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Abstract: Narrowband Internet of Things (NB-IoT) has quickly become a leading technology in the
deployment of IoT systems and services, owing to its appealing features in terms of coverage and
energy efficiency, as well as compatibility with existing mobile networks. Increasingly, IoT services
and applications require location information to be paired with data collected by devices; NB-IoT
still lacks, however, reliable positioning methods. Time-based techniques inherited from long-term
evolution (LTE) are not yet widely available in existing networks and are expected to perform poorly
on NB-IoT signals due to their narrow bandwidth. This investigation proposes a set of strategies for
NB-IoT positioning based on fingerprinting that use coverage and radio information from multiple
cells. The proposed strategies were evaluated on two large-scale datasets made available under an
open-source license that include experimental data from multiple NB-IoT operators in two large cities:
Oslo, Norway, and Rome, Italy. Results showed that the proposed strategies, using a combination of
coverage and radio information from multiple cells, outperform current state-of-the-art approaches
based on single cell fingerprinting, with a minimum average positioning error of about 20 m when
using data for a single operator that was consistent across the two datasets vs. about 70 m for
the current state-of-the-art approaches. The combination of data from multiple operators and data
smoothing further improved positioning accuracy, leading to a minimum average positioning error
below 15 m in both urban environments.

Keywords: fingerprinting; NB-IoT; positioning

1. Introduction

Narrowband Internet of Things (NB-IoT) is a leading technology in the context of
low-power wide area networks (LPWANs), standardized by the 3rd Generation Partnership
Project (3GPP) in Release 13 (Rel-13, 2016) and aimed at enabling low-cost and power-
efficient IoT services over cellular networks [1]. Most of these services either require
or benefit from location information [2]. A balance between cost, complexity, energy
efficiency, and positioning accuracy is, however, required for massive NB-IoT and calls
for NB-IoT-specific positioning technologies, rather than a reliance on global navigation
satellite systems (GNSS). A first step in this direction was the integration in Rel-14 (2017) of
NB-IoT positioning features inherited from long-term evolution (LTE) that are based on
the observed time difference of arrival (OTDOA) technique (see Section 2 for details) [2].
The use of OTDOA in NB-IoT, however, faces several challenges. First, compared with
LTE, NB-IoT devices operate on a smaller bandwidth (i.e., between 180 kHz and 200 kHz,
depending on the adopted operation mode [3]). Hence, ranging and timing accuracy, on
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which OTDOA relies, is limited by signal bandwidth. Second, NB-IoT devices are likely
to operate in poor coverage scenarios (e.g., deep indoors), and this may negatively affect
OTDOA positioning accuracy. Third, the adoption of OTDOA is hindered by the fact
that, in most cases, operators have only recently completed or are still performing the
deployment of Rel-13 NB-IoT networks [3].

The result is a growing interest in adopting different and novel strategies for NB-IoT
positioning. In particular, radio frequency (RF) fingerprinting is an interesting candidate,
given its reasonable requirements in terms of device capabilities and network deployment.
Indeed, a favorable complexity–accuracy trade-off has made fingerprinting the most popu-
lar approach for indoor positioning based on WiFi [4]. Fingerprinting in LTE networks was
originally proposed by 3GPP in Technical Specification (TS) 36.809 [5], where RF and timing
advance information were combined to define a fingerprint; the approach was however
only tested via simulation. As is well known, fingerprinting operates in two phases. During
the so-called offline phase, fingerprints, consisting in a set of RF data related to the detected
access points of the technology in use (e.g., WiFi Access Points (APs) for WiFi and evolved
Node Bs (eNBs) for LTE and/or NB-IoT) are collected at selected positions, referred to as
reference points (RPs), and stored in a database. Note that in the case of LTE/NB-IoT, an
eNB is associated with multiple physical cell identifiers (PCIs)/narrowband PCIs (NPCIs),
each corresponding to a different signal source. Within the subsequent online phase, the
location of a target device is estimated as a function of the position of the RPs associated to
fingerprints that best match the one provided by the device according to a desired similarity
metric, often defined as the inverse of a distance. Among several possible approaches to
perform the estimation, k nearest neighbors (kNN) and its weighted version (WkNN) are
largely adopted owing to their reasonable complexity–accuracy trade-off [4].

The adoption of fingerprinting in large outdoor areas and using cellular networks
poses, however, new, specific challenges both in the offline and online phases. Regarding
the offline phase, a high spatial density for RPs and a large number of measurements
collected at each RP are typically desirable, as both factors contribute to increasing the
positioning accuracy. As a result, the number of RPs defined for the offline phase as well as
the number of measurements taken at each RP is typically the result of a trade-off between
the time and efforts required to collect the measurements and the desired accuracy. In the
case of an outdoor fingerprinting system, given the larger areas to be covered compared to
indoor scenarios (up to tens of km2 vs. hundreds of m2, typically), this trade-off might not
be achievable: the need to keep the efforts for the acceptable measurement collection might
result in unacceptably low accuracy (Challenge 1). Regarding the online phase, the WkNN
algorithm is characterized by a computational complexity that grows quadratically with the
number of RPs [4]; in considering the coverage area of an outdoor system, the number of
RPs might be in the order of thousands or tens of thousands of points. Given the expected
high density of devices characterizing the IoT scenarios and the corresponding number of
positioning requests, the processing workload during the online phase might be difficult to
sustain (Challenge 2). Finally, a challenge common to both phases is related to the density
of eNBs/NPCIs available in a commercial deployment: current NB-IoT networks are in
fact deployed so as o satisfy coverage requirements defined in terms of communication
availability and may not provide enough signal sources to support the accurate positioning
by fingerprinting (Challenge 3).

The early attempts to apply RF fingerprinting to NB-IoT did not explicitly assess
the above challenges. Fingerprinting in combination with NB-IoT was first investigated
in [6], where. however. an indoor scenario similar to the ones typically addressed in WiFi-
based fingerprinting was considered. Outdoor fingerprinting in NB-IoT using commercial
networks was first analyzed in [7,8], although, due to the hardware limitations of off-the-
shelf NB-IoT modems, the RF fingerprint was defined by the received signal strength
indicator (RSSI) of only one cell, i.e., the cell to which the NB-IoT device was connected.
More recently, fingerprinting using NB-IoT was investigated in [9] using data collected
with development boards to avoid the limitations characterizing commercial hardware;
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however, a limited accuracy was reported. The possibility of adopting fingerprinting in
NB-IoT networks as a viable alternative to GNSS positioning remains, therefore, to be fully
explored, and the feasibility of this approach in a realistic scenario is yet to be assessed.

A step forward in this direction was taken in [10] by proposing novel design solutions
that take into account the information available for NB-IoT signals. This work extends [10]
by providing an in-depth analysis of the feasibility and the performance of fingerprinting
in NB-IoT networks. The main contributions of this paper can be summarized as follows:

• It investigates the feasibility of RF fingerprinting in NB-IoT networks and assesses
its accuracy in two urban scenarios by leveraging two large-scale measurement cam-
paigns executed in the cities of Oslo, Norway, in 2019 [3] and Rome, Italy in 2021;

• It proposes several strategies for designing the WkNN-based online phase that com-
bines network coverage and RF signal information;

• It assesses the performance of the above strategies by taking into account (a) the RF
parameter adopted in the definition of fingerprint, (b) the amount of RPs collected in
the offline phase, and (c) the number of cells considered in the fingerprinting system;

• It studies the impact on positioning accuracy of combining data from multiple opera-
tors and data preprocessing to remove fast fading and discusses the adoption of data
combination and preprocessing as a means to achieving a favorable trade-off between
offline phase efforts and positioning accuracy;

• It provides a detailed description of the data used in the performance evaluation and
information on how to access the datasets through an open-source license.

