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Abstract: Background. As artificial intelligence is expanding its applications in medicine, metabolic 
imaging is gaining the ability to retrieve data otherwise missed by even an experienced naked eye. 
Also, new radiopharmaceuticals and peptides aim to increase the specificity of positron emission 
tomography (PET) scans. Herein, a preliminary experience is reported regarding searching for a 
texture signature in routinely performed [F18]Fluciclovine imaging in prostate cancer. Materials 
and methods. Twenty-nine patients who underwent a PET/computed tomography (CT) scan with 
[18F]Fluciclovine because of biochemical prostate cancer relapse were retrospectively enrolled. First- 
and second-order radiomic features were manually extracted in lesions visually considered patho-
logic from the Local Image Features Extraction (LIFEx) platform. Statistical analysis was performed 
on a database of 29 lesions, one1 per patient. The dataset was split to have 20 lesions for the model 
training set and 9 lesions for the validation set. The Wilcoxon–Mann–Whitney test was used on the 
training set to select the most significant features (p-value < 0.05) predicting the dichotomous out-
come in a univariate analysis. Results. The best model for predicting the outcome was found to be 
a multiple logistic linear regression model with two features as variables: an intensity histogram 
type and a gray-level size zone-based type. Conclusions. Texture analysis of [F18]Fluciclovine PET 
scans helps in defining prostate cancer relapse in a daily clinical setting. 
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1. Introduction 
The extraction of radiomic features from digital medical tomographic images through 

mathematical models has gained interest in the Nuclear Medicine community, giving an 
opportunity to relate semiquantitative variables to outcomes for evidence-based clinical 
guidance [1–3]. Indeed, the clinical application of a radiomic model can be challenging be-
cause of the heterogeneity of the data collected, the lack of robustness of the radiomic fea-
tures themselves, and bias derived from pre- and post-processing factors [4]. 

Citation: Travascio, L.;  

De Novellis, S.; Turano, P.;  

Di Nicola, A.D.; Di Egidio, V.;  

Calabria, F.; Frontino, L.;  

Frantellizzi, V.; De Vincentis, G.;  

Cimini, A.; et al. Texture Analysis in 

[18F]-Fluciclovine PET/CT Aids to 

Detect Prostate Cancer Biochemical 

Relapse: Report of a Preliminary  

Experience. Appl. Sci. 2024, 14, 3469. 

https://doi.org/10.3390/app14083469 

Academic Editor: David Mills 

Received: 28 November 2023 

Revised: 26 March 2024 

Accepted: 4 April 2024 

Published: 19 April 2024 

 

Copyright: © 2024 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Appl. Sci. 2024, 14, 3469 2 of 11 
 

Innumerable radiomic features can be used alone or in combination with clinical var-
iables such as size, shape, or, when talking about prostate cancer, serum prostate-specific 
antigen (PSA) to pursue precision medicine in order to predict the right treatment for the 
right patient [5]. First-order features describe individual voxels values, not accounting for 
spatial relationships between voxels. They report size, shape, and count density-; mean, 
median, max, and min intensity, and their skewness, kurtosis, uniformity, and random-
ness. Second-order textural features group voxels with similar statistics and are useful for 
measuring tumor heterogeneity. GreyThe Gray-Level Co-occurrence Matrix (GLCM) and 
Gray-level Run Length Metrix (GLRLM), respectively, account for the spatial relation-
ships of pairs of pixels or voxels with predefined gray-level intensities and the spatial 
distribution of runs of consecutive pixels with the same gray level. Higher-order statistics 
search for pattern repetitions in the data [1,6,7].  

Collecting radiomic features (RFs) requires several discrete steps, including either 
image acquisition, which has to be standardized at intra- and inter-institutional levels; the 
segmentation of the volume of interest (usually operator-dependent and therefore repre-
senting a critical phase); or the mathematical extraction of quantitative descriptors (statis-
tical outputs) [2,4]. 

When extracted from functional imaging, namely positron emission tomography 
(PET) scans, these features signify aspects of radiotracer intensity (concentration), hetero-
geneity, and shape within the tumor, reflecting biological characteristics with potential 
value in the prediction of disease progression and aggressiveness [8,9]. 

