
Springer Nature 2021 LATEX template

Robust and Fault-Tolerant Spacecraft

Attitude Control Based on an

Extended-Observer Design

Alessandro Giuseppi1*, Francesco Delli Priscoli1 and Antonio
Pietrabissa1

1Department of Computer, Control and Management
Engineering, La Sapienza, University of Rome, Via Ariosto 25,

Rome, 00185, Italy.

*Corresponding author(s). E-mail(s): giuseppi@diag.uniroma1.it;
Contributing authors: dellipriscoli@diag.uniroma1.it;

pietrabissa@diag.uniroma1.it;

Abstract

The aim of this work is to develop a robust control strategy able to
drive the attitude of a spacecraft to a reference value, despite the
presence of unknown but bounded uncertainties in the system param-
eters and external disturbances. Thanks to the use of an extended
observer design, the proposed control law is robust against all the
uncertainties that affect the high-frequency gain matrix, which is
shown to capture a broad spectrum of modelling issues, some of
which are often neglected by traditional approaches. The proposed con-
troller then provides robustness against parametric uncertainties, as
moment of inertia estimation, payload deformations, actuator faults
and external disturbances, while maintaining its asymptotic properties.
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Main Symbols

×, ·,⊗ Vector, scalar and quaternion cross products
e, θ Euler’s axis and angle
In (n× n) identity matrix
J MOI tensor in the rigid body reference frame [kg m2]
(Ix, Iy, Iz) Principal MOI [kg m2]
Lτ Distribution matrix
Lfh(x) Lie derivative of h(x) along f
q, q13, q4 Quaternion representation of the attitude, vector and scalar

components of the quaternion
u = Lττ Control signal, control torques over the principal axes of

the spacecraft [N ]
ω Angular velocity of the inertial reference frame relative to

the satellite measured in its coordinates [rad/s]
τ Torques applied by the reaction wheels [N ]
τext External torques over the principal axes of the spacecraft

[N ]

1 Introduction

Attitude is one of the fundamental components of spacecraft operations, as
it governs the most crucial aspect of the typical space missions: the pointing.
Attitude control has been studied extensively in the aerospace field, becoming
one of the classic control problems [1] not only for its real-world implica-
tions but also for its complexity. Having to control a device whose life-span
can be well over a decade and which is subject to significant uncertainties,
disturbances and faults, robust control naturally gained the attention of the
scientific community, as it is able to maintain the asymptotic properties needed
to successfully complete the mission even under actual, non-ideal, conditions.

The control law presented in this paper is based on the extended-observer
paradigm introduced in [2], and extended to the MIMO domain in [3], and has
been developed with the goal of providing resiliency to the spacecraft opera-
tion with respect to (i) modelling uncertainties, (ii) deformations and faults
and (iii) external disturbances, while also taking in consideration the physical
limitations of the system, in the form of the saturation of the actuators.

Utilizing a control law of this type allows to extend the operational life of
the spacecraft, which in turn reduces the amount of space debris, one of the
main challenges of modern space campaigns [4], and increases the economical
return of the launch campaign. The proposed control law will be shown to
reconstruct a control law designed neglecting the presence of uncertainties,
simplifying the spacecraft operator mission planning.

The paper is organized as follows: Section 2 contains a brief review of the
state-of-the-art and highlights the paper main contributions; Section 3 reports
the needed prelaminar notions on attitude control, normal forms for nonlinear
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systems and spacecraft modelling; Section 4 covers the design of the extended
observer and its application for the development of the utilized control law;
Section 5 contains the results of numerical simulations to validate the proposed
control approach; Section 6 draws the conclusions and outlines future research
lines.

2 State-of-the-Art Review and Paper
Contribution

The problem of attitude control for a rigid body has found broad applications
in aerospace [5], and due to its impact on the spacecraft successful opera-
tion, the available literature covers several different research directions, spacing
from optimal control [6] to model predictive control [7] and fuzzy-logic based
controllers [8].

In particular, the field of robust control has always been of particular inter-
est for both industry and academia, as a spacecraft is a very complex system
whose physical characteristics can vary over time – e.g. its Moment of Inertia
(MOI) depends on the remaining propellant and configuration of its solar pan-
els and manipulators – and are subject to significant uncertainties, also due to
the heavy stress to which the spacecraft is exposed to during its launch [9].

Several works as [10–15], developed control laws, based on the measure-
ments of both attitude and angular velocity of the spacecraft, which provide
robustness with respect to uncertain inertia characteristics of the spacecraft,
which in some cases is estimated by the controller itself [14],[12].

This work, as [16–18], presents a dynamic control law that is based only on
attitude measurements while additionally providing robustness against uncer-
tainties affecting the knowledge both of the inertia moment of the spacecraft
and its actuators positioning and operativeness.

The robust control methods studied have naturally been paired with distur-
bance rejection controllers, as a spacecraft is typically subject to non-negligible
external torques [19], and several works, as [13–15], present both properties.
Other than the already mentioned robustness with respect to the inertial esti-
mation, [14] presents a nonlinear control that rejects constant disturbances and
sinusoidal ones, having only information on the disturbance frequency. Simi-
larly, the authors in [15] introduced a H∞ controller that is able to address
inertial uncertainties, external disturbances, gyro drifts and control perturba-
tions. In [13] a control law, based on the internal model principle, is designed
specifically for a low earth orbit (LEO) satellite, that is characterized by the
presence of significant disturbance torques, caused by aerodynamic drag. This
work focuses on uncertainties that affect the high frequency gain of the space-
craft system, which, as will be discussed, capture parametric uncertainties not
only on the moment of inertia, enabling the rejection of control perturbations.
For the properties of the proposed extended observer, the control designed in
this paper will also be able to reject constant disturbances, while also being
able to arbitrarily attenuate sinusoidal ones.
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Other than robustness, a successful spacecraft controller should also take
into account the resiliency of the system operation with respect to faults
occurring on either its actuators or the available sensors. Regarding noise
and malfunctioning on measurements, typical solutions are based on Kalman
filtering [20] and sensor redundancy.