The investigation was made possible thanks to the nature of the dataset, in which four
RF parameters (RSSI, reference signal received power (RSRP), reference signal received
quality (RSRQ), and signal to interference plus noise ratio (SINR)) are provided in a large
number of locations and for all the cells detected in such locations, thus overcoming the
limitations described in [7].

The paper is organized as follows. Section 2 reviews positioning approaches proposed
for NB-IoT. Section 3 introduces the proposed fingerprinting system by first reviewing the
WkNN algorithm and by then describing the proposed strategies. Section 4 provides a
detailed description of the measurement setup adopted for the collection of the two datasets
used in this work and of the dataset structure. Next, Section 5 presents the results of the
performance evaluation of the proposed strategies on the two datasets and introduces two
approaches based on the combination of data by multiple operators and on data smoothing
to improve accuracy. Section 6 draws conclusions and suggests future research avenues.

2. Background and Related Work

In LTE, the OTDOA algorithm is implemented and run at the network side and is
based on time of arrival (TOA) estimates performed by the user equipment (UE) on the
periodic downlink position reference signal (PRS) [11,12]. Given a set S of S eNBs within
its range, the UE selects a reference eNB in the set and reports to the network S− 1 TDOA
measurements, obtained as the difference between the PRS TOA estimates of each of the
remaining S− 1 eNBs in S and of the reference eNB, and is referred to as the reference signal
time difference (RSTD). The OTDOA algorithm has encountered a widespread adoption in
LTE networks worldwide, with reported positioning error in the order of 35 m at the 90%
percentile [13,14].

Fingerprinting in LTE was proposed by 3GPP [5] and experimentally validated in [15].
Several extensions were then proposed. In particular, fingerprinting was enhanced in [16]
owing to the introduction of RSTD information in the definition of the fingerprint that
improved the accuracy over OTDOA.

Ever since Rel-14, NB-IoT uses a dedicated signal, called narrowband PRS (NPRS)
to compute OTDOA, similarly to LTE. NPRS can be transmitted continuously (while PRS
in LTE is limited to up to six consecutive subframes [17]) in order to compensate for the
loss of accuracy due to a narrower signal bandwidth than LTE. Despite the introduction of
NPRS, TOA accuracy in NB-IoT is expected to be severely degraded compared to LTE [17].
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Recent investigations have proposed and analyzed, via simulation, possible enhancements
toward improving the TOA estimation accuracy for NB-IoT at the price, however, of a lack
of compliance with the standard and increased complexity (e.g., see [18–20]).

The first study proposing fingerprinting using NB-IoT signals was presented in [6],
where devices transmitting signals compliant to the NB-IoT standard in terms of base-
band data content, bandwidth, and carrier frequency were deployed in an indoor location
and used to build a fingerprinting system covering the same location. Albeit interesting,
this work did not cover the most realistic use case of fingerprinting with NB-IoTl; that
is, covering a large outdoor area served by commercial NB-IoT operators. The earliest
contribution addressing such a use case was presented in [7], where RSSI measurements
defined fingerprints, and a WkNN algorithm—to be used in the online phase—was com-
pared against two other methods: (a) a ranging-based algorithm that uses RSSI to estimate
distances between UE and eNB, and (b) a proximity algorithm that matches the position of
the UE with an estimate of the position of the eNB detected with highest RSSI. Experimental
data collected using commercial NB-IoT devices were used to evaluate the performance of
the three above algorithms and showed that RSSI-based fingerprinting outperforms both
RSSI-based ranging and RSSI-based proximity algorithms. The best results were obtained
with the Pearson χ2 coefficient as the similarity metric, with an average positioning error
of about 184 m. Due to limitations in the hardware used to collect data, the fingerprints
defined in [7] only included the RSSI of the cell to which the NB-IoT device was connected
and thus only included information on a single cell. However, because of cell (re)selection
purposes, the NB-IoT standard foresees that a device may collect data on multiple cells at
the same time, similarly to what is commonly done by WiFi and LTE devices [1]. In areas
characterized by high spatial network density, this may result in a large number of data
elements being stored in each fingerprint. Since the amount of information in a fingerprint
is a key element in determining positioning accuracy [21], the introduction of multiple
cell (in the following: multicell) information in the definition of fingerprints is expected to
strongly improve performance with respect to [7].

A first attempt in this direction, beyond the preliminary version of the work presented
in [10], was carried out in [9], where Arduino development boards connected to uBLOX
N211 NB-IoT modems were used to collect data not only on the serving cell but also on
neighboring cells. Collected data for each NPCI detected were collected over an area of
4.5 km2 but averaged over “pixels” of 20× 20 m2, leading thus to a spatial discretization of
data. WkNN-based fingerprinting was then adopted, using RSRP as RF parameter, and the
authors reported an accuracy of about 90 m in the best case.

It is worth noting that NB-IoT is not the only option for positioning using a narrowband
technology: recent investigations have focused on other technologies, such as LoRa, with a
positioning error between 10 and 20 m [22,23], and SigFox, albeit with rather large errors
in the order of several hundreds of meters [24,25]. NB-IoT has, however, the notable
advantage of being deployed by mobile network operators, allowing thus to leverage
existing infrastructure to position devices, without the need to place anchor nodes to cover
the area of interest.

3. Proposed Fingerprinting System

This section describes the proposed NB-IoT multicell fingerprinting system. Section 3.1
reviews the WkNN algorithm adopted in the online phase for position estimation, while
Section 3.2 introduces the proposed fingerprinting strategies to be adopted for evaluating
how well RP fingerprints match with the fingerprint of the target device.

3.1. The WkNN Algorithm

Let N be the total number of RPs in the service area A of the positioning system, with
si (i = 1, 2, . . . , N) being the fingerprint collected at a generic i-th RP and with sj being the
fingerprint provided by a target device j. The position estimation of j via WkNN relies
on the computation of distances d(i, j) = d(si, sj) for all RPs, which is followed by the
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sorting of RPs in terms of increasing distance [26]; the distances proposed in this work
are introduced in Section 3.2. Once the k ≤ N RPs closer to sj according to the adopted
distance are selected, WkNN provides an estimate p̂j = (x̂j, ŷj, ẑj) of the real position of j,
denoted as pj = (xj, yj, zj) and as follows:

p̂j =
∑k

n=1(w(n, j))pn

∑k
n=1 w(n, j)

, (1)

where pn = (xn, yn, zn) is the position of the n-th selected RP (n = 1, 2, . . . , k) in a 3D
coordinate system, and w(n, j) is the weight attributed to the n-th RP in estimating the
position of j. In general, the weight w(n, j) can be defined independently from the distance
metric d(n, j) [27]; the most common approach, also adopted in this work, is however to
choose w(n, j) ≡ 1/d(n, j).

A critical aspect in fine-tuning the WkNN algorithm is selecting k, both of which are
static k strategies, where k is set once and for all during system setup [28], and dynamic k
strategies, where k is selected at each positioning attempt as a function of sj [29,30], have
been proposed in the literature. In this work, a static k strategy is adopted, and the impact
of k on positioning accuracy is investigated.

3.2. Proposed Fingerprinting Strategies

The four strategies introduced below provide the definition of distance d(i, j) and a
criterion to break ties in the distances associated with two or more RPs during the sorting
procedure. As anticipated in Section 3.1, the distance is also used to define the weight of the
coordinates of the k selected RPs in (1), i.e., w(i, j) = 1/d(i, j). The four strategies explore
different ways to combine two pieces of information in defining d(i, j): the number of cells
detected in both positions pi and pj, and the similarity between the sets of measurements
for the selected RF parameter collected in the two positions.