Prostate cancer (PCa) biochemical recurrence (BCR) is detected early by a progressive 
increase in PSA serum levels over time in spite of castrate testosterone levels [10,11]. Spe-
cifically, BCR occurs in 20–40% of PCa patients after radical prostatectomy (RP) and in 30–
50% of cases after radiotherapy (RT) within ten years [12]. Recurrence of prostate disease 
with metastatic disease occurs in one-third of men who experience BCR within 15 years 
of RP. Nonetheless, once BCR occurs, the right therapeutic approach depends on whether 
the disease is localized or disseminated, and functional imaging may address the right 
treatment. Conventional imaging, such as bone scans, computed tomography (CT), and 
magnetic resonance (MR), may fail to accurately assess the extent of recurrent disease, 
whilst eventual extrapelvic disease excludes patients from salvage radiation therapy 
[13,14].  

[18F]Fluciclovine (anti-1-amino-3-F18-fluorocyclobutane-1-carboxylic-acid, i.e., 
[18F]FACBC) is a radiopharmaceutical that was recently approved by the US FDA (2016) 
and EMA (2018) for use in cases of biochemical relapse in prostate cancer. [18F]FACBC [15] 
is a radiolabeled analog of levorotatory leucine, taken up via the human L-type amino 
acid transporter (LAT) and alanine–serine–cysteine transporter systems (ASCT2), which 
are overexpressed in protein-synthetizing tissues and in many carcinomas, including 
prostate cancer [16]. Once in the cell, [18F]FACBC uses the same channel to exit unmodi-
fied, peaking in pathologic prostate tumors and physiologic pancreas tissue between 4 
and 10 min after i.v. injection, decreasing within 15 min, progressively accumulating in 
muscles and red marrow. Minimal to no activity accumulates in the bladder, which rarely 
interferes with deep pelvis images examination. PET imaging to assess Pca relapse, there-
fore, begins 3–5 min after radiotracer injection, caudal to cranial. [18F]Fluciclovine uptake 
in tissues is compared to that in the blood pool, bone marrow, and liver, respectively being 
mild, moderate, and intense, respectively [16]. 

The aims of this study were to investigate whether a texture analysis of [18F]Flu-
ciclovine PET scan in Pca patients can be routinely performed and to search for a radiomic 
signature that could predict prostate cancer aggressiveness alone or combined with clini-
cal variables (PSA at diagnosis, PSA at [18F]Fluciclovine scan).  
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2. Materials and Methods 
2.1. Population 

Our study population retrospectively included consecutive patients affected by Pca 
who underwent a [F18]FACBC PET/CT scan between June 2021 and August 2022 at the 
Nuclear Medicine Unit of Santo Spirito Hospital, Pescara, Italy. The patients included had 
cito- or histologically proven Pca that had already been definitively treated—either by 
radical prostatectomy (RP), transurethral resection of the prostate (TURP), exclusive pros-
tate bed radiation therapy (RT), or androgenic deprivation therapy (ADT)—with a pro-
gressive increase in serum PSA up to 3 ng/mL, suggestive of biochemical relapse. Only 
patients with PSA ≤ 3 ng/mL within 3 months underwent [F18]Fluciclovine PET/CT ex-
amination. Both cito/histological results (Gleason score) and PSA at diagnosis, i.e., before 
biopsy/surgical procedures (clinical variables), were registered. 

Every patient was called back in November 2022 to complete the collection of medical 
records (serum PSA, [F18]F-Choline or [F18]Fluciclovine PET/CT, MR or any change in 
therapy) and end follow-up.  

Patients were excluded from our study population when medical records (Gleason 
score, PSA at diagnosis) were not available, or when [F18]Fluciclovine PET/CT was per-
formed on a different tomograph, or when the follow-up after [F18]Fluciclovine PET was 
<3 months. 

2.2. Image Acquisition 
[F18]Fluciclovine PET/CT scans were performed at the Nuclear Medicine Unit of 

Spirito Santo Hospital, Pescara, according to present imaging guidelines [14]. All patients 
fasted 4 h before their PET/CT scan and were asked to avoid any significant physical ex-
ercise 24 h prior to the scan. Patients stopped voiding 30 min before radiopharmaceutical 
injection and image acquisition.  

