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A B S T R A C T

Since DNA strings suffer from variations like mutation, noisy sampling, and transmission, instead of searching
for the exact match, the inexact string matching (ISM) of DNA sequences is preferred. Due to the large amount
of data and massive data-dependency, the ISM algorithm is not suitable for being implemented into a general-
purpose hardware. Towards this, we propose ISMatch, a novel specialized hardware architecture for computing
the ISM in a fast and energy-efficient way. Our implementation on a Xilinx Ultrascale+ FPGA shows up to 70×
and 2.2× clock cycles reduction compared to the ARM-based and the HLS implementations, respectively.
. Introduction

The inexact string matching (ISM) is an important problem in
ields such as bioinformatics [1], signal processing [2,3], and text re-
rieval [4], where the exact string matching is not necessarily feasible.
ince the genome is usually composed of millions or billions of base
airs that can have several variations during the DNA replication or
enetic recombination [5], finding an exact match in the DNA string is
ighly unlikely, because all the similar strings that had got variations
uring DNA processes are discarded [6]. Moreover, the current trend
s to process a large amount of such data [7]. For instance, due to the
arge collection of words, a mistaken word cannot be recovered with a
tandard string matching. Hence, for text retrieval, an ISM algorithm is
eeded [8]. The ISM algorithm can find hits with a level of inexactness
hat can be decided, and can yield to different shadow hits that would
ot have been detected by an exact string matching algorithm. Espe-
ially in the bioinformatics field, the possible variations that can occur
n the DNA protein chains [5] are Single Nucleotide Polymorphisms
SNPs), insertion/deletions of small fragments, inversion, Copy Number
ariations (CNVs). All these variations can lead to different diseases

hat can be detected with a research in the DNA protein chain using an
SM algorithm.

For the ISM algorithm, the distance between strings needs to be
roperly defined. The most common definitions are based on the

∗ Corresponding author.
E-mail address: alberto.marchisio@tuwien.ac.at (A. Marchisio).

1 Note, this is an illustrative example to make the computations simple, while in the real world the strings can be thousand or millions of characters long.
owever, these lengths are significant for comparison purposes.

Burrows-Wheeler Transform [9] and the Levenshtein distance [10]. Due
to its relatively simple algorithmic constructs, the data-dependency that
perfectly fits the HDL development, and the low memory requirement,
the Levenshtein distance is adopted in this work. However, the com-
putation of the ISM algorithm grows exponentially with the length of
the pattern to search; it is O(|𝑝||𝑠|) in time, where |𝑝| and |𝑠| are the
length of the two strings. Hence, this can lead to an unacceptably large
execution time. For this reason, the CPU implementations pose a huge
bottleneck as they cannot compute large pattern search with a high
degree of parallelism, thereby rendering the overall system inefficient
and extremely slow. Although an HDL implementation can provide
a high speedup, the level of parallelism for the computational units
that search different patterns is limited by the resource usage. The
aim of this work is to increase the compute resource efficiency and
throughput of the ISM algorithm by developing an optimized hardware
accelerator, and to demonstrate its efficacy by comparing it with the
CPU implementation, an High Level Synthesis (HLS)-based hardware
implementation, and other state-of-the-art accelerators.

1.1. Key scientific challenges and motivational case study

The target problem is to optimize the resource usage with the
minimum desired speedup factor. For the High Level Synthesis (HLS),
vailable online 9 January 2023
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Fig. 1. Clock cycles and resource usage with more processing elements are used to
process an 8-characters long string. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

this can be done by choosing different target optimizations (e.g., loop
unrolling, pipelining, etc.). The specialized HDL design is composed
of the Levenshtein distance computation block that computes the dis-
tance based on the Levenshtein algorithm (see Section 2.1). Its inner
data-dependency allows for designing the block with a systolic ar-
chitecture composed of different processing elements, each of them
computing every anti-diagonal in one clock cycle through the wave-
front approach [11]. The throughput of the system is incremented
when more processing elements (PEs) are introduced to compute the
Levenshtein distance. To motivate the need for having multiple PEs in
parallel, Fig. 1 shows tradeoffs between the latency and the resource
usage for the hardware-based processing of the Levenshtein distance
between strings of 8-characters length.1 The resource usage grows w.r.t.
the number of PEs of the architecture, as the throughput improves
with a linear relationship. The key challenges that are addressed in this
paper are:

• How to efficiently compute the Levenshtein distance?
• Which hardware platform provides a fast execution to process the ISM
algorithm in real-time?

• How can we develop efficient an accelerator for this task on FPGA?

To address the above problems, we propose ISMatch, a novel hard-
ware architecture design that enables efficient computation of the
Levenshtein distance for the ISM algorithm, and compare its execution
with other implementations (see Fig. 2).

