
J
H
E
P
0
3
(
2
0
2
0
)
0
9
5

Published for SISSA by Springer

Received: January 3, 2020

Revised: February 25, 2020

Accepted: March 3, 2020

Published: March 17, 2020

Emergent Adler-Bardeen theorem

Vieri Mastropietro

Department of Mathematics “F. Enriquez”, University of Milano,

Via C. Saldini 50, 20133 Milano, Italy

E-mail: vieri.mastropietro@unimi.it

Abstract: We consider a QEDd+1, d = 1, 3 lattice model with emergent Lorentz or

chiral symmetry, both when the interaction is irrelevant or marginal. While the corre-

lations present symmetry breaking corrections, we prove that the Adler-Bardeen (AB)

non-renormalization property holds at a non-perturbative level even at finite lattice: all

radiative corrections to the anomaly are vanishing. The analysis uses a new technique based

on the combination of non-perturbative regularity properties obtained by exact renormal-

ization Group methods and Ward Identities. The AB property, essential for the renormal-

izability of the standard model, is therefore a robust feature imposing no constraints on

possible symmetry breaking terms, at least in the class of lattice models considered.

Keywords: Anomalies in Field and String Theories, Lattice Quantum Field Theory,

Nonperturbative Effects, Renormalization Group

ArXiv ePrint: 2001.00183

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2020)095

mailto:vieri.mastropietro@unimi.it
https://arxiv.org/abs/2001.00183
https://doi.org/10.1007/JHEP03(2020)095


J
H
E
P
0
3
(
2
0
2
0
)
0
9
5

Contents

1 Introduction 1

2 Lattice models and anomaly non-renormalization 2

3 Renormalization Group 7

4 Anomaly non-renormalization; the irrelevant case 10

5 Anomaly non-renormalization; marginal interactions 13

6 Conclusions 15

1 Introduction

According to modern understanding several symmetries of particle physics can be approx-

imate and emergent, see e.g. [1–3], and possibly broken at the Planck length scale. The

Adler-Bardeen (AB) non-renormalization property [4–6] is essential to ensure the renor-

malizability of the Standard model, through the anomaly cancellation. The proof of the

AB property is based on identities between class of graphs and relies on the validity of

Lorentz and chiral symmetry. If the symmetry breaking terms are dimensionally irrele-

vant, one expects that the corrections are of the order of the Planck divided by the particle

physics length scale, hence typically undetectable. However this would be not true if cor-

rections are present to the AB property; even very small radiative contributions would be

amplified if they break renormalizability. It is therefore interesting to see if the anomaly

non-renormalization holds generically even when symmetry breaking terms are present at

the Planck length scale, or if in contrast its validity requires that they are absent or at

least of special form.

We consider the simple situation where the symmetry violation is produced by a lattice,

with spacing small compared to particle physics lengths but large or comparable to the

Planck length scale; lattice models are often used to mimic the violation of symmetries,

see e.g. [7–10]. In particular, the model we consider is the interacting extension of the

Nielsen-Ninomiya simulation of the chiral anomaly [11], that is lattice fermions coupled

with a quantum massive photon field, with an emerging description in terms of massless

QEDd+1, d = 1, 3. There are corrections to the Lorentz invariant part of the correlations

which are non-vanishing and of order of the momentum times the lattice spacing. In

contrast, we prove that the anomaly is perfectly non-renormalized , even in presence of

finite symmetry breaking terms; that is, at least in the class of lattice models we consider,

the AB non-renormalization is a robust feature imposing no constraints on the symmetry

breaking terms.
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Our results are based on a novel technique based on the combination of constructive

regularity properties obtained by exact Renormalization Group (RG) methods and Ward

Identities. The contribution of irrelevant terms at each step is essential and fully taken

into account. The results are fully non-perturbative, as physical quantities are expressed

in terms of series whose convergence is established in presence of a finite photon mass,

as consequence of cancellations due to Pauli principle (see [12] for an introduction to such

methods). This is a major difference with respect to other approaches to the anomaly which

give results valid only order by order, see e.g. [13, 14]. The strategy of proof was used in [15]

for irrelevant interactions and is here extended to the marginal case. Even if the validity of

the AB property is proved for the U(1) gauge group and with a photon mass regularization,

the result indicates that the anomaly cancellation condition is common between the con-

tinuum theory and the lattice theory and suggests that anomaly-free chiral gauge theory,

as the Standard model, can be formulated non-perturbatively by lattice formulation.

2 Lattice models and anomaly non-renormalization

The massless lattice QEDd+1 model we consider is the interacting extension of the Nielsen-

Ninomiya anomaly simulation [11], where the interaction with a quantum photon field is

included. The detailed form of the lattice has no importance and we do a specific choice

just for definiteness.

In d = 1 we consider a linear lattice Λ = {x = na, n ∈ Z}). If ψ±x , x ∈ Λ, are fermionic

creation or annihilation operators defined on the Fock space and verifying {ψ+
x , ψ

−
y } = δx,y,

{ψ+
x , ψ

+
y } = {ψ−x , ψ−y } = 0, the lattice Hamiltonian is

H0 =
t

a

∑
x

(
1

2
(ψ+

x+aψ
−
x + ψ+

x ψ
−
x+a)− cos(ζ)ψ+

x ψ
−
x

)
(2.1)

We define

ψ̂±k =
∑
x∈Λ

e∓ikxψ±x ψ±x =

∫
dk

(2π)
e±ikxψ̂±k (2.2)

where |k| ≤ π/a and

H0 =

∫
dk

(2π)
h(k)ψ̂+

k ψ̂
−
k h(k) =

t

a
(cos ka− cos ζ). (2.3)

Note that for k = ±ζ/a+ q one has h(k) = ±vq+O(q2a), v = t sin ζ, that is the dispersion

relation is essentially linear.