Whole For each patient, a whole-body PET/CT scan was performed, from the proxi-
mal thigh to the vertex, starting at 3–5 min after the intravenous (i.v.) injection of 370 MBq 
of [F18]FACBC on a PET/CT MI DR scanner (GE Healthcare, Chicago, IL, USA). A low-
dose CT scan was performed for attenuation correction and anatomic correlation. 

2.3. Image Interpretation 
Images were reviewed by one board-certified Nuclear Medicine physician (L.T., 15 

years of experience in PET/CT imaging) using appropriate software (Advantage 4.7). Any 
area with [18F]FACBC uptake intensity higher than background uptake that could not be 
classified as physiological activity was considered potentially pathologic; its grade of up-
take (maximum standardized uptake value, i.e., SUVmax) was registered and compared 
with the reference value (mean standardized uptake value, i.e., SUVmean) measured on 
the blood pool or bone marrow. For each patient, sites with pathological uptake were an-
notated.  

2.4. Extraction and Selection of Radiomic Features 
First- and second-order radiomic features (RFs) were extracted by L.T. in lesions vis-

ually considered pathologic on [F18]Fluciclovine PET scan from the Local Image Features 
Extraction (LIFEx) platform, drawing a manual 3D region of interest (ROI) on DICOM-
converted images (example in Figure 1). Each ROI was verified on axial, sagittal, and cor-
onal views to exclude physiological activity from adjacent structures. 
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Figure 1. Example of LIFEx platform tools used to extract radiomics features from [F18]Fluciclovine 
PET/CT scan drawing a manual 3D region of interest (ROI) on DICOM-converted images. One hun-
dred and fourteen radiomic features (RFs) were extracted for each ROI. Thirteen robust RFs were 
tested on our sample. 

A total of 114 RFs were extracted for each ROI, and among these, the Wilcoxon–
Mann–Whitney test (lowest p value) selected 13 robust RFs to be tested on our sample. 

S.D.N., a specialist in medical physics, monitored the RF extraction procedure carried 
out by L.T, readily revising the collected data for robustness and quality assurance. 

2.5. Statistical Analysis 
Statistical analysis was performed on a database of 29 lesions, 1 per patient.  
The dataset was split to have 20 lesions for the model training set and 9 lesions for 

the validation set. The chosen dichotomous outcome is the presence (1) or absence (0) of 
Pca recurrence in the available follow-up period.  

The Wilcoxon–Mann–Whitney test, the most accurate and robust method for select-
ing features with a non-Gaussian distribution, was used on the training set to select the 
most significant features (p-value < 0.05) predicting the dichotomous outcome in a uni-
variate analysis.  

The resulting features were used as variables in a multiple logistic linear regression 
with two unknowns. The most significant feature, i.e., the one with the lowest p-value, 
was selected as the first variable for model creation. Several logistic linear regression mod-
els were elaborated with two variables: the feature with the lowest p-value was combined 
with one of the other significant (p-value < 0.05) features.  

The best predictive model was the logistic model that showed the highest AUC and 
was evaluated via a validation test. The Receiver Operating characteristic (ROC) curves 
show the 95% confidence intervals of the area under the curve (AUC), calculated using 
the bootstrap method with 1000 iterations. The cut-off threshold was selected maximizing 
the Youden Index (J), and values of sensitivity and specificity at the best threshold were 
calculated. Statistical analysis was performed using R software (version 3.6.1, Wien, Aus-
tria) and dedicated packages [17]. 
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3. Results  
Sixty-five patients underwent [18F]Fluciclovine PET/CT between March 2021 and Au-

gust 2022. Overall, 36/65 patients were excluded (Figure 2) because their follow-up period 
was <3 months or because medical records for them were missing (23/36 patients); because 
their [18F]Fluciclovine scan was performed on a prior PET/CT tomograph (6/36 patients); 
because they could not be contacted to ensure we had complete medical records for them 
(5/36 pts); or because no uptake foci were detectable on their [18F]Fluciclovine scan and no 
RFs could be extracted (2/36 pts). Finally, 29 patients with locoregional recurrence were 
included in this analysis.  

