps.
2This is usually expressed in terms of the Nside parameter of Healpy, which define the sky partition. In

this case, Nside = 2048.
3http://pla.esac.esa.int/pla/#maps.
4https://github.com/LSSTDESC/NaMaster.
5https://github.com/lesgourg/class_public.
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Parameter Best-fit value
As × 109 2.100549
ns 0.9660499
Ωbh2 0.0223828
Ωcdmh2 0.1201075
τreio 0.05430842
H0 67.32117

[
km s−1 Mpc−1]

YHe 0.2454006
T0 2.7255 [K]∑

mν 0.06 [eV]

Table 1. Assumed values of the 6 ΛCDM parameters and other important ones. The variables As
and ns represent the amplitude and tilt of the primordial scalar perturbations. The energy densities of
baryons and cold dark matter are denoted by Ωb and Ωcdm, respectively. H0 is the Hubble constant
expressed in km s−1 Mpc−1, which is divided by 100 to obtain h ≡ H0/100. τreio represents the optical
depth of reionization. Then, YHe is the fraction of helium, T0 is the average temperature of the CMB
in Kelvin, and

∑
mν is the mass of neutrinos, assuming that 1 is massive and the other 2 are massless.

ΛCDM parameters to their best-fit values provided by Planck 2018 (see table 1). We consider
only the scalar contribution to the anisotropies, neglecting any tensorial contribution [71, 89].

Soon, detectors like LISA [58–62], DECIGO [90], ET [63, 64] and CE [91] will provide
the possibility to observe the CGWB, delivering fundamental knowledge on the physics of
the early Universe. In fact, these could not only measure the average contribution to energy
density brought by GWs, but they could also detect its fluctuations on the celestial sphere.
This possibility depends on the actual monopole radiation at the frequencies of the various
detectors; the higher the better. To cover the possible performance of these experiments, we
will consider 3 maximum multipoles to perform our analysis: ℓmax = 4, 6, 10. These are the
multipoles one may be able to recover in a signal-dominated way in the next future, exploiting
one of the experiments mentioned, or a combination of them. To be consistent with this
choice, we will also assume ℓmax = 4, 6, 10 for the temperature part of the analysis. Also, to
reduce the computational cost of working at Planck’s full-resolution, the CMB map is also
degraded to Nside = 64.6 Before degrading it, we smooth it with a Gaussian beam with Full
Width Half Maximum (FWHM) equal to 2◦. Note that the scale corresponding to Nside = 64
is ≈ 0.92◦, but we follow the general principle of applying a smoothing approximately two or
three times bigger than the grid scale to avoid pixelization effects [84]. Regarding the mask,
we also degrade it to Nside = 64 to match the CMB map. The mask is then thresholded by
setting to zero the pixels in which the value is less than 0.9; the others are set to unity [4].

Furthermore, since we also want to exploit the cross-correlation of these two fields as
an observable, we also produce the cross-maps from our realizations of TT and CGWB.7
Although GWs are indeed very difficult to observe, it could be possible in the next future
to get a relevant signal-to-noise ratio from their cross-correlation with CMB temperature
without the need to measure the GW autospectrum. In fact, cross-correlation is often used

6Although Nside = 64 allows to describe 3Nside − 1 multipoles (thus much more than what is used for this
analysis), in our case no significant computational advantage was found in reducing Nside below 64.

7To be consistent with what is customarily done for CMB temperature, we will indicate the auto-spectra of
the CGWB with GWGW.
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in the literature to extract information from a noise-dominated context, since it provides
unbiased information on the two correlated probes (see, e.g. [1, 76, 92, 93]).

For the sake of brevity, we will use the expression “masked GWGW” in the case where
we apply a mask on TT (the CGWB is always evaluated full-sky). Instead, when TT is also
full-sky, we will simply use GWGW. For cross-correlation we will use TGW.

In conclusion, for this work, we produce N = 10, 000 realizations of unconstrained
CGWB and TT (full sky and masked). Using both sets of full-sky and masked TT, we also
compute the corresponding constrained CGWB realizations, using Planck SMICA as our CMB
observation. In addition, we also compute the cross-correlation maps between unconstrained
and constrained GWGW and TT (full sky and masked).

2.2 Constrained realizations of masked sky

Let us consider a generic example with two observables X and Y , which share a certain degree
of correlation (in our case, they will be, respectively, the CMB temperature and the CGWB).

In the full-sky case, we already know that a random Gaussian realization of aXX
ℓm of

X can be obtained by its angular power spectrum CXX
ℓ , which encodes the variance of the

coefficients of the spherical harmonics. In a more mathematical fashion, we can write

aXX
ℓm = ξℓm

√
CXX

ℓ , (2.1)

where ξℓm is a random Gaussian field with null mean and unitary variance. Once aXX
ℓm have

been measured, we can generate aY Y
ℓm realizations consistent with these, namely constrained

realizations. In fact, to condition the random realizations of Y on the information already
available on X, one can use the same Gaussian seed ξℓm to write

aY Y
ℓm = CXY

ℓ√
CXX

ℓ

ξℓm + ξ′
ℓm

√√√√CY Y
ℓ −

(
CXY

ℓ

)2

CXX
ℓ

, (2.2)

where CXY
ℓ is the cross-correlation spectrum of the two observables and ξ′

ℓm is another random
Gaussian field (⟨ξℓmξ′∗

ℓm⟩ = 0). Recasting this in terms of aXX
ℓm , this expression becomes

aY Y
ℓm = CXY

ℓ

CXX
ℓ

aXX
ℓm + ξ′

ℓm

√√√√CY Y
ℓ −

(
CXY

ℓ

)2

CXX
ℓ

. (2.3)

Here, the first term on the right side is extracting the Gaussian seed of X, i.e. ξℓm, and
translating it into a deterministic part of the realization Y . Note that eq. (2.3) depends on
the underlying assumptions of Gaussianity and statistical isotropy of the coefficients of the
spherical harmonics. Furthermore, the specific shape of CXX

ℓ , CXY
ℓ , CY Y

ℓ will depend on the
assumed cosmological model, which in our case is the ΛCDM model (e.g., the statistical
isotropy is relaxed in [74]).

Eq. (2.3) can be generalized to the case of masked skies. To do so, we must recall the
definition of aXX

ℓm as the coefficients of the decomposition of spherical harmonics of the X field
on the 2D sphere. In particular, starting from the full-sky (FS) case, we can write (we drop
the apex XX for the sake of notation) [94, 95]

aFS
ℓm ≡

∫
full−sky

Y ∗
ℓm(θ, ϕ)X(θ, ϕ) d(cos θ) dϕ , (2.4)

– 5 –
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where Yℓm are the spherical harmonics and θ, ϕ are the angles on the celestial sphere. These
aFS

ℓm are predicted to be statistically isotropic Gaussian realizations with null mean and a
variance defined as 〈

a∗,FS
ℓm aFS

ℓm

〉
= δℓℓ′δmm′Cℓ , (2.5)

where Cℓ is the angular power spectrum of X. From a full-sky observation, one can estimate
the angular power spectrum as

Ĉℓ = 1
2ℓ + 1

ℓ∑
m=−ℓ

∣∣∣aFS
ℓm

∣∣∣2 . (2.6)

In the presence of a mask, eq. (2.4) gets slightly modified in order to consider that the
integration is performed on the unmasked patch of the sphere. Thus, the spherical harmonics
do not constitute an orthogonal basis and the aℓm coefficients measured on the cut-sky (CS)
have couplings between multipoles. Despite this, it is possible to recover the corresponding full-
sky values knowing the geometrical couplings introduced by the mask (see appendix A) [94, 95].
In particular, they are related by (the sum over repeated indexes is understood)

aCS
ℓm = aFS

ℓ′m′ × W ℓ′m′
ℓm , (2.7)

where W ℓ′m′
ℓm is the window function of the mask considered.

