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Abstract— Protein synthesis in eukaryotes is carried out by
ribosomes, large RNA–protein complexes consisting of a small
and a large subunit. In this work we present a mathematical
model for cellular growth comprising both protein production
and ribosome synthesis, properly accounting for both small and
large subunits dynamics. The qualitative analysis of the model
is carried out according to a simplifying assumption on the
proportion of the two ribosomal subunits in stationary growth
conditions; such hypothesis is based on a reasonable biological
ground. Conditions are given on the model parameters in order
to ensure exponential growth and the corresponding growth
rate is straightforwardly computed from the model parameters.
These results are validated by numerical simulations carried out
according to a set of biologically meaningful model parameters.
The modified model is better suited to host molecular blow-up of
ribosomal synthesis and cell growth within a modular whole-cell
model able to act as a scaffold connecting metabolism, growth
and cycle.

I. INTRODUCTION

RNA and proteins account for over 70% of cell biomass
(http://book.bionumbers.org/what-is-the-
macromolecular-composition-of-the-cell/).
In living cells protein synthesis is carried out by ribosomes,
large RNA-protein macromolecular complexes consisting
of a Small SubUnit (SSU) and a Large SubUnit (LSU).
The scheme reported in Fig.1 shows that one SSU and one
LSU interact with one messenger RNA (mRNA) molecule
yielding a mature ribosome ready for protein translation.
Amino acids are carried by transfer RNA (tRNA). The
process repeats several times leading to the synthesis of
a protein. Once synthesis of the protein is terminated,
the complex dissociates into free ribosomal subunits, the
synthesized protein and the mRNA. Many of the biochemical
details related to ribosome synthesis and protein production
have been elucidated over the last decades (see e.g. [1]),
showing that, at a molecular level, synthesis, degradation
and regulation are emergent properties arising from complex
interconnected networks.

The ribosome/protein syntesis model - originally described
in [2] - belongs to an integrated low-granularity model [3]
interconnecting yeast Metabolism, Growth and Cell Cycle. It
can be used as a scaffold for molecularly detailed models of
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the yeast functions, such as a molecular model of ribosome
biosynthesis. Each ribosome is made of two subunits (Figure
1) and the assembly of each subunit is a complex process
requiring several hundreds of gene products. The integrated
model belongs to the category of whole-cell-models, pio-
neered by [4].

The elaborate process of ribosome bio-genesis (ribosome
assembly) has been thoroughly investigated at the molecular
level (mostly in bacteria and yeast cells) and a large number
of molecular players involved in the assembly of both
subunits have been identified (e.g. [5], [6]). The first step
in the molecular reconstruction of this process is a low-
granularity model that implements separately biosynthesis
of the two subunits. Accordingly, this note proposes a low
granularity Ordinary Differential Equation (ODE) model of
ribosome/protein production as an extension of [2] that
accounts for small and large ribosomal subunits dynamics.

Similarly to [7] where an accurate qualitative behavior
analysis has been carried out on the model in [2]), here
we investigate the conditions on the parameters of the new
model that ensure exponential growth. Differently from [2],
[7], here we have nonlinearities that prevent straightforward
computations. Therefore, the qualitative behavior analysis
is carried out according to the simplifying assumption that
small and large subunits are in equi-molar proportion in ex-
ponential growth conditions. This fact is supported on a solid
biological ground [9,10] and allows to reduce the complexity
of the model. Conditions are given on the reduced-order
model parameters that ensure stationary exponential growth
and the corresponding growth rate is straightforwardly com-
puted from the model parameters. These results are validated
by numerical simulations carried out according to a set of
biologically meaningful model parameters.

II. RIBOSOME-PROTEIN SYNTHESIS MODEL

The proposed model builds upon the following coarse-
grain ribosome-protein synthesis model presented in [2] (and
exploited more recently in [3] as a growth module in the
skeleton of a yeast whole-cell model integrating metabolism,
growth and cycle). In the next subsection, we briefly recall
its mathematical structure.

A. The low-granularity growth model [2]

Let Rtot and P be the copy numbers of ribosomes1 and
proteins (these last in terms of polymerized amino acids).