 
Figure 2. Flowchart showing patients included in the present study. 

In Table 1, medical records of the population included are shown. Follow-up in our 
population spanned 8.6 ± 4.8 months (mean ± SD). Overall, 10/29 patients biochemically 
relapsed 10 years after the first curative Pca approach. 

Table 1. Medical records (mean ± SD) of the 29 patients included in the study. 

Age at Diagnosis (yo, Mean ± SD) 66 ± 7 
Gleason Score No. Patients % 

 

nd 1 3 
3 + 2 2 6 
3 + 3 6 19 
3 + 4 12 39 
3 + 5 1 3 
4 + 3 5 16 
4 + 4 2 6 
4 + 5 1 3 
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5 + 3 1 3 
PSA at diagnosis (mean ± SD) 14.25 ± 14.9 ng/mL 

 
<4 ng/mL 2 6 

4 ÷ 10 ng/mL 15 48 
>10 ng/mL 13 42 

PSA at fluciclovine PET/CT 

 
<1 ng/mL 12 39 

1 ÷ 2 ng/mL 9 29 
>2 ng/mL 9 29 

Time to relapse (years) 

 

<1 year 4 13 
1 ÷ 3 years 7 23 
3 ÷ 5 years 2 6 

5 ÷ 10 years 8 26 
>10 years 10 32 

PSA levels, registered both at diagnosis and before [18F]Fluciclovine PET/CT, did not 
predict the outcome (data not shown).  

[18F]Fluciclovine revealed significant focal uptake in the prostatic bed or in Douglas’ 
space. In 4/29 patients, however, [18F]Fluciclovine also imaged six bone foci of uptake, in-
terpreted as metastatic and confirmed at follow-up (Figure 3). These four findings were 
not included in the radiomic signature analysis. 

 
Figure 3. Maximum intensity projection (a), [18F]Fluciclovine PET (b), and PET/CT (c) axial view of 
locoregional recurrence of Pca (green arrow), as seen in our series in a patient (61 yo). This recur-
rence occurred 6 years after radical prostatectomy, PSA 1.34 ng/mL. In (d), a bone focus of [18F]Flu-
ciclovine uptake, interpreted as metastasis, on the right pedicle of L4 (red arrow) in the same patient 
is shown, which was then confirmed by MR (e). 

Textural records of the 29 patients enrolled in this study are shown in Table 2.  
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Table 2. Textural records of 29 patients. MORCOMP1: morphological compactness; IHKURTOSIS: 
Intensity Histogram Kurtosis; IHSkewness: Intensity Histogram Skewness; GLCMDIVa: 
GLCM_Difference Variance; NGTDMCom: NGTDM_Complexity; NGTDMStr: NGTDM_Strenght; 
GLSSlZE: GLSZM_SmallZoneEmphasis; GLSLGLZE: GLSZM_Low GrayLevelZone Emphasis; 
GLSSZHLE: GLSZM_SmallZoneHighGreyLevelEmphasis; GLSGLNU: GLSZM_GreyLevelNonU-
niformity; GLSZSNU: GLSZM_ZoneSizeNonUniformity; GLSNZSNU:GLSZM_NormalizedZone-
SizeNonUniformity; GLSZMZP: GLSZM_ZonePercentage. 

Radiomic Features Mean SD 
MORCOMP1 0.045 0.017 

IH_KURTOSIS 1.52 1.90 
IH_IntensityHistogramSkewness. 

SUVbw 
0.82 0.69 

GLCMDIVa 2.67 3.04 
NGTDMCom 118.35 156.29 
NGTDMStr 3.40 3.61 
GLSZMSlZE 0.35 0.13 
GLSLGLZE 0.04 0.04 
GLSSZHLE 44.34 45.74 
GLSLHGLE 95,043.98 133,545.82 
GLSGLNU 3.71 2.99 
GLSZSNU 10.49 13.80 

GLSNZSNU 0.18 0.07 
GLSZMZP 0.10 0.18 

After [18F]Fluciclovine PET/CT, the therapeutic approach progressed from antiandro-
genic therapy to abiraterone or to radiation therapy in 29/29 patients. 