3.2.1. Net

The Net strategy uses the number of cells that two locations have in common, without
taking into account any RF parameter, as the similarity metric between the two locations.
Subsequently, NB-IoT cells are denoted as NPCIs in order to comply with NB-IoT standard
terminology. The distance between the i-th RP and the location of a target device j to be
estimated, i.e., the j-th test point (TP), is thus defined as follows:

dNet(i, j) =
1

Li,j
, (2)

where Li,j ≤ Lj is the number of NPCIs in common between RP i and TP j, and Lj is the
number of NPCIs detected in TP j. Given the definition in (2), the distance takes values in
the discrete set

{
d1 = 1/Lj, d2 = 1/(Lj − 1), · · · , dLj = 1

}
; as a result, sorting RPs based

on increasing distance from TP j divides RPs in Lj groups associated with the distances in
the set. Let Gm indicate the group of RPs at distance dm (m = 1, · · · , Lj), which is defined
as follows:

Gm = {i|dNet(i, j) = dm} m = 1, · · · , Lj, (3)

with Nm = |Gm| ≥ 0 being the corresponding group cardinality. The k selected RPs for
estimating the position of TP j thus include elements of the first q groups, with q such that

q

∑
m=1

Nm , Ng ≤ k <
q+1

∑
m=1

Nm, (4)

and k− Ng RPs randomly selected within the group Gq+1.
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3.2.2. Enhanced Net

The Enhanced Net strategy shares with the Net strategy the metric defined in (2) and
the sorting/grouping procedure described in Section 3.2.1. In addition, for each RP i, the
following distance from the TP j is evaluated:

dEnh_Net(i, j) =

√√√√ Li,j

∑
l=1

(
pi

l − pj
l

)2
, (5)

where pi
l and pj

l indicate the readings of the selected RF parameter (one among RSSI, RSRP,
RSRQ, and SINR) in RP i and TP j for the l-th NPCI in common. RPs within each group
are then sorted as a function of increasing dEnh_Net(i, j) and in cases where Ng < k, the first
k− Ng RPs in the sorted list for group Gq+1 are selected.

3.2.3. Coverage

The Coverage strategy only relies on the selected RF parameter to define the distance
metric between RP i and TP j as follows:

dCov(i, j) =

√√√√ N

∑
l=1

(
pi

l − pj
l

)2
, (6)

where N is the size of the union of all NPCIs detected in any RP and TP and is thus
independent from i and j; whenever pi

l and/or pj
l are missing, a default baseline value pmiss

is used for data padding. Note that the value of pmiss should be lower than the minimum value
present in the data. Based on the range observed for the RF indicators, pmiss = −160 dBm is
used for RSSI and RSRP, and pmiss = −40 dB is used for SINR and RSRQ. In this case as
well, RPs are sorted based on increasing dCov(i, j), and the first k is selected for estimating
the position of TP j.

3.2.4. Weighted Coverage

The Weighted Coverage strategy explicitly merges network availability and RF informa-
tion by combining the metrics defined in (2) and (6):

dW_Cov(i, j) = dNet(i, j) · dCov(i, j)

=
1

Li,j

√√√√ N

∑
l=1

(
pi

l − pj
l

)2
.

(7)

RPs are sorted based on increasing dW_Cov(i, j), and the first k is selected for estimating the
position of TP j.

4. Dataset Description and Analysis

The experimental data used in this work are part of two large-scale measurement
campaigns that took place in the cities of Oslo, Norway, in the summer of 2019 and Rome,
Italy, in January 2021. Data were collected using the same measurement setup described in
Section 4.1 and were stored using the same structure in described in Section 4.2, that also
provides information on how to obtain the data. A comparison between the two datasets
is provided in Section 4.3; this is followed by a description of the preprocessing strategies
adopted to compensate for their differences in Section 4.4.

4.1. Measurement Setup

Measurements were collected using the Rohde & Schwarz (R&S) TSMA6 mobile
network scanner [31]. The R&S TSMA6 network scanner is an integrated system comprising
an RF receiver, for passive monitoring of downlink control signals transmitted by 3GPP
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access technologies, and a global positioning system (GPS) receiver, which allows for the
association of a geographic information to each measurement. The TSMA6 also includes a
Windows-based embedded PC running the ROMES software, used to control and configure
the RF and GPS receivers. In addition to the internal RF receiver for passive data acquisition,
the TSMA6 can be connected to external devices to collect active data for one or more 3GPP
technologies, which are also controlled by the ROMES software. In the Oslo campaign the
setup included an Exelonix NB-IoT USB device for the collection of power consumption
and active data for NB-IoT [32], while in the Rome campaign, this device was replaced
with a Samsung S20 5G mobile phone, which was used to collect 5G active data. The
setup used in the Rome campaign is presented in Figure 1 and is drawn from [33]. In
this work, only passive data collected by the built-in RF receiver were used. The TSMA6
was calibrated at the Rohde & Schwarz premises before each measurement campaign as
part of its periodic calibration schedule. In addition, the TSMA6 features an advanced
autocalibration algorithm, which was independently verified to be highly accurate by
multiple research groups [34,35]. Additional information on the measurement campaigns
and on both passive and active data availability can be found in [3,36,37] for the Oslo
campaign and [33,38–40] for the Rome campaign.

Figure 1. The setup adopted for the measurement campaign in Rome, Italy: R&S TSMA6 mobile
network scanner (a), GPS antenna (b), Samsung S20 5G mobile phone (c), RF antenna (d), and tablet
used to remotely access the ROMES software running in the embedded PC within the TSMA6 scanner
(e) (image drawn from [33]).

4.2. Data Description and Availability

Each entry in the datasets collected in Rome and Oslo includes an extensive set of data
fields, divided into four categories:

1. Time stamp, including date, time, and coordinated universal time (UTC);
2. GPS data, including estimates of latitude, longitude, altitude, speed and heading, and

the number of satellites used for the estimation;
3. Network data, including the E-UTRA absolute radio frequency channel number

(EARFCN), the corresponding carrier frequency, the NPCI, the mobile country code
(MCC), the mobile network code (MNC), the tracking area code (TAC), the cell identity
(CI), the eNodeB-ID, and the cell ID.
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4. Signal data, including the RSSI, SINR, RSRP, and RSRQ values measured for the
reference signals transmitted by the eNodeB on each of the two antenna ports used in
NB-IoT (Tx0 and Tx1), as well as the power, RSSI, and carrier-to-interference noise ratio
(CINR) values measured on the narrowband secondary synchronization signal (NSSS).

Note that the list of fields for each category provided above is not exhaustive; more
details can be found in the description of the dataset in [41].

Table 1 lists the data fields, indicating the corresponding measurement units and
formats, and provides an example value.

Table 1. Data fields included in a data entry and examples of corresponding values.

Category Data Field Unit/Format Example

Time stamp

Date dd.mm.yyyy 23.07.2019

Time hh:mm.s 08:25.5

UTC seconds 1,566,583,704

GPS data

Latitude degrees 59.922214

Longitude degrees 10.733242

Altitude meters 46.98

Speed m/s 8.03

Heading degrees 199.36

Sat - 6

Network data

EARFCN - 6352

Frequency Hz 811,192,500

NPCI - 243

MCC - 242

MNC - 1

TAC - 40,601

CI - 19,803,492

eNodeB-ID - 77,357

cell ID - 100

Signal data

RSSI-Tx0 dBm −28.4

RSSI-Tx1 dBm −28.4

NSINR-Tx0 dB 20.84

NSINR-Tx1 dB 26.25

NRSRP-Tx0 dBm −40.07

NRSRP-Tx1 dBm −34

NRSRQ-Tx0 dB −11.65

NRSRQ-Tx1 dB −5.59

NSSS-Power dBm −25.3

NSSS-RSSI dBm −25.3

NSSS-CINR dB −25.3

Not all available data fields were used in this work; the subset adopted includes
the latitude and longitude from GPS data, the MNC, NPCI and the eNodeB-ID from the
network data, and the RSSI, SINR, RSRP, and RSRQ values averaged over the two antenna
ports Tx0 and Tx1 from the signal data. The combined use of NPCI, eNodeB-ID, and MNC
was required since the NPCI is not a unique indicator, neither across operators nor within
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the network of a single operator, due to spatial reuse. Since both datasets include data
from multiple operators and cover extensive areas, each set of the RSSI, SINR, RSRP, and
RSRQ values in a location was associated with the corresponding <NPCI, eNodeB-ID,
MNC> triplet in order to avoid any ambiguity. A triplet of <NPCI, eNodeB-ID, MNC> is
indicated in the following as unique NPCI or simply NPCI. Data points were then defined
as the collection of all data entries collected at the same <latitude, longitude> coordinates,
leading to the data point structure shown in Table 2, where NPCI indicates a unique NPCI
as previously defined.

