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Abstract: We present a forecast for the upcoming Einstein Telescope (ET) interferometer
with two new methods to infer cosmological parameters. We consider the emission of Gravi-
tational Waves (GWs) from compact binary coalescences, whose electromagnetic counterpart
is missing, namely Dark Sirens events. Most of the methods used to infer cosmological
information from GW observations rely on the availability of a redshift measurement, usually
obtained with the help of external data, such as galaxy catalogues used to identify the most
likely galaxy to host the emission of the observed GWs. Instead, our approach is based only
on the GW survey itself and exploits the information on the distance of the GW rather than
on its redshift. Since a large dataset spanning the whole distance interval is expected to
fully represent the distribution, we applied our methods to the expected ET’s far-reaching
measuring capabilities. We simulate a dataset of observations with ET using the package
darksirens, assuming an underlying ΛCDM cosmology, and including the possibility to
choose between three possible Star Formation Rate density (SFR) models, also accounting
for possible population III stars (PopIII). We test two independent statistical methods: one
based on a likelihood approach on the theoretical expectation of observed events, and another
applying the cut-and-count method, a simpler method to compare the observed number of
events with the predicted counts. Both methods are consistent in their final results, and
also show the potential to distinguish an incorrect SFR model from the data, but not the
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presence of a possible PopIII. Concerning the cosmological parameters, we find instead that
ET observations by themselves would suffer from strong degeneracies, but have the potential
to significantly contribute to parameter estimation if used in synergy with other surveys.

Keywords: astrophysical black holes, Bayesian reasoning, gravitational waves /
experiments, star formation
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1 Introduction

Gravitational Waves Astronomy has recently emerged as one of the most fruitful predictions
of General Relativity, opening new observational windows onto the Universe. Since the
rigorous theoretical formulation in 1916, the first direct measurement was achieved only
after a century of experimental effort, marking September 14th 2015 as the birth of a new
field of research in Physics [1].

Since this first detection, numerous other events have been observed, thanks to the
LIGO, Virgo and KAGRA collaborations that provided the latest catalogue of observed
GW events [2]. The list of observed sources of GWs was however restricted to coalescences
of combinations of Black Holes (BHs) and Neutron Stars (NSs), until very recently. On
June 28th 2023 the NANOGrav international collaboration announced the evidence for
a Gravitational Wave Background (GWB), the long sought after mixed collection of low
frequency GW source emissions [3]. Even though the dominant contribution to the GWB
has to probably be attributed to a population of supermassive black hole binaries, other
cosmologically relevant sources may be hidden in the same GW emission frequency band, such
as primordial GWs due to inflation, scalar-induced GWs and GWs from processes resulting
from cosmological phase transitions [3].

– 1 –
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Such new probes have recently become of paramount importance in cosmology, since
increased precision brought to light the existence of tensions between measurement of
cosmological parameters obtained from different observations (see e.g. [4, 5]). The direct
measurement of gravitational waves is exactly the new probe that cosmology needed: an
abundance of previously concealed information, which could be used in conjunction with
electromagnetic emissions to infer distance measurements on cosmological scales. However,
observations of GWs do not provide a redshift value z, since what we observe are not
electromagnetic waves, and this has led to the development of a multitude of methods to
obtain such information.

In the rare case where we can measure the redshift of the binary through the GWs
electromagnetic counterpart, we call these events Standard Sirens or Bright Sirens as opposed
to Dark Sirens where z has to be found with alternative techniques.

Furthermore, Dark Sirens can be classified as a function of the method used to find
z: Statistical Sirens, where the sky patch localized by GW events is scanned for galaxies
or galaxy clusters whose redshifts are combined to obtain the most likely value of the true
redshift [6–9]; Spectral Sirens, where the independence of the mass spectrum distribution from
redshift can be exploited to break the mass-redshift degeneracy [10]; Love Sirens, where source
frame masses of a neutron star binary system are obtained from the direct measurement
of its tidal deformability, hence breaking again the mass-redshift degeneracy [11–16]; Gray
Sirens, when a BH-NS system is doubly used as a Dark Siren and as a Bright Siren [17];
and finally we mention a term often used: Golden Sirens, i.e. well localized single event
Dark Sirens such that the resulting Hubble constant estimate can resolve the Hubble tension
(i.e. with sub-percent precision) [18].

In this work we focus instead on the possibility of obtaining information from GW surveys
without the need to find the events’ redshift. This necessarily requires one to work in a
statistical framework and therefore it requires extremely high numbers of events to obtain
cosmological information, but such a disadvantage is compensated by the fact that one can
exploit all observations obtained by GW surveys, without being limited to a subset where
the redshift information can be obtained.

One can obtain theoretical predictions for the number of observed events and their
distribution in luminosity distance, a quantity that can be obtained from observations, which
can allow one to extract cosmological information from GW surveys without the need to
depend only on rare events or external data [19, 20].

In this paper, we rely on the counts of GW events as our main source of information,
building upon previous works where this observable was used to distinguish two different BH
populations, namely astrophysical and primordial [21]. Similar approaches have been taken
before [19, 20], but we account differently for cosmological degeneracies, without including
priors on the matter content of the Universe Ωm, and we also apply the cut-and-count
method [21], initially introduced for primordial black holes, but applied here for cosmological
inference. Furthermore, we also explore the impact of astrophysical assumptions on the
results obtained with these methods.

In order to pursue this approach, it is crucial for a high number of events to be available,
as the method requires observations to trace the overall distribution of events. For such a

– 2 –
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reason, we decided not to work with currently available data, but rather to investigate next
generation surveys, which will provide a significant increase in event statistics, focusing in
particular on the planned European Space Agency Einstein Telescope (ET) [22], for which
the projected number of detectable events will satisfy our dataset size requirements.

The paper is organized as follows. In section 2 we briefly review the main equations
connecting the observable quantities of GW events to cosmology, and we provide details on
the survey chosen to test our approach. We focus on the modelling of GW events and their
distribution in section 3, while section 4 describes the method used to simulate data and
the broad details of the analysis approach. We provide more details on the latter and the
two specific methods used to obtain results in section 5, where we also show the expected
outcome of the methods for the survey we chose. We draw our conclusions in section 6.

2 Gravitational Waves from coalescing binaries

While different mechanisms exist to produce the GWs we observe, in this work we restrict our
attention to the coalescence of compact objects, i.e. objects in binary systems that emit GWs
while spiralling toward each other. The GW emission of these systems at large distances r
from the source can be approximated as spherical gravitational waves, hence we expect the
usual 1/r decay. Moreover, it can be shown that the propagation through a cosmological
background metric implies a decay in the amplitude as 1/dL, where dL is the luminosity
distance of the compact binary [23].

Observing the waveform of an incoming GW, it is therefore possible to obtain a measure-
ment of the luminosity distance between the observer and the progenitor system. We briefly
review here the theoretical modelling of this relation, following the approach of [24–26].

In the transverse traceless gauge the time domain waveform depends on the antenna
patterns of the detector and on the +,× polarizations:

h(t) = F+(θ, ϕ, ψ)h+(t) + F×(θ, ϕ, ψ)h×(t) , (2.1)

where θ and ϕ determine the position of the GW source on the celestial sphere, while ψ is the
polarization angle, F+,× are the detector antenna patterns and h+,× are the two polarizations
of the wave, arising from the independent components of the metric tensor perturbation;
we also include the time dependence only in these latter terms since we are considering
transient sources of emission, thus neglecting the effect of modulation in the angles due to
the relative motion of the detector and the source.