1We use the subscript tot, standing for total number, for what we
introduce later.



Fig. 1. Schematic representation of the ribosome cycle.

The growth model proposed in [2] is described by the
following equations

Ṙtot = K1(ρP −Rtot)
+ − 1

T1
Rtot, (1)

Ṗ = K2R− 1

T2
P, (2)

where the nonlinear function (·)+ is the positive part, i.e.
(x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0, and K1, T1, K2,
T2 are positive model parameters, whose values may vary
according to environmental conditions (e.g. nutrients). In par-
ticular, K1 and K2 are the average total ribosome assembly
efficiency and the translational efficiency respectively, while
T1 and T2 are the ribosomes and proteins degradation time
constants, respectively.

Both dynamics come out from the balance between synthe-
sis and degradation. With regard to the ribosome synthesis,
a negative feedback is assumed to control the synthesis rate
according to the ribosomes-over-proteins ratio [8], [2], [9]:
if the ratio Rtot/P overcomes a threshold ρ (i.e., if there
are too many ribosomes with respect to the actual quantity
of proteins) there is no ribosome synthesis; otherwise, the
ribosome synthesis is proportional to the (positive) difference
ρP (t)−Rtot(t). With regard to the protein production rate, it
is assumed a linear transformation of the ribosome content.
Both ribosomes and proteins degradation rates are linear.

We refer the interested reader to [7] for an extensive
qualitative analysis of the model (1)–(2).

B. Small and large ribosomal subunits

Ribosomes are large RNA–protein macromolecular com-
plexes consisting of a Small and a Large Sub-Unit (SSU
and LSU, respectively). During protein synthesis, the small
subunit binds to the large subunit onto the mRNA strand with
peptide-bond formation (see Fig. 1).

Our proposed model characterizes the dynamics of the
following cellular components:

RSSU : copy number of free SSU
RLSU : copy number of free LSU

R : copy number of active ribosomes
P : copy number of polymerized amino acids

By free SSU/LSU we refer to the components that are not
bound together onto the mRNA strand. Contrarily, by active
ribosomes we refer to the macromolecule provided by one
SSU and one LSU bound together onto the mRNA strand in
the process of translation, according to the following binding/
unbinding reaction

RSSU +RLSU
k̃on−−⇀↽−−
koff

R, (3)

where k̃on and koff are the binding/unbinding reaction rate
constants. Thus, the total number of ribosomes is defined as

Rtot = R+min{RSSU, RLSU}. (4)

Remark. Although, from a biological viewpoint, the bind-
ing/unbinding reaction (3) requires the presence of an mRNA
strand, the proposed model neglects it, assuming that there
is plenty of mRNA slots where ribosomal subunits may
bind. Indeed, dealing, e.g., with a yeast cell accounting
for an average number of 3.6 · 104 mRNA strands, we
have that about 71% is busy with ribosomes (in average 5
ribosomes per mRNA strand out of an overall number of 8
contemporary binding sites per mRNA strand), so that there
can be found an average number of free-from-ribosomes
mRNA slots equal to

0.71× 3.6 · 104 × (8− 5) + 0.29× 3.6 · 104 × 8 = 1.6 · 105

Such number is one order of magnitude greater than the un-
bound ribosomes (i.e. pairs of unbound small/large subunits)
equal to 3.75 · 104 (about 15% of the overall number of
ribosomes) [10], [11], [12], [13], [14], [15].

C. The ribosomes/proteins synthesis model

In the following, we exploit the usual square brackets
notation to indicate concentrations. By denoting with V the
volume of a growing cell, from (3) the ribosomes dynamics
may be written, according to mass action law [16], with
respect to concentrations, as

˙[R] = k̃on[RSSU][RLSU]− koff[R]−
[R]

V
V̇ , (5)

where the last term of the right-hand-side of (5) is the
dilution term and it takes into account the cell volume
variation. Keeping in mind the relationship between amounts
and concentrations (e.g. R = V [R] for ribosomes), the ODE
(5) may be re-written in terms of copy numbers

Ṙ = V̇ [R] + V ˙[R]

= V̇ [R] + k̃onV [RSSU][RLSU]− koffV [R]− [R]V̇

= k̃on
RSSURLSU

V
− koffR. (6)

Moreover, we assume that the cell volume is proportional
to the number of the proteins, [17], through the factor α,
namely V = αP , thus we obtain

Ṙ = kon
RSSURLSU

P
− koffR, (7)

with kon = k̃on/α.