In d = 3 we consider a lattice formed by two sublattices: one is Λ1 = {n1a( 1√
2
, 1√

2
, 0)+

n2a(− 1√
2
, 1√

2
, 0) + n3a(0, 0, 1), ni ∈ Z}, and the other is Λ2 = Λ1 + a 1√

2
e1 ≡ Λ1 + aδ1 (we

let e1, e2, e3 be the elements of the standard Euclidean basis and δ1 = 1√
2
e1, δ2 = 1√

2
e2).

We associate a fermionic field to each sublattice ψ±x,j with x ∈ Λj , j = 1, 2 and we consider

– 2 –
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the Hamiltonian

H0 =− t

2a

∑
x∈Λ1

[(
iψ+
x,1ψ

−
x+aδ1,2

+iψ+
x−aδ1,2ψ

−
x,1+c.c.

)
+
(
ψ+
x,1ψ

−
x+aδ2,2

−ψ+
x−aδ2,2ψ

−
x,1+c.c.

)]
−

t′
∑
x∈Λ1

[
1

2a
(ψ+

x,1ψ
−
x+ae3,1

+ψ+
x,1ψ

−
x−ae3,1)−

(
cos(ζ)− 1

a

)
ψ+
x,1ψ

−
x,1

]
+

t′
∑
x∈Λ2

[
1

2a
(ψ+

x,2ψ
−
x+ae3,2

+ψ+
x,2ψ

−
x−ae3,2)−

(
cos(ζ)− 1

a

)
ψ+
x,2ψ

−
x,2

]
+

t′

4a

∑
x∈Λ1

ψ+
x,1

(
ψ−x+aδ1+aδ2,1

+ψ−x+aδ1−aδ2,1+ψ−x−aδ1+aδ2,1
+ψ−x−aδ1−aδ2,1

)
− (2.4)

t′

4a

∑
x∈Λ2

ψ+
x,2

(
ψ−x+aδ1+aδ2,2

+ψ−x+aδ1−aδ2,2+ψ−x−aδ1+aδ2,2
+ψ−x−aδ1−aδ2,2

)
We pass to Fourier space:

ψ±x,1 =

∫
dk

(2π)3
e±ikxψ̂±k,1 ψ±x,2 =

∫
dk

(2π)3
e±ikxψ̂±k,2 (2.5)

where the integrals are over the first Brillouin zone so that the Hamiltonian reads:

H0 =

∫
dk

(2π)3
ψ̂+
k

(
α(k) β(k)

β∗(k) −α(k)

)
ψ̂−k ≡

∫
dk

(2π)3
ψ̂+
k h(k)ψ̂−k , (2.6)

where

α(k) = − t
′

a
(cos k3a− cos ζ) +

t′

a

(
cos

ak1√
2

cos
ak2√

2
− 1

)
, (2.7)

β(k) = − t
a

sin
k1√

2
+ i

t

a
sin

k2√
2
. (2.8)

If k1 = q1, k2 = q2 and k3 =±ζ/a+q3 we can write h(k)=−v1σ1q1−v1σ2q2∓vσ3q3+O(a|q|2)

with v1 = t/
√

2, v= t′ sinζ and q= (q1, q2, q3). We denote by ψ̂x0,k,i = eH0x0ψ̂±k,ie
−H0x0 where

x0 is the Euclidean time; we introduce the 2-point function ĝi,j(k)≡< ψ̂+
k,iψ̂

−
k,j > given by

the following matrix

ĝ(k) =
1

−ik0I + h(k)
(2.9)

where k = (k0, k). A similar expression holds in d = 1. The Fourier transform of the

propagator ĝ(k) is denoted by g(x) with x = (x0, x).

It is well known that the above lattice models admit an emerging description in terms

of Dirac particles [11]. Indeed a Dirac massless particle has propagator < Ψ̄kΨk >= 1
−i 6k ,

where /k = γµkµ, µ = 0, 1, . . . d and with {γµ, γν} = 2δµ,ν and the Euclidean Dirac derivative

is /∂. In d = 1 a possible realization of γ-matrices is σ1 = γ0, σ2 = γ1 and σ3 = γ5 with

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. Similarly in d = 3

γ0 =

(
0 I

I 0

)
γj =

(
0 iσj
−iσj 0

)
, γ5 =

(
I 0

0 −I

)
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In addition to Lorentz invariance, Dirac particles verify gauge and chiral symmetry, im-

plying the conservations of the d+ 1 current Jµ = Ψ̄γµΨ and axial current Jµ = Ψ̄γµγ5Ψ.

It is also convenient to write Ψ = (Ψ+,Ψ−) and Ψ̄ = Ψ+γ0, so that the Dirac propagator

can be written as, ĝD± (k) =< Ψ+
±,kΨ±,k >

ĝD± (k) = (−ik0 ± k)−1 ĝD± (k) = (−ik0 ∓ σ1k1 ∓ σ2k2 ∓ σ3k3)−1 (2.10)

in d = 1 and d = 3 respectively.

Let us look at the lattice propagator (2.9) restricting to momenta close to ±ζ/a. We

introduce a smooth compact support function χω(k), with ω = ± non vanishing only for

|k−ωζ̄/a| ≤ 1/(10a) with ζ̄ = (0, ζ) in d = 1 or ζ̄ = (0, 0, 0, ζ) in d = 3. In d = 1 we define

ĝω(k− ωζ̄/a) = χω(k)ĝ(k) and in d = 3 we define

ĝi,j;ω(k− ωζ̄/a) = δi,j,ωχω(k)ĝi,j(k) (2.11)

with δi,j,+ = 1, δi,j,− = (−1)i+j . The function ĝω is the propagator restricted to momenta

around ±ζ̄/a and, setting v = v1 = 1 we get, calling k− ωζ̄/a = q

ĝ±(q) = ĝD± (q)(1 + r±(q)) |r±(q)| ≤ Ca|q| (2.12)

The lattice models (2.1) and (2.4) admit therefore an emerging description in terms of

massless Dirac partcles; the propagator for momenta far from the inverse spacing has a

Lorentz invariant part up to corrections which are small but non vanishing. Let us see

what happens to the conservation of the currents. The current in a lattice theory can be

introduced using the Peierls substitution. In d = 1 one introduces an interaction with an

external gauge field by writing

H0(A) =
t

a

∑
x

(
1

2

(
ψ+
x+ae

i
∫ x
x+a dsA(s)ψ−x + ψ+

x e
i
∫ x+a
x dsA(s)ψ−x+a

)
− cos(ζ)ψ+

x ψ
−
x

)
(2.13)

with a similar expression holding in d = 3; the current is defined as jx = ∂H0(A)
∂A(x) |A(x)=0,

and the lattice density is ρx = ψ+
x ψ
−
x , and they can be combined in jµ = (ρ, j1, . . . , jd).