Thus, eq. (2.3) must be modified to account for this since it assumes the full-sky condition.
In particular, when we consider the coefficients of the cut-sky, i.e. aCS

ℓm, we must recast the
first factor on the right-hand side as

CXY
ℓ

CXX
ℓ

× aCS
ℓm =⇒ CXY

ℓ

CXX
ℓ

× aCS
ℓ′m′

(
W ℓ′m′

ℓm

)−1
= CXY

ℓ

CXX
ℓ

× âFS
ℓm . (2.8)

In this way, the cut-sky coefficients are remapped to the full-sky ones and the rest of the
formula can remain the same. Note that we indicated the full-sky coefficients on the right-hand
side as âFS

ℓm to remark that we are not obtaining their true values, but rather an estimate of
those. In other words, following this procedure, we get an estimator of the full-sky coefficients
from a partial-sky observation. Note that this becomes unfeasible as the window function
becomes singular for aggressive masks. For the full-sky case, the window function goes to
W ℓ′m′

ℓm = δℓℓ′δmm′ (see appendix A), recovering the usual expressions. Accounting for the
complete expression of this matrix allows us to correctly obtain the full-sky coefficients for
X, which are then converted in terms of Y by the factor CXY

ℓ /CXX
ℓ . Note that another

underlying assumption of this generalized procedure is that Y is full-sky; otherwise, one has
to take care again of the couplings between multipoles of the Y realization.

As an example, we show in figure 1 different sky realizations of the CGWB. In the upper
part of the figure, we plot the downgraded SMICA map, for which we filter out the multipoles
with ℓ > 10. Respectively, we show the full-sky and masked ones in the left and right panels.
Instead, in the lower part of the figure, we show two constrained CGWB realizations based on
the map above (thus full-sky or masked). Thus, the one on the left is obtained with eq. (2.3)
and the other accounting for the generalization discussed in this section.

As is customarily done in the literature, we normalize the CMB anisotropies to the
monopole radiation of the CMB, T0 = 2.7255 × 106 µK [96], so that we show the maps in
units of µK. Usually in the case of the CGWB one plots the energy density contrast as
defined in [71]. However, to be consistent with the choice for CMB and to be visually clear,
we also normalize the CGWB anisotropies to the same quantity. Thus, the energy density
will also be expressed in units of µK.

– 6 –
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Figure 1. The two upper panels in the upper part show the SMICA map downgraded to Nside = 64
and filtered to remove the multipoles above ℓ > 10 for the full-sky and masked case. In the lower
panels, we show one of the corresponding constrained realizations of the CGWB.

2.3 Angular correlation function
Having defined the datasets and how to obtain constrained realizations in the masked case, we
briefly explore the actual quantity presenting the lack-of-correlation in current data. Indeed,
we know that the fluctuations ∆T in the photon temperature T that we observe are very well
described by their spherical harmonic coefficients defined in eq. (2.4). In the case of T , it is
recast to [97]

aℓm ≡
∫

Y ∗
ℓm(θ, ϕ)∆T

T0
(θ, ϕ) d(cos θ) dϕ , (2.9)

where T0 is the average temperature, i.e., the monopole radiation. Then, from a full-sky CMB
observation, one can estimate the angular power spectrum using eq. (2.6). This quantity
plays a key role in almost every estimation of cosmological parameters, given that it is a very
efficient summary statistic to study the properties of aℓm (at least assuming Gaussianity [3]).

An alternative and equivalent way to convey the same information is the two-point
angular correlation function, defined as [16]

C(θ) ≡
〈∆T

T0
(n̂1)∆T

T0
(n̂2)

〉 ∣∣∣∣
n̂1·n̂2=cos θ

=
∞∑

ℓ=0

2ℓ + 1
4π

CℓPℓ(cos θ) , (2.10)

where Pℓ are the Legendre polynomials. In other words, C(θ) and Cℓ are related by a series of
Pℓ, thus the former allows us to better appreciate the large-scale behavior and the latter the
small-scale one. Also, in the assumption of Gaussian fluctuations, all the available information
is encoded in Cℓ, thus the same holds for C(θ).

Thus, at this point, we can compute CTT(θ) from the SMICA map to understand the
actual anomaly. Figure 2 shows the result. One can see that the SMICA map, especially the
masked one, has a low correlation for scales larger than ∼ 60◦. Also, note that the curves
shown in figure 2 are not equal to those shown in [16]. Indeed, assuming ℓmax = 4 means that
figure 2 shows only the angular correlation given by the first four multipoles of the expansion.

– 7 –
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Figure 2. Two-points angular correlation function of CMB temperature. Here, we assume ℓmax = 4.
The red line is the mean of the ΛCDM realizations and the gray bands are the 1 and 2 σ around that.

Figure 3. Two-points angular correlation function of the CGWB. The left and right panels refer
respectively to the full-sky and masked cases. Here we assume ℓmax = 4. The red line is the mean of
the ΛCDM realizations and the gray bands are the 1 and 2 σ around that.

Let us now look at the CGWB realizations. Figure 3 shows both the full-sky and masked
realizations. Here, we can appreciate the fact that the very high correlation existing between
TT and GWGW contributes to severely shrinking the dispersion of the CGWB realizations.
Furthermore, the TT mask makes them very consistent with zero on almost all the scales
considered (> 80◦). These two features already show that GWs could be a pristine probe to
test the fluke hypothesis.

Finally, figure 4 shows the angular correlation functions of TGW. It shows that the
dispersion of the constrained realizations of TGW is even smaller than that of the CGWB.
This suggests that TGW could also be a very interesting probe for this analysis of the fluke
hypothesis. In appendix B, we show the angular correlation functions of GWGW and TGW
assuming ℓmax = 2000 to appreciate the difference w.r.t. CMB temperature, while neglecting
the expected performance of future interferometers.
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Figure 4. Two-points angular correlation function of TGW. The left and right panels refer respectively
to the full-sky and masked cases. Here we assume ℓmax = 4. The red line is the mean of the ΛCDM
realizations and the gray bands are the 1 and 2 σ around that.

2.4 S-statistic for auto- and cross-correlations

To quantify this lack of temperature correlation, Spergel et al. [32] introduced the quantity

S1/2 =
∫ 1/2

−1
[C(θ)]2d(cos θ) , (2.11)

which integrates the squared correlation on scales larger than 60◦. Clearly, this naturally
captures the total distance between the angular correlation and zero in that angular range,
regardless of its sign.

Copi et al. [43] introduced a way to find the optimal angular range in which an additional
observable can provide most of the information. Thus, by varying the minimum and maximum
angles, the S1/2 estimator is recast to

Sθmin,θmax =
∫ θmax

θmin
[C(θ)]2d(cos θ) =

ℓmax∑
ℓ=2

ℓmax∑
ℓ′=2

(2ℓ + 1)
4π

(2ℓ′ + 1)
4π

CXX
ℓ Iθmin,θmax

ℓℓ′ CXX
ℓ′ , (2.12)

with
Iθmin,θmax

ℓℓ′ =
∫ θmax

θmin
Pℓ(x)Pℓ′(x)dx . (2.13)

Here, we have introduced ℓmax ̸= ∞ since we must account for the fact that a realistic
observation depends on the angular resolution of the experiments considered. In fact, above a
certain multipole, we know that noise will dominate the measurement. The same treatment
was adopted in [46], where the multipole cut was made when the signal-to-noise ratio of
the E-mode polarization was essentially saturated. It should be underlined that ℓmax affects
the calculation of Iθmin,θmax

ℓℓ′ . In fact, multipoles up to ℓmax will describe scales larger than
approximately 180◦/ℓmax. Instead, the behavior on smaller scales will be determined by noise
or by interference of the Legendre modes considered. To be conservative on which scales we
consider well described by the available multipoles, we will impose a lower bound on θmin and
θmax of

θcut = 180◦

ℓmax − 1 , (2.14)
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so that θmin, θmax ≥ θcut. In this way, we can also avoid “border effects” when approaching
180◦/ℓmax.