Similarly to the ribosome synthesis modeled by (1) in [2],
both small and large subunits synthesis is switched off in
case the overall ribosomes-over-protein ratio exceeds a given
threshold ρ. Thus, from the binding/unbinding reaction (3),
we describe the dynamics of the two subunits as follows

ṘSSU = kSSU (ρP −Rtot)
+ − γSSURSSU

− kon
RSSURLSU

P
+ koffR, (8)

ṘLSU = kLSU (ρP −Rtot)
+ − γLSURLSU

− kon
RSSURLSU

P
+ koffR, (9)

where kSSU, kLSU, γSSU, γLSU are positive parameters, whose
values may vary according to environmental conditions (e.g.
nutrients).

Notice that there is no explicit degradation for active
ribosomes, whose clearance passes through the unbinding
of the two sub-units [16].

Finally, we model the proteins synthesis as in (2):

Ṗ = K2R− γpP (10)

with γp playing the same role of 1/T2 in (2).
To summarize, equations (7), (8), (9) and (10) constitute

the ODEs of the new ribosome-protein synthesis model.

III. GROWTH RATE COMPUTATION
In the previous section we discussed the rationale behind

the new ribosome-protein synthesis model. Here we inves-
tigate according to which parameter conditions we obtain
exponential growth, and how to compute the growth rate
from the model parameter values.

A. Reduced order model
Due to the nonlinearities of the model equations, we

introduce the simplifying assumption that, in exponential
growth conditions, the number of ribosomal SSU and LSU
is approximately the same, namely

RSSU ≈ RLSU. (11)

Indeed, Since ribosome biogenesis is energetically costly,
several mechanisms ensure that the synthesis of the two
subunit and their components are well balanced to prevent
impairment of growth and cell cycle arrest (nucleolar-stress
response [8]). Block of the Large SubUnit (LSU) assem-
bly interrupts accumulation of the Small SubUnit (SSU)
assembly, whereas halting the SSU synthesis leads to the
accumulation of a partly degraded LSU [18]. Finally, the
turnover ratio of the ribosomal proteins of both subunits is
similar ( 10 h) [19].

As a consequence, by (8) and (9) it is possible to reduce
the state space of the model into three state variables only.
To this end we assume

kSSU ≃ kLSU, γSSU ≃ γLSU (12)

and replace the two subunits dynamics with a unique one,
RSU namely, accounting for both:

ṘSU = kSU (ρP −Rtot)
+−γSURSU−kon

R2
SU

P
+koffR, (13)

with parameters kSU = kSSU ≃ kLSU and γSU = γSSU ≃ γLSU.
Consequently, the number of total ribosomes is given by

Rtot = R+RSU. (14)

In summary, the reduced order model is now provided by
(13) together with the updated (7) and (10):

ṘSU = kSU (ρP −R−RSU)
+ − γSURSU − kon

R2
SU

P
+koffR

Ṙ = kon
R2

SU

P
− koffR,

Ṗ = K2R− γpP.
(15)

Finally, we notice that from (15) the degradation of Rtot
is proportional just to RSU and not to Rtot, which is able
to catch the biological fact that the degradation of the
total number of ribosomes is proportional to the “inactive”
subunits only, whilst the “active” ribosomes are synthesizing
for proteins and cannot be degraded.

B. Exponential growth conditions

In exponential growth conditions, all cellular players grow
according to the same exponential growth, so that, if (15)
admits exponential growth conditions, at regime the ratios

RSU

P
,

R

P
,

RSU

R
(16)

converge to stationary values. The following Theorem is the
main result of the manuscript and proves that, provided a
set of sufficient conditions hold true, we actually obtain
exponential growth for system (15).