Regarding actuators, the typical components utilized for attitude control
are momentum wheels and control moment gyroscopes. Both typologies of
actuators are expensive in price and mass terms, and, due to their spinning
nature and frequent usage, are sensible to total and partial faults. For this
reason fault tolerant control schemes are commonly utilized in the industry
[21]. As will be discussed, this paper considers a satellite in which a standard
configuration for actuator redundancy has been implemented to be resilient
against a complete failure of one of its actuators, but as in [22] it develops a law
that rejects the effect of partial faults effecting, potentially, all its actuators at
the same time.

Another crucial aspect to consider is the physical limitation of the actu-
ators, which translates into control saturations. In this regard, both [23] and
[24] present robust full-state feedback controllers that address control satura-
tions. In particular, [23] introduces a nonlinear dynamic control law that can
successfully govern the attitude of a spacecraft under inertial uncertainties,
external disturbances and input saturations, while [24] extends the results of
[23] considering also the possibility of actuator faults, as does this work.

Robust and fault tolerant attitude control schemes have also been broadly
explored in the multi-spacecraft setting, where a set of satellites/spacecrafts
seek some form of coordination or formation control. Distributed observers
were studied in works such as [25], where a leader-following scheme was devel-
oped, and [26–28], where distributed estimation schemes were designed for
formation control.

We mention that, over the last few years, a significant research effort has
been spent regarding the development of data-driven solutions able to cope
with the robustness and fault-tolerant aspects presented above. Such solutions,
typically propose learning schemes to infer/identify unmodeled system dynam-
ics or estimation errors and then use the discovered information to reconstruct
effective control policies. For instance, works such as [29–33] proposed data-
driven control schemes for attitude stabilization that were, in certain cases,
successfully tested on real-world helicopters and quadrotors, demonstrating
robust performances against external disturbances and parameter uncertain-
ties. The main advantage that model-based solutions, as the one presented
in this work, have against data-driven approaches is the absence of a train-
ing phase, during which the controller interacts with the physical system in a
black-box fashion, meaning that they may be deployed more easily in the field.
Another aspect in favour of model-based solutions for spacecraft applications
is their intrinsic explainability, that is the fact that, due to the availability of
closed-form equations that determine the control law, one may always oversee
and predict how the system will behave in a given environment.
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A significant advantage that the control scheme presented in this paper has
compared to most of the available literature is the ability of the controller to
reconstruct any arbitrary control law that could have been designed to govern
the attitude of a spacecraft under feedback linearization. In other words, the
proposed controller allows to design a control law to fulfil the spacecraft mis-
sion, as one was in absence of model uncertainties (affecting either moment
of inertia estimation and payload deformation), actuator operativeness (either
partial or complete faults) and external disturbances (either constant or time
varying). Due to the asymptotic control law reconstruction, the controller pro-
posed also recovers the transient performances that motivated the design of
the control law for the feedback linearized system.

As it will be discussed, the only assumptions that the controller requires are
the ones of feedback linearization (i.e. , the mission should avoid the quaternion
singularity q4 = 0), and the availability of an estimation of the high frequency
gain, that translates into providing the controller with a reasonable estimation
of its current moment of inertia and actuator configuration.

3 Preliminaries

This section summarizes notions on satellite attitude control (Section 3.1),
normal forms (Section 3.2) and on the extended observed paradigm (Section
3.3).

3.1 Preliminaries on Satellite Attitude Control

In order to represent the attitude of a rigid body there exist several repre-
sentations, ranging from Euler angles and rotation matrices to the so-called
Rodrigues parameters [34]. One of the most broadly used representations for
spacecraft attitude is the unitary quaternion one. Let the quaternion q be

defined as q =

[
q13
q4

]
∈ R4, in which q13 ∈ R3 and q4∈ R, such that the unitary

norm property ∥q∥ = 1 holds.
We can link this attitude representation to the Euler axis and angle

(ς, θ) with the simple transformation [35]:

q =

[
ς sin

(
θ
2

)
cos

(
θ
2

) ]
. (1)

Let × be the vector cross product. We define for convenience the operator

[q×] = [q13×] =

 0 −q3 q2
q3 0 −q1
−q2 q1 0


and the quaternion cross product [36]

q1 ⊗ q2 =

[
q24q

1
13 + q14q

2
13 − q113 × q213

q14q
2
4 − q113 · q213

]
,
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and we introduce the following operator:

[q⊗] =

[
q4I3 − [q13×] q13

−qT13 q4

]
. (2)

For the sake of notation, when (2) is applied to a vector x ∈ R3 we assume

x⊗ q =

[
x
0

]
⊗ q = [x⊗]q.

Finally, we remark the expressions for the conjugate and the inverse
quaternions:

q =

[
−q13
q4

]
, q−1 =

q

∥q∥2
.