Both raw data and processed data, organized in data points as defined above, were
released under an open source license in a public repository for both the Oslo and Rome
datasets; in addition to the data described in this section, the repository also includes an
estimation of the positions of eNodeBs as well as data related to channel impulse responses
collected simultaneously with the data described above, opening the means to additional
investigations for interested researchers [41].

Table 2. Information associated with the generic n-th data point. The notation NPCIk, n indicates the
unique NPCI, corresponding to a unique triplet <NPCI, eNodeB-ID, MNC> associated with the k-th
data entry out of the Ln collected at the coordinates <Latituden, Longituden>.

Latituden Longituden

NPCI1, n RSSI1, n SINR1, n RSRP1, n RSRQ1, n

NPCI2, n RSSI2, n SINR2, n RSRP2, n RSRQ2, n

...
...

...
...

...

NPCILn , n RSSILn , n SINRLn , n RSRPLn , n RSRQLn , n

4.3. Datasets Analysis and Comparison

The characteristics of the two datasets collected in Oslo and Rome are as follows:

• The Oslo dataset includes data from 7 driving measurement runs for a total of 118,880 data
entries collected in 5266 data points over an area of approximately 2× 2 km2. Two
different network operators were identified. The runs are presented in Figure 2a;

• The Rome dataset includes data from 6 campaigns for a total of 31,599 data entries
collected in 2670 data points over an area of 8× 2.5 km2. Three different network
operators were identified. The runs are presented in Figure 2b.
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Figure 2. Cont.
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Figure 2. Measurement runs used for the Oslo campaign (a) and Rome campaign (b); each color
represents a different run.

The measurement runs included in each dataset were selected so to guarantee a
reasonable spatial overlapping between them.

An early comparison between the number of data entries and data points highlighted
that the Oslo dataset is characterized by a larger average number of entries per data point
than is the Rome dataset. Most importantly, the data collected in Rome also often showed
missing RF parameters for a given NPCI, whereas this phenomenon was seldom observed
in the Oslo data. An example of this difference is presented in Figure 3.

Oslo

Rome

NPCI eNodeB-ID MNC RSSI SINR RSRP

Figure 3. Examples of data points from the Oslo and Rome datasets; missing RF data in the Rome
data are highlighted in red.
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As a result, the average number of unique NPCIs with valid RF parameters per data
point was slightly larger in the Oslo dataset than in the Rome dataset (11.34 vs. 10.33)
despite the presence of a lower number of network operators (2 vs. 3). The number of
unique NPCIs with valid RF data further showed a larger variability in the Rome data, as
shown in Figure 4, which presents a box plot representation of the data.
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Figure 4. Statistics for the number of unique NPCIs per data point with valid RF data for the Oslo
dataset (left) vs. the Rome dataset (right).

Following a review of the setups used to collect the two datasets, the difference was
attributed to the heavy additional processing load introduced in the Rome setup by the 5G
data collection possibly leading to a slower decoding of NB-IoT signals and corresponding
data recording. As a result, at times, RF values would be estimated only for some of the
NPCIs detected at a given location, leading to a partial loss of data. This hypothesis was
confirmed by an in-depth analysis of the data that identified the presence of “holes” in the
RF data for a given NPCI during a run with an average ratio of RF data loss, defined as
the ratio between the number of data points where the NPCI was detected and RF data
recorded as well as the total number of data points where the NPCI was detected, in the
order of PL = 0.25, with a clear impact on the spatial coherence of data. An example of
such impact is presented in Figure 5, which compares the RSSI data collected over time for
a sample NPCI in the Oslo vs. Rome datasets and shows the impact of the data loss in the
latter set.

Since it could be expected that the loss of spatial coherence would reflect on positioning
accuracy (as confirmed by the analysis presented in Section 5), an interpolation-based
strategy to compensate such loss was introduced, as discussed in Section 4.4.

4.4. Preprocessing of the Rome Dataset

The goal of the preprocessing of the Rome dataset was to compensate for the data
loss observed on raw data by introducing synthetic data values obtained by interpolating
available data. In order to select the most suitable interpolation technique, the Oslo data
were used as a reference dataset to evaluate and compare the performance of the following
interpolation techniques:

• Previous: Indicating with i the index of a missing sample xi, the sample is replaced
with the value of the previous available sample, xi = xk, where k < i is the index of
the last sample available before xi;
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• Next: The missing sample xi is replaced with the value of the next available sample,
xi = xl , where l > i is the index of the first sample available after xi;

• Nearest: The missing sample xi is replaced with the value of the nearest available
sample, xi = xj, where j is determined as the index of the available sample such that
|i− j| is the minimum;

• Linear: The missing sample xi is replaced as

xi =
(i− k)xl + (l − i)xk

l − k
,

where l > i is the index of the first sample available after xi, and k < i is the index of
the last sample available before xi;

• Moving average: The missing sample xi is replaced using

xi =
1

wa

m2

∑
j=−m1

xi+j,

where m1 ≥ 0, m2 ≥ 0, and wa = m1 + m2 + 1 (missing values are skipped in the
computation);

• Moving median: The missing sample xi is replaced with the median value computed
over the set composed of the m1 samples before xi and the m2 samples after it for a
total averaging window length wm = m1 + m2 + 1 (missing values are skipped in the
computation);

• Spline: The missing sample xi is replaced by performing a piecewise cubic interpola-
tion using the closest neighboring available samples [42,43];

• PChip: The missing sample xi is replaced by performing a piecewise cubic interpola-
tion that preserves the curve convexity [44];

• m-Akima: The missing sample xi is estimated using a modified version of the Akima
algorithm [45,46], which is also based on a piecewise polynomial interpolation of
degree three or less, in this case determining the slope in the interpolated point as
the weighted average of the slopes of the neighboring points; the modification to the
original algorithm is in the weights given to the slopes, selected so to reduce overshoot
in the vicinity of points with a horizontal slope.
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Figure 5. Cont.
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Figure 5. RSSI RF data collected for a sample NPCI as a function of time during a measurement run
for the Oslo dataset (a) vs. the Rome dataset (b).

The techniques were evaluated and compared on the Oslo dataset by adopting the
following procedure:

1. Randomly select a set of N = 500 unique NPCIs to be analyzed and perform the
subsequent steps for each NPCI in the set;

2. Artificially remove a fraction PL of RF values equal to the average data loss observed
in the Rome data—the removal was carried out by extracting a uniform random
variable for each data point including the NPCI under analysis and by removing the
RF data if the random variable outcome value was larger than PL;

3. Interpolate the missing data using each technique;
4. Evaluate and compare the performance of each technique according to two indicators—

the mean square error (MSE) and the determination coefficient R2.