1.2. Our novel contributions

• ISMatch: Optimized Hardware Architecture Design (Section 3)
for accelerating the ISM algorithm, realized with a specialized
HDL design and implemented on a Xilinx Ultrascale + FPGA.
It supports a parallel execution of the algorithm for computing
the edit-distance and fast PCIe interface with the host. It can be
configured for executing the algorithm with different parallelism
granularity, by choosing the matching threshold and the number
of PEs of the architecture.

• High Level Synthesis Implementation (Section 4.3) on FPGA,
with different optimization levels, for comparison purposes.

• Performance Comparison (Section 4) of the Levenshtein algo-
rithm for different implementations, which are:

– An optimized ARM CPU-based implementation
– An optimized GPU-based implementation [11]
– High Level Synthesis for FPGA implementation
– State-of-the-art Accelerator [12] for FPGA implementation
– ISMatch Accelerator for FPGA implementation

The measured output metrics that are compared across the hard-
ware platforms are performance, resource usage, and power con-
sumption.

2. Overview of inexact string matching

The ISM algorithm searches and validates a pattern in a long string
like DNA protein sequences. When the pattern is found an occurrence is
2

Fig. 2. Overview of our novel contributions (shown in blue boxes).

created. The exact matching search cannot detect the small variations
that can occur in the DNA protein chains and a huge number of
diseases cannot be detected. For this reason, an inexact string searching
algorithm is employed, since it can detect inexact matches with a
variation level that can be controlled by a threshold.

2.1. The Levenshtein distance computation

The ISM algorithm searches in a long string a pattern with a grade
of dissimilarity. The search of the pattern is realized by comparing
the pattern with a moving window that scans the whole string. The
dissimilarity between the string inside the window 𝑠 and the pattern
𝑝 are calculated with the Levenshtein distance [10], also called Edit
distance, which is the minimum unitary cost operation necessary for
the transformation of a given string into another one. Each element of
the Levenshtein matrix is computed as in Eq. (1).

𝑙𝑒𝑣p,s(𝑖, 𝑗) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑖 if j=0 and i>0
𝑗 if i=0 and j>0
𝑚𝑖𝑛(𝑙𝑒𝑣p,s(𝑖 − 1, 𝑗) + 1,
𝑙𝑒𝑣p,s(𝑖, 𝑗 − 1) + 1,
𝑙𝑒𝑣p,s(𝑖 − 1, 𝑗 − 1) + [𝑝i ≠ 𝑠j])

(1)

where 𝑙𝑒𝑣p,s(𝑖, 𝑗) represents the (𝑖th, 𝑗th) element of the Levenshtein
matrix between the pattern 𝑝 and the string inside the window 𝑠, the
indexes 𝑖 and 𝑗 go from 0 to the length of the strings |𝑝| and |𝑠|,
respectively. 𝑝i and 𝑠j represent the 𝑖th element of the string 𝑝 and the
𝑗th element of the string 𝑠, respectively.

The Levenshtein distance computation leads to a matrix as the one
in Fig. 3. The matrix construction follows the procedure of Algorithm
1, whose complexity is O(|𝑝||𝑠|), since on lines 9 and 10 of Algorithm
1 there are two nested for loops, where each loop index goes from 0 to
the length of the string. Fig. 3 illustrates a simple yet comprehensive
example, where the matrix is computed with the two strings 𝑠 =
‘‘CTTAC’’ and 𝑝 = ‘‘CTGA’’. Note that the edit distances between the
substrings and the pattern are obtained without extra computation.
E.g., the distance between 𝑠 = ‘‘CTTAC’’ and 𝑝 = ‘‘CTGA’’ in Fig. 3 is
obtained without extra computation and results with a distance of 1. If
any of the distances between the substrings is below the threshold 𝐾, an
occurrence will be generated. The Levenshtein matrix construction has
data-dependencies, where each element computation depends only on
its upper, its left, and its upper-left neighbors. Going more into detail of
the example, in Fig. 3a, the computation of the value at this coordinate
depends on its neighbors, whose values are 0, 1, and 1. Since 𝑠[𝑖] = 𝑝[𝑗],
the cost is equal to 0, as indicated in line 12 of Algorithm 1. As a
consequence, the final value results to be 0, following the computations
in line 19 of Algorithm 1. The algorithm proceeds to the next value, as
in Fig. 3b, and assigns the value to 1. Afterward, all the values in the
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Fig. 3. Data-dependency across the matrix for computing the Levenshtein distance.

row are processed, before moving to the next row (see Fig. 3c). Finally,
all the values of the matrix are shown in Fig. 3d. Note that, since the
computation of each element depends only on the three neighbors, in
practice, the algorithm can be implemented on a systolic architecture,
where each anti-diagonal can be computed concurrently. For instance,
as shown in Fig. 3d, all the values in the anti-diagonal #5 can be
computed concurrently after the anti-diagonal #4, all the values in the
anti-diagonal #6 can be computed concurrently afterward, and so on.
Such a systolic architecture is implemented in the proposed ISMatch
accelerator.