Starting from the model of the rigid spacecraft, we can derive, based on
the quaternion kinematics and from the rigid body dynamics - as customary
in the literature [36] - the following model of the spacecraft:{

q̇ = 1
2 [ω⊗]q

ω̇ = J−1 [τext + Lττ − ω × (Jω)]
, (3)

in which: x =

[
q
ω

]
; ω = [ωx, ωy, ωz]

T
is the angular velocity vector of the rigid

body; τ is the vector of the control torques provided by the reaction wheels
mounted on the spacecraft; Lτ is their distribution matrix – as discussed in
the following; τext represents the disturbance torques, such as solar radiation,
gravity gradient ad magnetic torques [37], [38]; finally, J is the MOI tensor,
expressed, as customary, in the rigid body reference frame. Under dynamics
(3), q evolves in such a way that unitary norm property always holds, since

|q̇| = q̇T q + qT q̇ =
1

2
([ω⊗]q)

T
q +

1

2
qT ([ω⊗]q) =

=
1

2
([ω⊗]q)

T
q − 1

2
([ω⊗]q)

T
q = 0.

The typical attitude regulation problem consists in stabilizing (3), as with
trivial coordinate transformations or by the introduction of the so-called error
quaternions [39], the stabilization of any arbitrary attitude can be reconducted
to the stabilization of the origin of (3).

The distribution matrix Lτ plays a particularly crucial role, as it projects
the control torques τ over the principal rigid body inertial axes [40]. It fol-
lows that, if nw > 3 reaction wheels are mounted, one can independently
control the three resulting torques affecting the principal inertial axes as long
as rank (Lt) = 3. For this reason, u = Lττ represents a typical choice for the
control signal of system (3).

For its projection nature, it is worth remarking that the structure of Lτ is
the following:
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Lτ = [a1 a2 a3 . . . anw ] , (4)

in which the column ai ∈ R3 indicates the direction of the axis of the
i-th reaction wheel, measured over its principal axes of inertia. The rank
property has also implications for fault-tolerant control, since the condition
rank (Lt) = 3 can be maintained even in case of the failure of one or more
actuators – the complete fault of the i-th actuator modifies the matrix Lτ by
substituting its i-th column with a vector of zeros.

Once the control u has been computed, its actuation requires that it is
redistributed over the available reaction wheels. A common solution is to use
the pseudo-inverse of Lτ , defined as L#

τ := Lτ
T
(
Lτ Lτ

T
)−1

.
The resulting control torque vector is then

τ = L#
τ u. (5)

3.2 Preliminaries on Normal Forms

If we consider a Multi Input Multi Output (MIMO) system with m inputs and
m outputs of the form {

ẋ = f(x) +
∑m

i=1 gi(x)ui

y = h(x)
, (6)

in which x(t) ∈ Rn, u(t) ∈ Rm,y(t) ∈ Rm,

f(x) = [f1(x), . . . , fn(x)]
′
,

h(x) = [h1(x), . . . , hm(x)]
′
,

it is well known that, if it has a well-defined vector of relative degree
{r1, r2, . . . , rm} in x0 [41], there exist a diffeomorphism T (x) that transforms
the system (6) into the so-called Byrnes-Isidori normal form around x0:

ξ̇ = Aξ +B [a(ξ, η) + b(ξ, η)u]

η̇ = z(ξ, η)

y = Cξ

, (7)

in which ξ ∈ Rr, with r = r1 + r2 + . . .+ rm, A = diag (A1, . . . , Am),
B = diag (B1, . . . , Bm), C = diag (C1, . . . , Cm),

Ai =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0

 ∈ Rri×ri ,

Bi =

 0
. . .
1

 ∈ Rri×1, Ci =
[
1 0 . . . 0

]
.
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In (7), a(ξ, η) : Rn → Rr, b(ξ, η) : Rn → Rr×m and z(ξ, η) : Rn → Rr−n are
smooth maps. z(ξ, η) is referred to as the zero-dynamics [42] of the system (7).

For the existence of the vector of relative degree in x0, the system (6) must
satisfy two conditions:

LgjLk
fhi(x) = 0, for all x∈ B (x0) and for all j, i, k such that 1≤ j ≤ m,

1 ≤ i ≤ m, 1 < k < rj − 1;
the decoupling matrix

∆(x) =

 Lg1L
r1−1
f h1(x) . . . LgmLr1−1

f h1(x)
...

. . .
...

Lg1L
rm−1
f hm(x) . . . LgmLrm−1

f hm(x)


is nonsingular in x0.
Ideally, under these conditions, the system (7) is stabilized by applying a

linearizing control of the form

u = b−1(ξ, η) (Kξ − a(ξ, η)) , (8)

withK such that (A+BK) is Hurwitz. It is worth remarking that the selection
of K is what determines the performances of the controlled system, in terms
of its transient behaviour. In particular, K can be chosen following standard
procedures for transient response shaping, such as pole-placement or LQR.

Note that (8) requires the precise knowledge of the system model,
specifically to implement the exact cancellation of the term a(ξ, η) in (7).

3.3 Preliminaries on the Extended Observer

In this paper, we will control the system (3) utilizing a dynamical output-
feedback control based on an extended-observer paradigm, introduced in [2],
[43] and extended to the MIMO domain in [3].