The two polarizations for a general inspiralling binary have the expression:

h+,× = h0(t)H+,×(ι,ω(t)) , (2.2)

with ι the inclination angle with respect to the line of sight of the binary’s orbital plane, and
ω other orbital parameters, included in two orbital parameter functions H+,×. As stated
above, we expect the amplitude of the wave to scale with the source distance; such an effect
is encoded in h0, which can be written as

h0(t) = 4GM
c4dL

(πGMνGW(t))2/3 , (2.3)

– 3 –
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where G is the Newton constant, νGW is the time-dependent frequency of the wave, and M
is the chirp mass, which depends on the mass of the two binaries as

M = Mη3/5 (2.4)

with M = m1 +m2, the total mass of the system and η the mass ratio defined as

η = m1m2
(m1 +m2)2 . (2.5)

Notice that both the GW frequency νGW and the total mass M are redshifted from their
source value. When needed one can go to the Fourier domain from the time domain waveform

h(f) =
∫ +∞

−∞
h(t)e−2πiftd t , (2.6)

which can be rewritten, using the stationary phase approximation, as [24–26]

h(f) = Af− 7
6 exp

[
i

(
2πft0 − π

4 + 2Ψ(f/2) − φ(2,0)

)]
(2.7)

where t0 is a constant describing the epoch of the merger, for simplicity set to zero in our
analysis, Ψ(f ;ψ0, ψi,M) is a phase function, depending on the phase at the epoch of the
merger ψ0, the post-Newtonian expansion coefficients ψi and the total mass, and we also
have an additional function of the angles φ(2,0)(ι, F+,×) [27].

In the following, we will use the publicly available package PyCBC131 to obtain the
waveform h(f) computation for a given event, given a set of parameters for the progenitor
system, such as the binary masses or its orbital inclination. Moreover, we will be using the
IMRPhenomD frequency domain waveform model [28, 29].

In this work, our main goal is to extract cosmological information from GW observations.
For such a reason, our main interest lies in the amplitude term A of eq. (2.7), where the
distance of the source enters. This term can be written as [24–26]

A = 1
dL(z)

√
F 2

+ [1 + cos2 ι]2 + 4F 2
× cos2 ι

√
5π
96π

−7/6M
5
6 . (2.8)

We can see in eq. (2.8) the inverse dependence of the amplitude on the distance, but we
can also notice how this amplitude depends on parameters that can vary from system to
system, such as the inclination ι, and the position of the source on the sky which enters in
the antenna patterns F+ and F×. In the following we will not consider this second class of
parameters, as all the cosmological dependence lies in dL, and we generate them randomly
for each system (see section 4). However, these parameters can have a significant impact
on the uncertainty with which the distance can be measured; while a full treatment of their
impact is left to a future work, we discuss their effect and our approximation to take them
into account in appendix A.

1https://pycbc.org/.
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Figure 1. Sensitivity curves for Einstein Telescope interferometer in the ET-D configuration,
compared to the current capabilities of Advanced LIGO and Advanced Virgo.

2.1 The Einstein Telescope

The Einstein Telescope interferometer (ET), will be part of the third generation of ground-
based detectors and it is planned to start operating in the 2030s [22]. The reference design of
ET will have its arm length extended from the current Virgo 3 km and LIGO 4 km up to 10
km or even 15 km. The entire structure could be placed a few hundred meters underground
and have a triangular shape for the three nested interferometers it will contain. Specifically,
the detector could be composed of two different instruments, one optimized for low frequencies
(ET-LF) with a low power laser and at cryogenic temperatures of 20 K; the other one for high
frequencies (ET-HF) with high power and at room temperatures; thus each configuration is
operated at its lowest noise condition in each frequency band. After several initial sensitivity
curve models (ET-B and ET-C), the last one reached is the ET-D, which not only takes into
account ET-LF and ET-HF, but also other refinements on noise models [22]; figure 1 shows the
comparison between the noise level of current detectors (advanced Virgo and advanced LIGO)
and the expected sensitivity of the ET-D design. In the mock data generation performed in
this work, we will consider the ET-D sensitivity curves to extract simulated observed events.

There is also another configuration under evaluation, where two classical L shaped (2L)
detectors of an extended arm length of 15 km could be placed in two different locations. The
current candidates for this alternative project would be the Sardinia site of Sos Enattos; a site
in the Meuse-Rhine region, or possibly in Kamenz in German Lusatia region [30]. Moreover,
concerning our cosmological interest in luminosity distances, it has been shown that a 2L
configuration could outperform the triangle configuration with an increased number of dL

measurements with 1% error, with respect to what the reference design can observe [30].
Sticking to the reference design, we can understand the potential of third generation

interferometers if we consider the maximum redshift that can be reached by the survey as
a function of the total coalescing mass of a binary system: total masses of 20 − 100M⊙,
observed for black hole-black hole (BH-BH) or black hole-neutron star (BH-NS) binaries, will
be detected by ET up to z ∼ 20 and higher, even probing the possible presence of primordial
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origin black hole mergers [22]. The expected detection rates will be of orders 105 − 106 for
BH-BH and 7 × 104 for NS-NS per year; moreover, the electromagnetic counterpart of NS-NS
could be observed with 102 − 103 events per year. With respect to the current detectors,
ET will be also able to observe GW from other sources rather than just compact object
binaries: the stochastic gravitational wave background, gravitational emission from isolated
pulsars and from supernovae events [30].

3 Modelling the distribution of events

The main goal of this work is to exploit GW observations to obtain information on the
cosmological model. This is straightforward when a GW event is observed with an elec-
tromagnetic counterpart, and therefore its redshift can be measured, as one could fit a
theoretical relation between luminosity distance dL and redshift to the observed quantities
(see e.g. [31–33]). If we focus on Dark Sirens, instead only the measurement of dL is available,
and the only observable we can exploit is the distribution of observed events in luminosity
distance. While this will make extracting cosmological information more complicated, we
expect the great majority of the events observed to fall in this category; developing methods
that can work without any redshift measurement is therefore crucial to fully exploit the
GW catalogues that will be available.

In this section we review the essential details of a widespread modelling of the GW event
distribution [34, 35], focusing our attention on Astrophysical Black Holes (ABH), showing
how this can be connected to cosmology.

It is important to stress that in this work we neglect the impact of other possible
progenitors, such as Neutron Stars (NS) or Primordial Black holes (PBH). These do not
follow the same theoretical distribution that we will obtain for ABH and therefore the presence
of such events in an observational catalogue could affect the results. One expects however
that events originating from ABH will be the dominant population [36]; for such a reason
we assume in this work that ABH is the only population present, and we leave the study
of the impact of NS and PBH for a future investigation.

3.1 Distribution of astrophysical black hole binaries in luminosity distance

When dealing with a GW survey, what is obtained from observations is a catalogue of events,
each with their observed features, which include the event position in the sky, mass of
progenitors and luminosity distance (see section 2).

In order to extract cosmological information from such events, we need to compare
what we observe with a theoretical prediction from a model that depends on cosmological
parameters. A first feature of GW observations that we can connect to the cosmological model
is the rate of events in time, as this will depend, other than on the astrophysical phenomena
responsible of the creation of GW progenitors, on the rate of expansion of the Universe.