The lattice density and current vertex are close, in the sense of correlations and up to

corrections as in (2.12), to the Dirac ones Ψ̄γµΨ. Such corrections however do not prevent

the conservation of the lattice current in the sense of Ward Identities (see (2.26) below),

as the Peierls substitution ensures gauge invariance at a lattice level.

A different situation is encountered in the case of chiral currents. Following [11] one

can indeed define an analogue of the chiral density and current in the lattice model, by the

requirement that it is close to the Dirac chiral current Ψ̄γµγ5Ψ in the sense of correlations,

up to corrections. The lattice chiral density can be defined as the difference of densities of

fermions around ±ζ̄/a, that is in d = 1

ρ̂5
p =

∫
dk

(2π)

sin ka

sin ζ
ψ̂+
k+pψ̂

−
k (2.14)

or ρ̂5
p =

∫
dk

(2π)3
sin k3a
sin ζ ψ̂

+
k+pψ̂

−
k ; in coordinate space ρ5

x = − i
2 sin ζ (ψ+

x ψ
−
x+ae3 − ψ

+
x ψ
−
x−ae3) or

ρ5
x = − i

2 sin ζ (ψ+
x ψ
−
x+a − ψ+

x ψ
−
x−a). The definition of the axial current is given in a similar

– 4 –
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way inserting a factor sin ka or sin k3a in the Fourier transform of the current. The axial

symmetry is however broken and there is no conservation of axial current.

Let us introduce now a dynamical photon field Āµ(x) (not to be confused with the

external field Aµ) with integration P (dĀ) and propagator

vµ,ν(x) = δµ,νv(x) =

∫
dk

(2π)d+1
χ(k)

eikx

k2 +M2
a

δµ,ν (2.15)

where x = (x0, x), χ(k) is a cut-off function vanishing for momenta larger than O(1/a) and

Ma = M in d = 1 and Ma = a−1M in d = 3 is a regularizing mass (such a regularization

is the one adopted in [5]). For a non-perturbative analysis we find convenient to integrate

out the boson field getting a purely fermionic theory, that is∫
P (dĀ)ee

∫
dxĀµjµ = ee

2
∫
dxdyv(x−y)jµ(x)jµ(y) (2.16)

The lattice model we consider is therefore defined by the following generating function

eW (Aµ,A5
µ,φ) =

∫
P (dψ)eV (ψ,Aµ,A5

µ,φ) (2.17)

where ψ±x,i (in d = 3 i = 1, 2 while in d = 1 i = 1 and ψ±x,1 = ψ±x ) is a set of Grassmann vari-

ables {ψεx,i, ψε
′

y,j} = 0, ε, ε′ = ± (with abuse of notation we denote the Grassmann variables

with the same symbol as fields), P (dψ) is the fermionic integration with propagator (2.9)

and

V (ψ,Aµ, A
5
µ, φ) = λ

∫
dxdyvµ,ν(x,y)jµ,x(A)jν,y(A) + νN +B(ψ,A) +

∫
dxA5

µ,xj
5
µ,x(A)

(2.18)

where the first term is the interaction, jµ = (ρ, j1, . . . , jd) are the lattice density and

current expressed in terms of Grassmann variables, jµ(A) is obtained by jµ by the Perierls

substitution,
∫
dx is a notation for

∫
dx0

∑
x, λ = e2 is the coupling and the second term

is a counterterm to fix the singularity of the propagator, N =
∫
dxψ+

x ψ
−
x in d = 1 or

N =
∫
dx(ψ+

1,xψ
−
1,x − ψ+

2,xψ
−
2,x) in d = 3. Finally Aµ, A

5
µ, φ are external fields (φ is a

Grassman variable) and derivatives of W with respect to Aµ, A
5
µ, φ give the correlations

of the current, chiral current or fermionic field respectively. In order to ensure gauge

invariance for the external field Aµ (see (2.25) below) we define

B(ψ,A) =

∫
dxA0,xρx − (H0(A)−H0(0)) +

∑
ε=±

∫
dxψεxφ

−ε
x (2.19)

with H0(A) given by (2.13) with Grassmann variables replacing fields and j5
µ,x(A) is ob-

tained by j5
µ,x by the Peierls substitution; in particular the gauge invariant chiral density is

ρ5
x(A) = Z5

0

1

sin ζ

(
ψ+
x e

i
∫ x3+a
x3

dsA3(s)
ψ−x+ae3 − ψ

+
x−ae3e

i
∫ x3
x3−a

dsA3(s)
ψ−x

)
(2.20)

with A3(s) = A3(x0, x1, x2, s) and Z5
0 is a renormalization to be properly fixed, see be-

low; a similar expression holds for the axial current j5
i,x(A), and Z5

i are the corresponding

renormalizations.

– 5 –
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The correlations are obtained by differentiating the generating function with respect

to the external fields; in particular

Ĝ2(k) =
∂2W

∂φ̂−k ∂φ̂
+
k

|0 Ĝ2,1(p,k) =
∂3W

∂Âµ,p∂φ̂
−
k ∂φ̂

+
k+p

|0 Ĝ5
2,1(p,k) =

∂3W

∂Â5
µ,p∂φ̂

−
k ∂φ̂

+
k+p

|0

(2.21)

where given a function f(Aµ, A
5
µ, φ) we denote f(Aµ, A

5
µ, φ)|0 = f(0, 0, 0) and Âµ is the

Fourier transform of Aµ.