The extended observer is implemented by the following dynamical system:
˙̂
ξi,1 = ξ̂i,2 + καi,1

(
yi − ξ̂i,1

)
˙̂
ξi,2 = σi + biu

∗ + κ2αi,2

(
yi − ξ̂i,1

)
σ̇i = κ3αi,3

(
yi − ξ̂i,1

) , i = 1, 2, 3 (9)

in which κ and αi,1, . . . , αi,3 are design parameters, ξ̂i,1, ξ̂i,2 and σi, are
the state variables of the observer and bi ∈ R3 is the i-th row of the constant
matrix b ∈ R3×3, i = 1, 2, 3.

The structure of (9) is the one of a typical high-gain observer, with the

vector ξ̂ = col
(
ξ̂1,1, . . . , ξ̂3,2

)
estimating of the state ξ of the system, with

the addition of a new variable vector, σ = col (σ1, . . . , σ3), that will be used
to attain the robustness of the control. Differently to standard high-gain
observers, the extended observer (9) is also used to compute the robustly
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stabilizing control law

u∗ = GH

(
b−1

[
Kξ̂ − σ

])
, (10)

with GH(s) : R3 → R3 defined as

GH(s) = col (gH (s1) , gH (s2) , gH (s3)) ,

where gH(s): R → R is a smooth saturation function such that:

• gH(s) = s if |s| ≤ H;
• gH(s) is odd and monotonically increasing, with 0 ≤ dGH(s)/ds ≤ 1;
• lims→∞ GH(s) = H(1 + c)with 0 < c ≪ 1.

Note that the dynamic feedback law u∗ is computed by (9) and (10) based
only on the output measures yi, i = 1, 2, 3. The goal of the control is to utilize
(10) as an “asymptotic robust proxy” of the ideal law (8) (see [44])1.

As proven in [3], two assumptions must hold for u∗ to converge to the
control law (8). Firstly, the matrix b must represent a conservative guess of
b(ξ, η) according to the following assumption:

Assumption 1. There exists a constant nonsingular matrix b ∈ Rm×m

and a number 0 < δ0 < 1 such that

max
Λ diagonal, |Λ|≤1

| [b(ξ, η)− b] Λb−1| ≤ δ0, ∀(ξ, η). (11)

Equation (11) implies that bmin ≤ |b(ξ, η)| ≤ bmax for all (ξ, η) and for
some pair bmin < bmax.

The second assumption concerns the zero-dynamics:

Assumption 2. The system η̇ = z(ξ, η), viewed as a system with input ξ
and state η, is input-to-state stable.

Under Assumptions 1 and 2, the main result in [3] is the following theorem.

Theorem 1. Considering the system (7), with uncertain but bounded
parameters, controlled by the output feedback law (9) and (10), there exist a
choice of the design parameters such that, for any arbitrary compact set C, the

equilibrium (η, ξ, ξ̂, σ) = (0, 0, 0, 0) is asymptotically stable, with a domain of
attraction that contains C.

In particular, for every choice of C there are conditions for the choice of
the parameters αi,1, . . . , αi,3, κ,K,L:

• the parameters αi,1, . . . , αi,3 to be chosen in such a way that the polynomial

s3 + αi,1s
2 + αi,2s+ αi,3

1As proven in [43] the proposed controller is able to reconstruct (8) also in terms of transitory
behavior, allowing the controller to perform closely to optimal solutions such as the LQR one,
provided that the gain K is set accordingly.
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is Hurwitz for i = 1, . . . , 3, and it is shown in [3] that their values regulate

the convergence speed of the error e =
∥∥∥ξ − ξ̂

∥∥∥;
• the gain κ bounds the value of ∥e∥; if κ is sufficiently high, the state tra-
jectory of the controlled system enters, in finite time, an arbitrarily small
compact system;

• as with the law (8), the matrix K in (10) has to be chosen such that
(A+BK) is Hurwitz;

• the role of the saturation level H of the function GH in (10) is to avoid that
the system (7) is affected by the destabilizing effect of peaking [45] and,
hence, to avoid a finite escape time. The value of H depends only on the
domain of attraction in which the initial conditions are taken.

4 Robust Output-Feedback Control of a
Spacecraft System

This section details how the extended-observer paradigm can be used to
address the spacecraft robust attitude control problem. Firstly, in Section 4.1,
the normal form (3) for a spacecraft system is defined. Section 4.2 highlights
the physical meaning of the assumptions needed for the robust control to work.
Section 4.3 focuses on the disturbance rejection properties of the proposed
control law.

4.1 Normal Form of the Spacecraft System

We now derive the normal form of (3). As customary in attitude studies, we

assume y = [q1, q2, q3]
T

and set u = Lττ . For now, we also assume τext = 0
and, without loss of generality, we set J = diag (Ix, Iy, Iz).

With the selected input-output, the vector of relative degree becomes
{2,2,2} [46], and the decoupling matrix

∆(x) =


q4
2Ix

− q3
2Iy

q2
2Iz

q3
2Ix

q4
2Iy

− q1
2Iz

− q2
2Ix

q1
2Iy

q4
2Iz


is nonsingular for q4 ̸= 0.
Regarding the diffeomorphism T (x), recalling its structure from [41] and

setting η = q4, we can write:

[
ξ
η

]
= T (x) =



q1
Lfh1

q2
Lfh2

q3
Lfh3

q4


=



q1
1
2 (ωxq4 + ωzq2 − ωyq3)

q2
1
2 (ωyq4 − ωzq1 + ωxq3)

q3
1
2 (ωzq4 + ωyq1 − ωxq2)

q4


.
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This choice leads the system to the form (7), in which

a(ξ, η) =
1

4
ω × (ω + q13)−

1

4
ωT q13ω +

1

2
([q13×] + q4I3)

(
J−1ω

)
× (Jω) (12)

and

b(ξ, η) =
1

2
([q13×] + q4I3) J

−1 (13)

4.2 Extended-Observer Design for the Spacecraft Model

In the framework introduced so far, the condition (11) in Assumption 1 is
at the basis of the definition of the extended observer and is of particular
interest in spacecraft control, as it has a physical meaning that captures several
criticalities that emerge in real spacecraft control applications.