Indeed, what the predictions from cosmological models give us is the merger rate density
R(z), which is the number of merger events per unit of comoving volume Vc, per unit of
proper time of the source ts, as a function of redshift z:

R(z) = dN

dtsdVc
. (3.1)

– 6 –



J
C
A
P
0
5
(
2
0
2
4
)
0
1
7

To consider a real detection we need to change the used reference frame, moving from
the source to the detector rest frame and its proper time td. In addition to this, we also want
to obtain the probability of an event in units of redshift, a quantity that is (in principle)
observable, rather than in terms of the comoving volume. Therefore, we define the merger
rate R(z), used throughout this work, as the number of merger events per unit proper time
of the detector and per unit redshift, which can be obtained from the merger rate density
through a change of variables

R(z) = dN

dtddz
= 1

1 + z

dVc

dz
R(z) , (3.2)

where we used the relation dtd = dts(1 + z).
We can see how the cosmological model enters in this transformation, as the relation

of the comoving volume with the redshift leads to

dVc

dz
= 4πc
H(z|θ⃗ )

d2
L(z|θ⃗ )

(1 + z)2 , (3.3)

where dL(z|θ⃗ ) is the luminosity distance and H(z|θ⃗ ) the Hubble parameter, and we explicitly
show that these involve a cosmological model with their dependence on a set of cosmological
parameters θ⃗.

We finally have the expression for the merger rate function:

R(z|θ⃗ ) = d2
L(z|θ⃗ )

(1 + z)3
4πc

H(z|θ⃗ )
R(z) . (3.4)

With the merger rate R(z) we can compute the total number of merger events measured
during an observation time Tobs from an ideal detector:

N̄tot(θ⃗ ) = Tobs

∫ zmax

zmin
R(z′|θ⃗ )d z′ , (3.5)

where events are observed only in a finite interval of redshift z ∈ [zmin, zmax].
With the total number of events N̄tot(θ⃗ ) and the number of events at redshift z, we

can obtain the probability distribution of the mergers, and therefore of the GW events
to take place, as

P (z|θ⃗ ) = TobsR(z|θ⃗ )
N̄tot(θ⃗ )

= R(z|θ⃗ )∫ zmax
zmin

R(z′|θ⃗ )dz′
. (3.6)

Notice that, while this is the theoretical distribution for events to occur, this does not
coincide with the distribution of observed events. As we will detail in the following, several
of these events will be too far away for surveys to detect them efficiently and therefore
they will not appear in the survey catalogues. Then, in the case of a real detection the
quantities can be weighted by a detection function fdet(z), which represents the fraction of
observable events for a given redshift z and it depends on the detector considered. Therefore,
we define the detected merger rate:

Rdet(z) = R(z)fdet(z) . (3.7)

– 7 –
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Furthermore, as we discussed in section 2, unless an electromagnetic counterpart is
observed, GW surveys do not contain information on the redshift of the events. We can however
transform the theoretical redshift probability into a probability in the space of luminosity
distance, T (dL|θ⃗ ), transformation which is itself a function of the cosmological model

T (dL|θ⃗ ) = P
(
z(dL|θ⃗ )|θ⃗

) ∣∣∣ d

d (dL) z(dL|θ⃗ )
∣∣∣ , (3.8)

where z(dL|θ⃗ ) is the inverse function of the luminosity distance, which is defined as

dL(z|θ⃗ ) = (1 + z)
∫ z

0

d z′

H(z′|θ⃗ )
. (3.9)

3.2 Merger rate density and the Star Formation Rate

With eq. (3.8), we have shown how we can obtain the theoretical distribution of events in the
luminosity distance space, assuming a cosmological model that provides dL(z|θ⃗ ) and H(z|θ⃗ ).
Such a distribution depends, through eq. (3.4), on the merger rate density of the progenitors
of the GW events. This is necessarily related to the evolution of the ABH through the history
of the Universe, since these are the seeds of the GW events we are investigating.

ABH can form at the latest stage of star evolution from the collapse of massive stars
after their nuclear burning phase ends, while the formation of ABH binaries can happen
through two channels: a pre-existing binary system of stars evolves into a system of two
ABHs, or two separate isolated ABHs form a binary system in a later phase. For both
cases the expression for the merger rate density can be written as a function of time t and
black hole mass mBH [37, 38]

R(t,mBH) = N

∫ ∆tmax

∆tmin
Rbirth(t− ∆td,mBH)P (∆td)d ∆td , (3.10)

where N is a normalizing factor, P (∆td) is the distribution function of the time delay between
ABH formation and merger (∆td), and Rbirth(t,mBH) represents the birthrate of the ABH as
a function of time and black hole mass. The latter can be expressed as

Rbirth(t,mBH) =
∫
ψSFR (t− τ(m)) ϕ(m) δ

(
m− g−1

BH(mBH)
)

dm ; (3.11)

here τ(m) is the lifetime of a star of mass m, ϕ(m) is the Initial Mass Function (IMF) [37],
ψSFR is the Star Formation Rate density (SFR), δ(m) the Dirac delta function, and g−1

BH is
the inverse of a function that, for each Zero Age Main Sequence star mass value (the mass of a
star at the start of the hydrogen burning phase), gives its corresponding black hole mass mBH.

One can notice that in order to obtain the merger rate, it is required to know the
properties of the systems, like the progenitor masses and the delay between the binary
formation and the merger, with the latter depending on the details of the systems through
their orbital parameters.

Here, we follow the approach of [37], where a distribution P (∆td) ∝ 1/∆td is considered,
and the integral of eq. (3.10) is taken with ∆tmin = 50 Myr and ∆tmax = H−1

0 , an approach
motivated by numerical simulation of binary BH formation [39]. Nevertheless, we also follow

– 8 –
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the approach of [21], and account for the uncertainties in the modelling of the merger rate
through the normalization factor N , choosing this by imposing that the predicted merger rate
density is compatible with the observations reported in the Gravitational-Wave Transient
Catalogs (GWTC) [36, 40].

Following [21], we change variable from time to redshift, and we assume a monochromatic
mass distribution for ABH, i.e. we assign the same mass to all ABH that will form the
events we observe. This is a simplifying assumption because we expect from observations
to have a distribution of masses for the components of the binary systems that produce the
merger events. In this paper we chose the value for our fiducial ABH to be the peak of the
observed current data, i.e. mABH = 7M⊙. We expect that the effect of a distribution of
masses and mass ratios would affect the SNR with respect to the monochromatic case, with
this depending on the specific features of the system. We will consider our results to be the
first approximation to this mass problem and discuss this systematic in a future work.

Furthermore, we assume that the birth rate is direcly proportional to the SFR [37]

Rbirth(z) ∝ ψSFR(z) . (3.12)

The SFR can be measured through galaxy survey observations, which provide the rate of
star formation at different redshifts, with the most distant ones being the most uncertain and
where results can significantly depend on the type of tracer used to reconstruct the SFR [41].

For such a reason, we decide to work with a parametric approach, expressing the
SFR as [42]

ψSFR(z) = ν
aeb(z−zm)

a− b+ bea(z−zm) , (3.13)

where the parameters a, b, ν, zm, controlling the shape of the distribution, are obtained fitting
the observational data, and therefore depend on the high redshift tracers used.