We can apply the estimator defined in eq. (2.12) to the three angular power spectra by
substituting CTT

ℓ , CGWGW
ℓ , or CTGW

ℓ into the above definitions. This provides us with three
quantities: STT

θmin,θmax
, SGWGW

θmin,θmax
, and STGW

θmin,θmax
.

In addition to the three Sθmin,θmax estimators, we study the joint estimator following the
definition introduced in Chiocchetta et al. [46], which yields

STT,Z
θmin,θmax

=

√√√√√
 STT

θmin,θmax〈
STT

θmin,θmax

〉
2

+

 SZ
θmin,θmax〈

SZ
θmin,θmax

〉
2

, (2.15)

where Z = {TGW, GWGW}. We can also define the combination of all the available estimators
as follows

STT,TGW,GWGW
θmin,θmax

=

√√√√√
 STT

θmin,θmax〈
STT

θmin,θmax

〉
2

+

 STGW
θmin,θmax〈

STGW
θmin,θmax

〉
2

+

 SGWGW
θmin,θmax〈

SGWGW
θmin,θmax

〉
2

. (2.16)

When we consider constrained realizations of GWGW or TGW, STT
θmin,θmax

will be
replaced with SMICA data, that is, SSMICA

θmin,θmax
. Still, both of them, GWGW and SMICA, will

be normalized by their unconstrained counterparts.
Essentially, this joint estimator is a sum in quadrature of the two normalized estimators.

When this estimator departs from 1, it means that both TT and GWGW are doing so. Notice
that in the constrained case, STT,GWGW

θmin,θmax
cannot be lower than SSMICA

θmin,θmax
/

〈
STT

θmin,θmax

〉
. The

same applies to STT,TGW
θmin,θmax

and STT,TGW,GWGW
θmin,θmax

.
In section 2.2 we mentioned that we normalize the CMB anisotropies to T0, so the

estimator STT
θmin,θmax

will be expressed in units of µK4. Since we also use this normalization
for the CGWB, the same is true for STGW

θmin,θmax
and SGWGW

θmin,θmax
.

2.5 Optimal angular range

In order to select the optimal range of angles for the estimator Sθmin,θmax (see eq. (2.12)), we
apply the procedure introduced in [43] both to the case of single estimators and to the joint
case. Given an observation of the CMB temperature, the optimal range of angles is issued
by θmin and θmax that maximize the displacement between the values of Sθmin,θmax obtained
through constrained and unconstrained realizations of the CGWB. This is somehow telling us
in what angular range the CGWB is most sensitive to the signal we observe in TT, in terms
of lack-of-correlation. To quantify this displacement, we proceed as follows:

1. we first grid the values of θmin and θmax and at each node of the grid we compute the
constrained and unconstrained estimators SGWGW

θmin,θmax
;

2. then, for each node, we compute the 99th percentile of the values given by the constrained
realizations, and we count how many unconstrained realizations give a higher value of
Sθmin,θmax . Translating this in terms of a percentage, we call this quantity Percentage
Displacement (PD);
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3. finally, by studying the results on the grid, we can identify which regions give higher
PDs. When searching for which specific configuration gives the optimal angular range,
we have to keep in mind what our statistical error is in evaluating the PD. We can
define it as σPD = 1/N ≃ 0.01%. Thus, we round the obtained PDs to the second
decimal figure;

4. then, if two or more configurations have the same PD, we privilege the one where
∆θ = θmax − θmin is maximal. In this way, we are choosing the case where we integrate
over the most scales.

We repeat the same analysis for STGW
θmin,θmax

, STT,GWGW
θmin,θmax

, STT,TGW
θmin,θmax

and STT,TGW,GWGW
θmin,θmax

.
In the joint cases, we find the optimal angular range to assess the fluke hypothesis simultane-
ously exploiting more than one field.

2.6 Significance accounting for the look-elsewhere effect

Until now, we have only mentioned the fluke hypothesis, explaining the methodology we want
to use to find out whether GWs can help to reject at least some of the assumptions of the
ΛCDM model. Despite this, we cannot say anything about the significance of the anomaly
using the optimal angles analysis.

Indeed, could we say that the significance of the anomaly is the distance of a certain
data point (i.e. a specific value of Sθmin,θmax of a realization) from the unconstrained ΛCDM
simulations (in terms of sigma or p-value)? The answer is not that straightforward, and the
reason is called the “look-elsewhere” effect [4]. Indeed, a certain realization would have a
significance in each angular range, and by choosing the optimal angular range, we would a
posteriori choose the configuration that maximizes that number. In other words, we design
the analysis to provide the best possible solution. In a different angular range, the data may
agree completely with the prediction of ΛCDM.

A well-known strategy to account for the look-elsewhere effect is to study the PD of the
realizations irrespective of their angular range: one searches for the maximum PD for each
realization without caring about the angular range. Then, the fraction of these probabilities
that are found to be lower than the maximum PD yielded by the data is a global p-value [4].

Despite this, in this work we choose to follow a novel procedure to account for the
look-elsewhere effect. We define a new estimator for the lack of correlation as the sum of all
configurations of the angular range of Sθmin,θmax . For a generic observable X, it reads

SXX ≡
∑

{θmin,θmax}

SXX
θmin,θmax〈

SXX
θmin,θmax

〉 . (2.17)

This may be regarded as a marginalization of SXX
θmin,θmax

over angular information. Now,
SXX tells us whether a simulation of X has an anomalously low covariance, regardless of the
angular range considered. This reasoning can be applied to each field that we considered
in the previous analysis; thus, TT, TGW, GWGW, and their combinations. Note that we
also normalize the values entering the sum by the mean of the unconstrained realizations,
as done in eq. (2.15) and (2.16). This is because we do not want our results to be driven
by the eventual presence of a high Sθmin,θmax region, which would dominate the sum over
angular ranges.

Using this new estimator, we can study the significance of the lack-of-correlation anomaly
taking into account the look-elsewhere effect. In fact, comparing the resulting values of S
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Figure 5. Optimal angles for GWGW. The left and right panels show respectively the results when
we assume either full-sky or masked SMICA as our CMB observation. The star shows the best angular
range. Here we assume ℓmax = 4.

with those obtained from the CMB data or from the constrained realizations of the CGWB,
we compute the significance in terms of sigma. In other words, with this approach we can
still affirm that a future observation of the CGWB falling outside the constrained curve
indicates that we must revise our assumptions. However, we can also associate a significance
to data points that fall within the predicted curve. In this way, we can study the effects of
the inclusion of GWs on the actual assessment of the physical origin of the anomaly.

Finally, to quantify the significance we first compute the p-value of each realization (so the
probability of getting an unconstrained realization with a lower value than the considered one),
and then we translate the p-value in terms of a σ-distance w.r.t. a normal Gaussian. Given
that we have a finite number of realizations, there may be cases in which no unconstrained
realizations are found below a certain constrained value of S. In such a case, we recall that
each percentage we obtain has an error of 0.01%, thus we associate to null p-value realizations
a probability of 0.01%. This may underestimate the significance of the furthest values of S
w.r.t. the unconstrained realizations.

3 Results

In the following, we show the results assuming the most pessimistic case analyzed of ℓmax = 4.
Finally, in appendix C we show the other two cases of ℓmax = 6 and 10.

3.1 Optimal angles

We start studying the optimal range of angles for each estimator as described in section 2.5.
We show the results for SGWGW

θmin,θmax
in figure 5 and in figure 6 for STGW

θmin,θmax
. The left and right

panels show the results for the full-sky and masked analysis, respectively. Note that every
optimal angle plot we will show from now on is symmetric by construction; however, we add
a gray-shaded region to emphasize that θmin cannot be greater than θmax.