Assumption 1 reduces to the existence and availability to the control of the
nonsingular matrix b ∈ Rm×m, which represents the guess of b(ξ, η). In the
considered case, even if it is trivial to show that |b(ξ, η)| is bounded thanks
to the unitary norm property of q , the identification of such matrix b is not
straightforward.

As the meaning behind Assumption 1 is to guarantee that the elements of
b(ξ, η)u are bounded and have the correct sign [47], in this work we provide

the controller with a dynamic estimation b̂(q) of the function b(ξ, η), as in [43],
obtained from the available measures of q and from the nominal, or estimated,

MOI Ĵ . It is worth noting that the MOI of the satellite is time-varying and
of nontrivial estimation, as it heavily depends on factors as the attitude of its
auxiliary peripherals (e.g. solar panels, antennas, . . . ), the remaining propel-
lant and its distribution in the tanks. For this reason, it is necessary to consider
a difference between its nominal value Ĵ and the real one J .

Instead of Assumption 1, we will then verify the following one:

Assumption 3. There exists a function b̂(q) : R4 → Rr×m and a number
0 < δ0 < 1 such that

max
Λ diagonal,|Λ|≤1

∣∣∣[b(ξ, η)− b̂(q)
]
Λb̂(q)

−1
∣∣∣ ≤ δ0, ∀(ξ, η). (14)

with

b̂(q) =
1

2
([q13×] + q4I3) Ĵ

−1 (15)

The function b̂(q) of equation (15) represents the case in which the con-
troller has what we may consider the “nominal value” of the high frequency
gain.

Concerning Assumption 2, in view of Remark 1 and in line with Assump-
tion 3 in [43] and with the concluding remarks in [3], it can be relaxed as
follows:
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Assumption 4. The system η̇ = z(ξ, η), viewed as a system with input ξ
and state η, is bounded-input-bounded-state stable.

The main result of the paper is then a consequence of Theorem 1:

Theorem 2. If the following condition holds:∣∣∣J−1 − Ĵ−1
∣∣∣ ∣∣∣Ĵ∣∣∣

|q4|
< 1. (16)

where Ĵ is the estimated MOI tensor available to the controller, the
system (7), (12), (13), with uncertain but bounded parameters, controlled
by the output-feedback law (9) and (10), asymptotically converges towards

(ξ, ξ̂, σ) = (0, 0, 0), with an overall domain of attraction that contains an
arbitrary compact set C.

Proof. The proof relies on the verification of Assumptions 3 and 4.

By substituting equations (13) and (15) in equation (14) of Assumption 3,
it becomes

max
Λ diagonal,|Λ|≤1

∣∣∣Θ(q)
(
J−1 − Ĵ−1

)
ΛĴ Θ(q)

−1
∣∣∣ ≤ δ0, (17)

in which we have set, for notation convenience, Θ(q) = [q13×] + q4I3.
A conservative bound for the MOI estimation can be found by utilizing

the submuplicative property of the matrix norm, which, noting that |Θ(q)| = 1

and
∣∣∣Θ(q)

−1
∣∣∣ = 1

|q4| , yields

∣∣∣Θ(q)
(
J−1 − Ĵ−1

)
ΛĴ Θ(q)

−1
∣∣∣ ≤

∣∣∣J−1 − Ĵ−1
∣∣∣ ∣∣∣Ĵ∣∣∣

|q4|
,

implying that, if the condition (16) holds, Assumption 3 is satisfied.
Under Assumption 3, the convergence proof replicates the one of the

extended observer [3] (further detailed in [47]), with some awareness on b̂(q). In
fact, the proof in [3] relies on the boundness of some quantities which depend
on the guess b used in the inequality (11). However, these quantities remain

limited also when considering b̂(q) instead of b, i.e., inequality (14) instead of

inequality (11), with b̂(q) defined as in (15), and the convergence proof still
holds. Specifically, it is sufficient to retrace the proof in [3] noting that, as

long as the state of the system is bounded, ∥b̂(q)∥,∥[b̂(q)]−1∥ and their time

derivatives are bounded. In our case, ∥b̂(q)∥ = 1
2∥Ĵ∥ is constant and, there-

fore, ∥db̂(q)
dt ∥ = 0; ∥b̂(q)−1∥ is bounded by ∥Ĵ∥

∥q4 ∥ which is bounded as long as

q4 ̸= 0; ∥d(b̂(q)−1)
dt ∥ is bounded, as long as q4 ̸= 0, since q̇ is bounded due to the

physical limitations of the spacecraft system.
As regards Assumption 4, we note that the zero dynamics of the system (7)

is not input-to-state stable (in the sense of Assumption 2) but, since η = q4,
it is bounded-input-bounded-state stable (in the sense of Assumption 3 of
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[43]), as −1≤ q4 ≤ 1 thanks to the unitary norm property of the quaternion
representation.