In the following, we will investigate the impact of the uncertainty on the SFR on the
final cosmological results, choosing different possible measurements of the parameters. In
table 1, we show the values considered for the different SFR cases, which we label as

• Baseline: a SFR fit obtained using high redshift observations of galaxies in the redshift
range z ∈ [8, 10], corresponding to the Fiducial model of [43];

• GRB: a SFR fit obtained using the Gamma-ray burst rate as a high redshift tracer [41];

• Madau-Dickinson (MD): another common SFR model, which uses a slightly different
functional form, with [44]

ψMD
SFR = ν

(1 + z)zm

1 + [(1 + z)/a]b , (3.14)

where we kept the same parameter names for the sake of simplicity.

In addition to this, we leave ourselves the possibility to include, in each of the SFR
models considered, a high redshift contribution coming from population III stars (PopIII) [41].

– 9 –



J
C
A
P
0
5
(
2
0
2
4
)
0
1
7

ν zm a b

Baseline 0.178 2.00 2.37 1.8
GRB 0.146 1.72 2.8 2.46
MD 0.015 2.7 2.9 5.6
PopIII 0.002 11.87 13.8 13.36

Table 1. SFR parameters for the different models, depending on the high tracers considered to
reconstruct the SFR and on whether or not population III stars are present.
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Figure 2. SFR functions for the three models, depending on the high tracers considered to reconstruct
the SFR and on the presence of population III stars.

This contribution is modelled following eq. (3.13), with the parameter values reported in
table 1, and it is added to the SFR models as

ψi+PopIII
SFR = ψi

SFR + ψPopIII
SFR , (3.15)

where i indicates the type of SFR considered.
The different redshift evolution of these three models are shown, both with and without

the PopIII contribution, in figure 2. One can notice how the main differences arise from the
behaviour at high redshift, and we can therefore expect that the choice of SFR will affect the
results achievable with GW surveys probing the high redshift regime.

3.3 Impact of cosmology

As we want to extract the cosmological information from the distribution of GWs in luminosity
distance, we rely on the cosmological dependence of the merger rate R(z|θ⃗ ), described by
eq. (3.4). Such a dependence will propagate to the simulated dataset through the probability
distribution of a “true” event P (z|θ⃗ ), which is connected to our theoretical model as seen in
eq. (3.6); hence, in this section we want to analyze the emerging cosmological dependence
in our theoretical model T (dL|θ⃗ ).

To investigate this, we fix our baseline fiducial cosmology (by setting the values of
Ωm and H0) and settle on the Baseline SFR, with the inclusion of PopIII stars, as our
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Figure 3. Theoretical distribution of merger events as a function of luminosity distance, assuming a
Baseline SFR model with and without PopIII and fiducial cosmological parameters (H0 = 67 km s−1

Mpc−1, Ωm = 0.32).
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Figure 4. Plotted here the relative absolute difference δT (dL|θ)/TFid of the theoretical distributions
with respect to the fiducial cosmology, with a fixed Baseline SFR model (without PopIII) varying
θ = H0 (left panel) and θ = Ωm (right panel).

default astrophysical setting. Using eq. (3.8), we can convert the prediction on the redshift
distribution of events to a distribution in distance T (dL|θ⃗ ), which is the one we are able
to reconstruct from data, shown in figure 3. We can thus investigate how changing the
cosmological parameters affects this distribution. In figure 4, we show in the left panel the
effect of changing H0, while in the right panel we vary Ωm.

In the fiducial distribution (figure 3) we can observe the effect of PopIII only at high
luminosity distances, where the distribution shows a small “bump” due to the presence of
possible progenitors belonging to this stellar population. We can also notice that only at
distances ≳ 150 Gpc we expect a number of events greater by an order of magnitude if PopIII
stars are present; however, this happens quite far away from the peak of the distribution,
where the probability of mergers is already significantly reduced, and therefore we do not
expect a strong effect. For this reason, we decided to neglect PopIII when characterizing
the impact of cosmological parameters in the rest of this section.

Concerning the relative differences shown in figure 4, we notice that there is generally
a higher variation with respect to Ωm than with H0.
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This cosmological dependence in the theoretical model, necessarily propagates to the
total number of observed events, which is obtained from eq. (3.5) as an integral of the
distribution, including also the detection weighting of eq. (3.7) due to a real detection. In
order to investigate the cosmology dependence of this total number, we generate simulated
datasets (see section 4 for more details on the steps taken for this purpose) varying the values
of the cosmological parameters to observe how the total number of events changes. For each
of these datasets we obtain the theoretical expectation for the total number of events Ntot,
and we extract the observed total number from a Poisson distribution with mean value Ntot;
thus, we obtain a set of values N tot

i (H0,Ωm). We then fit the trend of this observed number
by varying alternately Ωm or H0 and fixing the other, obtaining

ln
(

3 + lnN
ln(H0/km s−1Mpc−1)

)
= 2.618 − 0.223 ln

(
H0

km s−1Mpc−1

)
,

ln
(

− lnN
ln Ωm

)
= 1.363 + 2.510Ωm , (3.16)

which can be rewritten as power law relations

N(H0) =
(

H0
km s−1Mpc−1

)(
−3+13.705

(
H0

km s−1Mpc−1

)−0.223
)
,

N(Ωm) = Ω−(3.906e2.510Ωm)
m . (3.17)

In figure 5 we compare the collection of datasets with the fitted profile of eq. (3.17)
with their relative error. We notice that for both parameters the total number of events
decreases with a higher value of the cosmological parameters. This is an expected result, as
most of the cosmology dependence enters in the volume term of eq. (3.3). However, this is
not the only cosmological dependence, as both the detection weighting (eq. (3.7)), related
to the observational uncertainties on the observed distances, as well as the astrophysical
contribution of the merger rate density (section 3.2), will also change with cosmology. This
leads to the deviation from the H−3

0 dependence, that one would expect from the volume
term, that we observe in eq. (3.17).

Overall, we find that increasing either H0 or Ωm decreases the number of expected events;
this necessarily imply that one could obtain the same prediction with very different values of
the parameters, provided that these are changed accordingly. These parameters are therefore
degenerate with each other and an increase in H0 could be compensated by a decrease in Ωm.

As we will see in section 5 this has a significant impact on the cosmological constraints
one can extract from these observations.

4 Forecast dataset and analysis method

In the previous section we have provided the details of the theoretical modelling for the
distribution of ABH merging events in luminosity distance. In order to obtain information
on the cosmological parameters from which such predictions depend, we want to compare
our model with observations.

– 12 –



J
C
A
P
0
5
(
2
0
2
4
)
0
1
7

50 100 150
0

50000

100000
N

Observed counts

Fit

Fiducial cosmology

0.3 0.4

20000

25000
Observed counts

Fit

Fiducial cosmology

50 100 150
H0 [km s−1 Mpc−1]

−0.05

0.00

0.05

δN
/N

0.3 0.4
Ωm

−0.025

0.000

0.025

Figure 5. Comparison between the total number of the simulated datasets and those obtained with
the fitting relation of eq. (3.17). In the upper row we have the total number of simulated observed
events (without PopIII) and their respective fits. In the lower row we have the relative error between
simulated observations and fits δN/N .

As pointed out in section 2, current GW observations are able to probe a very limited
redshift range, and therefore cannot be used for our purpose, in particular if we want to
distinguish between the high redshift behaviour of the different SFR models we introduced in
section 3.2. For such a reason, we decide to focus our attention on the expected observations
that will be performed by the Einstein Telescope, which we described in section 2.1.