Algorithm 1 Matrix construction for the Levenshtein distance compu-
tation.
1: 𝑖𝑛𝑡 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐ℎ𝑎𝑟 𝑠[1..𝑚], 𝑐ℎ𝑎𝑟 𝑝[1..𝑛])

{// d is a table with m+1 rows and n+1 columns}
2: 𝑑𝑒𝑐𝑙𝑎𝑟𝑒 𝑖𝑛𝑡 𝑑[0..𝑚, 0..𝑛]
3: for 𝑖 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑚 do
4: 𝑑[𝑖, 0] ∶= 𝑖
5: end for
6: for 𝑗 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑛 do
7: 𝑑[0, 𝑗] ∶= 𝑗
8: end for
9: for 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑚 do
0: for 𝑗 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑛 do
1: if 𝑠[𝑖] = 𝑝[𝑗] then
2: 𝑐𝑜𝑠𝑡 ∶= 0
3: else
4: 𝑐𝑜𝑠𝑡 ∶= 1
5: end if
6: 𝑑[𝑖, 𝑗] ∶= 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(
7: 𝑑[𝑖 − 1, 𝑗] + 1,
8: 𝑑[𝑖, 𝑗 − 1] + 1,
9: 𝑑[𝑖 − 1, 𝑗 − 1] + 𝑐𝑜𝑠𝑡)
0: end for
1: end for
2: return 𝑑[𝑚, 𝑛]

2.2. Validation of the pattern

When the Levenshtein distance between the pattern and the string
coming from the moving window is below the threshold, an occurrence
is generated. The occurrence needs to be validated before being saved
3

into the memory. This allows the algorithm to discard the duplicate
hits or substrings that are part of a longer occurrence. The validation
process ensures that the occurrence is not part of a longer occurrence,
and relies on the following variables:

• The length of the occurrence 𝑝.
• The distance d between the occurrence 𝑝 and the string 𝑠.
• The threshold 𝐾.
• The validation of another occurrence with higher priority.

Algorithm 2 Validation of an occurrence.
1: if 𝑑 < 𝐾 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑏𝑢𝑠𝑦(𝑚𝑜𝑟𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦) then
2: 𝑝 ∶= 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒
3: 𝑏𝑢𝑠𝑦[𝑑] ∶= 1
4: end if
5: if 𝑏𝑢𝑠𝑦[𝑑] ∶= 1 then
6: 𝑐𝑛𝑡 ∶= 𝑐𝑛𝑡 + 1
7: end if
8: if 𝑐𝑛𝑡 = |𝑝| 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑏𝑢𝑠𝑦(𝑚𝑜𝑟𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦) then
9: 𝑝 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑

10: else if 𝑐𝑛𝑡 > |𝑝| 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑏𝑢𝑠𝑦(𝑚𝑜𝑟𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦) then
11: if 𝑐𝑛𝑡 − |𝑙𝑎𝑠𝑡 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑑| > |𝑝| then
12: 𝑝 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑
13: else
14: 𝑝 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑎𝑙𝑖𝑑
15: end if
16: end if

The validation process of a string is described in Algorithm 2. It
relies on different priorities, from 0 to K. The lower the Levenshtein
distance is, the higher the priority is. In line 1, an occurrence begins a
validation process only if there is not another occurrence of the same
priority or higher. If there is an ongoing validation process for the
same or higher priority, the occurrence is discarded. When a validation
process starts, a counter starts counting, and it is increased every time
the window slides one character into the text. In line 8, if the counter
reaches the length of the occurrence |𝑝| and concurrently there is no
other validation process with higher priority, the occurrence becomes
valid, which means that the counter has reached the length of the
current occurrence without finding any other occurrence. If there is
a validation process with higher priority during the same time, the
algorithm first validates the higher priority occurrence. In line 11,
when the higher priority occurrence is validated, a simple inequality
checks if the low priority occurrence is a substring of another higher
priority occurrence. If it is, the occurrence is discarded, otherwise the
occurrence is valid. It is important to notice that the higher priority oc-
currences block the lower priority occurrences to be validated. Indeed,
an occurrence with maximum priority corresponds to an exact match.
When the validation succeeds, the occurrence is saved into the memory
with its length, Levenshtein distance and index.