Since Assumptions 3 and 4 are satisfied, the law (10) leads the components
of ξ to annihilate. The spacecraft attitude, consequently, converges to either of

the two points
(
η, ξ, ξ̂, σ

)
= (±1, 0, 0, 0), depending on its initial conditions.

■
Remark 1. Noting that the two quaternions q and −q represent the same

attitude thanks to definition (1), it follows that a controller that stabilizes the
chain of integrators in (7) leads the system to the correct attitude, indepen-
dently of the convergence value of η. In other words, the convergence of the
system to one of the two equilibrium points identified by Theorem 2 or to the
other one depends on its initial conditions, but this does not impact the final
attitude of the spacecraft.

Remark 2. Regarding the presence of 1
|q4| in (16) we note that, as

customary in singularity avoidance solutions for the so-called “large-scale
manoeuvres” [46], we can divide any attitude regulation problem for which the
initial value of q4 is so close to the origin that (17) does not hold into multi-
ple subsequent smaller rotations, in such a way that |q4| stays as close to 1 as
desired.

Remark 3. The physical limitations of the system – the actuating capa-
bilities of the reaction wheels mounted on spacecrafts are limited, typically,
the torque is in the order of 0.1Nm – set an upper-bound on the saturation
level H of GH in the control law (10). In general, H depends on the considered
set of possible initial conditions and on the matrix K that appears in (8) [3],
but, since the mission can be divided in multiple arbitrarily small manoeuvres
(see Remark 2), one can restrict such set accordingly. It is also worth remark-
ing that, in the considered scenario, the components of τ are the ones that
are directly subject to the actuator saturation, and, consequently, the compo-
nents of the control law u are affected by the actuator saturation because of
equation (5).

4.3 Fault Tolerance and Disturbance Rejection

Due to the significant lifespan of spacecraft systems and to the difficult mainte-
nance, rotating actuators such as reactions wheels are often subject to partial
and total failures. Furthermore, during the launch phase, the structure of the
satellite is under heavy stress and it is not unusual that it could be slightly
deformed or one of its actuators damaged [9].

It is clear then that uncertainty is present not only in the estimation of J
but also in the distribution matrix Lτ , as any fault occurring to the reaction
wheels or any frame modification impacts directly on the elements of Lτ , as it
will be furtherly clarified in the following.

Faults causing the actuated torque to differ from the commanded control
torque τ can be modelled by a multiplicative disturbance that affects the
control torque. Let
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F = diag (f1, f2, . . . , fm) , 0 ≤ fi ≤ 1, i = 1, . . . ,m,

be the matrix that collects the operative level of the actuators, where fi = 1
means that the i-th actuator works perfectly, whereas fi = 0 means that it is

completely inoperative. The actuated torque τ
′
is then written as

τ
′
= Fτ .

Recalling equation (5), the torque τ computed by the controller is

τ = L̂#
τ u,

where L̂#
τ is the pseudo-inverse of the estimated, or nominal, distribution

matrix L̂τ . The actual control that drives the spacecraft is then

u
′
= Lττ

′
= LτFL̂#

τ u = L
′

τ L̂
#
τ u, (18)

where L
′

τ := LτF represents the unknown actual distribution matrix of the
spacecraft that includes also the effects of the deformations and faults. Note
that such matrix can differ from the nominal one, L̂τ , not only due to the
presence of faults but also because of possible structural deformations that
impact on the actuator axis projections on the rigid body axes.

By considering equation (18), the actual high-frequency gain takes into
account the fact that the system is driven by the control u

′
and not by the

desired u:

b′(ξ, η) =
1

2
([q13×] + q4I3) J

−1L
′

τ L̂
#
τ . (19)

With the same reasoning of Theorem 2, it is possible to re-conduct the
robustness property of the proposed controller to a bound on the quality of
the estimation of both the matrices J and L

′

τ available to the controller. As

long as the controller is provided with a sufficiently good estimate b̂(q) of the
high frequency gain, satisfying (14), its asymptotic properties are guaranteed,
independently from the effect of the uncertainties on the other functions of
(ξ, η) in (7).

In the analysis conducted so far, we assumed the absence of external
torques, but this assumption may not be reasonable in real-world scenarios.

If we assume

τext =
[
τextx , τexty , τextz

]T ̸= 0,

and let

w =
[
f1, f2, . . . , fnw

, τextx , τexty , τextz

]T
,

we can rewrite system (7) as
η̇ = f(η, ξ)

ξ̇ = Aξ +B [q(η, ξ, w) + b(η, ξ, w)u]

y = Cξ

, (20)
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Fig. 1 Reaction wheels configuration

with the matrices A,B,C defined as in the previous section.
In [43] it is shown that the proposed controller achieves, due to its inte-

gral action property, for a system in the form of (20), (i) complete rejection
with respect to step disturbances and (ii) arbitrary attenuation of the effect
of bounded disturbances with bounded derivatives. Both properties are very
significant for practical applications. Concerning property i), it is common to
approximate a slow-varying disturbance τext with a signal such that τ̇ext = 0,
whereas property ii) means that any disturbance that can be modelled as a
series of sinusoidal components can be arbitrarily attenuated, and hence all the
signals generated by an exosystem having eigenvalues on the imaginary axis,
as customary in the internal model control paradigm, can be compensated
arbitrarily by adjusting the parameters of the controller.

5 Simulations

This section reports several numerical simulations to validate the proposed
control law.