In this section we first provide details on how we obtain a simulated catalogue for ET,
and then we describe the methodology we use to compare our theoretical prediction with
the simulated data to obtain cosmological constraints.

4.1 Einstein Telescope’s luminosity distance mock catalogue

In order to generate a simulated catalogue of GW observations, we use the Python package
darksirens2,3 [21], which generates a catalogue of luminosity distances from merger events,
given a set of observational specifications, astrophysical and cosmological parameters. This
Python code was initially intended to study the fraction of Dark Matter due to PBHs, but
it can be easily used without them.

The darksirens package requires us to assume a set of fiducial parameters to generate
the simulated dataset, parameters that are divided into four categories:

• Cosmology: the code assumes a spatially flat isotropic and homogeneous Universe
with a ΛCDM cosmological background. The only cosmological parameters needed are
therefore the Hubble constant H0 and the total matter density parameter Ωm. Our
dataset is generated assuming Ωm = 0.32 and H0 = 67 km s−1 Mpc −1;

2Available at https://gitlab.com/matmartinelli/darksirens.
3Documentation at https://darksirens.readthedocs.io/en/latest.
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Specifications
Tobs [yrs] SNRmin lensing zmin zmax

1 8 no 0.001 20

Table 2. Simulated survey parameters and redshift interval considered. The lensing effect is neglected
in this work.

• Primordial Black Holes: the darksirens package includes the fraction of Dark
Matter made up of primordial black holes fPBH as an input parameter. As we are here
assuming that all the observed events come from ABH, we set fPBH = 10−9, effectively
neglecting the contribution of PBH;

• Astrophysical Black Holes: here one should enter the parameters specifying the SFR
model, together with the mass of the ABH progenitors. For the latter we follow [21] and
assume that all events originate from ABH with a monochromatic mass distribution,
setting mABH = 7 M⊙. Moreover, we produce our simulated dataset assuming the
Baseline+PopIII SFR and using the corresponding parameters reported in table 1.
While the public version of darksirens supports both the Baseline and GRB models,
we modified the code to have the possibility to include the MD model and to also
include the PopIII contribution;

• Specifications: in order to produce a realistic dataset, darksirens requires the user
to provide the observation time Tobs, the limiting redshift to use to generate events and
the threshold signal-to-noise ratio (SNR) below which an event is considered too noisy
to be included in the catalogue and it is therefore discarded. We report the chosen
value for the specifications in table 2. Notice that darksirens also allows to account
for the effect of gravitational lensing on the observed distances. With respect to the
investigation of [21] where the interest lied in very high redshift events, we expect a
less significant impact of this effect. Neverthelss, such an effect could still be important
for events at the edge of our redshift distribution. Despite this, we neglect this effect as
the data simulation code only allows to take it into account for a fixed cosmology, and
we will study its impact in detail in a future work.

With all these parameters specified, we can generate the simulated dataset for ET.
The process used to generate the mock is detailed in [21], and here we report the different
steps only schematically:

1. the total number of mergers taking place in the limiting redshift (Ntot) is computed
using eq. (3.5);

2. for each of these events, a redshift zi is extracted from eq. (3.6) and associated to the
event;

3. using the fiducial cosmological parameters, to each redshift zi a “true” luminosity
distance D̄i is associated;
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4. for each event, the SNR ρi is evaluated, also accounting for the event position in the sky
and the orbital inclination, quantities that are randomly drawn. All events for which
ρi < SNRmin are removed from the catalogue, while for all others an observational error
σi = 2D̄i/ρi is computed (for more details on the computation of this uncertainty see
appendix A);

5. an observational scatter ∆Di is drawn randomly from a Gaussian distribution N (0, σi).
The measured luminosity distance of the i-th event is then defined as Di ≡ D̄i + ∆Di.

After this process, a mock catalogue of measured luminosity distances with their uncer-
tainties D = (Di, σi)i=1,...,Ndet

is created, where Ndet ≤ Ntot is the number of events after the
SNR cut. It is important to notice that in our work we focused on the observation of Dark
Sirens; this implies that, while the redshift information is computed by our simulation code,
this will not be available through real observations. For such a reason, we keep in our dataset
only the observed distances Di and their error σi, assuming this is the only information we
can extract from a future ET catalogue of merger events.

4.2 Analysis method

The main focus of this paper is to quantify the constraining power of a GW survey with
ET specification on cosmological parameters. Practically, this requires us to estimate the
probability distribution of parameters given the data P (θ⃗ |D). Exploiting Bayes’ theorem,
this can be related to the likelihood of the data L(D|θ⃗ ) as

P (θ⃗ |D) ∝ L(D|θ⃗ )π(θ⃗ ) , (4.1)

where π(θ⃗ ) is the prior probability of the free parameters of the analysis.
If one is able to compute L(D|θ⃗ ) given a set of parameters, it is therefore possible to

estimate the posterior by sampling the parameter space and exploiting eq. (4.1). To perform
this sampling we rely on a Monte Carlo Markov Chain (MCMC) approach, making use of
the Metropolis-Hastings algorithm implemented in the public code Cobaya4 [45].

We create external modules for this code that implement the likelihood calculation
we describe in section 5, and we keep as free parameters the Hubble constant H0 and the
matter density Ωm, using flat priors with H0 ∈ [60, 80] km s−1 Mpc−1 when fixing Ωm, or
H0 ∈ [50, 100] km s−1 Mpc−1, Ωm ∈ [0.05, 0.8], when both are free.

This approach, would in principle allow us to avoid specifying a SFR model and include
the parameters for this (i.e. ν, zm, a and b) as free parameters of our analysis, thus attempting
to obtain information on the SFR itself from the distribution of events. However, such an
analysis would be hindered by the strong degeneracies between the SFR and cosmological
parameters, all entering eq. (3.10), and it would require the addition of external data able
to provide information on the SFR parameters. This is beyond the scope of this work, and
therefore we will keep the SFR parameters as fixed within our analyses, effectively assuming
that such values are measured from an external survey [20].

We will however investigate the impact of assuming the wrong SFR model: as our dataset
is simulated assuming a Baseline + PopIII SFR model, we will obtain constraints on H0 and

4https://cobaya.readthedocs.io/en/latest/.
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Ωm analysing the data with different choices of SFR to obtain the theoretical predictions.
This will allow us to quantify how the constraints on cosmological parameters are affected
when an incorrect modelling of the astrophysical phenomena is done.

5 Constraints from number counts

Now that we have a simulated dataset, mimicking what the ET will be able to provide, we
want to assess how cosmological parameters will be constrained by it. For such a purpose, we
use the approach detailed in section 4.2 for which we need to define a likelihood function.

In section 3, we saw how cosmological parameters enter in the calculation of the merger
rate R(z), both through the volume term and the merger rate density, and how this can be
used to compute the distribution of events in luminosity distance, as well as their total number.

As a first step in obtaining our constraints, we only focus on the total number of observed
events, i.e. we want to obtain cosmological information using as the only observable the
number of events that a survey like ET will measure, neglecting any other information
provided by the survey, and we leave the investigation of a distance distribution based
likelihood to a future work.