In order to define the two performance indicators, let us consider a sequence and
assume to replace m values of the sequence with estimates obtained with the selected
interpolation method. Let us indicate with yi the i-th original value and with ŷi the
corresponding interpolated value; furthermore, let us indicate with y the average of the
original values:

y =
1
m

m

∑
i=1

yi. (8)

Given the above assumptions, MSE and R2 for the interpolation technique used to generate
the ŷi values are defined as follows:

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2, (9)

R2 = 1− SSEres

SSEtot
, (10)

where SSEres = ∑m
i=1(yi − ŷi)

2 is the residual sum of squares, and SSEtot = ∑m
i=1(yi − y)2

is the total sum of squares.
MSE and R2 are correlated since SSEres = m · MSE; however, they can provide

complementary information on the performance of the interpolation technique since they
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take values over different ranges [47]: MSE is defined in [0,+∞), where 0 indicates a perfect
interpolation, while R2 is defined in (−∞, 1], where 1 indicates a perfect interpolation. Note
that for reasonably good interpolators, R2 typically takes non-negative values; a R2 = 0
corresponds, in fact, to an interpolator that replaces each missing value with the average
value y, that can be considered as a baseline benchmark for the other techniques.

The results of the evaluation are presented in Figures 6 and 7, showing a box plot
representation of the performance in terms of MSE and R2, respectively; each point in
the box plot represents the performance for a specific NPCI according to the considered
indicator. The results indicate that all interpolators achieved an average performance better
than did the baseline benchmark (R2 = 0); nevertheless, the performance gap between
the best interpolator and the worst one was not negligible, as highlighted in Figure 8.
Figures 6 and 7 show that several interpolators had a good performance, with an average
MSE under 10 and an average R2 > 0.7. Among these, the one that consistently provided the
best performance for both indicators in terms of average value and of the variability around
it was the linear interpolator, which was thus adopted to preprocess the Rome dataset.

M
S

E

(a)

M
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(b)

Figure 6. MSE obtained for the considered interpolation techniques (a) and the zoom of the same
data in the range [0, 20] (b), where MA stands for moving average and MM for moving median; these
techniques were tested for different average window lengths, from 5 to 20.
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(a)

(b)

Figure 7. R2 obtained for the considered interpolation techniques (a) and zoom of the same data
in the range [0, 1] (b), where MA stands for moving average and MM for moving median; these
techniques were tested for different average window lengths, from 5 to 20.
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Figure 8. Comparison of best and worst interpolators vs.the original data for a sample NPCI from
the Oslo dataset.
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5. Performance Evaluation

In this section, results of the performance analysis for the fingerprinting system
proposed in Section 3 are presented. The proposed system is compared against the finger-
printing approach proposed in [7], referred to in the following as the Single Cell strategy.
Note that while in the data used in [7], there was no ambiguity on which cell to consider
since only one cell was recorded per location, a criterion must be adopted to select a single
cell in the data used in this work. The approach adopted in the following is to associate to
each location the NPCI characterized by the best value for the considered RF parameter.
This choice is justified by the reasonable assumption that, whenever multiple cells are
available, a device will select and connect to the one characterized by the most favorable
propagation conditions.

The rest of this section is organized as follows. Section 5.1 describes the setup adopted
in the experiments and introduces the performance indicators. Next, Section 5.2 presents the
results obtained using the Oslo dataset, while Section 5.3 presents the results obtained using
the Rome dataset, focusing on the impact of the linear interpolation technique selected
on the basis of the analysis presented in Section 4.4. Finally, Section 5.4 proposes two
approaches to further improve positioning accuracy.

5.1. Experiment Setup and Settings

All results were averaged over 1000 runs. In each run, data points were first randomly
shuffled to avoid any bias related to their collection order; each data point was then ran-
domly labeled as RP, with probability pRP = 0.7 or TP, with probability pTP = 1− pRP = 0.3.
The position of each TP was then estimated by applying the selected combination of the
strategy and RF parameter, and the positioning error was measured as the distance between
estimated and real positions. The error was then averaged over all the TPs and all the
runs, leading to the average positioning error, which was adopted as the first performance
indicator in the subsequent subsections. The average positioning error was measured for k
varying in the range [1, 40]; the minimum of the average positioning error as a function of
k is referred to in the following as minimum average positioning error.

5.2. Results for the Oslo Dataset

All results presented in Sections 5.2.1 and 5.2.2 are based on NPCIs for one of the two
operators, referred to as Operator 1, assuming that an operator would build the offline
database relying exclusively on its own network deployment. The performance obtained
in the Operator 1 vs. Operator 2 networks in Oslo is analyzed in Section 5.2.3.

5.2.1. Impact of Strategies and RF Parameters

Table 3 presents the minimum average positioning error and the corresponding k value
for each combination of strategy and RF parameter; the RF parameter leading to the smallest
minimum average error for each strategy is highlighted in bold. All proposed strategies
lead to a higher positioning accuracy than does the single cell approach. The performance
improvement is limited in the case of the Net strategy but is high in all multicell strategies
using RF information; the best performance is obtained with the weighted coverage using the
RSRQ, with an error of 19.5 m for k = 3.

All multicell strategies using RF information lead to increased performance for an
optimal k ≤ 3. This indicates that in most cases, the first RPs selected as nearest neighbors
according to the RF-aware metric are also spatially close to the TP. This is not the case for
the Net strategy which does not use RF information nor for the Single Cell strategy, where a
single NPCI is used; for these metrics, a greater error in selecting the nearest neighbors is
partially compensated for by an increased number of neighbors k in the position estimates.
Results in Table 3 also show that for the Coverage and Weighted Coverage strategies, SINR,
RSRP, and RSRQ lead to a similar performance, while RSRP leads to the best results for the
Enhanced Net strategy, and SINR is the best choice for the Single Cell strategy. For all strategies,
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SINR leads to either the best or second best accuracy; given its consistent performance across
strategies, it was thus selected as the reference RF parameter for further analysis.

Table 3. Minimum average positioning error and corresponding optimal k for the proposed strategies
and the single cell approach in [7] using the Oslo dataset.

Strategy RF Parameter k Error [m]

Net N/A 8 54.0

Enhanced Net

RSSI 2 34

SINR 2 28.1

RSRP 2 24.0

RSRQ 3 30.1

Coverage

RSSI 3 23.9

SINR 2 20.6

RSRP 2 20.8

RSRQ 2 20.1

Weighted Coverage

RSSI 3 22.3

SINR 3 19.9

RSRP 2 19.9

RSRQ 3 19.5

Single Cell [7]

RSSI 22 102.4

SINR 19 66.2

RSRP 30 76.9

RSRQ 30 72.9

Figure 9 presents the average positioning error as a function of k in the range [1, 10] for
all strategies, using SINR for the strategies taking advantage of RF information. The results
show that the Enhanced Net, Coverage, and Weighted Coverage strategies provide consistently
better accuracy than did Net and Single Cell for all k values. In general, the combination of
the information on the number of common NPCIs and on RF parameters seems to provide
the best positioning performance: the Enhanced Net strategy outperforms the Net strategy,
while the introduction of the number of common NPCIs that differentiates the Coverage and
Weighted Coverage strategies leads to a slight performance improvement in the latter one.
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Figure 9. Average positioning error as a function of k for the proposed strategies vs. Single Cell [7]
using SINR in all strategies but Net.
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5.2.2. Performance under Limited Information

Results presented in Section 5.2.1 were obtained using all the available information in
the dataset, both in terms of (a) spatial density, measured by the number of data points,
and (b) network deployment, measured by the number of NPCIs detected at each location.
In both cases, however, it is worth investigating how positioning performance is affected
by reduced available information.