2.3. Major related works in hardware accelerator designs

Many related studies focus on the read alignment problem, most
of them implementing the Smith–Waterman algorithm [13]. The work
in [14] proposed an architecture based on PE arrays. The architecture
proposed in [15] can integrate up to 110 processing elements. Dar-
win [16] is an efficient ASIC accelerator for genomic sequence align-
ment. GateKeeper [17] and SneakySnake [18] proposed specialized
architectures for pre-alignment of DNA sequences. The architecture
in [19] supports both exact and approximate alignment computations.
An OpenCL-based design is proposed in [20]. The work in [21] ac-
celerates the pre-alignment filters on FPGA using HLS toolchains that
can be executed through the OpenCL runtime. The architectures pro-
posed in [22,23] accelerate the Smith–Waterman algorithm through
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Fig. 4. Unoptimized design of [12].

ystolic arrays. The ASAP architecture [24] executes the read alignment
lgorithm and interfaces to the host through a CAPI interface [25].
inimap2 [26] is an efficient alignment algorithm for mapping DNA or

ong mRNA sequences against a large reference database. GenASM [27]
ccelerates read alignment through a specialized architecture based on
ystolic-array-based compute units and on-chip SRAMs. BWA-Mich [28]
roposed a novel indexing data structure based on Enumerated Radix
ree and designed a custom architecture based on it to accelerate the
eeding step of read alignment. SeGraM [29] is an algorithm/hardware
o-design framework for accelerating the seeding and alignment steps
f genome sequences. However, all the aforementioned architectures
ocus on the alignment problem. Since the primary focus of our paper
s on string matching, the additional computations for the alignment are
ot needed, and existing hardware architectures for alignment can be
ntegrated with our design. The works published in [11,30] proposed
pecialized optimizations for executing approximate string matching on
PUs, while our work focuses on FPGA.

The work of [12] proposed an online approximate string matching
ith a specialized HDL implementation. It consists of a Levenshtein

ore block (LEV CORE) for computing the distance, and a RAM memory
o store the validated occurrences, connected to the host via USB. How-
ver, the study did not emphasize the throughput variations between a
PU implementation and the HDL design, and the speedup factor that
he HDL design has introduced. This work also lacks of results with
arallel search of different patterns and a proper fast interface with the
ost PC that enables a fast transfer (i.e., 1Gb/s or higher) of the data to
he FPGA RAM, thus preventing its usage for a real-time execution. This
spect is extremely important, since the long DNA sequences consist
f millions or billions of elements, which cannot be stored on-chip,
nd need to be streamed from the host PC. Indeed, in [12], the host
s interfaced with a low-speed USB link, which limits the potential
peedup guaranteed by the specialized HDL design. Fig. 4 illustrates a
ummary scheme of the system proposed in [12], with its system setup.
he LEV CORE block is responsible for the computation and validation
f the occurrences. The 1 Mbit ROM is loaded with a fraction of the
ata and then the algorithms starts, the occurrences are saved and then
ransferred to the PC with a USB interface. The lack of a fast interface
or data transfer is a bottleneck for the entire ISM algorithm accelerator
ystem.

The study proposed in [31] realized a parallel inexact string match-
ng accelerator using the Burrows-Wheeler Transform (BWT). Each
rocessing element contains a storage unit allocated into the BRAM,
hich leads to a heavy memory resource usage that limits the number
f parallel PEs that can be synthesized into the FPGA. Moreover, it
oses a limitation on the length of the pattern to search, since, due
o the BWT process, the longer the pattern is, the larger the BRAM
llocation is needed. Our work aims at overcoming the memory challenge
f [31] by using a distance computation of strings based on the Levenshtein
lgorithm, which does not require massive memory usage like in [31] and
mplements parallel pattern search.

. ISMatch: Hardware accelerator design

The online execution complexity of the Levenshtein distance compu-
ation is O(|𝑝||𝑠|) in time and requires a fast execution of the algorithm.

With an hypothetical data transfer of 100 Mbit/s between the host and
4

the board, considering the 100 MHz clock frequency of the board, a
Fig. 5. ISMatch design methodology.

Fig. 6. High-level scheme of our ISMatch architecture.

DRAM organized in words of 32 bytes, a 8-characters window, the
algorithm should not exceed 32 clock cycles for the computation. If
the algorithm requires more clock cycles to compute the Levenshtein
distance, the speed between the host and the board can be reduced.
Considering this application analysis, we develop the ISMatch design
methodology, which is depicted in Fig. 5. To achieve real-time execu-
tion, it is important to design a fast connection to the host, to stream
the long string that needs to be processed. In particular, its real-time
system execution is constrained that it should not exceed the latency
of 100 clock cycles. Exceeding this threshold can cause the algorithm
to miss data to scan into the DRAM. The main blocks, computing the
Levenshtein distance and the validation, are designed bottom-up, with
a modular approach. In this way, it is possible to build an architecture
having multiple PEs that can process concurrently.