Theorem 1: Assume that the model parameters in (15)
satisfy the following constraints√

koffγp
konK2

< ρ− γp
K2

(17)

kSU > koff (18)

(kSU + γSU)

√
koffγp
konK2

+
kSUγp
K2

≤ ρkSU (19)

ρ(K2ρ− γp)− (K2ρ− γSU)β̃ ≥ 0 (20)

with β̃ provided by

β̃ =
−(2K2ρ+ koff − γp) +

√
∆

2(kon −K2)
and (21)

∆ = (koff − γp)
2 + 4ρkon(koff − γp + ρK2) ≥ 0 (22)

Then, there exists exponential growth for (15) with, at regime

RSU

P
= β (23)

where β is the unique solution of

ψ(β) = ρ kSU with (24)



ψ(β) = konβ
2 +

(
λ+(β) + kSU + γSU

)
β

+
(kSU − koff)

(
λ+(β) + γp

)
K2

and

(25)

λ+(β) =
−(koff + γp) +

√
(koff − γp)2 + 4β2konK2

2
.

(26)
is the exponential growth rate shared by RSU, R and P at
regime.

Proof: The proof starts by showing that the constraint
(23) is compatible with the solution at regime. To this end,
by substituting (23) in the ribosome dynamics (15):

Ṙ = konβ
2P − koffR (27)

we have that the (R,P ) dynamics may be described by the
following second-order, linear system:

ẋ = Ax, (28)

where,

x =

[
R
P

]
, A =

[
−koff β2kon
K2 −γp

]
. (29)

with the characteristic polynomial p(λ) associated to A:

p(λ) = det(λI−A) = λ2+(γp+koff)λ+koffγp−β2konK2.

From the Hurwitz stability criterion it is easy to see that the
existence of a unique positive real root is ensured by the
constraint

koffγp − β2konK2 < 0, (30)

that is

β >

√
koff γp
kon K2

=: β∗ (31)

with the positive real eigenvalue, denoted by λ+ given by
(26). Instead, if (31) is not true, then both eigenvalues are
negative real, and there is no exponential growth. The point
is to check whether such a β exists, and how to compute it.
Assuming such existence, according to the spectral decom-
position of matrix A, by denoting with u and v⊤ the right
and left eigenvectors of A associated to λ+, respectively, the
evolutions of R and P are given, at regime by[

R
P

]
= eλ+tu v⊤

[
R0

P0

]
, (32)

where R0, P0 are the ribosomes and proteins initial condi-
tions. Thus, accounting for the following positions

u =

[
uR
uP

]
, v⊤ = [vR vP ], χ0 = v⊤

[
R0

P0

]
(33)

it is R(t) = eλ+tuRχ0 and P (t) = eλ+tuPχ0. Moreover,
by properly exploiting the eigenvalue/eigenvector identities
(λ+I −A)u = 0, v⊤(λ+I −A) = 0⊤, one obtains

uR =
λ+ + γp
K2

uP , vP =
λ+ + koff

K2
vR (34)

It is worth noting that, according to regime solutions (32),
it follows that the ratio R/P asymptotically converges to a
stationary value.

By further substituting (23) into the RSU dynamics in (15):

βṖ = kSU
(
(ρ− β)P −R

)+ − β(γSU + konβ)P + koffR

By considering the regime equations (32), then after simpli-
fications we have

βλ+uP = kSU
(
(ρ−β)uP−uR

)+−β(γSU+konβ)uP+koffuR,

where χ0 has been put aside of the positive part function (·)+
and, then, simplified because, according to (33) and (34),
the components of the eigenvectors associated to λ+ may be
chosen positive element-wise. Furthermore, accounting for
(34) we have

βλ+ = kSU

(
ρ− β − λ+ + γp

K2

)+

− β(γSU + konβ)

+koff
λ+ + γp
K2

.

(35)
In summary, solutions of the type (23) are compatible
with the second-order linear system (28)-(29) for ribo-
somes/proteins dynamics, with β provided by the solution
of the algebraic equation (35). Therefore, we need to char-
acterize the solutions of (35) with respect to β, and to find
out whether there exist solutions such that inequality (31) is
guaranteed (i.e. ensuring a exponential growth).