1. Spatial density. Given the positioning service area, the desired spatial density deter-
mines the number of data points to be collected and, in turn, the time and effort spent
in data collection during the offline phase: reducing this number may thus improve
the positioning system scalability, making it easier to setup and maintain.
In order to assess the impact of a decrease in spatial density, additional experiments
were performed, where, in each run, a fraction PRP < 1 of the points originally labeled
as RPs were randomly selected and kept in the offline database. Figure 10 shows the
minimum average positioning error as a function of PRP for all strategies using SINR
for all but Net.
The results in Figure 10 show that all strategies are affected by a decrease in spatial
density but not all to a similar extent. The Coverage strategy, in particular, is heavily
affected by the reduction of RPs, with the highest positioning error for low PRP values,
which questions its robustness. The Single Cell approach shows a relatively low error
for PRP = 0.01 on par with the Weighted Coverage strategy; this comes, however, at
the price of a low percentage of TPs for which the position is estimated at all. As
PRP decreases, in fact, there is an increasing probability that no RP has NPCIs in
common with a TP, making position estimation impossible. Although this is true for
all strategies, Single Cell is the most affected, with only 89% of the TPs with a position
fix for PRP = 0.01 vs. 96% or higher for the other strategies.
Note that the optimal k value leading to the minimum average positioning error will
in general depend on PRP; the optimal k as a function of PRP is presented in Figure 11,
highlighting a trend, common to all strategies, to require a higher optimal k as the
spatial density increases, suggesting that as more RPs become available, strategies
benefit from including a larger number of nearest neighbors.
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Figure 10. Minimum average positioning error as a function of PRP for the proposed strategies vs.
Single Cell [7] using SINR in all strategies but Net.
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Figure 11. Optimal k as a function of PRP for the proposed strategies and the approach proposed
in [7] using SINR in all strategies but Net.

2. Number of detected NPCIs. Devices might be able to only detect and/or report
the strongest detected cells based on their radio and processing capabilities [7]. It
is therefore relevant to assess the impact of a reduction in the number of detected
NPCIs at each location. This only affects fingerprints collected by the target device
and has no effect on the offline database built by the operator. Therefore, experiments
were carried out that only preserved the NNPCI strongest/best NPCIs in points to be
labeled as TPs; no change was made to data points labeled as RPs. Figure 12 shows
the minimum average positioning error for all the proposed strategies as a function of
NNPCI in the range [1, 9].
The results show that, for all strategies, the positioning error decreases as the number
of NPCIs used for each TP increases; in all cases, the error is close (within <2%)
to the one obtained using all NPCIs (see Table 3) if at least 7 best NPCIs are used.
This suggests that a trade-off can be found between complexity (i.e., the amount of
information to be collected and sent by the target device) and positioning accuracy.
The results also show that as in the case of spatial density, the Coverage strategy is
the one most affected by a reduction in the number of NPCIs, confirming its poor
performance under conditions of scarcity of information.
The optimal k determining the minimum average positioning error varies with NNPCI ,
as already observed for variations of PRP; no clear common trend to all strategies
was, however, identified for this parameter. Interestingly, the positive impact of the
number of NPCIs on positioning accuracy observed in this work was not detected
in [9], where using a single NPCI led to the best performance.
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Figure 12. Minimum average positioning error as a function of NNPCI for the proposed strategies
using SINR in all strategies but Net; the Single Cell was not analyzed since, by definition, it operates
with NNPCI = 1.

5.2.3. Comparison between Operators

A direct comparison of the accuracy of the proposed strategies on different networks
can be carried out by using the data for the two operators detected in Oslo, i.e., Operator 1
(considered so far) and Operator 2. Since the data of the two operators were collected at the
same locations, any difference in performance can be interpreted as operator-specific. The
analysis carried out in [3] indicated that Operator 2 has overall roughly 30% less NB-IoT
eNBs than does Operator 1 (146 for Operator 1 vs. 107 for Operator 2). This difference
is also reflected in the dataset used in this work: 160 unique NPCIs were detected for
Operator 1 vs. 139 for Operator 2, and the percentage of valid data points, defined as points
where at least one NPCI was detected, is 92.1% for Operator 1 vs. 86.9% for Operator 2.
Conversely, the average number of NPCIs detected in locations where at least one NPCI
was detected is slightly larger for Operator 2 (6.6) vs. Operator 1 (6.1). The full data are
reported in Table 4.

Table 4. Comparison between data used for the Operator 1 vs. Operator 2 networks in the Oslo
dataset; a valid data point is defined as a data point where at least one unique NPCI was detected for
the considered operator.

Parameter Operator 1 Operator 2

Unique NPCIs 160 139

Valid data points 4848 4577

Valid data points (%) 92.1 86.9

Average number of NPCIs per valid data point 6.1 6.6

The analysis for Operator 2 was carried out using the RSRQ parameter and led to the
best accuracy for Operator 1, as shown in Table 3. The results are presented in Table 5 and
show that the Enhanced Net, Coverage, and Weighted Coverage provide a similar accuracy for
the two networks. Results for the Net and Single Cell strategies show, however, a markedly
worse performance when considering Operator 2; since they are the strategies using less
information (no RF information for Net, only one NPCI for Single Cell), these results indicate
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that strategies that use more information are not only more accurate but also more robust
to information loss.

Table 5. Minimum average positioning error and corresponding optimal k for the proposed strategies
and the approach in [7] using RSRQ as the RF parameter in Operator 1 vs. Operator 2 networks in
the Oslo dataset.

Strategy
Operator 1 Operator 2

k Error [m] k Error [m]

Net 8 54.0 7 64.2

Enhanced Net 2 30.4 2 33.7

Coverage 2 20.1 2 19.8

Weighted Coverage 3 19.5 2 19.0

Single Cell [7] 30 72.9 24 81.9

5.3. Results for the Rome Dataset

The analysis carried out on the Rome dataset focused on the impact of the data loss
observed during the data processing phase. Data were analyzed per operator as conducted
for the Oslo dataset in order to identify the operator to be considered in the analysis. The
results are presented in Table 6 and show that the three operators are characterized by
similar features; Operator 88, characterized by the highest number of unique NPCIs, was
selected for an exhaustive analysis of all combinations of strategies and RF parameters
using both the original dataset and the one obtained by linear interpolation, following the
approach introduced in Section 4.4.

The results are presented in Table 7 and highlight the marked impact of the data
loss on positioning accuracy: all combinations of strategies and RF parameters are in fact
characterized by a poor performance using the original dataset as compared to the one
observed using the Oslo dataset. The linear interpolation dramatically improves positioning
accuracy for all strategies with the exception of the net one; this is reasonable, since the Net
strategy does not use RF parameters but only relies on the presence/absence of a given
NPCI in a data point. Since the proposed interpolation technique only fills in gaps for RF
parameters in existing NPCIs, its application does not affect the information used by the net
strategy. The results also show that even when using interpolation, the positioning error
in the Rome dataset for Operator 88 is larger than that in the Oslo dataset for Operator 1.
This gap might, however, be due to the different characteristics of the data collected for
the two operators in terms of the number of unique NPCIs and the average number of
NPCIs per valid point, with a marked advantage for Operator 1 in Oslo as evident from the
comparison of Tables 4 and 6; further insight on this aspect is provided in Section 5.4.

Table 6. Comparison between the data used for the three networks detected in the Rome dataset;
a valid data point is defined as a data point where at least one unique NPCI was detected for the
considered operator.

Parameter Operator 1 Operator 10 Operator 88

Unique NPCIs 69 81 87

Valid data points 2670 2669 2670

Valid data points (%) 100 99.9 100

Average number of NPCIs per valid data point 4.9 5.2 4.9
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Table 7. Minimum average positioning error and corresponding optimal k for the proposed strategies
and the Single Cell approach in [7] using data collected for Operator 88 in the Rome dataset in its
original and interpolated versions.