3.1. Research highlights and innovations

Our proposed ISMatch architecture computes the distance between
the occurrence 𝑝 and the string 𝑠. These data are fed into the archi-
ecture by a Host PC, as illustrated in Fig. 6. To guarantee high-speed
onnection between the PC and the board, the DRAM is constantly
illed with data from the PC. The DRAM is organized in 32-bits wide
ords and each memory location stores one character. The Levenshtein
istance computation block, which will be discussed more in detail
n Section 3.2, reads the characters and computes the Edit distance
y asserting a 1-bit hit signal when an occurrence is found. After-
ard, the validation block (see Section 3.3) controls to avoid duplicate
ccurrences and validates the output.

In summary, the following research highlights and innovations can
e identified:

• We define the desired performance, memory, and computation
requirements.

• We devise fast communication between the host PC and the board
through a PCIe connection interface.

• We design the hardware architectures of the processing blocks
that compute the Levenshtein distance and validate the occur-
rences.

• The proposed ISMatch architecture supports different degrees of
parallelism, thus making it highly scalable.

• We compare our ISMatch design with CPU and HLS implemen-
tation, and we conduct performance comparisons with related
works, including GPU and FPGA implementations.
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Fig. 7. Circuit diagram of the Levenshtein distance computation block.

Fig. 8. Parallelization of the Levenshtein distance computation blocks.

3.2. Levenshtein distance computation

Fig. 7 shows the details of the block that computes the Levenshtein
distance. The DRAM memory locations fill the window that has a
variable length (e.g., it has a length of 5 characters in Fig. 7). This
block stores the pattern that we want to compare with the string.
The DRAM is scanned with an address that is incremented every time
the Levenshtein distance computation block computes the result. The
Levenshtein distance computation block computes the distance and
asserts the 1-bit ℎ𝑖𝑡 signal when an occurrence is found. Note, the
hreshold for the assertion of such a signal can be configured by the
ser. When the hit signal is asserted, the output data are valid. The
utput data are the following:

• 16 bits for the Edit distance
• 16 bits for the length of the occurrence
• 32 bits for the index of the text loaded into the DRAM

he validation block reads the output data and validates the occur-
ence. If the occurrence is valid (i.e., it is not a substring of a longer
ccurrence) the block writes two 32-bit words into the DRAM. In the
irst word the 16-bit Occurrence Length and the 16-bit Levenshtein
istance are stored, while in the second word the 32-bit index of the
ccurrence is saved.

The ISMatch design is scalable, because it allows to introduce a
onfigurable number of Levenshtein computation blocks in parallel,
o better utilize the computational hardware resources. The parallel
earch of different patterns can be conducted without computation
ime overhead. As shown in Fig. 8, each block receives the same data
rom the DRAM and computes the distance between the window and
he pattern that belongs to the block. To avoid simultaneous DRAM
ccesses from different Levenshtein blocks, the Data writing block
ollects all the occurrences and sequentially accesses the DRAM for
voiding collisions.

The optimized design relies on a systolic architecture composed of
Processing Elements (PEs), where 𝑛 is the length of the window and

the pattern (Fig. 9). The systolic architecture allows to execute the
Levenshtein distance in |𝑝|+ |𝑠|−1 clock cycles, where 𝑝 represents the
5

pattern and 𝑠 the string coming from the window. In Fig. 10 are shown V
Fig. 9. Linear mapping on a Systolic architecture with n Processing Elements.

the first 2 PEs of the edit distance computation block, whose complete
block is composed of 𝑛 PEs. The Char Comparison block is a comparator
that returns the logic 0 if the characters are the same, or the logic 1 if
they are different. These PEs build the Levenshtein matrix, thus saving
each result in the registers that compose the array. When the matrix is
complete, if the result is below the threshold K, an occurrence will be
generated, and the index, the length, and the Levenshtein distance will
be transmitted to the validation block.

3.3. Validation of the occurrence

One of the most important parts of the entire algorithm is the
validation procedure. The task of this block is to ensure that multiple
occurrences that are part of a longer occurrence are not saved, thus
avoiding unnecessary memory usage and communications. When the
Levenshtein distance computation block finds an occurrence, the ℎ𝑖𝑡
ignal is asserted, and the output data is valid. Fig. 11 shows the
rchitectural diagram of the validation process.