We modelled a satellite with the same physical characteristics of the one
considered in [40], with MOI matrix

J =

4.2 0 0
0 4.4 0
0 0 4.2

 ,

and with reaction wheels capable of providing torques in the range
[−0.1; 0.1] Nm. Regarding the reaction wheels configuration, we considered
the rotated pyramid configuration considered in [48], shown in Figure 1.

Recalling (4), it is immediate to characterize the nominal distribution
matrix L̂τ as:
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L̂τ =

cos (β1) cos(θ1) −cos (β2) sin (θ2) −cos (β3) cos(θ3) cos (β4) sin (θ4)
cos (β1) sin(θ1) cos (β2) cos(θ2) −cos (β3) sin (θ3) −cos (β4) cos(θ4)

sin (β1) sin (β2) sin (β3) sin (β4)

 .

Setting θi = asin(
√
3
3 ) and βi =

π
4 , i = 1, . . . , 4, (as in the pyramidal wheel

configuration of Figure 1) L̂τ becomes

L̂τ =

√
3

3

1 −1 −1 1
1 1 −1 −1
1 1 1 1

 . (21)

We consider the case in which an uncertain estimated MOI matrix Ĵ
is available to the controller, with diagonal elements ranging in the inter-
val [2.9, 5.7], capturing estimation errors on J of ±30%. As an example, to
compute the guess of the high-frequency gain as in (11), in the presented
simulations we set the estimated MOI matrix available to the controller as

Ĵ =

4.6 0 0
0 4.8 0
0 0 4.6

 , (22)

but similar simulation behaviour was observed with different choices of Ĵ
within the allowed parameter range.

In all the simulations, condition (16) was always met.
Regarding the other parameters characterizing the extended observer

and the controller we have set {αi,1, αi,2, αi,3} = {9, 27, 27} , ∀i = 1, . . . 3 and

κ = 100. The last parameter, K, such was chosen so that the matrix (A+BK)
has its eigenvalues in {−0.25,−0.5,−0.25,−0.5,−0.25,−0.5} .

5.1 First simulation: nominal operation

The first simulation reports the system behaviour when no fault or disturbance
is present. Figure 2 and Figure 3 show the dynamics of the state x = (q, ω)
and confirm that the control effectively stabilizes the system. Figure 2 shows
that q1, q2 and q3 annihilate with time in about 30s, whereas q4, representing
the system zero-dynamics, remains bounded – it approaches 1 with time due
to the norm condition. Figure 3 shows the angular velocities of the spacecraft
over time, which also annihilates in about 30s. In Figure 4, which reports the
control torques, we can see that the control input saturates during the first
few seconds of the simulation, when the spacecraft has to correct its attitude
significantly. The control becomes unsaturated as soon as it is reduced in
magnitude due to the spacecraft approaching the target attitude.

For the sake of comparison, and to highlight the performance recovery
of the proposed approach, we report in Figure 5 and Figure 6 the deviation
observed between the states of a spacecraft controlled by (12)-(13) and one
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Fig. 2 Spacecraft attitude over time, 1st simulation
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Fig. 3 Spacecraft angular velocity over time, 1st simulation
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Fig. 4 Control torques over time, 1st simulation

of a satellite governed by (8) with complete state feedback and provided with
the correct estimation of the MOI matrix J . Figure 7 reports the deviation
observed between the control torques of the two satellites, showing that the
ideal control is recovered in a short amount of time.

5.2 Second simulation: single fault

In the second simulation, we introduce a total failure on the fourth reaction
wheel, leading to an actual distribution matrix
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Fig. 5 Attitude deviation, 1st simulation
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Fig. 6 Velocity deviation, 1st simulation
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Fig. 7 Control torques deviation, 1st simulation

L
′

τ =

√
3

3

1 −1 −1 0
1 1 −1 0
1 1 1 0

 ,

which affects the actual control action as in (18).
This uncertainty is captured by the modified high-frequency gain (19), but

the controller is not aware of this event, as the guess b̂(q) is still given by (11)
and (22), with the addition of (21). As it is highlighted in Figure 8, the desired
attitude is still reached after about 40s, i.e., approximately 10 seconds later
than in the former simulation.
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Fig. 8 Spacecraft attitude over time, 2nd simulation
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Fig. 9 Control torques over time, 2nd simulation

Regarding the control torques, Figure 9 shows that τ4 is always null (fault
condition), while the other torques exhibit the same behaviour analysed in
the first simulation: they saturate during the first part of the simulation and
converge to zero as the attitude approaches the target one.

5.3 Third simulation: multiple faults

For the third simulation, we report a case in which there is a generalized fault
in all the actuators. In particular, the first and the second wheels actuate
only 90% and 50% of the commanded torques, respectively, whereas the fourth
wheel is inactive as in the previous simulation. For the third wheel, we modelled
a deformation on its housing which causes its angle θ3 to be increased by 10◦,
while its angle β3 is reduced by 5◦. The resulting distribution matrix is

L
′

τ =

√
3

3

0.9 −0.5 −0.4954 0
0.9 0.5 −0.7075 0
0.9 0.5 0.5040 0


.