Strategy RF Parameter
Original Interpolated

k Error [m] k Error [m]

Net N/A 40 ? 148.4 40 ? 149.1

Enhanced Net

RSSI 3 85.3 3 69.5

SINR 2 63.4 2 39.9

RSRP 2 55.9 1 36.5

RSRQ 3 64.0 2 43.0

Coverage

RSSI 2 76.6 3 36.4

SINR 2 74.0 2 29.3

RSRP 1 68.7 2 26.9

RSRQ 2 74.0 2 28.6

Weighted Coverage

RSSI 4 57.4 4 35.6

SINR 3 49.7 2 29.4

RSRP 3 49.0 2 26.8

RSRQ 3 49.2 2 28.7

Single Cell [7]

RSSI 19 213.5 25 215.9

SINR 9 135.3 13 117.5

RSRP 12 151.5 20 142.9

RSRQ 10 137.3 17 124.9
? Although the optimal k is at the edge of the considered range, the results show that the error hits a floor for
k > 40.

The performance of all strategies using data for each of the three operators detected
in Rome was subsequently compared, with a focus on the RSRP parameter, which led to
the best performance for Operator 88. The results are presented in Table 8 and show that
Operator 88 is the one that leads to the best performance in most cases, in particular when
the original dataset is considered. The linear interpolation leads to a marked performance
improvement for all strategies and for all operators, with the exception of the net strategy,
as already observed for Operator 88. It is also interesting to observe that the interpolation
reduces the performance gap between operators, and in particular between Operator 10
and Operator 88, characterized by the same best absolute performance.

Table 8. Minimum average positioning error (E) and corresponding optimal k for the proposed
strategies and the approach in [7] all using RSRP as RF parameter in the three networks detected in
Rome using the original and interpolated datasets.

Strategy

Original Interpolated

Op. 1 Op. 10 Op. 88 Op. 1 Op. 10 Op. 88

k E [m] k E [m] k E [m] k E [m] k E [m] k E [m]

Net 25 146.8 32 137.6 40 148.4 35 147.2 32 137.5 40 149.1

Enhanced Net 1 82.8 2 62.1 2 55.9 2 47.5 2 33.2 1 36.5

Coverage 4 80.1 2 70.9 1 68.7 2 34.8 2 26.7 2 26.9

Weighted Cov. 3 69.3 2 58.1 3 49.0 2 35.0 2 26.8 2 26.8

Single Cell [7] 32 163.3 20 153.4 9 135.3 40 155.6 25 149.6 13 117.5
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5.4. Additional Performance Enhancements

The analysis described din the previous sections showed that the positioning accuracy
was largely improved by (a) using as much information as possible, as highlighted by
the performance loss suffered by strategies using less information and (b) by performing
additional preprocessing on the data, as highlighted by the positive effect of data interpolation.
Correspondingly, in this section, two approaches to further improve accuracy are introduced.

5.4.1. Increasing Information: Combining Data from Multiple Operators

Although from an operator perspective, it is appealing to rely only on data under
the operator’s control, scenarios can be envisioned where either a third party collects data
for multiple operators, as the authors did in this work, and uses all the available data to
provide a positioning service, or operators decide to share data under a mutual agreement
and provide a common service to their customers. As a result, the set of unique NPCIs for
each data point will be given by the combination of the NPCIs detected for each operator,
typically leading to more information. Table 9 shows the characteristics of both datasets
when information from all operators is combined and can be directly compared with
Tables 4 and 6 for the Oslo and Rome datasets, respectively. The comparison highlights
that the combined data are characterized by much larger numbers of unique NPCIs and of
valid data points, resulting in a 100% validity of data points.

Table 9. Comparison between the Oslo and Rome datasets using combined data from all operators
detected in each dataset; a valid data point is defined as a data point where at least one unique NPCI
was detected.

Parameter Oslo Rome

Unique NPCIs 299 237

Valid data points 5266 2670

Valid data points (%) 100 100

Average number of NPCIs per valid data point 11.3 15.0

Table 10 compares the minimum average positioning error obtained for a single
operator vs. combined operators data using the weighted coverage strategy in combination
with the RF parameter that led to the best performance in each dataset, which was RSRQ
for Oslo and RSRP for Rome. The results show that combining data leads to a marked
performance improvement for all datasets. Interestingly, the combined results for the
original Rome dataset also show that the combination of data partially compensates for the
performance degradation caused by data loss, leading to an error slightly closer to the one
observed for single operators when using the interpolated dataset.

Table 10. Minimum average positioning error in meters using each the single-operator and combined-
operators data in the Oslo and Rome datasets for the weighted coverage strategy in combination with
RSRQ (Oslo) and RSRP (Rome); results using both the original and interpolated datasets are presented
for Rome.

Dataset Minimum Average Positioning Error [m]

Rome (original)
Op. 1 Op. 10 Op. 88 Combined

69.3 58.1 49.0 46.2

Rome (interpolated)
Op. 1 Op. 10 Op. 88 Combined

35.0 26.8 26.8 15.3

Oslo
Op. 1 Op. 2 - Combined

19.5 19.0 - 16.1
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5.4.2. Additional Preprocessing: Data Smoothing

The linear interpolation introduced to compensate for the data loss in the Rome dataset
replaced each missing sample with a linear combination of the nearest available samples,
which is shown in Section 5.3 to have had a beneficial effect on positioning accuracy. We
decided thus to investigate whether additional preprocessing based on linear combinations
of available samples might further improve performance. A first step in this direction was
to extend the analysis on the impact of data preprocessing on the Oslo dataset presented
in Section 4.4 in two ways: first, the performance of the linear interpolation technique
was studied as a function of the percentage of RF values removed before interpolation;
second, the minimum average positioning error as defined in Section 4.1 was used as the
performance indicator. The results are presented in Figure 13, showing that when the
percentage of RF values was randomly removed from the data and replaced with a linear
interpolation of the data collected in the neighboring data points is in the range [5, 45], the
positioning accuracy stayed close (within 10%) to the one obtained when using the full
original data.

This result can be explained by observing that the RF data values are heavily influenced
by the time-varying channel conditions due to fast fading; linear interpolation generates
synthetic values as a weighted average of real values and as such provides a smoothed
version of the data that partially compensates for the loss of information. Based on this
observation, a proper smoothing algorithm was introduced based on the so-called 40λ-rule
proposed in [48] to remove fast fading from mobile channel data by using a moving average
window. After filtering, each RF value at each data point is replaced with an average of
the original measurements collected at data points in a range of ±20λ (i.e., ± ≈ 7.5 m @
800 MHz) from the data point being considered.

Two different approaches to introduce data smoothing were investigated. In the first
approach, referred in the following as “RP smoothing”, smoothing was applied only to data
contained in reference points after the split of data points into RPs vs. TPs. This approach
aims to model a realistic condition where smoothing can be applied to data collected during
the offline phase but not during the online phase. In the second approach, referred in the
following as “total smoothing”, smoothing was applied to all data before splitting the data
points; this approach was considered in order to assess the advantage of smoothing in a
best case scenario where fast fading is also mitigated in the online phase.
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Figure 13. Minimum average positioning error as a function of the percentage of RF values removed
and replaced with synthetic values obtained by linear interpolation of remaining values using the
Oslo data for Operator 1 and the weighted average strategy in combination with RSRQ.
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Results obtained using the two smoothing approaches are presented in Table 11 for
both datasets, using the Weighted Coverage strategy in combination with RSRP for Rome
and RSRQ for Oslo; for the Rome data, smoothing was applied on the interpolated dataset.

Table 11. Minimum average positioning error in meters using the “RP smoothing” and “total
smoothing” approaches for the single-operator and combined-operators data in the Oslo and Rome
datasets for the weighted coverage strategy in combination with RSRQ (Oslo) and RSRP (Rome).