In order to deal with the positive part function in (35),
condition (17) allows to show that there exist β̃ ≥ β∗ such
that for β ∈ [β∗, β̃] it is

ρ− β − λ+(β) + γp
K2

≥ 0 (36)

Indeed, by explicitly accounting for the eigenvalue expres-
sion reported in (26), inequality (36) writes as

φ(β) ≤ ρ+
koff − γp
2K2

(37)

with

φ(β) = β +

√
(koff − γp)2 + 4β2konK2

2K2
(38)

a monotonically increasing function with respect to β, such
that

φ(β∗) =

√
koffγp
konK2

+
koff + γp
2K2

. (39)

As a matter of fact, if (17) holds true, then

φ(β∗) ≤ ρ+
koff − γp
2K2

. (40)

Then, since limβ 7→+∞ φ(β) = +∞, there exists a unique
β̃ ≥ β∗ such that

φ(β̃) = ρ+
koff − γp
2K2

(41)

and inequalities (37), and so (36), hold true for β ∈ [β∗, β̃].
The explicit computation of β̃ follows from equations (38)

and (41), namely√
(koff − γp)2 + 4β̃2konK2 = 2K2(ρ− β̃)+koff −γp. (42)



By making the square and, after straightforward simplifica-
tions:

konβ̃
2 = K2(ρ− β̃)2 + (ρ− β̃)(koff − γp) (43)

so that the following second-order equation is achieved for
β̃:

(kon−K2)β̃
2+(2K2ρ+koff−γp)β̃−ρ(K2ρ+koff−γp) = 0

(44)
The existence of a unique real solution for β̃ ≥ β∗ allows to
assume true the constraint for ∆ in (22), according to which,
β̃ in (21) follows from (44).

Then, according to (36), equation (35) becomes (24) with
ψ given by (25). We finally have to prove that, provided
conditions (18)-(20) hold true, then it is ψ′(β) ≥ 0 in [β∗, β̃]
with

ψ(β∗) ≤ ρkSU ≤ ψ(β̃) (45)

so that there exists a unique β ∈ [β∗, β̃] satisfying (24). Since
λ+(β∗) = 0, it is straightforward to note that

ψ(β∗) = konβ
2
∗ + (kSU + γSU)β∗ +

(kSU − koff)γp
K2

(46)

that is, according to (31):

ψ(β∗) = (kSU + γSU)

√
koffγp
konK2

+
kSUγp
K2

(47)

so that, because of hypothesis (19), it is ψ(β∗) ≤ ρkSU. On
the other hand, when β = β̃, (36) holds true as an equality,
so that λ+(β̃) = K2(ρ− β̃)− γp and, after computations:

ψ(β̃) = (kon −K2)β̃
2 + (K2ρ− γp + γSU + koff)β̃

+(kSU − koff)ρ.
(48)

By further exploiting (44), ψ(β̃) simplifies into:

ψ(β̃) = −(K2ρ− γSU)β̃ + ρ(K2ρ+ kSU − γp). (49)

In summary, according to (49), from hypothesis (20), it is
ψ(β̃) ≥ ρkSU. Finally by computing the derivative ψ′(β), it
is easy to see from (18) and since λ′+(β) is greater than zero
from (26), it follows that also ψ′(β) ≥ 0 for any value of
β ∈ [β∗, β̃].

IV. NUMERICAL SIMULATIONS

Reported simulations have a twofold purpose. From the
one hand, they aim at showing that the parameters of the
proposed model (7)-(10) (Refined Ribosome Synthesis model,
RRS for short) can be properly set in order to replicate
the same features of the coarser model provided by (1)–(2)
(Coarse-grain Ribosome Synthesis model, CRS for short):
this is a mandatory starting point when building model
extensions according to an increasing granularity. On the
other hand, it will be shown that, according to such a
meaningful set of model parameters, the sufficient condition
for exponential growth detailed in Theorem 1 are satisfied,
and that the corresponding exponential growth computed
according to the approximate model (15) is close to the
one coming from simulations of the RRS. The CRS model
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Fig. 2. Accordance between the previous CRS model and the new RRS
model together with the new dynamics RSSU and RLSU.