The PDs of both GWGW and TGW change when passing from the full sky to masked
analysis, showing that masking the galactic plane enhances the lack of correlation [4, 40, 84, 85].
Comparing this result with [43], who performed the same analysis using the CMB E-mode
polarization, we can appreciate how powerful GWs are in testing the fluke hypothesis. In fact,
having a ∼ 90% PD means that the distribution that TGW must follow if ΛCDM is correct
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Figure 6. Optimal angles for TGW. The left and right panels show respectively the results when we
assume either full-sky or masked SMICA as our CMB observation. The star shows the best angular
range. Here we assume ℓmax = 4.

Figure 7. Optimal angles for the combination of TT and GWGW. The left and right panels show
respectively the results when we assume either full-sky or masked SMICA as our CMB observation.
The star shows the best angular range. Here we assume ℓmax = 4.

is extremely peaked and localized. This maximizes the possibility of rejecting it in the event
that a future observation happens to be outside that distribution, with the corresponding
level of significance.

We repeat the same analysis for STT,GWGW
θmin,θmax

, STT,TGW
θmin,θmax

and STT,TGW,GWGW
θmin,θmax

; see figures 7–
8–9. Once again, the left and right panels show the full-sky and masked cases. Note that in
every case there is a high-PD region near the range [60◦, 180◦], i.e. the range of the original
estimator S1/2 introduced by Spergel et al. [32].

In this context, the PD reaches values well above 90%, especially for the masked case of
STT,TGW

θmin,θmax
, where the optimal region reaches ∼ 98%. This proves that GWs may be crucial

to test the fluke hypothesis and eventually reject the ΛCDM model. Interestingly, the best
results are obtained by combining the CMB temperature with its cross-correlation with the
CGWB. Instead, including the GWGW spectrum seems to reduce the ability to test the fluke
hypothesis. All the results on the optimal angles are summarized in table 2.
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Figure 8. Optimal angles for the combination of TT and TGW. The left and right panels show
respectively the results when we assume either full-sky or masked SMICA as our CMB observation.
The star shows the best angular range. Here we assume ℓmax = 4.

Figure 9. Optimal angles for the combination of TT, TGW and GWGW. The left and right panels
show respectively the results when we assume either full-sky or masked SMICA as our CMB observation.
The star shows the best angular range. Here we assume ℓmax = 4.

Assuming that we choose the optimal angular range for the full-sky and masked case,
figure 10 shows the correspondent distributions of SGWGW

θmin,θmax
. Doing the same for TGW, we

instead obtain the figure 11. Note that TGW gives PDs consistently higher than the ones
from GWGW. This suggests that TGW is a better probe to test the fluke hypothesis. In fact,
even without combining more than one probe (see the following paragraphs), TGW achieves
a PD of 96.41% under the most pessimistic assumption of ℓmax=4.

We repeat the same for the joint analyses of the CMB temperature, CGWB, and their
cross-correlation. We obtain figure 12 using STT,GWGW

θmin,θmax
; doing the same for STT,TGW

θmin,θmax
and

STT,TGW,GWGW
θmin,θmax

results in figure 13–14, respectively. All the results on PDs are summarized
in table 3. This shows some interesting features: looking at the masked case, not only we
notice an overall consistency on the PDs obtained changing ℓmax on each probe, but also there
seems to be a certain pattern on how different probes perform at each ℓmax. Indeed, ranking
probes with an ascending PD-ordering, the pattern remains the same for all the masked case.
This does not hold for the full-sky case.
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Full-sky
SGWGW

θmin,θmax
STGW

θmin,θmax
STT,GWGW

θmin,θmax
STT,TGW

θmin,θmax
STT,TGW,GWGW

θmin,θmax

θmin θmax θmin θmax θmin θmax θmin θmax θmin θmax
ℓmax = 4 63◦ 180◦ 77◦ 99◦ 62◦ 180◦ 79◦ 97◦ 61◦ 180◦

ℓmax = 6 56◦ 121◦ 65◦ 115◦ 55◦ 120◦ 68◦ 116◦ 54◦ 118◦

ℓmax = 10 58◦ 124◦ 71◦ 108◦ 58◦ 124◦ 72◦ 109◦ 57◦ 120◦

Mask-sky
SGWGW

θmin,θmax
STGW

θmin,θmax
STT,GWGW

θmin,θmax
STT,TGW

θmin,θmax
STT,TGW,GWGW

θmin,θmax

θmin θmax θmin θmax θmin θmax θmin θmax θmin θmax
ℓmax = 4 60◦ 167◦ 60◦ 180◦ 60◦ 166◦ 63◦ 180◦ 60◦ 166◦

ℓmax = 6 50◦ 95◦ 54◦ 129◦ 42◦ 122◦ 55◦ 180◦ 40◦ 122◦

ℓmax = 10 74◦ 77◦ 61◦ 132◦ 60◦ 88◦ 62◦ 134◦ 59◦ 88◦

Table 2. Optimal angles for every observable and combination of them.

Figure 10. SGWGW
θmin,θmax

distributions for the full-sky and masked cases. The angles θmin, θmax are chosen
to be the optimal ones of both cases. Here we assume ℓmax = 4.

Figure 11. STGW
θmin,θmax

distributions for the full-sky and masked cases. The angles θmin, θmax are chosen
to be the optimal ones of both cases. Here we assume ℓmax = 4.
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Figure 12. STT,GWGW
θmin,θmax

distributions for the full-sky and masked cases. The angles θmin, θmax are
chosen to be the optimal ones of both cases. Here we assume ℓmax = 4.

Figure 13. STT,TGW
θmin,θmax

distributions for the full-sky and masked cases. The angles θmin, θmax are chosen
to be the optimal ones of both cases. Here we assume ℓmax = 4. The right plot also shows shaded
areas corresponding to different conclusions that one may draw if a future observation happens to be
in those (see the end of section 3.1).

How can these results be used in the presence of a measurement of the CGWB? Consider
our highest PD assuming ℓmax = 4, thus the one given by the masked STT,TGW

63◦,180◦ analysis.
Exploiting the right panel of figure 13 we show different shaded areas corresponding to the
different conclusions that can be drawn. Firstly, these regions are obtained by computing the
range of each histogram that encapsulates the 99% percent of the simulations. This identifies
five different parts of this plot:

• two gray regions corresponding to the values of STT,TGW
63◦,180◦ that are not consistent with

neither the constrained nor unconstrained realizations;

• the green and red regions, where the observation falls within the constrained or uncon-
strained histograms;

• the intersection of the green and red regions (resulting in a darker region), in which
we are not sure if the eventual observation follows the constrained or unconstrained
distribution.
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Figure 14. STT,TGW,GWGW
θmin,θmax

distributions for the full-sky and masked cases. The angles θmin, θmax
are chosen to be the optimal ones of both cases. Here we assume ℓmax = 4.

Full-sky
SGWGW

θmin,θmax
STGW

θmin,θmax
STT,GWGW

θmin,θmax
STT,TGW

θmin,θmax
STT,TGW,GWGW

θmin,θmax

PD PD PD PD PD
ℓmax = 4 58.58% 81.07% 86.09% 87.27% 88.86%
ℓmax = 6 60.75% 90.44% 87.61% 94.29% 90.35%
ℓmax = 10 62.27% 88.99% 88.51% 93.4% 91.22%

Mask-sky
SGWGW

θmin,θmax
STGW

θmin,θmax
STT,GWGW

θmin,θmax
STT,TGW

θmin,θmax
STT,TGW,GWGW

θmin,θmax

PD PD PD PD PD
ℓmax = 4 68.8% 96.41% 91.95% 98.34% 95.13%
ℓmax = 6 73.12% 96.98% 94.23% 98.9% 96.36%
ℓmax = 10 65.24% 96.9% 88.57% 98.89% 91.94%

Table 3. PDs for every observable and combination of them.