Figure 10 and Figure 11 show that the control still robustly stabilizes the
system – even if, this time, about 50s were necessary – despite having its con-
trols compromised by the faults and despite both the MOI and the distribution
matrices were wrongly estimated. Figure 11 also shows that, due to the actu-
ator deformation, the torque τ1 saturates above the nominal lower saturation
level −0.1Nm.
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Fig. 10 Spacecraft attitude over time, 3rd simulation
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Fig. 11 Control torques over time, 3rd simulation

For the sake of comparison, we now consider the controller proposed in
[24], as it provides a robust solution against multiple faults without requiring
any estimation of the MOI matrix and hence provides a fair comparison to
our control logic, under similar assumptions. The same faults previously were
applied to the satellite, with the tuneable controller parameters set according
to [24]. From the analysis of Figure 12 it is evident that, even if the controller
is able to steer the spacecraft towards the desired attitude, the quaternion tra-
jectory converges very differently from both the behaviours observed in Figure
10 (our solution on the fault system) and Figure 2 (that is the nominal case
with no faults). The reason for this difference is to be found in the profile of
the actuated controls, that is reported in Figure 13. In fact, the controller in
[24], as most of the existing robust approaches for attitude control, does not
take into account the reconstruction of a nominal control law whereas the pro-
posed control law asymptotically converges towards the control law employed
in the first simulation, that was obtained following a pole-placement design.
An equivalent behaviour is observed in Figure 14, where the satellite system
is governed by the sliding-mode control scheme proposed in [49] that, even
neglecting the chattering-related shortcomings related to the sliding mode
design, in turn assures the finite time convergence of the attitude tracking
error under assumptions on the parameter uncertainty and the nature of the
disturbances that are comparable to ours. The reconstruction of the nominal
control law assured by our control logic allows for simpler mission planning
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Fig. 12 Spacecraft attitude over time, benchmark for the 3rd simulation
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Fig. 13 Control torques over time, benchmark for the 3rd simulation
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Fig. 14 Spacecraft attitude over time, second benchmark for the 3rd simulation

and design phases, as the extended observer and the control law (13) lead the
system towards trajectories closer to its ideal behaviour. We mention that,
recent works such as [32], [50] and [51] focus mostly on data-driven/learning
identification systems for faults and disturbances, showing noteworty perfor-
mances but, compared to works such as the present paper and [24], lacking
asymptotic guarantees on their properties and requiring significant training
phases with limited applicability to existing and orbiting spacecraft platform.
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Fig. 15 Disturbance torques over time, 4th simulation
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Fig. 16 Spacecraft attitude over time, 4th simulation

5.4 Fourth simulation: external disturbances

In the fourth simulation, we consider the system in presence of disturbances.
All the spacecraft actuators are fully functional and the system is subject to an
additional constant disturbance torque, whose components, over the principal
axes of inertia of the spacecraft, are

τext = [−0.06 0.05 0.08]TNm,
as shown in Figure 15. Even in the presence of these disturbances, which are

comparable in magnitude to the control itself (recall that the torque saturation
level is 0.1Nm), Figure 16 shows that the control law (13) still stabilizes the
system.

It is interesting to note how the controls successfully reconstruct and com-
pensate the disturbances of Figure 15. The controls are shown in Figure 17,
and their projections on the principal axes of inertia (computed by using the
distribution matrix) are shown in Figure 18: the steady-state values are such
that the constant disturbances are exactly cancelled.

5.5 Fifth simulation: sinusoidal disturbances

The fifth and final simulation reports, in the same fault-free case of the previous
simulation, the case in which the disturbances have a time-varying component.
As depicted in Figure 18, the disturbance torques are biased sinusoidal signals
at different frequencies:
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Fig. 17 Control torques over time, 4th simulation
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Fig. 18 Resulting Control torques over time, 4th simulation
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Fig. 19 Disturbance torques over time, 5th simulation

τext =

 0.01 sin(t)− 0.05
0.05sin(2t) + 0.01

0.01sin(3t)

Nm.

Figure 19 shows that, practically, the control law (13) still manages to sta-
bilize the system by using, this time, sinusoidal control torques – see Figure 20.
However, by analysing the torque projections on the principal axes of inertia,
depicted in Figure 21, we may notice that there is not a perfect reconstruc-
tion of the external torque of Figure 18, as expected (see Section 4.3). This
small error, which is in the order of 10−4Nm, results in small oscillations of
the attitude, in the order of 10−5, as shown in Figure 22.
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Fig. 20 Spacecraft attitude over time, 5th simulation
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Fig. 21 Control torques over time, 5th simulation
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Fig. 22 Resulting Control torques over time, 5th simulation
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Fig. 23 Spacecraft attitude oscillations, 5th simulation
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6 Conclusions and future works

This paper presented a control strategy for the attitude control of a spacecraft,
robust to unknown, but bounded, uncertainties in the system parameters and
external disturbances. The main contribution is the adoption of the extended-
observer paradigm of [3], [43] in the attitude control problem. The resulting
control law is then robust also to uncertainties in the high-frequency gain
matrix and, as shown in the paper, this property allows us to include uncer-
tainties that are not commonly addressed by other robust control methods,
such as uncertainties in the actuators positioning and faults. As shown also
by simulation results, the control is in fact robust, within the physical lim-
its (e.g., a suitable number of actuators must be available, at least partially,
as required by a rank condition on the distribution matrix) in terms of total
faults, partial faults and deformations of the actuators. The controller is also
able to achieve zero steady-state error for step disturbances and an arbitrarily
small error for sinusoidal ones.

Future work is aimed at extending the developed framework to the prob-
lems of attitude tracking and constellation control, as well as its application
to flexible satellites.
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