5.1 Number counts likelihood

We want to compare the number of events in the simulated dataset, after those below the
SNRmin are removed, with the number obtained by theoretical calculations when cosmological
parameters are changed. This means obtaining the expression of the likelihood L(D|θ⃗ ) to
use in eq. (4.1), i.e. the probability of obtaining Nobs(D) observed events given a theoretical
prediction Ntot(θ⃗ ), which depends on the model parameters through eq. (3.5).

As shown in [21], when considering only the total number of events, we can work with
a Poissonian distribution and write the likelihood as

L(D|θ⃗ ) = Nexp(θ⃗ )Nobse−Nexp(θ⃗ )

Nobs!
. (5.1)

Notice that in our definition of the likelihood we do not directly use the theoretical
prediction Ntot(θ⃗ ), but rather the expected number of observed events Nexp(θ⃗ ). This subtle
distinction is crucial, as in the simulated dataset the low SNR events are removed and this
needs to be accounted for in the theoretical prediction in order to not bias the results.

As discussed in section 3, one could define a merger rate of detected events Rdet(z) and
obtain all theoretical quantities from this. However, modelling the fdet(z) term entering
eq. (3.7) can be complicated, as the SNR of each GW observation depends on several features
of the progenitor system.

For such a reason, we decide to obtain Nexp(θ⃗ ) by generating a full mock dataset at each
point of the parameter space, thus associating with each event an SNR that we can use to
remove all events that are too faint from the theoretical prediction. In order to account for the
dispersion in the generation of the mock dataset, we decide to average the number of observed
counts over ten realizations, and to take this average as our theoretical prediction Nexp(θ⃗ ).

We include this calculation in the analysis method described in section 4.2 and use it
in the next section to obtain constraints on H0, both when it is considered as the only free
parameter of the analysis and when it is varied alongside Ωm.
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5.2 Cosmological and astrophysical constraints

As a first result, we obtain the constraints on H0 when all other parameters are fixed.
While this could be interpreted as a choice of astrophysical modelling for what concerns the
SFR parameters, fixing Ωm implies that we are assuming it as known from some previous
cosmological survey, and that constraints from GW observations are too loose to affect
such a prior information.

We therefore obtain MCMC chains fitting our dataset (obtained with Baseline+PopIII)
using the number count likelihood and varying H0 only. Other than for the same SFR case
used to obtain the dataset, we repeat the analysis also changing the astrophysical assumptions,
in order to quantify the impact of such a choice on the final results.

We show in table 3 and figure 6 the results obtained in the different cases.
In the case where the analysis is performed using the same SFR as used for the dataset,

we recover the value of H0 used to generate the dataset, as expected, and we find a 68%
confidence level bound for this parameter of H0 = 67.01 ± 0.17 km s−1 Mpc−1. This
bound is extremely tight and would be competitive with constraints obtained from the
Cosmic Microwave Background (CMB) or Supernovae Ia (SNeIa). However, as we discussed
in section 3.3, we expect a significant degeneracy with Ωm and therefore a much looser
constraint when this parameter is also free to vary.

When removing the PopIII contribution in the theoretical predictions and using these to
perform the analysis, we notice no significant changes in the results, either in the recovered
mean value nor in the strength of the constraint (see the Baseline entry of table 3). This
highlights how whether or not this effect is included does not significantly change the number
of observations, a reasonable conclusion as PopIII only contributes at large redshift where
the merger rate is already significantly decreasing (see figure 2).

On the contrary, changing the main astrophysical assumptions and therefore switching
from the Baseline to the GRB and MD star formation rates, we find no change in the error
obtained on H0, but a significant shift on its mean value; the results obtained assuming
GRB+PopIII show a ≈ 6σ deviation of the recovered H0 from its fiducial value, while for
MD such a shift increases to ≈ 15σ. This results shows the relevance of the astrophysical
assumptions in this analysis, as a wrong modelling of the SFR can lead to significantly
biased results.

We also repeat our analysis of GRB and MD cases removing the contribution of PopIII,
again finding no significant changes.

The extremely large shifts obtained when changing the SFR seem to imply that this
analysis could potentially distinguish between the models used. Once again, however, this
result has to be considered carefully, as opening the other parameters of the analysis might
significantly reduce the constraining power, and therefore hinder the possible study of
SFR models.

Given the possible relevance of degeneracies, we now study the two parameter case,
where θ⃗ ≡ (H0,Ωm).

We show in figure 7 the 68% and 95% confidence level contours in the H0 − Ωm plane,
with the different contours referring to a change in the SFR assumption made in obtaining
the theoretical predictions.

– 17 –



J
C
A
P
0
5
(
2
0
2
4
)
0
1
7

Assumed SFR H0 [km s−1 Mpc−1]
Baseline+PopIII 67.01 ± 0.17

Baseline 67.00 ± 0.17
GRB+PopIII 66.01 ± 0.17

GRB 66.01 ± 0.16
MD+PopIII 64.44 ± 0.17

MD 64.43 ± 0.16

Table 3. Mean values and 68% confidence level constraints obtained for H0 when comparing the
simulated dataset with the theoretical predictions assuming different SFR models.

64 65 66 67

H0 [km s−1 Mpc−1]

Baseline+PopIII

Baseline

GRB+PopIII

GRB

MD+PopIII

MD

Figure 6. Posterior distribution of H0 obtained analyzing the dataset constructed with a Base-
line+PopIII SFR with different assumptions. Solid lines indicate the use of Baseline (black), GRB
(blue) and MD (orange) in obtaining the theoretical predictions, while dashed and solid lines indicate,
respectively, that the contribution of PopIII is included or neglected.

There is an important difference with respect to the one dimensional case; the degeneracy
between Ωm and H0 implies that a change in one of the parameters can be compensated
by a change in the other and this results in a complete loss of constraining power on the
two parameters. As we discussed in section 3.3, only a combination of these two parameters
can be constrained with the number count likelihood, but not the two separately. In order
to break such a degeneracy, one needs to either include information from other surveys,
e.g. adding a prior on Ωm, or, possibly, exploit additional information coming from GW
observations, such as the distribution in distance of the events.

We also notice that the SFR model assumption is still relevant and an overall shift of the
contours similar to the one dimensional case is still present, although it is less statistically
significant. Indeed, GRB and MD predict more events at high redshift than the Baseline
model, however more of these events will be cut from the dataset due to their low SNR,
hence the total number of events for GRB and MD is lower; to account for this effect the
inferred cosmological parameters should be lower, since the total number of events is inversely
proportional to H0 and Ωm.
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Figure 7. 68% and 95% confidence level contours in the H0 − Ωm plane obtained from the
number counts likelihood changing the SFR assumption, with black, blue and yellow referring to
Baseline+PopIII, GRB+PopIII and MD+PopIII respectively.

Concerning the contribution of PopIII, we also find in this case that no conclusion can
be drawn concerning the presence of this population, similarly to the one parameter case.
For such a reason, in figure 7 we do not report results without the contribution of PopIII.

5.3 Testing the SFR with the cut-and-count method

As we saw in the previous section, when both cosmological parameters are free to vary,
the information brought by the total count of events is not enough to obtain constraints.
Nevertheless, we have seen how we could still obtain some hints on the differences between
the considered SFR.