Depending on the region a future measurement of the CGWB will fall in, we can conclude
the following:

• If it falls into the gray region, we may conclude that ΛCDM cannot explain the observed
value of STT,TGW

63◦,180◦ . Therefore, we need to find a more comprehensive model that can
explain this.

• If it falls inside the green one, we can say that our observation is well-explained by our
model; however, we cannot say anything more that this (being consistent, the fluke
hypothesis remains valid).

• If the measurement is in the red region, we can draw two different conclusions: either
the ΛCDM model is unable to describe the observations and the fluke hypothesis
can be rejected, or the CGWB signal is not correlated (constrained) to the current
measurements of the CMB temperature anisotropies (this indeed is an assumption).
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Figure 15. Value of STT for full-sky and masked SMICA and 10000 ΛCDM realizations of CMB
temperature (ℓmax = 4).

• If the observation falls at the intersection, it could be following the ΛCDM prediction
(green curve), preventing us from rejecting the fluke hypothesis.

This reasoning can also be applied to the other fields, or combinations of them, knowing
that the distributions at the optimal angle maximize our capability to get useful information
from the CGWB.

In conclusion, in appendix C we show the optimal angles and the distributions in the
optimal range assuming the more optimistic cases of ℓmax = 6 and ℓmax = 10.

3.2 Significance of the anomaly

Until now, we have explored the fluke hypothesis, finding that GWs can be crucial in rejecting
at least some of the assumptions of the ΛCDM model. Despite this, as mentioned above,
we cannot conclude anything regarding the actual significance of the anomaly with such
an analysis.

At the end of the previous section, we mentioned that in the green region and at the
intersection of the green and red ones of figure 13 we cannot draw any meaningful conclusion
since the fluke hypothesis still holds.

Here we look at the same problem, but from the perspective of the significance of the
anomaly, thus making use of the newly defined estimator in eq. (2.17).

Applying this to the SMICA maps, we obtain figure 15. We can see that the SMICA is
characterized by a low angular covariance irrespective of the angular range considered, since
each score consistently lowers than most ΛCDM realizations. In terms of significance, full-sky
and masked SMICA correspond respectively to 0.82σ and 2.41σ. This confirms what has
already been found in the literature, i.e. masking increases the significance of the anomaly,
meaning that high-latitude points drive it.

We now apply this reasoning to the CGWB. In this case, the role of data is played by
our constrained realizations. Figure 16 shows the results; the left panel depicts the values of
SGWGW and the right one their significance corresponding to the ΛCDM realizations.

Repeating the procedure for TGW, we obtain the figure 17. In addition, in this case,
TGW seems to perform similarly w.r.t. GWGW, providing consistent values for the significance.
However, both of them essentially fail in increasing the significance that one can get from TT.
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Figure 16. On the left panel, the value of SGWGW for full-sky and masked constrained realizations of
the CGWB and the ΛCDM realizations (ℓmax = 4). On the right panel, corresponding significance in
terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines indicate the
full-sky and masked SMICA-alone significance, respectively.

Figure 17. On the left panel, the value of STGW for full-sky and masked constrained realizations of
the CGWB and the ΛCDM realizations (ℓmax = 4). On the right panel, corresponding significance in
terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines indicate the
full-sky and masked SMICA-alone significance, respectively.

Going to the joint analyzes, we obtain figure 18, 19 and 20 for STT,GWGW, STT,TGW

and STT,TGW,GWGW, respectively.
Once again, we ask ourselves: how can these results be used in the presence of an

eventual measurement of the CGWB? The answer is essentially the same as the one at the
end of section 3.1, with an important exception. In fact, we already know how to interpret a
future observation falling in the red or gray region. However, this time we can associate each
constrained realization with a significance in the form of sigma distance. Therefore, the green
region corresponds to high-significance realizations (where one can claim that the anomaly is
the result of a physical phenomenon), while the intersection corresponds to low-significance
ones (where further investigation is needed to assess the origin of the anomaly). In other
words, having accounted for the look-elsewhere effect allows us to get useful information on
all the possible values of the estimator but the intersection.
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Figure 18. On the left panel, the value of STT,GWGW for full-sky and masked constrained realizations
of the CGWB and the ΛCDM realizations (ℓmax = 4). On the right panel, corresponding significance
in terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines indicate the
full-sky and masked SMICA-alone significance, respectively.

Figure 19. On the left panel, the value of STT,TGW for full-sky and masked constrained realizations
of the CGWB and the ΛCDM realizations (ℓmax = 4). On the right panel, corresponding significance
in terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines indicate the
full-sky and masked SMICA-alone significance, respectively.

Talking about the actual results, we summarize them in table 4. Here, we compare the
performances of the various combinations of observables by counting how many constrained
realizations reach a better significance w.r.t. SMICA alone.

For ℓmax = 4, despite what we find in section 3.1, the best combination seems to be TT
+ TGW + GWGW, which achieves the 98.81% and the 81.67% of the constrained realizations,
improving the significance of SMICA (full-sky and masked, respectively). Thus, to determine
the actual significance of the anomaly with GWs and to assess the physical origin of the
anomaly, it is crucial to observe the autospectrum. This in fact brings the majority of
information when combined with TT, as shown by the last and second to last columns of the
table 4.
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Figure 20. On the left panel, the value of STT,TGW,GWGW for full-sky and masked constrained
realizations of the CGWB and the ΛCDM realizations (ℓmax = 4). On the right panel, corresponding
significance in terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines
indicate the full-sky and masked SMICA-alone significance, respectively.

Full-sky
Signi. SSMICA SGWGW STGW STT,GWGW STT,TGW STT,TGW,GWGW

ℓmax = 4 0.82σ 63.13% 52.95% 98.34% 62.93% 98.81%
ℓmax = 6 1.3σ 38.49% 39.33% 97.59% 54.59% 98.59%
ℓmax = 10 1.18σ 47.15% 45.02% 98.3% 57.67% 99.01%

Mask-sky
Signi. SSMICA SGWGW STGW STT,GWGW STT,TGW STT,TGW,GWGW

ℓmax = 4 2.41σ 7.57% 12.34% 72.53% 7.78% 81.67%
ℓmax = 6 2.37σ 1.96% 1.23% 81.34% 0.31% 90.11%
ℓmax = 10 2.17σ 0.13% 0.46% 58.33% 0.15% 70.08%

Table 4. Percentage of constrained realizations that improve the significance of SMICA, which is
shown in the first column.

4 Conclusions

Since COBE [31, 37, 38], we have measured a low two-point angular correlation function of the
CMB temperature on large scales. This feature has been reassessed both by WMAP [9, 39, 40]
and Planck [4, 41, 42] suggesting that it is not the product of some systematic, given that the
three experiments are independent in this regard. Still, it is not clear whether the so-called
lack-of-correlation anomaly is the product of some non-standard physics or whether it is
the manifestation of the fact that we live in a rare realization of the ΛCDM model. Since
we already have a cosmic-variation-limited measurement of CMB temperature on low and
intermediate scales, this latter possibility has to be explored with some observable other than
temperature. An example is the E-mode polarization of CMB photons, which is correlated
with the temperature and can provide new information on the anomaly [43–46]. In this work,
we study the ability of the CGWB to shed light on this matter [67–72]. This is done by
exploiting both the autospectrum of the CGWB and its cross-spectrum with CMB temperature
(hereby named TGW). In fact, we know that this primordial signal has a great degree of
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correlation with the temperature of the CMB [76]. Thus, we can produce both constrained
and unconstrained realizations of the CGWB using the SMICA temperature map as our CMB
observation. Since we know that the lack-of-correlation anomaly is enhanced when the galactic
plane is removed [40, 84, 85], this is done while considering both full-sky and masked Planck’s
SMICA. These maps are smoothed with a Gaussian beam with FWHM = 2◦ and degraded
to Nside = 64. We have not shown this in the main body of this work, but we also repeated
the analysis assuming a smoothing of FWHM = 0.92◦ (thus the grid scale corresponding to
Nside = 64) and FWHM = 4◦. As expected, the former case brings some differences caused by
pixelization effects, which is why it is usually advisable to smooth maps with a beam two or
three times bigger than the grid scale. Instead, the latter produces identical results w.r.t. our
choice of 2◦, proving that it is sufficiently large. When performing the analysis, we must also
take into account that GWs are notably difficult to observe. Thus, we consider three different
choices of what the maximum multipole is that we can observe in a signal-dominated way, i.e.
ℓmax = 4, 6 and 10. Depending on the assumption one makes for the monopole radiation of
GWs, this can be obtained with one of the future GW interferometers or using a combination
of them (for example, LISA [58–62], DECIGO [90], ET [63, 64] and CE [91]).