Our univariate analysis found four IBSI features to be significant; two were of the 
histogram intensity type, i.e., generated by discretizing the original set of gray levels into 
gray-level bins, and the other two were of the GLSZM (Gray-Level Size Zone Matrix) type, 
which counts the number of groups of linked voxels. IntensityHistogramSkewness 
showed the lowest p-value.  

The logistic linear models with these two variables analyzed are as follows:  
Model I: IntensityHistogramSkewness and INTENSITY.HISTOGRAM_Mini-
mumHistogramGradientGreyLevel.SUVbw.IBSI.RHQZ. 
Model II: IntensityHistogramSkewness and GLSZM_SmallZoneEmpha-
sis.IBSI.5QRC. 
Model III: IntensityHistogramSkewness and GLSZM_SmallZoneHighGreyLevelEm-
phasis.IBSI.HW1V. 
The model displaying the best AUCs is Model II, with the variables IntensityHisto-

gramSkewness and GLSZM_SmallZoneEmphasis; its AUC was 0.82 on the training set 
and 0.95 on the validation set.  

A summary of the predicted performance of the three models is shown in Table 3, 
while the ROC curves are shown in Figure 4. 

Table 3. Logistic linear models with two variables. 
 Sensitivity Specificity Threshold J_Index AUC Low_AUC High_AUC 

 Train-
ing 

Valida-
tion 

Train-
ing 

Valida-
tion 

Train-
ing 

Valida-
tion 

Train-
ing 

Valida-
tion 

Train-
ing 

Valida-
tion 

Train-
ing 

Valida-
tion 

Train-
ing 

Valida-
tion 

Model I 100 60 50 100 0.36 0.62 0.5 0.6 80.21 70 0.6 0.29 1 1 
Model II 66.67 80 87,5 10 0.69 0.79 0.54 0.8 82.29 95 0.63 0.81 1 1 
Model 

III 
91.67 80 75 100 0.36 0.95 0.67 0.8 81.25 90 0.6 0.68 1 1 
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Figure 4. ROC curves of the models with training set and validation set for each model of logic linear 
regression. Model II, with IntensityHistogramSkewness and GLSZM_SmallZoneEmphasis, dis-
played the best area under the curve (AUC) values, with an AUC of 0.82 on the training set and 0.95 
on the validation set. 

4. Discussion 
Radiomics and Deep Learning (DL) approaches for medical tomographic images, 

first established in radiology, have reached the nuclear medicine community as part of the 
effort to catch reproducible data usually missed by even a skilled naked eye. Standardized 
Uptake Value, Metabolic Tumor Volume, and Total Lesion Glycolysis are semiquantitative 
data now routinely employed for diagnosis and monitoring [18F]FDG avid disease. When 
using non-FDG tracers, semiquantitative variables can be provided by radiomics. A dis-
crete number of radiomic-based papers looking for radiomic signatures in PET oncologic 
images have been published [3,18], but, in order to validate the use of radiomic features 
in PET image interpretation, intra- and inter-institutional variability in acquisition proto-
cols and PET tomographs, both affecting RFs in their repeatability and reproducibility, 
still has to be overcome [19]. In fact, the standardization of images collected in several NM 
departments is mandatory for the validation of a radiomic model. Our retrospective anal-
ysis enrolled 29 patients, which is the main limitation of this analysis, though the patients 
were homogeneous in the clinical indication for their [18F]Fluciclovine scans, carried out 
on the same tomograph, with fixed activity and time of acquisition. Also, the same nuclear 
medicine consultant and medical physicist reviewed the [18F]Fluciclovine images and 
manually extracted RFs. With the acquisition protocol being so strict, the implementation 
of study populations from other Nuclear Medicine facilities could be feasible if the PET 
scanners used have similar characteristics.  

The aim of our study was to find a radiomic signature in [18F]fluciclovine PET/CT 
scans that could possibly be useful in establishing Pca relapse alone or combined with 
clinical variables, namely PSA levels at relapse. However, when going through the data, 
the radiomic model was not integrated with the clinical data because, as an inclusion cri-
terion, each patients’ PSA already meant disease recurrence had taken place. Furthermore, 
the patients enrolled in this study had been treated by either radical prostatectomy or 
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radiotherapy, with a relatively different cut-off significant for biochemical relapse, while 
PSA kinetics, which are more accurate [20,21], were not available when scheduling 
[18F]Fluciclovine scans.  