We define in d = 1 Ĝω(k− ωζ̄/a) = χω(k)Ĝ2(k) and in d = 3

Ĝi,j;ω(k− ωζ̄/a) = δi,j,ωχω(k)Ĝ2,i,j(k) (2.22)

Similarly we introduce the current correlations

Γ̂µ,µ1,...,µn(p1, . . . ,pn) =
∂n+1W

∂Âµ,p∂Âµ1,p1 . . . ∂Âµn,pn
|0

Γ̂5
µ,µ1,...,µn(p1, . . . ,pn) =

∂n+1W

∂Â5
µ,p∂Âµ1,p1 . . . ∂Âµn,pn

|0 (2.23)

By Feynman graph expansion one can see that the correlations of (2.17) coincide in the

formal limit in which regularizations are removed a → 0,M → 0 with massless QED in

the Feynman gauge. The lattice breaks the Lorentz symmetry, so that the parameters t, t′

have to be chosen as function of the coupling λ to fix the light velocity equal to c = 1; ν is

a counterterm to fix the position of the singularity. The chiral symmetry is also broken and

one has to fix the constants Z5
µ in order to ensure the following condition, if k = q+ωζ̄/a,

q,p small, ω = ±

Ĝ2,1,µ(p,k) = ωĜ5
2,1,µ(p,k)(1 +O(aq, a(q + p)) (2.24)

The AB non-renormalization means that the anomaly acquires no corrections provided

that the normalizations are fixed so that (2.24) holds, see e.g. [6].

While the lattice breaks chiral and Lorentz symmetry (which are only emergent), our

model respects exactly gauge symmetry, as by construction

W (Aµ, A
5
µ, φ) = W (Aµ + ∂µαx, A

5
µ, e

iαxφx) (2.25)

and from this we get the following Ward Identity expressing the conservation of the current

pµΓ̂µ,µ1,...,µn = 0 (2.26)

and the relation

− ipµĜ2,1,µ(p,k) = Ĝ2(k)− Ĝ2(k + p) (2.27)

The chiral symmetry is broken by the lattice so that the analogue of (2.26) for the chi-

ral current is not true. In the emergent continuum theory the chiral symmetry holds

exactly but nevertheless pµΓ̂5
µ,µ1,...,µn is non vanishing, what is precisely the quantum

anomaly [4]. In [11] it was shown that, in the non-interacting case, one has in the lat-

tice theory pµΓ̂5
µ,ν(p) = 1

πεµ,νpµ in d = 1 and pµΓ̂5
µ,ν,σ(p1,p2) = 1

2π2p1,αp2,βεα,β,ν,σ in

d = 3, that is one gets the same result as the continuum theory. We investigate what

happens to the anomaly in presence of interaction with a finite lattice.

– 6 –
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Theorem. For small λ and suitable ν, t, t′ and Z5
µ chosen so that (2.24) holds, the corre-

lations of (2.17) are, respectively for d = 1 and d = 3

Ĝω(q) =
|k|η

Z
gDω (q)(1 +R(q)) Ĝω(q) =

1

Z
gDω (q)(1 +R(q)) (2.28)

where η = aλ2 + O(λ3), Z = 1 + O(λ) and R(q) non vanishing and |R(q)| ≤ Ca|q|;
moreover, up to higher order terms in p

pµΓ̂5
µ,ν(p) =

1

π
εµ,νpµ pµΓ̂5

µ,ν,σ(p1,p2) =
1

2π2
p1,αp2,βεα,β,ν,σ (2.29)

The above result is an emergent Adler-Bardeen theorem, as (2.29) says that there are

no interaction corrections to the anomaly, even in presence of a finite lattice; its value

coincides with the one of non interacting Dirac fermions. In contrast symmetry breaking

terms produce non vanishing corrections to the correlations, see (2.28). The above result

is rigorous, as the presence of the lattice allows to get a full non-perturbative control on

the functional integrals.

In the rest of the paper a proof of the above result is provided. In section 3 we

describe the Renormalization Group analysis for the lattice model (2.17), and we get the

main regularity properties for the kernels of the effective potential. In section 4 we get the

anomaly non-renormalization in the d = 3 case, and in section 5 in the d = 1 case; finally

section 6 is devoted to conclusions.

3 Renormalization Group

As we are interested in the possible breaking of the AB property due the irrelevant terms,

one needs an exact RG analysis in order to take them fully into account [17, 18]. The

starting point is the decomposition of the propagator in higher and lower energy degrees

of freedom, that is

g(x) = g(N)(x) + g(≤N−1)(x) (3.1)

where ĝ(N)(k) and ĝ(≤N−1)(k) are equal to ĝ(k) times fN (k) and χN−1(k) respectively,

where χN−1(k) is a compact support function selecting momenta such that |k−ωζ̄/a| ≤ γN

with γ > 1, γN = 1/(10a) and fN = 1 − χN−1. We can use the decomposition prop-

erty P (dψ) = P (dψ(≤N−1))P (dψ(N)), where P (dψ(≤N−1)) and P (dψ(N)) have propagator

g(≤N−1)(x) and g(N)(x). The field ψ(N) represents the highest energy degree of freedom;

its propagator g(N)(x) decays at large distances faster than any power with rate γN and

is bounded by γdN , and it can be integrated out safely. Note that χN−1(k) as a function

of k has support in two disconnected regions around ±ζ̄/a; we can therefore, after shifting

the momenta, write

g(≤N−1)(x) =
∑
ω=±

eiω
ζ̄
a
xg(≤N−1)
ω (x) ψ

±(≤N−1)
x =

∑
ω=±

e±iω
ζ̄
a
xψ
±(≤N−1)
ω,x (3.2)

– 7 –
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In conclusion we get

eW (Aµ,A5
µ,φ) =

∫
P (dψ(≤N−1))P (dψ(N))eV

(N)(ψ(≤N−1)+ψ(N),φ,A5
µ,Aµ)

=

∫
P (dψ(≤N−1))eV

(N−1)(ψ(≤N−1),φ,A5
µ,Aµ) (3.3)

with V (N−1)(ψ(≤N−1), φ, A5
µ, Aµ) equal to

∑∞
n=0

1
n!E

T
N (V ;n) and ETN is the truncated ex-

pectation, that is the sum of connected Feynman graphs. The effective potential V (N−1)

is given by

V (N−1) =
∑
l,m

∫
dxdyW

(N−1)
l,m (x,y)

[
l∏

i=1

ψ
εi(≤N−1)
jixi,ωi

][
m∏
i=1

Aσiµ,yi

]
(3.4)

where x = x1, . . . ,xl, y = y1, . . . ,ym, j = 1, 2 in d = 3 or j = 1 in d = 1, εi = ±, µ = 0, 1

in d = 1 and µ = 0, 1, 2, 3 in d = 3, ω = ± and σ = 0, 5 (A0
µ,y ≡ Aµ,y).