Summarizing the methodology followed in this work, in section 2.1 we define the dataset
we exploit to perform our analysis, while in section 2.2 we generalize the full-sky expression
of the constrained realizations to account for the multipole couplings brought by the presence
of a mask (see also appendix A). Then, after having defined the key quantity on which the
lack-of-correlation manifests, i.e., the two-point angular correlation function (see section 2.3),
in section 2.4 we follow Copi et al. [43] to define an estimator to quantify the anomaly.
In particular, by integrating the two-point angular correlation function (squared) over a
certain angular range [θmin, θmax], one can define the quantity named Sθmin,θmax for each field
considered (in our case TT, TGW, and GWGW). Furthermore, [46] defines an estimator
capable of combining those of two different observables. Therefore, in our case, we define
three combined estimators STT,GWGW

θmin,θmax
, STT,TGW

θmin,θmax
, and STT,TGW,GWGW

θmin,θmax
, which encode the

information of all the observables considered. In section 2.5, we follow again Copi et al. [43], to
define a way to maximize the amount of information that we can obtain by adding CGWB to
the estimate. In particular, computing the constrained and unconstrained realizations of the
CGWB (considering both the full-sky and the masked version of SMICA), we count how many
unconstrained realizations can recover higher values of SGWGW

θmin,θmax
w.r.t. the 99th percentile of

the constrained ones. This defines what we call the Percentage Displacement (PD) of the
two distributions. When this PD is maximal, we can say that the CGWB is as sensitive as
possible to what is observed in the CMB (in terms of lack of correlation). The specific angular
range found is named the “optimal angular range”. The same procedure is also performed
for STGW

θmin,θmax
, STT,GWGW

θmin,θmax
, STT,TGW

θmin,θmax
and STT,TGW,GWGW

θmin,θmax
. Finally, in section 2.6 we define a

new estimator for the lack-of-correlation which takes into account the so-called look-elsewhere
effect. Indeed, to study the significance of the anomaly, we must find a way to marginalize
the angular-range information so that we recover the anomaly irrespective of the particular
range. In this way, we are able to provide a forecast of the improvement brought about by
the CGWB in terms of the significance of the lack-of-correlation anomaly.

Summarizing now the results, in section 3.1 we report the results for the optimal angular
ranges. We find that, in general, passing from the full-sky treatment to the masked treatment
increases the PDs obtained. This confirms that the anomaly seems to increase in significance
together with the angle from the galactic plane. In addition, when considering one field
at a time, TGW seems to be a consistently better probe to test the fluke hypothesis w.r.t.
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GWGW. Furthermore, using different combinations of fields, we show that TT + TGW
is the best combination to test the fluke hypothesis. In fact, even in the most pessimistic
case of ℓmax = 4 we obtain a PD of 96.41% in the optimal angular range [63◦, 180◦] (see
table 2–3). This PD can be compared with the ones in [43] regarding E-mode polarization,
showing that GWs are actually much more restrictive in testing the fluke hypothesis. As
discussed in section 3.1, this means that this combination of observables is extremely good for
testing this hypothesis, maximizing the probability of rejecting the ΛCDM model in the event
that a future observation happens to be outside the distribution shown in figure 13, with the
corresponding level of significance. Regarding the comparison with different assumptions on
ℓmax, we note that the best results in terms of PDs are obtained with ℓmax = 6, suggesting
that the lack of correlation signal lives in the first six multipoles (see appendix C for the plots).
Overall, we also show that there always seems to be a high-PD region near the range where
the original S1/2 estimator is defined [32]. As mentioned in section 3.1, another interesting
feature of this analysis is depicted in table 3: the masked case seems to give more consistent
results in terms of PDs against a change of ℓmax or used probes. Indeed, there seems to
be a fixed order of probes at each ℓmax when we rank them for ascending PD. This does
not hold for the full-sky case. Then, one might argue that the masked sky provides a more
faithful representation of reality due to its stronger consistency. Another feature emerges
when changing the ℓrmmax of the analysis (see appendix C) Indeed, increasing the number
of multipoles acts in different ways on the optimal regions: the GWGW realizations start
concentrating towards the ≈ 75◦ scale and the TGW abandon θmax ≃ 180◦ in favor of ≈ 130◦.
Hence, the various combined estimators report a combination of the preferred regions of the
two, or three, probes involved.

In section 3.2, we show the results for the actual significance of the anomaly. Firstly,
when applying our newly defined estimator to the CMB temperature alone, we obtain a
significance of 0.82σ and 2.41σ for full-sky and masked SMICA respectively. This confirms
that masking the sky greatly enhances the significance of this anomaly (in our case of a
factor three). Also, table 4 shows the significance of TT alone when increasing the number
of multipoles. It peaks at ℓmax = 6, suggesting in accordance with the optimal angular
range analysis that the anomaly lives in that multipole range. Focusing then on the CGWB
contributions, despite what we find analyzing the optimal angular ranges, we point out that
the autospectrum GWGW is crucial to obtain a good level of significance when including a
CGWB observation. The best results in this sense are given by the full combination TT +
TGW + GWGW, which provides 98.81% (81.67%) of the realizations improving the current
significance w.r.t. full-sky (masked) SMICA (see table 4). Unlike what we could conclude with
the analysis of optimal angles alone, using the new estimator for the significance, not only
can we reject the ΛCDM model if a measurement of the CGWB falls outside the predicted
distribution, but also we can associate an actual significance to a measurement following those
curves. Comparing again different assumptions on ℓmax and focusing on the full combination
of observables, the significance remains fairly stable in all cases in the full-sky case. Also, we
observe that the constrained realizations of GWGW and TGW are always centered on the
significance of SMICA alone (see appendix C). For the masked case, the results are behaving
more complexly. Starting from ℓmax = 6, having included two extra multipoles seems to
act as we expect, assuming that the anomaly lives in the first six multipoles as our analysis
suggests. Indeed, comparing the S-estimator distributions with the results shown in the main
body for ℓmax = 4, they appear to be in the same relative position w.r.t. the unconstrained
realizations, but with a shrunken dispersion (resulting in more peaked histograms). Thus,
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the same “anomalous signal” is present and gets better constrained by the higher number
of multipoles. This is also testified by the increase in the significance obtained (see table 4).
When considering the case of ℓmax = 10, the situation gets flipped over. The S-estimator
distributions approach tends to move toward the mean of the unconstrained distribution (even
getting superimposed to the full-sky case for GWGW alone), resulting in an overall loss of
significance. Together with the optimal range analysis and the significance of TT alone, this
suggests the following interpretation: if the anomaly actually lives in the first six multipoles,
we may expect that including more and more non-anomalous multipoles should decrease
the significance since these would distribute as the ΛCDM ones. In other words, since we
are summing over the considered multipole range (see eq. (2.12)), these new multipoles are
pushing the overall distribution toward the standard behavior.