Dataset Minimum Average Positioning Error [m]

Rome (RP Smoothing)
Op. 1 Op. 10 Op. 88 Combined

34.2 26.8 27.1 15.2

Rome (Total Smoothing)
Op. 1 Op. 10 Op. 88 Combined

25.5 21.9 21.1 14.9

Oslo (RP Smoothing)
Op. 1 Op. 2 - Combined

19.0 18.5 - 15.7

Oslo (Total Smoothing)
Op. 1 Op. 2 - Combined

13.8 14.5 - 14.5

A comparison of results obtained using smoothing vs. the results using raw data
reported in Table 10 highlights that smoothing leads to a performance improvements in
most cases; the only exceptions are for Operators 10 and 88 in the Rome data when the RP
smoothing approach was used. This can be explained by observing that the Rome dataset
is already the result of a linear interpolation, thus reducing the advantage of performing
additional processing by smoothing. Overall, the joint adoption of smoothing and the
combination of data from multiple operators leads to a marked reduction of the minimum
average positioning error, with errors below 16 m in all cases, as shown in the rightmost
column of Table 11.

It is interesting to observe that both techniques proposed in this Section, that is
combining data from multiple operators and smoothing data, improve positioning accuracy
with respect to the results presented in Tables 3 and 8 for Oslo and Rome. Combining
information from multiple operators provides, however, in most cases, a more noticeable
performance improvement than does smoothing. The only exception is total Smoothing
for the Oslo dataset, which leads to a positioning error lower than the one obtained by
combining operators; in this case, introducing the combination of information does not lead
to any additional performance improvement. Two observations emerge from this result:
first, that while total smoothing as defined here is not feasible, some form of processing
on data provided by devices during the online phase may improve positioning accuracy.
Second, a lower floor for positioning accuracy may exist that cannot be overcome; however,
further investigation is required to assess this hypothesis.

6. Conclusions

This paper presents a set of positioning strategies of fingerprinting in NB-IoT networks.
The strategies, based on the WkNN algorithm, determine the position of a target device
by combining information about network coverage and signal parameters from multiple
cells. The use of multiple cells was made possible by the adoption of the Rohde & Schwarz
TSMA6 mobile network scanner for data collection. The TSMA6 can in fact simultaneously
collect information on all cells detected at a given location, overcoming the limitations of
commercial NB-IoT modems, that typically only provide information on the cell that the
device is associated to. The performances of the proposed strategies, in combination with
the four parameters available for a NB-IoT signal—that is, RSSI, RSRP, RSRQ and SINR—
were evaluated on the experimental data collected in two different cities: Oslo, Norway,
and Rome, Italy. The proposed strategies were compared against state-of-the-art algorithms
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that use single cell and multicell information. The results show that the proposed strategies
outperform the previous approaches. The impact of both spatial density in the offline
fingerprinting database and of network density was evaluated, and new approaches to
improve positioning accuracy based on combination of data across operators and data
processing were proposed and evaluated.

The results highlighted the fact that the weighted coverage strategy, which combines RF
information and network availability, is overall the best choice across the four proposed
strategies; it combines the high accuracy guaranteed under conditions of complete informa-
tion by the Coverage strategy only using RF information with the robustness shown by the
Net strategy only using network availability when information is scarce or incomplete.

The results of the performance evaluation outlined in Section 5 can be used to assess
how a fingerprinting system designed according to the proposed positioning strategies
meets the three challenges identified in Section 1.

• Challenge 1—Trade-off between efforts in the offline phase and accuracy: the data used
in this work were collected during driving runs, with no run repetitions and without
introducing any form of repeated measurements at each point. This is arguably
the most straightforward measurement setup in an outdoor scenario and requires
an effort comparable to other outdoor data measurement campaigns associated, for
example, to services like Google Street View [49] and is thus definitely feasible for a
company (e.g., an operator) willing to build its own positioning service. In addition,
the performance improvement obtained by introducing interpolation reported in
Section 5.3 suggests that the effort can be further reduced by increasing the spatial
density using synthetic fingerprints, thus reducing the number of actual fingerprints
collected during the runs. The experimental data collected using the above setup led
to an average positioning error of about 15 m when adopting the data combination
and preprocessing techniques described in Section 5.4, which is comparable to the
error obtained when using GNSS receivers.

• Challenge 2—Computational complexity and processing workload during the online
phase: each of the two datasets used in this work led to the definition of a few
thousand RPs, as detailed in Section 4.3. Considering, for example, the Oslo dataset,
characterized by an average of 3600 RPs, the average time to serve a positioning
request was 0.6 ms on a Dell Precision Tower 3640 workstation, equipped with an
Intel Core i7-10700k processor and 32 GBs of RAM, allowing for about 1600 requests
per second. Assuming the adoption of the same average distance between two RPs
characterizing the datasets (about 3 m) on a regular grid without any gap, covering
an area of 1 km2 would require approximately 110,000 RPs, leading to about 0.8 s
per request in the same setup, assuming an increase of the processing time quadratic
with the number of RPs as indicated in Section 1. Extending the grid to an entire
city might thus lead in theory to millions of RPs, with a potentially high processing
load. However, several approaches can be adopted to address this issue: these include,
among others, the introduction of a hierarchical approach based on clustering, as
discussed for example in [27], the adoption of a machine learning algorithm in place
of WkNN at the price of some loss of accuracy [7], or the introduction of dimension
reduction algorithms such as the principal component analysis before running WkNN.
Most importantly, it should be noted that although the total number of RPs may
become very high for large urban coverage areas, it can be assumed that a device will
use its active NB-IoT connection to transfer its fingerprint to the positioning server,
automatically restricting the set of relevant RPs to those falling within the coverage
area of the serving eNB.

• Challenge 3—The number of NPCIs per point and impact on positioning accuracy: the
results presented in Section 5 show that the density of eNBs and NPCIs in a commercial
network deployment is sufficient to achieve a positioning accuracy comparable to the
one provided by a GNSS system, in particular when broadcast signals transmitted by
multiple operators are combined.
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In conclusion, the results presented in this work support the adoption of fingerprinting
based on NB-IoT broadcast signals as a viable and feasible solution to provide accurate
position information in IoT applications without the need for dedicated positioning hardware.

Several future research directions can be identified based on the results obtained in
this investigation. In particular, the results obtained using the total smoothing technique
indicate that data processing in the online phase may markedly improve accuracy. While
smoothing cannot be easily performed, a similar effect could be obtained by adopting
metrics that combine multiple RF parameters in the definition of a fingerprint, performing
thus a sort of averaging across parameters rather than in time (proper averaging) or space
(smoothing) for a single parameter. Other future work items include the introduction of
machine learning algorithms other than WkNN based on singular vector machine and
neural networks, and the comparison of OTDOA vs. fingerprinting on experimental
NB-IoT data.
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Abbreviations
The following abbreviations are used in this manuscript:

3GPP 3rd Generation Partnership Project
AP Access Point
CI Cell Identity
CINR Carrier-to-Interference Noise Ratio
EARFCN E-UTRA Absolute Radio Frequency Channel Number
eNodeB evolved Node B
GNSS Global Navigation Satellite System
kNN k Nearest Neighbors
LPWAN Low-Power Wide Area Network
LTE Long-Term Evolution
MA Moving Average
MM Moving Median
MNC Mobile Network Code
NB-IoT Narrowband Internet of Things
NPCI Narrowband Physical Cell Identifier
NPRS Narrowband Position Reference Signal
NSSS Narrowband Secondary Synchronization Signal
OTDOA Observed Time Difference Of Arrival
PCI Physical Cell Identifier
PRS Position Reference Signal



Sensors 2023, 23, 4266 28 of 30

RP Reference Point
RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
RSSI Received Signal Strength Indicator
RSTD Reference Signal Time Difference
SINR Signal to Interference plus Noise Ratio
TAC Tracking Area Code
TOA Time of Arrival
TP Test Point
UE User Equipment
UTC Coordinated Universal Time
WkNN Weighted k Nearest Neighbors
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