Indeed, our radiomic training set detected [18F]Fluciclovine uptake sites with a higher 
probability to be specific for recurrence. Initially, 114 RFs were extracted, but only Intensi-
tyHistogramSkewness and GLSZM_SmallZoneEmphasis.IBSI.5QRC were robust and sig-
nificant in predicting the clinical outcome. Roughly, skewness is a single-pixel or single-
voxel feature that describes the shape of the intensity distribution of data, reflecting the 
asymmetry of the data distribution curve. GLSZM_SmallZoneEmphasis counts groups (so-
called zones) of interconnected neighboring pixels or voxels with the same gray level. Other 
than these two features depicting Model II, IntensityHistogramSkewness and INTEN-
SITY.HISTOGRAM_MinimumHistogramGradientGreyLevel.SUVbw.IBSI.RHQZ and In-
tensityHistogramSkewness and GLSZM_SmallZoneHighGreyLevelEmphasis.IBSI.HW1V 
in model I and III, respectively, had AUCs that were not so dissimilar from those of model 
II, highlighting that skewness and the zones of gray-level patterns can describe a radiomic 
signature in clinical settings. These results, however, refer to our preliminary experience and 
need further validation with an increased sample size and reduced “small size” bias. 

In August 2023, when searching “radiomic AND PET/CT AND prostate” on the Pub-
med database, 82 results were found (https://pubmed.ncbi.nlm.nih.gov/?term=radi-
omics+AND+PET%2FCT+AND+prostate (accessed on 27 November 2023)). Only 2 out of 
these 82 results pertain to studying [F18]F-fluciclovine radiomic features in prostate can-
cer [22,23]. Kang et al. [22] searched for an image biomarker using Haralick texture fea-
tures in prostate bed, pelvic lymph nodes, and extrapelvic metastases in 28 prostate cancer 
patients with biochemical relapse. In particular, they found three textural features (con-
trast, variance, and correlation) negatively associated with the probability of BCR and in-
corporated them into their radiomic model to enhance the probability of predicting BCR. 
Our aim and results were slightly different, and it has to be noted that they did consider 
PSA as a clinical variable in combination with RFs, while, in our sample, PSA was not 
significant in predicting the outcome. On the other hand, Lee et al. [23] studied 233 pa-
tients with BCR from Pca with [18F]Fluciclovine, proposing a deep learning approach 
when studying the pelvis. A 2D-CNN slice-based approach showed the best performance 
in detecting abnormal [F18]F-FACBC foci of uptake, with promising results. Hopefully, 
our knowledge and experience with radiomics tools can grow once trained. A similar 
study on the prognostic value of RFs in [F18]-choline PET/CT, carried by Alongi and coll. 
[24], proved that a radiomic approach could potentially be useful in a daily clinical setting 
of Pca BCR and found RFs useful for N, M, and T lesions. Our sample also showed distant 
metastases, mainly bony, that PSA alone could not predict. In particular, six bone metas-
tases were registered in four patients but were excluded from the final analysis because it 
would have not significantly influenced our statistical results. As previously reported in 
other PET tracers employed in Pca [25,26], a flare phenomenon was seen in 7/29 patients 
in our population, all ongoing ADT therapy (data not shown), and 4/7 were diagnosed 
with bony metastases in the same [F18]Fluciclovine scan, confirmed at subsequent follow-
up. It might have been interesting to scan these seven patients with [F18]F-FDG in order 
to calculate metastases’ aggressiveness. 

5. Conclusions 
This single-center retrospective study reports a preliminary experience proving that 

a radiomic signature of [18F]FACBC PET/CT can be easily found. PSA levels at diagnosis 
and at [18F]Fluciclovine was not significant in this small sample population in addressing 
prostate cancer aggressiveness, as the patients included had been previously treated either 
by surgery or radiation therapy or ADT. These are promising results that have to be con-
firmed in larger sample populations and with longer follow-up periods.  
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