Even though this is the first time the CGWB is exploited to explore the fluke hypothesis
for one of the known anomalies, here we show that it can be used effectively to shed light on
other ones. Indeed, even considering the very first multipoles of the CGWB power spectrum it
is possible to get a great amount of information on these anomalies. For example, [74] already
showed that it can help assess the presence of a dipolar modulation that accounts for the
so-called hemispherical power asymmetry. Furthermore, considering instead the Astrophysical
Gravitational Wave Background (AGWB), [98] explores the possibility of extracting the
dipole anisotropy. This is related to another branch of possible departures from the standard
cosmological model inspired by the recent emergence of several anomalously large dipoles in
many large-scale structure tracers [99–104].

In this paper we use NaMaster to compute the angular power spectrum of masked skies
(see section 2.1). In particular, this approach is applied whenever we need the spectrum of
masked SMICA to compute the estimators or when we need to compute the spectrum of TGW
while masking the CMB sky. Although this provides an unbiased estimate of the spectra,
it does not minimize their variance. For this reason, it would be interesting to explore this
anomaly with an analogous analysis employing some maximum likelihood estimator, which
instead allows one to get a minimal variance estimate of the spectra [47, 105, 106]. We leave
this for future work.

While writing this paper, another interesting aspect to explore in the time ahead has
been emphasized by Hansen et al. [107]. They show the evidence of the presence of an
extra-galactic foreground on top of the CMB temperature data. Indeed, if their claim is found
to be correct, it would mean that the variance measured on large scales is actually enhanced
by this signal. Therefore, mitigating this foreground from our maps would bring the variance
of the first CMB multipoles even lower than its current value, suggesting that the significance
of the lack-of-correlation anomaly might increase (even assuming TT alone). By extension, if
this hypothesis is correct, the CGWB might become crucial to boost the significance to the
level of an actual tension. In fact, in section 3.2 we show that in some cases the CGWB is
expected to provide a significance near the 4σ level, even with current data.

Concluding, in this work we just consider the CMB temperature and the CGWB. In-
stead, we know that CGWB also shares a correlation with E-mode polarization [76, 108].
Thus, this framework can be extended to all three of them. In this context, future exper-
iments such as LiteBIRD [55] could be crucial to finally assess the physical origin of this
anomaly, given that LiteBIRD is expected to be fully cosmic-variance-limited on the large-scale
polarization [56].
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A Window function in a partial sky

In section 2 we generalize the formula for constrained realizations to the cut-sky case. In
doing so, we use the window function of a mask, so here we give more details on this quantity.

Assume to have an observable field X, which gets decomposed using spherical harmonics.
This provides an efficient description of an observation in terms of the aℓm coefficients.
However, these will have different values and different statistics depending on the fraction
of the sky one is able to observe. In particular, the relation between full-sky (FS) and
cut-sky (CS) coefficients is [94, 95]

aCS
ℓm =

∫
cut−sky

X(θ, ϕ)Y ∗
ℓm(θ, ϕ) d(cos θ) dϕ

=
∫

cut−sky

∑
ℓ′m′

aFS
ℓ′m′Yℓ′m′(θ, ϕ)Y ∗

ℓm(θ, ϕ) d(cos θ) dϕ

=
∑
ℓ′m′

aFS
ℓ′m′

∫
cut−sky

Yℓ′m′(θ, ϕ)Y ∗
ℓm(θ, ϕ) d(cos θ) dϕ

, .

(A.1)

In the full-sky case, the integral gives δℓℓ′δmm′ thank to the orthogonality of the spherical
harmonics on the complete sky. However, on a portion of the sphere, they are not orthogonal,
so ℓ − ℓ′ couplings will emerge.

We can write eq. (A.1) as a function of a window function W defined by the particular
mask we are using as

aCS
ℓm = aFS

ℓ′m′W ℓ′m′
ℓm , (A.2)

where repeated indexes are summed over. Thus, in order to estimate the full-sky coefficients
from a partial sky observation we must compute W ℓ′m′

ℓm . Since one typically works with maps
divided in pixels, we can write the discretized window function as a sum over the unmasked
pixels p [95]

W ℓ′m′
ℓm =

∑
p ∈ CS

Yℓ′m′(p)Y ∗
ℓm(p)Ωp , (A.3)

where Ωp is the angular area of the pixel and the spherical harmonics are evaluated in the
center of each pixel. This sum will depend on the considered pixelization (Nside parameter of
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Figure 21. The left panel shows the window function obtained from the common intensity mask at
Nside = 64 and computed from eq. (A.3). The right panel shows the covariance of the cut-sky spherical
harmonic coefficients, as defined in eq. (A.4). For both panels, we mark the m-blocks, following
the usual indexing of the aℓms (note that the last block for m = 10 is not labeled for visualization
purposes). Here we assume ℓmax = 10.

Healpy), but it will tend to the continuous integration as the pixel size goes to zero. Note
that in the case of very aggressive masks, the window function may become singular.

An alternative route to obtain the window function is to use partial sky realizations of
the considered field. Indeed, looking at the covariance of the aCS

ℓm we can write (here we drop
the indexes for the sake of notation)〈(

aCS
)∗

aCS
〉

= W ∗
〈(

aFS
)∗

aFS
〉

W

= W ∗DW

=
(
D1/2W

)∗(
D1/2W

)
,

(A.4)

where D is a matrix with the angular power spectrum in the diagonal elements (see eq. (2.5)).
In the last line, we obtain the classic definition of the Cholesky decomposition. This shows
that having an empirical covariance obtained from N cut-sky realizations of X is equivalent to
having computed the window function of the mask while knowing the angular power spectrum
of the observable. In particular, we can write

D1/2W = Chol.
(
CovCS

)
W = D−1/2 × Chol.

(
CovCS

)
,

(A.5)

obtaining the window function from the cut-sky realizations. Obviously, this alternative way
will depend on the realizations used and their number.

At this point, we can specify the window function to our case, hence to the common
intensity mask of Planck (see section 2.1). We compute the window function from eq. (A.3)
and using Nside = 64. Figure 21 shows the real part of the obtained matrix assuming ℓmax = 10
and of the full covariance matrix W ∗DW (the imaginary part of both is negligible w.r.t.
the real one) normalized to the diagonal elements to emphasize the correlation structures.
The figure shows that the window function is not block diagonal. Instead, coefficients with
different m will get slightly correlated. Indeed, Mortlock et al. [95] show that in the case
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Figure 22. Pixel standard deviation across the sky for the true full-sky coefficients and the recon-
structed ones.

of symmetric, constant latitude cuts, the window function goes exactly to a block diagonal
matrix. Still, the elements correlating different orientations are negligible with respect to
elements belonging to the same m. To highlight this feature, we labeled in the figure the
different m-blocks, which contain the ℓ − ℓ′ correlations.

A.1 Sky variance of the reconstructed coefficients

As shown in eq. (2.8), we use this window function to reconstruct the full-sky spherical
harmonics coefficients, however this must come at a cost. Indeed, assuming to have a very
aggressive mask, it is intuitive to expect that not all the harmonic modes can be recovered,
especially if the typical angular scale of those is comparable with the width of the mask. In
more mathematical terms, the window function would be singular, thus one cannot invert
it to compute the reconstructed full-sky coefficients from the cut-sky ones [95]. In our case,
the W is invertible, however we expect the reconstructed coefficients to be more noisy than
the true ones. To verify this, we generate 1000 full-sky realizations, we mask each and we
reconstruct the âFS

ℓm. Then, we compute the standard deviation of each pixel to investigate
whether an extra scatter is present w.r.t. the full-sky dispersion. Focusing on the ℓmax = 10
case, figure 22 shows the results: on the left we plot the standard deviation pixel by pixel
of the true aFS

ℓm, while on the right we plot the extra standard deviation induced by the
reconstruction procedure.