The Validation architecture is composed of 𝐾 + 1 blocks, where
is the desired threshold. Each block validates the occurrence for

specific Levenshtein distance. When a hit is generated, the data is
ransmitted to the block of the corresponding Levenshtein distance. For
nstance, if the occurrence has a Levenshtein distance of 1, the data will
e sent to the validation block 1. The validation algorithm explained
n Algorithm 2 is realized with a hierarchical implementation. Each
alidation block, except for the last one, has a 1-bit busy signal that
s asserted when a validation is running. The validation block 0, which
s the first one, validates the exact match and inhibits the other blocks
or the validation. I.e., the block 𝑖 inhibits all the blocks between 𝑖 + 1
nd 𝐾. Fig. 12 reveals the inside of a validation block. The block is
ased on a counter, and the occurrence is validated when the counter
as reached the end and all the busy signals from blocks with higher
riorities are done.

. Execution comparison

.1. Experimental setup

The target board for implementing and comparing the different
ardware platforms is the Zynq UltraScale + ZCU102 MPSoC (see
ig. 13), whose specifications are reported in Table 1. This board
eatures a quad-core Arm® Cortex®-A53, dual-core Cortex-R5F real-
ime processors, and a Mali™-400 MP2 graphics processing unit based
n Xilinx’s 16 nm FinFET+ programmable logic fabric. The board has
built-in Ethernet connection, an optical small form factor pluggable

SFP), and a PCIe for ideal fast communication with the Host computer.
t can improve the resource allocation in the Zynq board, avoiding
uge BRAMs allocations that free the space for more PEs that perform
arallel pattern search. The ZCU102 board allows to have a bare metal
xecution of the code that is ideal for our application.

The software environment that surrounds the FPGA is based on

ivado and the Xilinx SDK, that jointly work for programming the
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Fig. 10. First 2 processing elements inside the Edit distance computation block.
Fig. 11. Validation scheme composed of K + 1 blocks.

Fig. 12. Circuit diagram of a validation block.

Table 1
Specifications of the ZCU102 board.

I/O Pin Count 1156
Available IOBs 328
LUT Elements 274 080
FlipFlops 548 160
Block RAMs 912
DSPs 2520
Gb Transceivers 24

board. The Vivado 2018.2 software is the environment for the HDL
part, where all the blocks are designed and placed. Moreover, Vivado
synthesizes the bitstream, which is loaded onto the FPGA. The Xilinx
SDK is required for the development of the code for the ARM processor,
as well as for the serial communication and the debug. The Vivado High
Level synthesis software builds a HDL block from the source C code,
with user-defined optimizations (e.g., pipelining of loop functions, loop
6

Fig. 13. ZCU102 board.

unrolling, BRAM interfaces, etc.). The tools also reports the usage of the
FPGA resources.

The synthesized HDL is imported in Vivado, and an example of
the synthesized layout is shown in Fig. 14. The board is connected to
the computer through a PCIe interface. The PCIe interface in the Zynq
Ultrascale+ can be composed of 4 lanes, works up to 5.0 Gb/s with a
max payload size of 256 bytes. This allow the algorithm to fast transfer
the data between the host and the ZCU102 DRAM. Hence, the algorithm
can execute in real-time without bottlenecks.

4.2. ARM-based CPU implementation

The CPU implementation is developed in C code in the Xilinx
SDK environment, and executed by the Arm® Cortex®-A53 processor
without any optimization in bare metal. The computation of the edit
distance with a double for loop, as shown in lines 9–10 of Algorithm
1, leads to a time-complexity of the algorithm of O(|𝑝||𝑠|). The system
configuration is illustrated in Fig. 15. The DNA string is loaded into the
DRAM of the board from the host PC, then the algorithm is executed
and the results are saved on a file. The computational execution time
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Fig. 14. Synthesized layout of the ISMatch architecture on the ZCU102 board.

Fig. 15. ARM configuration.

Fig. 16. Non-linear time increment with different sample lengths. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

is calculated with the counter value from the Physical Counter in the
A53 core.

Fig. 16 shows the time increment w.r.t. the length of the sample.
The clock cycles for computing a 10,000-characters file length is shown
in blue, and the ones for computing a 20,000-characters file length in
red. The implementation reveals that due to the complexity O(|𝑝||𝑠|)
of the algorithm there is a non-linear time increment with the length
of the pattern, and a linear time increment with the length of the
DNA string. This implementation highlights the inefficiency of the
ARM-based execution of the algorithm, revealing that CPUs are not
optimized for the target application. The algorithm itself is O(|𝑝||𝑠|)
in time and grows up fast with the length of the pattern. Computing
a Levenshtein distance between a long pattern and a long window is
extremely time-demanding and it constitutes the main bottleneck for
the entire algorithm.