Note that the RG integration step has two effects; the first is that the potential is

now expressed as sum over monomials of fields of every order and the second that the

field is splitted in two components labeled by ω = ±. The kernels W
(N−1)
l,m are expressed

by convergent series in λ; this follows from the representation g(N)(x − y) = (fx, gy)

where (, ) is a suitable scalar product and the fact that fermionic expectation can be

written as the determinant of a Gram matrix M with elements (fxi , gxj ) with bound

| detM | ≤
∏
||fxi ||||gxi ||; see e.g. [19] or [12].

We integrate the lower degrees of freedom writing g
(≤N−1)
ω =

∑N−1
h=−∞ g

(h)
ω where g

(h)
ω

has cut-off function fh with support in γh−1 ≤ |k ∓ ζ̄/a| ≤ γh+1; by integrating the

fields ψ
(N−1)
ω , ψ

(N−2)
ω , . . . , ψ

(h)
ω we get an expression similar to (3.3) with P (dψ(≤h)) with

propagator

g(≤h)
ω (x) =

∫
dk

(2π)d+1

eikx

Zh

χh(k)

−iαµ,ω,hkµ
+ rhω(x) (3.5)

where χh =
∑h

k=−∞ fk and in d = 1 one has α0,ω,h = 1, α1,ω,h = −iωvh and in d = 3

one has α0,ω,h = 1, α1,ω,h = −iσ1vh,1, α2,ω,h = −iσ2vh,1, α3,ω,h = −iωσ3vh,3; the

first term is bounded by γdh and decays faster than any power in γh|x|, while the second is

smaller, being bounded by γdhaγh. The velocities are such that vh → v−∞ = v0 +O(λ) and

we can tune the parameters such that v−∞ = 1. We call αµ,ω simply αµ,ω,h with h = −∞.

With this choice the first term in the r.h.s. of (3.5) is the relativistic propagator at scale h.

The effective potential V h can be decomposed in an irrelevant part, containing all the

monomials with negative scaling dimension D = (d + 1) − dn/2 −m, and a relevant and

marginal part D ≥ 0. The marginal term linear in A have the form∑
ω=±

∫
dp

(2π)d+1
[Zµ,h Âµ,p ̂µ,ω,p + Z5

µ,hÂ
5
µ,p ̂

5
µ,ω,p] (3.6)

with (in d = 3 ψ̂ = (ψ̂1, ψ̂2))

ĵµ,ω,p=

∫
dk

(2π)d+1
ψ̂+
ω,k+pαµ,ωψ̂

−
ω,k ĵ5

µ,ω,p= Z5
µ

∫
dk

(2π)d+1
ψ̂+
ω,k+pα

5
µ,ωψ̂

−
ω,k α5

µ,ω = ωαµ,ω

(3.7)
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The factors Zµ,h or Z5
µ,h are the renormalizations of the current and axial current respec-

tively. The relevant term is γhνh
∑

ω

∫
dxψ+

x,ωᾱψ
−
x,ω with ᾱ = 1 in d = 1 and σ3 in d = 3

and ν has to fixed so that so that νh = O(γh−N ). Finally in d = 1 there is a marginal

interaction

λh

∫
dxψ+

x,+ψ
−
x,+ψ

+
x,−ψ

−
x,− (3.8)

which is absent in d = 3.

The kernels W
(h)
l,m are obtained, see e.g. [12], by contracting the effective potentials at

previous scales, and one can distinguish the contributions W
(h)
a,l,m, obtained contracting only

marginal terms, from the contributions W
(h)
b,l,m obtained contracting at least an irrelevant

or relevant ν term; the series expansion are convergent and the following bound holds [12]∫
d(x/x1)|W (h)

i,l,m(x)| ≤CγDhγ−θi(N−h) θa = 0,θb = 1 D= (d+1)−dl/2−m (3.9)

Note that there is an essential difference between the d = 3 and d = 1 case; in the first case

to W
(h)
a,n,m no vertices with more than two fermionic lines contribute, while in the second

also the local vertices quartic in ψ contribute.

The flow of the running coupling constants and renormalizations is quite different. In

the d = 3 case [20, 21] the terms with more than 2 fields have negative dimension so that

Zh−1

Zh
= 1 +O(λγh−N ) vh−1 = vh +O(λγh−N )

Zµ,h−1

Zµ,h
= 1 +O(λγh−N )

Z5
µ,h−1

Z5
µ,h

= 1 +O(λγh−N ) (3.10)

by (3.9). We choose the parameters so that vh = 1 + O(λγh−N ).Defining Zµ,−∞ ≡ Zµ,

Z5
µ,−∞ ≡ Z5

µ, Z−∞ ≡ Z we can write

Zµ,h = Zµ +O(λγh−N ) (3.11)

and similar expressions for Zh, Zµ,h.

In the d = 1 case [22–24] in contrast the interaction is marginal and the beta function

of the renormalizations is given by

Zh−1

Zh
= 1 + aλ2

h +O(λ3
h) (3.12)

and similar expressions holds for Zµ,h and Z5
µ,h. It turns out that, as a consequence of

the emerging chiral symmetry, the beta function for λh is asymptotically vanishing λh−1 =

λh+O(λ2γh−N ) and the same is true for the velocity. Note that, as λh → λ−∞ = λ+O(λ2),

then the renormalization can be singular as h→ −∞; in particular

Zh ∼ γη(h−N) (3.13)

with η = −aλ2 +O(λ3).