Note that this contribution concentrates around masked areas of the sky (see figure 1),
suggesting that we pay the price of a full-sky description by increasing the noisiness of those
regions, as expected.

B Angular correlation functions for the CGWB

In section 2.3 we show the angular correlation functions for GWGW and TGW, however, we
limit the angular range to the one accessible imposing ℓmax = 4. This is done to account for
the performance of future GW interferometers. Despite this, it is interesting to have a look at
the 2-point angular correlation function on all scales, as predicted by ΛCDM. Indeed, the
angular power spectrum of the CGWB is very similar to the one of CMB temperature due
to their high correlation, but they diverge on small scales (ℓ ⪆ 100). Hence, figure 23 shows
C(θ) for GWGW and TGW when assuming ℓmax = 2000. Indeed, note that both the GWGW
and the TGW present the typical “sinusoidal” behavior on large scales. Instead, on small
ones GWGW tend to very high values since the CGWB spectrum is not dumped as the CMB
temperature one.
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Figure 23. Angular correlation function C(θ) of GWGW (left) and TGW (right) assuming ℓmax =
2000.

Figure 24. Optimal angles for GWGW. The left and right panels show respectively optimal angles
analysis and the results at the optimal range. Here we assume ℓmax = 6.

C Optimistic GWs detection

Here, we show some of the results of the same analysis performed in the main body if we
change the assumption on ℓmax. Indeed, we just showed the most pessimistic case of ℓmax = 4.
For the sake of brevity, we cannot show everything as we did in the main body. Instead, we
will show exclusively the results when we assume masked SMICA to be our CMB observation.

C.1 Optimal angles with ℓmax = 6
We show here the results of the optimal angles analysis for SGWGW

θmin,θmax
on figure 24 and on

figure 25 for STGW
θmin,θmax

.
Instead, figures 26–27–28 show the same respectively for STT,GWGW

θmin,θmax
, STT,TGW

θmin,θmax
and

STT,TGW,GWGW
θmin,θmax

. As mentioned in section 3.1, there always seems to be relatively high-PD
region where the original S1/2 estimator is defined, i.e. between 60◦ and 180◦.

C.2 Significance with ℓmax = 6
As done in section 2.6, we report here the significance analysis performed using the newly
defined estimator of eq. (2.17). Here, we can also show the full-sky results given that we can
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Figure 25. Optimal angles for TGW. The left and right panels show respectively optimal angles
analysis and the results at the optimal range. Here we assume ℓmax = 6.

Figure 26. Optimal angles for the combination of TT and GWGW. The left and right panels show
respectively optimal angles analysis and the results at the optimal range. Here we assume ℓmax = 6.

Figure 27. Optimal angles for the combination of TT and TGW. The left and right panels show
respectively optimal angles analysis and the results at the optimal range. Here we assume ℓmax = 6.
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Figure 28. Optimal angles for the combination of TT, TGW, and GWGW. The left and right
panels show respectively optimal angles analysis and the results at the optimal range. Here we assume
ℓmax = 6.

Figure 29. On the left panel, the value of SGWGW for full-sky and masked constrained realizations of
the CGWB and the ΛCDM realizations (ℓmax = 6). On the right panel, corresponding significance in
terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines indicate the
full-sky and masked SMICA-alone significance, respectively.

plot both in the same figure. Starting from SGWGW, we obtain figure 29, while for STGW we
get figure 30.

Switching to the multi-field analysis, we obtain figures 31–32–33 for STT,GWGW, STT,TGW,
and STT,TGW,GWGW.

C.3 Optimal angles with ℓmax = 10

We repeated the same thing for ℓmax = 10. Firstly, for SGWGW
θmin,θmax

we obtain figure 34 and
figure 35 for STGW

θmin,θmax
.

Instead, figures 36–37–38 show the same respectively for STT,GWGW
θmin,θmax

, STT,TGW
θmin,θmax

and
STT,TGW,GWGW

θmin,θmax
. Once again, there seems to be relatively high-PD region where the original

S1/2 estimator is defined.
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Figure 30. On the left panel, the value of STGW for full-sky and masked constrained realizations of
the CGWB and the ΛCDM realizations (ℓmax = 6). On the right panel, corresponding significance in
terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines indicate the
full-sky and masked SMICA-alone significance, respectively.

Figure 31. On the left panel, the value of STT,GWGW for full-sky and masked constrained realizations
of the CGWB and the ΛCDM realizations (ℓmax = 6). On the right panel, corresponding significance
in terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines indicate the
full-sky and masked SMICA-alone significance, respectively.

C.4 Significance with ℓmax = 10

As regards the significance, starting from SGWGW, we obtain figure 39, while for STGW we
get figure 40.

Switching to the multi-field analysis, we obtain figures 41–42–43 for STT,GWGW, STT,TGW,
and STT,TGW,GWGW.
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Figure 32. On the left panel, the value of STT,TGW for full-sky and masked constrained realizations
of the CGWB and the ΛCDM realizations (ℓmax = 6). On the right panel, corresponding significance
in terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines indicate the
full-sky and masked SMICA-alone significance, respectively.

Figure 33. On the left panel, the value of STT,TGW,GWGW for full-sky and masked constrained
realizations of the CGWB and the ΛCDM realizations (ℓmax = 6). On the right panel, corresponding
significance in terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines
indicate the full-sky and masked SMICA-alone significance, respectively.

Figure 34. Optimal angles for GWGW. The left and right panels show respectively optimal angles
analysis and the results at the optimal range. Here we assume ℓmax = 10.
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Figure 35. Optimal angles for TGW. The left and right panels show respectively optimal angles
analysis and the results at the optimal range. Here we assume ℓmax = 10.

Figure 36. Optimal angles for the combination of TT and GWGW. The left and right panels show
respectively optimal angles analysis and the results at the optimal range. Here we assume ℓmax = 10.

Figure 37. Optimal angles for the combination of TT and TGW. The left and right panels show
respectively optimal angles analysis and the results at the optimal range. Here we assume ℓmax = 10.
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Figure 38. Optimal angles for the combination of TT, TGW, and GWGW. The left and right
panels show respectively optimal angles analysis and the results at the optimal range. Here we assume
ℓmax = 10.

Figure 39. On the left panel, the value of SGWGW for full-sky and masked constrained realizations of
the CGWB and the ΛCDM realizations (ℓmax = 10). On the right panel, corresponding significance in
terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines indicate the
full-sky and masked SMICA-alone significance, respectively.
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Figure 40. On the left panel, the value of STGW for full-sky and masked constrained realizations of
the CGWB and the ΛCDM realizations (ℓmax = 10). On the right panel, corresponding significance in
terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines indicate the
full-sky and masked SMICA-alone significance, respectively.

Figure 41. On the left panel, the value of STT,GWGW for full-sky and masked constrained realizations
of the CGWB and the ΛCDM realizations (ℓmax = 10). On the right panel, corresponding significance
in terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines indicate the
full-sky and masked SMICA-alone significance, respectively.
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Figure 42. On the left panel, the value of STT,TGW for full-sky and masked constrained realizations
of the CGWB and the ΛCDM realizations (ℓmax = 10). On the right panel, corresponding significance
in terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines indicate the
full-sky and masked SMICA-alone significance, respectively.

Figure 43. On the left panel, the value of STT,TGW,GWGW for full-sky and masked constrained
realizations of the CGWB and the ΛCDM realizations (ℓmax = 10). On the right panel, corresponding
significance in terms of σ w.r.t. the unconstrained realizations. The dotted and dashed vertical lines
indicate the full-sky and masked SMICA-alone significance, respectively.
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