In this section, we try to obtain further information on the SFR by exploiting a different
method, i.e. the cut-and-count method [21]. Indeed, we can notice from figure 2 that different
SFR models have similar but not equal behaviours depending on redshift, especially at z > 10
where we have the biggest differences, especially when PopIII is considered. Therefore, if
we were to divide the data in two bins (left and right of a given threshold), as it is done
in the cut-and-count method, we could attempt to detect a difference in the number of
counts in the right bin, depending on the SFR model, as a direct effect of the shape of
these distributions; hence this method could in principle distinguish different SFRs and
identify the correct one from the data.

Considering the observed luminosity distance dataset D, we choose a value D∗ to cut
the data into two subsets and count the number of events above the cut N>(D, D∗|θ⃗ ).
Such a number will be affected by the parameters of the problem, i.e. cosmological and
astrophysical parameters.

In accordance to the previous section we test the effect of the Hubble parameter and the
assumption on the underlying SFR model, hence we construct datasets DSFR

H0
and compute

the quantities N>(DSFR
H0

, D∗). We obtain the error associated with the number above the
cut for the observed dataset σ>(D, D∗) and for the test datasets σ>(DSFR

H0
, D∗), consisting

of a Poissonian term, due to the discrete occurrences of the events in the distance interval
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Figure 8. Statistical shift without cutting data (D∗ = 0) as a function of the Hubble parameter for
the Star Formation Rate models considered. We can observe a statistically significant shift from the
fiducial cosmological value (orange dashed line) similarly to figure 6.

observed, and a binomial term, due to a distance’s true value being above or below the
cut based on its measured error [21].

We quantify the discrepancy between the dataset and possible test datasets with the
statistical shift:

S(DSFR
H0 , D∗) =

∣∣∣N>(DSFR
H0

, D∗) −N>(D, D∗)
∣∣∣√

σ2
>(DSFR

H0
, D∗) + σ2

>(D, D∗)
, (5.2)

i.e. the distance between the test dataset, obtained with a specific SFR choice, and the
observed one, in units of the error.

As a first step, we want to compare the results obtained using this method with those
found in section 5.2. Thus, we first take our threshold distance to be D∗ = 0, because this is
the case when all the events are considered. As before, we vary H0 in the interval [60, 80] km
s−1 Mpc−1 and use the same mock dataset. We compute the statistical shift as a function
of H0 for all the SFR models considered. We expect the shift to yield the same results as
above, with the minimum of the function lying in the same H0 values of table 3.

Indeed, we can notice from figure 8 that the minimum of each curve, being the best
estimation for each SFR model, has the same bias found with the previous method in figure 6
and we still cannot distinguish the effect of PopIII stars.

We further verified the validity of this method obtaining a qualitative estimate of H0, by
fitting around the minimum of each significance curve (see figure 9), then shifted the whole
fit by the minimum’s value and took 1σ errors, i.e. where the shifted fit equals 1. The results
are presented in table 4 and they agree with our initial results shown in table 3.

We now apply the cut-and-count method to investigate if this approach could be used to
distinguish between the SFR models. In this case we assume the cosmological parameters
as fixed to the fiducial cosmology.
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Figure 9. Detail of each statistical shift minimum with its respective fit, used to give this method’s
estimate of the Hubble parameter, where the fiducial cosmological value is represented by the orange
dashed line.

Analysis Model H0 [km s−1 Mpc−1]
Baseline+PopIII 66.96 ± 0.31

Baseline 66.93 ± 0.41
GRB+PopIII 65.94 ± 0.37

GRB 65.94 ± 0.38
MD+PopIII 64.37 ± 0.35

MD 64.36 ± 0.40

Table 4. Summary of the results of figure 9 for different SFR models for the cut-and-count method.

Since the statistical shift is a measurement of the deviation of the number of events,
having a different choice of SFR could yield different counts above the chosen threshold; this
is due to the different behaviour of the SFR functions at high redshifts (see figure 2).

When choosing the cut at D∗ = 0 we cannot identify the differences in the shape of
the SFR functions, only on the overall effect is has on the total counts. However, if we
vary the cut across the redshift interval of observations z∗ (directly linked to the luminosity
distance interval, because we are fixing the cosmological parameters, thus z∗ and D∗ are
interchangeable) we can better highlight the difference in the SFR functions, and thus also
notice where two SFR models could produce the same results.

We computed the statistical shift at fixed cosmology as a function of the redshift cut
for all the SFR models. We can see the results in figure 10 from which we can understand
the following:

• when the SFR model considered for the analysis coincides with that of data, S takes
values of at most 1σ, pointing out that we recover the correct model. However, with
this method we are still not able to distinguish the presence of PopIII stars;
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Figure 10. Statistical shift as a function of the cut in redshift for different SFR models. Here the
cosmological parameters are fixed at their fiducial values.

• if we consider the value of S in z∗ = 0 for different SFR models, we recover the same
bias as shown in figure 6, but this bias gets even larger when varying z∗, reaching its
maximum at the first peak in S(z∗). The value of z∗ where we reach this first maximum
is therefore the ideal cut to perform on the data if one is interested in observing their
high redshift behaviour and studying the impact of the assumptions made on the SFR.
We also notice from figure 10 how this z∗ is roughly the same for both the alternative
SFR functions studied here (z∗ ≈ 2), possibly showing that such a choice is the most
suited to study this effect;

• At the respective first minimums of S(z∗) for GRB and MD in figure 10, we expect
a degeneracy between our fiducial model and the others, meaning that for a certain
cut, indicated as z̃∗, we have the same number of events after it, thus they should also
predict the same estimate for H0 and minimizing the bias. Such a value of z̃∗ will
coincide with the cross-over point of the different SFR functions, i.e. the redshift at
which the alternative model considered starts predicting a higher probability to see
merger events with respect to the Baseline, as it can be seen in figure 2.
For higher cuts than z̃∗, such a degeneracy will be broken and the statistical shift
increases once again, until the redshift becomes high enough that the low number of
expected events becomes so low that the significance of the shift vanishes.

This analysis shows that, if cosmology is assumed to be given by some external data,
one could implement the cut-and-count method; changing the SFR and applying different z∗
cuts would allow to understand whether the SFR requires a shift in cosmological parameters
in order to match the observed counts (i.e. when we find a maximum in the S function),
or rather it is able to reproduce observations (low and flat S).

We want to stress that, in the context of a real GW survey, e.g. with ET, this method
could be relevant in extracting information on the astrophysical model simply by cutting the
data above a specific threshold, as prescribed by our analysis. Then, counting the number
of events above this threshold would allow to find early results faster than a parameter
space sampling method.
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6 Summary and outlook

With the continuous improvement of GW observations and of the quality of the catalogue
provided by observational surveys, it is becoming timely to investigate how this new window
on the Universe can be used to extract cosmological information.

This is straightforward in the presence of an electromagnetic counterpart to the observed
GW or when other means to measure its redshift are available. However, the vast majority
of GW events we will observe do not provide this information.

Given the extremely high number of events we expect to observe with next generation
surveys, it is crucial to find analysis methods able to extract cosmological information even
from Dark Sirens, i.e. events for which no measurement of their redshift is available.

In this paper we focused on this class of events, assuming that they are all generated
from mergers of ABHs. This assumption allows us to model the merger rate as seen in
section 3.1 and section 3.2, depending on their unknown redshift, from which we can obtain
the theoretical luminosity distance distribution T (dL). Notice that ABH are expected to be
the dominant population of GW progenitors; assessing the impact of additional progenitor
populations, such as NS and PBH, is however important to obtain accurate results, and
we leave this investigation for a future work.