4.3. High level synthesis implementation

For overcoming the problem of the time demanding Levenshtein
distance computation of the CPU implementation, a HDL project is
designed with the aim of reducing the clock cycles to compute the
Levenshtein distance. The HDL block that computes the Levenshtein
distance is synthesized by the Vivado High Level Synthesis (HLS) tool,
with different optimizations that can accelerate the computation and
reduce the latency of the computation. The software synthesized a
block that can be imported in Vivado and be interfaced with specialized
7

Fig. 17. Detailed HLS implementation and respective signals.

blocks that controls its behavior. Fig. 17 illustrates the HLS block with
all its signals. The hardware starts to compute the edit distance when
the signal ‘‘start’’ is asserted to logic 1, and during the computation
the signal ‘‘idle’’ is asserted to logic 0 to indicate that the design
is operating. When the function is terminated, the signal ‘‘done’’ is
asserted to 1 and the data ‘‘return’’ is valid. The Levenshtein algorithm
is composed of a double for loop that provides the complexity of
O(|𝑝||𝑠|) in time. Hence, we study the impact of different optimization
criteria on the HLS implementation, and compare them with the CPU
and the custom accelerator. While the ARM-based implementation took
1200 clock cycles to compute the distance between two strings of 8-
chars length, the HLS block without any optimization takes only 308
cycles to compute the distance between the same two strings. The
specialized purpose of the HDL explains the 75% reduction of clock
cycles latency. Table 2 its resource utilization.

The next step is to study the impact of the HLS-level optimizations
on the performance and resource usage. The first optimization done in
the HLS design is to pipeline the external loop. It leads to a latency
of 162 clock cycles, which constitutes a 47,4% reduction compared to
the not optimized block. This optimization increases the utilization of
the LUT by 276% and of the FFs by 268%. Note that the increment
of resources is not linear with the clock cycles decrease. The second
optimization realizes a joint loop unrolling of the internal loop and
pipeline of the external loop. Such a double optimization leads to a
37 clock cycles latency for a edit distance computation between strings
of 8-chars length. Hence, compared to the ARM-based implementation,
the speedup factor achieved by the HLS implementation is 32.43×.

Vivado HLS synthesizes the Levenshtein distance computation block
that needs proper control signals to correctly execute. For the validation
part, instead, the custom block described in Section 3.3 is developed
in HDL and synthesized by Vivado. The validation block validates the
occurrence and saves it into the BRAM. Since the ZCU102 board is
interfaced with the host PC, all the occurrences are transferred from
the board to the host. The Levenshtein distance block synthesized by
Vivado HLS can be replicated for different patterns for a parallel search
of different patterns.

4.4. ISMatch architecture implementation in FPGA

Our proposed ISMatch architecture has been synthesized and imple-
mented into the ZCU102 MPSoc. The Levenshtein distance computation
block, which is the core of the design, computes the Levenshtein matrix
with the wavefront approach, computing the elements of each anti-
diagonal at the same time, leading to a time of execution of |𝑝|+ |𝑠|−1.
Since the window is set to have the same length of the pattern, the
execution time is 2|𝑝| − 1. Table 2 compares the ISMatch Levenshtein
block resource usage configured with |𝑝| = 8, and the HLS Levenshtein
block resource usage.

Due to the flexibility of the Vivado environment, the ISMatch is
also synthesized for the Zedboard Zynq-7000 with the resource usage
reported in Table 3. This table also compares the complete resource
usage with all the control and validation blocks of the fastest HLS
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Table 2
Resource usage of HLS and ISMatch Levenshtein blocks on the ZCU102.

HLS without
optimizations

HLS
pipelining

HLS pipelining
& loop unrolling

ISMatchL

FFs 144 (0.03%) 531 (0.10%) 3309 (0.60%) 220 (0.04%)
LUTs 628 (0.23%) 2363 (0.86%) 8456 (3.08%) 781 (0.28%)

Table 3
Resource usage of the complete system implemented on the ZCU102 and Zedboard
implementation.

HLS (ZCU102) ISMatch (ZCU102) ISMatch (Zedboard)

FFs 5815 (1.06%) 13 756 (2.5%) 2551(2.4%)
LUTs 7591 (2.77%) 9875 (3.6%) 1888 (3.55%)

Fig. 18. In blue, clock cycles latency. In green, speedup factor normalized w.r.t. the
CPU implementation. HLS1, HLS2, and HLS3 represent the HLS implementations with-
out optimization, with pipelining, and with pipelining & loop unrolling, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Levenshtein block and the ISMatch implementation. The Zedboard
implementation features less Logic Elements (LEs), mostly due to the
less demanding DMA structure for the DDR3 of the board, compared
with the DDR4-based DMA of the ZCU102.