The conclusion of the above analysis is that, if we suitable fix the velocities v0 and the

counterterms ν one gets (2.28), that is Lorentz invariance emerges up to corrections which

are small if q is far from the lattice scale.

– 9 –
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4 Anomaly non-renormalization; the irrelevant case

In d = 3 the interaction is irrelevant and, by (3.9), for k ∼ ωζ̄/a, p ∼ 0, ω = ± Ĝ2(k) =
1
Z g(k)(1 +O(aq)) and

Ĝ2,1,µ(p,k) = ZµĜ2(k)αµ,ωĜ2(k + p)(1 +R)

Ĝ5
2,1,µ(p,k) = ωZ5

µZ
5
µĜ2(k)αµ,ωĜ2(k + p)(1 +R) (4.1)

with |R| ≤ Ca(|q|, |q + p|). Note the perfect proportionality of the vertex function to

Zµ, Z
5
µ which is not true in the marginal case (the R term is not subdominant). We know

from the previous section that Z,Zµ, Z
5
µ are expressed by convergent series depending on

all details at the lattice scale; the Ward Identity (2.27) implies the exact relation

Zµ
Z

= 1 (4.2)

A similar identity is not true for Z5
µ and generically Z5

µ/Zµ is a non trivial function of λ.

Therefore in order to ensure the validity of (2.24) we choose

Z5
µ =

Zµ
Z5
µ

(4.3)

The anomaly coefficient is expressed in terms of

Γ̂5
µ,µ1,µ3

(p1,p2) =
N∑

h=−∞
Ŵ

(h)
0,3 (p1,p2) (4.4)

By (3.9) it is bounded by

|Γ̂5
µ,µ1,µ3

(p1,p2)| ≤ C
N∑

h=−∞
γh <∞ (4.5)

so that it is continuous as a function of p1,p2; it is however not differentiable as each

derivative produces an extra γ−h. The continuity combined with Ward Identites (2.25) are

sufficient to prove that Γ5
µ,µ1,µ2

(0, 0) = 0 without any explicit computation: it is sufficient

to write from (2.25) p1,µ1Γ̂5
µ,µ1,µ2

(p1,p2) = 0 at p1,1 = p̄1 and zero otherwise and use

continuity. One would be tempted to iterate this argument for the derivative of Γ̂5
µ,µ1,µ2

,

but that is impossibile for the lack of differentiability, and indeed Γ̂5
µ,µ1,µ2

has non vanishing

derivatives.

Regularity properties are a very efficient tool to get information on the property of

the anomalies, once that Γ̂5
µ,µ1,µ2

(p1,p2) is suitable decomposed in order to get advantage

from the dimensional gain in (3.9). We write, p = p1 + p2

Γ̂5
µ,ν,σ(p1,p2) = 〈̂5µ,p; ̃ν,p1 ; ̃σ,p2〉+ ∆(p1,p2) (4.6)

where ∆ is the Schwinger term and j̃ the interacting current (obtained by the derivative

in A). ∆ has the same bound as the terms with m = 2, 1 hence they are differentiable.

– 10 –
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Figure 1. The decomposition of 〈̂5µ,p; ̃ν,p1
; ̃σ,p2

〉.

In absence of interaction λ = 0 〈̂5µ,p; ̃ν,p1 ; ̃σ,p2〉 is expressed by the triangle graph. In

presence of interaction, the RG analysis of the previous section says that

〈̂5µ,p; ̃ν,p1 ; ̃σ,p2〉 =

N∑
h=−∞

Ŵ
(h)
a,0,3 +

N∑
h=−∞

Ŵ
(h)
b,0,3 (4.7)

where the first term, containing only marginal source terms, is the triangle graph with

propagators g(h)/Zh and vertices associated to Zµ,h, Z
5
µ,h, while the second is a series of

terms with an arbitrary number of quartic interactions, see figure 1. According to the

bound (3.9) we have
N∑

h=−∞
|∂Ŵ (h)

b,0,3| ≤
N∑

h=−∞
γ(h−N) ≤ C (4.8)

so that Ŵ
(h)
b,0,3 is differentiable while Ŵ

(h)
a,0,3 is not.

We can replace in the renormalized triangle graph the values of Zµ,h, Z
5
µ,h, vh with

their limiting value; the difference has again an extra O(γh−N ) so gives a differentiable

contribution. Summing over the scale h has the effect that the cut-off fh of single scale

propagators add up to χ =
∑N

h=−∞ fh so that we get at the end

N∑
h=−∞

W
(h)
a,0,3 =

Z5
µZ

5
µZνZσ

Z3
Iµ,ν,σ(p1,p2) +G(p1,p2) (4.9)

where the second term is differentiable while Iµ,ν,σ(p1,p2) is the relativistic triangle graph

with propagators χ(k)
−i 6k , that is with a momentum cut-off. In conclusion

Γ̂5
µ,ν,σ(p1,p2) =

Z5
µZ

5
µZνZσ

Z3
Iµ,ν,σ(p1,p2) +H5

µ,ν,σ(p1,p2) (4.10)

where H5
µ,ν,σ is continuously differentiable. By (4.2), (4.3) we get

Z5
µZ

5
µZνZσ

Z3
= 1 (4.11)

In addition the contribution from the first term in (4.10) can be explicitly computed,

see [15], and one gets

pµIµ,ν,σ(p1,p2) =
1

6π2
p1,αp2,βεαβνσ p1,νIµ,ν,σ(p1,p2) =

1

6π2
p1,αp2,βεαβµσ (4.12)
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up to higher order terms, cubic in the momenta; moreover p2,σIµ,ν,σ(p1,p2) =

p2,σIµ,σ,ν(p2,p1) = 1
6π2p2,αp1,βεα,β,µ,ν . Note that the r.h.s. of (4.12) do not depend on the

cut-off 1/a; moreover either the current and the chiral current are not conserved in Iµ,ν,σ
as the momentum cut-off breaks the local gauge invariance.