In section 3.3 we discussed the dependence of the theoretical merger rate on two cosmo-
logical parameters: H0 and Ωm, assuming a flat ΛCDM cosmological model. By changing
the distribution in distance of the events and, consequently, the capability of detecting them
with GW surveys, the final observed effect is a dependence of the total number of observed
events on these two parameters, which can be exploited for cosmological inference.

We performed two analysis methods: a likelihood-based method presented in section 5.1,
and the cut-and-count method defined in section 5.3, both adapted from [21]. We applied
these methods on a simulated dataset obtained using the darksirens package, considering
specifications that mimic those expected for the Einstein Telescope interferometer. In
producing our simulated dataset, we assumed a fiducial cosmology specified by the parameters
H0 = 67 km s−1 Mpc−1 and Ωm = 0.32, and assumed the Baseline+PopIII model to describe
the star formation rate (see section 4.1).

In our likelihood approach, we focused on the number counts of GW events as the
observable from which to extract cosmological information. We defined the likelihood as
a Poisson distribution on the expected number of events, and used this to constrain the
free cosmological parameters. We first assumed Ωm as known, possibly from some other
cosmological survey, and constrained H0 alone. The results for the posterior of H0 are
presented in figure 6 for different choices of SFR functions and the respective estimates with
68% credible intervals are presented in table 3.

The results in figure 6 show that Dark Siren observations from ET could constrain the
Hubble constant at a sub-percent level from the number counts of mergers. This is a very
tight constraint, extremely competitive with those currently known from CMB [46] or SNeIa
analyses [47]. We must however point out that these sub-percent estimates are obtained
without considering other possible sources of error, such as the degeneracy with Ωm that
we highlighted in section 3.3, or systematic effects. Indeed, we assume the SFR parameters
as perfectly known, and we also consider a monochromatic mass distribution for the ABH
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population. Moreover, we do not include further possible population that would need a
different modeling, such as Neutron Stars or, possibly, Primordial Black Holes [21].

We also explored the dependence of the results on the astrophysical assumptions done,
assuming in this case a perfectly known cosmology, namely on the choice of the SFR function
applied. We consider three different cases, i.e. the Baseline, the GRB, and MD models (see
section 3.2) which differ by their high redshift behaviour. We also considered the impact of
the possible presence of population III stars as progenitors of the GW systems, including
their distribution in the predictions done.

We assumed the Baseline+PopIII case in building our simulated dataset and investigated
the impact of an incorrect choice of the SFR when obtaining results. We found that although
we can distinguish between the three SFR models, by observing a statistically significant
shift of the distribution, the same cannot be said for the presence of population III stars.
Indeed, in all cases, the absence of population III stars does not result in an appreciable
difference from the expected values of the parameters. Thus, we do not expect the number
counts of Dark Sirens to identify the presence of this stellar population.

We also relaxed our assumptions and tried to constrain both H0 and Ωm in figure 7,
thus finding an expected degeneracy due to the luminosity distance expression. This result
highlights how, in order for GW surveys to be competitive in their cosmological constraints,
additional information is needed, either coming from external surveys, e.g. with priors on the
matter content of the Universe, or by exploiting further the GW survey itself, e.g. including
in the analysis also the distribution of the events in distance, rather than only relying on the
total counts. This applies in particular if one wants to constrain SFR parameters which would
add an extra degeneracy in the merger rate of eq. (3.4) on top of cosmological parameters,
especially without well defined priors for the whole set of parameters.

When applying the cut-and-count method, we obtain the theoretical prediction for a
given SFR5 on the total number counts after a redshift (distance) threshold z∗ (D∗), and
compute the statistical shift with respect to the observations. Even though it is simple in
its approach, we found consistent results with the likelihood-based method when z∗ = 0,
i.e. where the results of the two methods should coincide. With this approach we studied
different possible cuts and identified for which of these we maximize the statistical shift
when a wrong SFR model is chosen. Such a result can be helpful in designing a strategy to
use GW surveys to probe the SFR, as it provides insight on the subset of data containing
the best information for this purpose.

In conclusion, we found that the sensitivity of Einstein Telescope will allow us to use its
observations both to constrain cosmological parameters and to infer precious details on the
astrophysical assumptions done in modelling the progenitors of the GWs we observe.

While our work can be considered as a proof of concept for the methods considered, we
must point out that, in order to obtain more realistic constraints, several of the assumptions
made here must be relaxed, mainly allowing for more general cosmologies (e.g. including
curvature or evolving dark energy), allowing for a non-monochromatic mass distribution of

5The cut-and-count method only uses number counts, which we saw suffer from degeneracies with SFR
parameters. For such a reason we fix these, and perform multiple analyses assuming the different SFR models.
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the binary Black Holes, and including possible systematic effects, such as the presence of
other progenitor populations that will affect the theoretical predictions for the merger rate.

Furthermore, we have highlighted how in a case where no external cosmological informa-
tion is included, the number counts of GW events suffer from strong degeneracies between
the cosmological parameters. It is therefore necessary to include further information coming
from GW surveys, such as that coming from the statistical distribution of events in distance
or from a subset of events for which redshift can be measured.

A Uncertainties on luminosity distance measurements

The dataset we obtain from the darksirens package contains an estimate of the observational
uncertainties on the luminosity distance measurements obtained as

σi = 2 dL(zi)
ρi

, (A.1)

where ρi, the SNR ratio of the ith event is obtained as ρi =
√

⟨h|h⟩, with h the waveform
in Fourier space we defined in eq. (2.7) and the inner product of two generic functions h1
and h2, ⟨h1|h2⟩, defined as

⟨h1|h2⟩ = 4 Re
[∫ fmax

fmin

h1(f)h∗
2(f)

S(f)

]
(A.2)

with fmin and fmax the limiting frequency of the instrument’s sensitivity range, and S(f)
the noise power spectral density.

It can be shown that for a GW survey, the Fisher information matrix can be written
as [48, 49]

Fαβ =
〈
∂ h

∂ θα
| ∂ h
∂ θβ

〉
, (A.3)

with the θα being all the observable quantities entering eq. (2.7).
If one considers only the luminosity distance dL entry of the Fisher matrix, and considering

that ∂h/∂dL = −h/dL, one obtains

FdLdL
= ⟨h|h⟩

d2
L

= ρ2
i

d2
L

. (A.4)

Considering all other observables as fixed, the error on the luminosity distance can be
obtained from the square root of the inverse Fisher matrix

σi = dL

ρi
. (A.5)

This however, does not include the degeneracy of the luminosity distance with other observables
of the waveform, which unavoidably increases the observational error on dL. To account
for this a factor of two is included in eq. (A.1), boosting the uncertainty on dL to roughly
account for the extra contribution to the error coming from other uncertainties. In figure 11
we show, for a single event, how the error predicted by eq. (A.1) is comparable with the one
given by a Fisher matrix obtained accounting for the uncertainties not only on dL, but also
on the two masses of the system (m1 and m2) and on its inclination (ι). Given this result, we
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Figure 11. Example of Fisher matrix based uncertainties on the parameters inferred from a GW
observation when the luminosity distance is considered alongside the masses and the inclination of the
system (red contours), compared with the approximated error on the luminosity distance obtained
from eq. (A.1) (gray band).

rely in the production of our dataset on the approximated results of eq. (A.1), rather than
performing a full Fisher analysis for all the events in our catalogue.
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