parameters are taken from [20] where they had to comply
with the exponential growth rate and cycle parameters experi-
mentally estimated in [21] as well as with novel experimental
data presented in [20]. Regards to the RRS parameters, some
retain the same meaning of the CRS, and their values have
been taken from the existing literature [20], [3]: this is the
case for ρ, K2, γp. A second class of parameters are strongly
related to the parameters of the CRS: these are the LSU
and SSU degradation and production rates γLSU , γSSU and
kLSU , kSSU set at the same order of magnitude of the
total ribosome degradation and production rate in [20], [3].
Finally, the rest of the RRS parameters are not straight-
forwardly related to any parameters of the CRS, therefore
they have been set in order to have protein/ribosome time
courses that very well resemble the protein/ribosome time
courses of the CRS. In summary, the RRS parameters are:
ρ = 2.02 · 10−5 rib/aa, kSSU = 1.01 min−1, γSSU = 1/
3800 min−1, kLSU = 1 min−1m, γLSU = 1/4000 min−1,
K2 = 380 aa/(rib · min), γp = 1/3000 min−1, kon = 3 · 105
aa/(rib · min), and koff = 0.01min−1.

The initial conditions have been set as: P (0) = 1.5 ·
1010aa, R(0) = 2.6 · 105rib, RSSU(0) = 4.07 · 104,
RLSU(0) = 3.7·104rib, Rtot(0) = 2.97·105rib. By taking into
account an average cell cycle of 90 minutes, Fig. 2 shows
the evolution of the dynamics of the new RRS model, i.e.
RSSU, RLSU, R, and P . According to the chosen parameter
values, SSU and LSU differ of about 10%. Also, it is
possible to see the good accordance between the previous
CRS model and the new RRS model and the exponential
growth (vertical axis in logarithmic scale). With regard to
the model parameters, according to the chosen values, all
constraints required by Theorem 1 to ensure exponential
growth are satisfied (inequalities (17)-(20)): to this end we
have exploited the average values kSU = (kSSU + kLSU )/2
and γSU = (γSSU + γLSU )/2. Besides, the exponential
growth coming from (26) is equal to 6.90 · 10−3, and it
differs from the growth rate computed from the best fitting



exponential of total ribosomes and proteins growth of less
than 0.56%.

V. CONCLUSIONS

The tight control of cell growth and cell division is
essential for the maintenance of cellular homeostasis and for
cell proliferation. Growth is subject to modulation by genetic
and environmental conditions, such as nutrient availability. In
this work we present an updated model of cellular growth
that links the growth rate to protein and RNA synthesis.
The updated model explicitly accounts for synthesis of the
small and the large ribosomal subunits and their assembly
to produce the mature functioning ribosome. The qualitative
behavior analysis is carried out providing conditions on
model parameters that ensure exponential growth, as well
as a way to compute the growth rate.

Ribosome biogenesis is an energetically expensive pro-
cess. The allocation of proteomic resources to ribosomal
production scales linearly with growth rate [22], [23] yielding
a specific growth rate-dependent RNA/protein ratio [24]).
Inactive ribosomes may act as a “signal” for detecting
ribosomes excess and thus adjust their production in order to
maximize growth rate [9], [25]. Although the precise molecu-
lar nature of the mechanism regulating ribosome biogenesis
in yeast are quite different from bacterial cell, the overall
control strategy seems to be broadly similar, allowing to
finely adjust ribosome assembly rate according to changes in
the nutritional status and stress signals (reviewed in [8], [26]).
Coupled with the fact that the molecularly detailed feedback
regulatory mechanism for ribosome biosynthesis is currently
unknown - and could anyway not be implemented in the
current low granularity model - we use the ribosome/protein
ratio as an effective simplified proxy of the real mechanism
allowing straightforward communication among the modules
that compose the integrated model. Further developments
will allow a molecular blow-up of the biosynthesis of the two
ribosomal subunits and their assembly, a key step to produce
a system-level, molecular detailed cell growth model.
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