It remains to evaluate the second term in (4.10); it depends on all the irrelevant terms

and is expressed by a complicate series so it cannot be explicitly computed; however we

show now that the information that is differentiable combined with Ward Identity (2.25)

is sufficient for its determination. Indeed from the WI (2.25) we get

p1,νΓ̂5
µ,ν,σ(p1,p2) = 0 (4.13)

We use now the decomposition (4.10) and the differentiability of H5
µ,ν,σ to expand up to

first order

0 =
1

6π2
p1,αp2,βεα,β,µ,σ + p1,νp1,α

∂

∂p1,α
H5
µ,ν,σ(0,0) + p1,νp2,β

∂

∂p2,β
H5
µ,ν,σ(0,0) +O(p3)

(4.14)

From the above relation we get ∂
∂p1,α

H5
µ,ν,σ(0,0) + ∂

∂p1,ν
Hµ,α,σ(0,0) = 0 and

1

6π2
εα,β,µ,σ = − ∂

∂p2,β
H5
µ,α,σ(0,0) (4.15)

Similarly from p2,σΓ̂µ,ν,σ(p1,p2) = 0 we get

0 =
1

6π2
p2,αp1,βεα,β,µ,ν + p2,σp1,α

∂

∂p1,α
Hµ,ν,σ(0,0) + p2,σp2,β

∂

∂p2,β
Hµ,ν,σ(0,0) +O(p3) ,

(4.16)

and 1
6π2 εα,β,µ,ν = − ∂

∂p1,β
Hµ,ν,α(0,0). Finally

Hµ,ν,σ(p1,p2) = p1,α
∂

∂p1,α
Hµ,ν,σ(0,0) + p2,β

∂

∂p2,β
Hµ,ν,σ(0,0)

= − 1

6π2
p1,αεσ,α,µ,ν −

1

6π2
p2,βεν,β,µ,σ (4.17)

so that

pµΓ̂5
µ,ν,σ(p1,p2) =

1

6π2
(p1,αp2,βεα,β,ν,σ − p1,αp2,µεσ,α,µ,ν − p2,βp1,µεν,β,µ,σ)

=
1

2π2
p1,αp2,βεα,β,ν,σ (4.18)

up to higher orders terms in p. This says that the AB non-renormalization property holds

even in presence of symmetry breaking terms.
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5 Anomaly non-renormalization; marginal interactions

We have derived in the previous section the AB non-renormalization in a case where the

interaction is irrelevant; this is in contrast with the d = 3 case with massless photons where

the interaction is marginal. However we show now that even in d = 1, where the interaction

is marginal, the AB renormalization holds exactly. Again we can decompose

Γ̂5
µ,ν(p) = Γ̂5,a

µ,ν(p) + Γ̂5,b
µ,ν(p) (5.1)

where Γ̂5,a
µ,ν contains only marginal terms and Γ̂5,b

µ,ν at least an irrelevant or relevant term;

therefore by (3.9) we get

|Γ̂5,i
µ,ν(p)| ≤

N∑
h=0

γθi(h−N) (5.2)

with θa = 0, θb = 1; therefore the first term in (5.1) is not continuous while the first

is continuous. Γ̂5,a
µ,ν(p) has a relativistic structure and we could try to follow a strategy

similar to the one in the previous section. There is however a major difference; now there

are marginal terms quartic in the fields, so that the first term is expressed as a series of

renormalized graphs and not by a single term. As the dominant part now corresponds to

an interacting theory, it seems that it cannot be explicitly computed. We can however

introduce a relativistic QFT describing Dirac fermions in d = 1 + 1 with a current-current

non local interaction; the corresponding generating function is given by

eWrel(A,A
5,φ)

=

∫
P (dψ≤K)eλ∞Z̃

2
∫
dxdyv(x−y)jµ,xjm,y+

∑
µ Z̃µ

∫
dxAµjµ+

∑
µ Z̃

5
µ

∫
dxA5

µj
5
µ+

∫
dx(ψ+

x φ
−
x +ψ−x ψ

+
x ))

(5.3)

where ψ±x,ω, ω = ± are Grassmann variables, j0,x = ψ+
x,+ψ

−
x,++ψ+

x,−ψ
−
x,−, j1,x = i(ψ+

x,+ψ
−
x,+

−ψ+
x,−ψ

−
x,−), P (dψ≤K) has propagator, if ω = ±, ĝ

(≤K)
ω (k) = χK(k)

Z̃(−ik0+ωk)
with χK(k) a cut-

off function non vanishing for |k| ≤ γK and v(x−y) decaying exponentially with rate 1/a.

This theory is in a sense the regularization of the scaling limit of the previous one, and it

verifies the chiral global gauge invariance (which is broken by the lattice).

The RG analysis of (5.3) is similar to the one in section 3 and we can choose the

parameters Z̃, Z̃5
µ, Z̃µ, λ∞ in (5.3) as function of λ so that the limiting value at h = −∞

of the corresponding running coupling constants is the same as in the lattice theory. By

this choice the difference in the running coupling constants is O(γh−N ) so that we get the

decomposition

Γ̂5
µ,ν(p) = Z5

µ

[
∂2Wrel(A,A

5, φ)

∂Â5
µ∂Âν

|0 +H5
µ,ν(p)

]
Γ̂µ,ν(p) =

[
∂2Wrel(A,A

5, φ)

∂Âµ∂Âν
|0 +Hµ,ν(p)

]
(5.4)

where Hµ,ν(p), H5
µ,ν(p) continuous by (3.9); similarly, up to subdominant terms in the

momentum,

Ĝ2,µ =
∂2Wrel

∂φ̂+∂φ̂−
Ĝ2,1,µ =

∂3Wrel

∂Âµ∂φ̂+∂φ̂−
Ĝ5

2,1,µ = Z5
µ

∂3Wrel

∂Â5
µ∂φ̂

+∂φ̂−
(5.5)
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Figure 2. The WI for the vertex function of (5.3) where the last term is the extra term due to the

C factor.