4.5. Comparison results: Performance, resource usage, power

The Levenshtein algorithm evidences the performance benefit that a
specialized hardware design can achieve with a strong data-dependency
algorithm. This leads to different optimization aiming for a speedup.
The ARM-based implementation of the Levenshtein algorithm high-
lights the need of a parallel computation with its 1200 clock cycles for
computing the Levenshtein distance between two strings of 8 characters
each. The fastest HLS implementation leads to a 2.70× speedup factor

ith a combined resource usage of 11 765 LEs. The ISMatch specialized
ardware architecture leads to a 5.88× speedup factor with a combined
esource usage of 1001 LEs. The Levenshtein algorithm is also imple-
ented in [11] with a GPU optimization that reaches a speedup factor

f 3.72× compared to the CPU performance.
The state-of-the-art designs of [12,31] do not analyze the speedup

actor introduced w.r.t. a CPU implementation. Fig. 18 reports the clock
ycles latency and speedup factors of the implementations proposed in
his paper, compared to the works in [11,12] with a threshold of K =
. The speedup factor takes into account the different clock frequencies
f CPU, GPU and FPGA implementations, which are 1200 MHz, 405
Hz, and 100 MHz, respectively. Identifying good comparison met-

ics among systems implemented on different platforms is not trivial.
or instance, the HLS3 implementation, i.e., with pipelining and loop
nrolling, takes 37 clock cycles, while the GPU-based implementation
n [11] requires 109 clock cycles. However, considering that different
latforms have different operating clock frequencies, the latter has a
igher speedup factor, which is 3.72×, compared to a value of 2.70×
or the HLS3 implementation. Overall, our proposed custom ISMatch
rchitectural design not only requires few clock cycles (only 17), but
lso achieves a speedup factor of 5.88× w.r.t. the CPU implementation.
8

Table 4
Power consumption for the ISMatch, HLS, and CPU implementations on the ZCU102.

ISMatch HLS CPU

D

Clocks 0.062 W

2.960 W

0.021 W

2.873 W

0.001 W

2.773 W
Signals 0.032 W 0.017 W 0 W
Logic 0.093 W 0.012 W 0 W
BRAM 0.002 W 0.053 W 0 W
PS 2.770 W 2.770 W 2.772 W

S PL 0.624 W 0.723 W 0.625 0.724 W 0.623 W 0.722 WPS 0.099 W 0.099 0.099 W

These values are also better than the state-of-the-art architecture pro-
posed in [12], which measures 19 clock cycles and a speedup factor of
5.26×.

The resource usage of [31] is affected from the extensive use of
the BRAM resources due to the BWT implementation. The reported
resource usage of [31] is 112 384 LEs for computing the search of 20
patterns. The power consumption of the ISMatch, HLS, and CPU-based
designs implemented on the Xilinx ZCU102 is listed in Table 4. The
Processing System (PS) in the Dynamic part corresponds to the ARM
processor power consumption. Clocks, Logic and Signals represent the
power consumption of the ISM HDL part. While the static power (S) is
dominated by the Programmable Logic (PL), the dynamic power (D)
is dominated by the PS. The overall low power consumption is due
to the essential PEs implemented in hardware. Note that, considering
the performance improvement, our ISMatch design achieves higher
energy-efficiency than the HLS and CPU-based designs.

4.6. Key observations deriving from the results

Based on the results obtained by different implementations, the
following key observations can be noted:

• Our proposed ISMatch architecture achieves the highest perfor-
mance among all the state-of-the-art designs and HLS implemen-
tations. E.g., the ISMatch design can compute the Levenshtein
distance for a 8-characters string in 17 clock cycles, thereby
enabling real-time execution of the ISM algorithm.

• The design can be configured for different hardware platforms
and resources, and configured with different levels of parallelism.

• The ISMatch architecture implemented on the ZCU102 board
executes the algorithm in a power-efficient way, without wasting the
hardware resources. The whole system, composed of the ISMatch
architecture, the BRAM and all the signals, consume less than
4 W, and use only 2.5% FFs and 3.6% LUTs.

5. Conclusion

In this paper, we propose ISMatch, the design of a hardware acceler-
ator for the Inexact String Matching algorithm, and its implementation
on the Xilinx Ultrascale+ FPGA. Due to its fast execution and connec-
tion with the Host, it can handle with high performance the streaming
and comparison of long DNA sequences, thus enabling real-time DNA
sequence matching. The degree of parallelism of the main computa-
tional block, which is the Processing Element that computes the Leven-
shtein distance, can be reconfigured for leveraging the tradeoff between
performance and FPGA resource usage. Our design can be employed not
only for DNA sequencing purposes, but also for similar applications like
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data processing [32] or document similarity [33]. Our ISMatch archi-
tecture has been compared with an ARM-based CPU implementation,
a High Level Syntesis implementation, and the state-of-the-art designs
of [11,12], showing up to 70× clock cycles reduction.
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