We can take advantage from the fact that the model (5.3) verifies global and axial

symmetries; however local symmetries are broken by the presence of the momentum cut-

off and this produces extra anomalous terms in the WI for the global and axial current.

Note indeed that, if Dω(k) = −ik0 + ωk

ĝ(≤K)
ω (k)− ĝ(≤K)

ω (k + p)− ĝ(≤K)
ω (k)Dω(p)g(≤K)

ω (k + p) = ĝ(≤K)
ω (k)C(k,p)ĝ(≤K)

ω (k + p)

(5.6)

with C(k,p) = Dω(k)(χ−1
K (k)− 1)−Dω(k + p)(χ−1

K (k + p)− 1) (the r.h.s.would be zero

in absence of cut-off). The presence of this extra term produce an additional factor in the

WI, see figure 2; as proven in [22–24] in the K →∞ limit the following WI for the vertex

and chiral vertex are obtained

−ip0
1

Z̃0

∂3Wrel

∂Â0,p∂φ̂
−
k,ω∂φ̂

+
k+p,ω

+
p1

Z̃1

∂3Wrel

∂Â1,p∂φ̂
−
k,ω∂φ̂

+
k+p,ω

=
1

Z̃(1−τ)

(
∂2Wrel

∂φ̂−k,ω∂φ̂
+
k,ω

− ∂2Wrel

∂φ̂−k+p,ω∂φ̂
+
k+p,ω

)

−ip0
1

Z̃5
0

∂3Wrel

∂Â5
0,p∂φ

−
k,ω∂φ

+
k+p,ω

+
p1

Z̃5
1

∂3Wrel

∂Â5
1,p∂φ

−
k,ω∂φ

+
k+p,ω

=
ω

Z̃(1+τ)

(
∂2Wrel

∂φ̂−k,ω∂φ̂
+
k,ω

− ∂2Wrel

∂φ̂−k+p,ω∂φ̂
+
κ+p,ω

)
(5.7)

and τ = λ∞/4π. The extra term in the WI produced by the C- term reduces, in the limit

K →∞, to the vertex function times the constant τ (which is the graph for the anomaly

in d = 1 with momentum cut-off).

The fact that the vertex and 2-point function of (5.7) and lattice model (computed

at q + ωζ/a with q small) are close up to O(aq) terms says that the first of the WI (5.7)

coincides with (2.27); this imposes constraints for the parameters of effective QFT (5.3),

that is
Z̃1

Z̃0

= 1
Z̃0

Z̃
= 1− τ (5.8)

We have now to choose Z5
µ by (2.24); from (5.7) in the limit p0 → 0, p→ 0

Ĝ5
2,1 = iω

Z5
0 Z̃

5
0

Z̃(1 + τ)
∂0

∂2Wrel

∂φ̂−k,ω∂φ̂
+
k,ω

Ĝ2,1 = i
Z̃0

Z̃(1− τ)
∂0

∂2Wrel

∂φ̂−k,ω∂φ̂
+
k,ω

(5.9)

and a similar expression for µ = 1 so that

Z5
i =

1 + τ

1− τ
Z̃i

Z̃5
i

= (1 + τ)
Z̃

Z̃5
i

(5.10)
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The WI for the current correlations of (5.3) are

∑
µ

pµ
Z̃

Z̃5
µ

Z̃

Z̃ν

∂2Wrel

∂Â5
µ∂Âν

=
εµ,νpµ
1 + τ

1

2π

∑
ν

pν
Z̃

Z̃5
µ

Z

Zν

∂2Wrel

∂Â5
µ∂Âν

=
εν,µpν
1− τ

1

2π
(5.11)

and from (5.8), (5.10)

1

1− τ
∑
µ

pµZ5
µ

∂2Wrel

∂Â5
µ∂Âν

= εµ,νpµ
1

2π

1

1 + τ

∑
ν

pνZ5
µ

∂2W

∂Â5
µ∂Âν

= ερ,µpρ
1

2π
(5.12)

Now we use that the lattice Ward identity (2.25) and the decomposition (5.4)

pνΓ̂5
µ,ν = Z5

µ

∑
ν

pν

[
∂2W

∂Â5
µ∂Âν

+Hµ,ν

]
= 0 (5.13)

from which we get

ερ,µ
(1 + τ)

Z5
µ

pρ
1

2π
+ pνHµ,ν(p) = 0 (5.14)

In contrast with Γ5
µ,ν(p), we know that Hµ,ν(p) is continuous in p so that

− ερ,µ
(1 + τ)

Z5
µ

1

2π
= Hµ,ρ(0) (5.15)

and, up to higher orders in p

pµΓ̂5
µ,ν(p) =

∑
µ

pµZ5
µ

[
∂2Wrel

∂Â5
µ∂Âν

+Hµ,ν

]

= εµ,ν
(1−τ)

2π
pµ−εν,µ

(1+τ)

2π
pµ = [(1−τ)+(1+τ)]εµ,νpµ

1

2π
= εµ,νpµ

1

π
(5.16)

so that the factor τ , depending on λ, cancels out and also in the marginal case the anomaly

is non-renormalized.

6 Conclusions

The renormalizability of the Standard Model relies on the AB non renormalization property

which is used in the anomaly cancellation. It is therefore interesting to see if the anomaly

non-renormalization holds generically even when symmetry breaking terms are present at

the Planck scale, or if in contrast its validity requires that they are absent or at least of

special form. We have investigated such a question in QED lattice model both when the

interaction is irrelevant or marginal, showing that the AB property holds exactly even if

Lorentz or chiral symmetry is broken and corrections to correlations are present. The fact

that the corrections to the anomaly are due to irrelevant terms requires the use of exact

and non-perturbative RG methods. It would be interesting to establish a similar property

removing the mass regularization of photons; in such a case fermionic cancellations are not

sufficient to achieve convergence and large/small field decomposition is necessary to get

non-perturbative results.

– 15 –
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