
Signal Processing 223 (2024) 109581

A
0

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

On the stochastic significance of peaks in the least-squares wavelet
spectrogram and an application in GNSS time series analysis
Ebrahim Ghaderpour a,∗, Spiros D. Pagiatakis b, Gabriele Scarascia Mugnozza a, Paolo Mazzanti a

a Department of Earth Sciences & CERI Research Center, Sapienza University of Rome, P.le Aldo Moro, 5, Rome, RM, 00185, Italy
b Department of Earth and Space Science and Engineering, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada

A R T I C L E I N F O

Keywords:
GNSS time series
Least-Squares Wavelet Analysis
Spectrogram
Stochastic surface
Unevenly sampled
Uncertainty

A B S T R A C T

In this paper, the mathematical derivation of the underlying probability distribution function for the normalized
least-squares wavelet spectrogram is presented. The impact of empirical and statistical weights on the
estimation of the spectral peaks and their significance are demonstrated from the statistical point of view both
theoretically and practically. The simulation results show an improvement of approximately 0.02 mm (RMSE)
for annual signal estimation when statistical weights are considered in the least-squares wavelet analysis
(LSWA). The weighted LSWA estimates the signals more accurately than the ordinary LSWA for different
percentage amount of missing data. As a real-world application, Global Navigation Satellite Systems (GNSS)
time series for a station in Rome, Italy are analyzed. The analyses of the GNSS time series provided by different
agencies for the same station reveal statistically significant annual peaks, more significant in 2010 but less
significant between 2018 and 2020, while the higher frequency components show different spectral patterns
over time. A declining trend of approximately −0.42 mm/year since 2004 is estimated for the GNSS height
time series, likely due to gradual land subsidence. The results not only highlight the advantages of LSWA but
can also help to better understand the uncertainties involved in signal estimation.
1. Introduction

Vaníček proposed the least-squares spectral analysis (LSSA) as an
alternative to traditional discrete Fourier transform (DFT) [1–3]. The
LSSA estimates a least-squares spectrum (LSS) for a given set of frequen-
cies by fitting the sine waveforms to the time series while accounting
for discontinuities or jumps [4]. The LSSA has advantages over DFT.
First, LSSA can analyze unequally spaced (unevenly spaced or irreg-
ularly sampled) time series without any data aggregation including
interpolation or gap-filling. Second, LSSA can consider the covariance
matrix associated with the time series and rigorously evaluate the
stochastic significance of peaks in the LSS [5,6]. Realizing that many
time series in real-world applications, particularly in geoscience ap-
plications, are not regularly sampled and errors always exist in the
measurements, LSSA has been widely accepted and applied to process
such time series [7–9].

Following Vaníček’s work, Ghaderpour and Pagiatakis proposed the
least-squares wavelet analysis (LSWA), a robust extension of LSSA,
which estimates a spectrogram instead of a spectrum [10]. The LSWA is
an alternative to the traditional continuous wavelet transform (CWT) [3,
9,11]. Unlike LSSA that decomposes a time series into the frequency
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domain, LSWA decomposes the time series into the time–frequency
domain using an appropriate segmentation. Each time series segment
is defined based on a time and frequency pair to estimate a localized
spectral peak in the spectrogram. At lower frequencies, the segment size
is larger while the segment size reduces at higher frequencies, allowing
a better estimation of long- and short-duration seasonal components,
respectively. One of the main advantages of LSWA over LSSA is that
LSWA can rigorously estimate the spectral components of a time
series that exhibit non-stationary behavior, e.g., when amplitudes and
frequencies of seasonal components change over time or there are
short-duration signatures [9,12]. The LSWA has been widely applied
to many applications, and its code is freely available in both MATLAB
and python, namely, the least-squares wavelet software (LSWAVE) [13]
and jumps upon spectrum and trend (JUST) [14].

In LSWAVE and JUST, depending on the specific goal and applica-
tion, there are two options for selecting segment sizes: (1) frequency-
dependent that is the focus of the present study, and (2) frequency-
independent that is like the concept of the short-time Fourier transform
(STFT) [3,10]. In the first option, the segment size depends on the
time and frequency, i.e., as the frequency increases, the segment size
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decreases and vice versa, allowing a more accurate estimation of short-
duration signals with high frequency and long-duration signals with
low frequency like in CWT [3,11]. In the second option, the segment
size does not change across the frequency domain like in STFT, not
suitable for analyzing time series that contain non-periodic and fast
transient features [3,9]. Note that the mathematical derivations of the
spectrograms and their stochastic confidence level surfaces are similar
in both options.

One of the aims of LSSA/LSWA is to reduce or eliminate bias and
increase efficiency (accuracy) in the estimation of the unknown param-
eters by considering the presence of (1) outliers, (2) heteroskedastic-
ity (second order non-stationarity), and (3) possible incorrect model
specification [10]. In LSSA/LSWA, simple basis functions are used to
simultaneously and efficiently estimate trends of various forms and/or
offsets (jumps), thus eliminating the first order non-stationarity. In
LSSA/LSWA, the elimination or reduction of the effects of outliers
and heteroscedasticity are achieved by appropriately formulating the
covariance matrix of the time series (diagonal or fully populated)
using various methods, such as variance component estimation, au-
tocorrelation analysis, or the result of an estimation process [6,10].
In addition, the ability of LSSA/LSWA to suppress known systematic
constituents of known form (trends, etc.) allows for the calculation
of the post-fit residuals and their covariance matrix, used to test for
residual outliers. Flagging those observations with lower weight and
re-estimating the parameters can significantly mitigate the influence
of outliers. Therefore, the results of this research respect the main
principles of robust statistics and are robust and efficient.

Inspired by Fourier transform, several other time–frequency meth-
ods have been proposed in literature and are widely used in signal pro-
cessing, such as Wigner-Ville transform [15,16], Gabor transform [17,
18], and Stockwell or S transform [19,20]. However, these methods are
proposed for continuous signals or equally spaced time series, and they
do not consider observational uncertainties nor constituents of known
forms [9]. Foster proposed the weighted wavelet z-transform (WWZ)
using the least-squares principle for analyzing unequally sampled time
series and applied it to astronomical time series [21]. The WWZ is
like CWT which obtains a spectrogram using a segmentation strategy.
The WWZ was compared with LSWA in [10], where it was shown
that LSWA is more rigorous for searching hidden signatures in time
series while also accounting for measurement errors. In other words,
unlike CWT and WWZ, LSWA allows users to search for low-amplitude
periodic/aperiodic signals after suppressing or removing statistically
significant peaks that are usually more dominant at low frequencies in
many geoscience applications. The LSWA also considers observational
uncertainties and their correlations in form of a covariance matrix.
In both WWZ and LSWA, there is an option to consider a Gaussian
weight function which assigns certain weights to each measurement of
a segment. In fact, the measurements toward both ends of the segment
receive relatively lower weights than those toward the center during
the estimation of spectral peaks. The weighted L2 norm minimization
technique in the weighted LSWA prevents spectral leakages in the spec-
trogram and produces an optimal time–frequency resolution, though it
widens the frequency bandwidth of spectral peaks, e.g., see [10, Fig.
5c,d] and [12, Fig. 2.3].

The real-world application of the present research focuses on an-
alyzing Global Navigation Satellite Systems (GNSS) position time se-
ries [22,23]. The GNSS refers to the international multi-constellation
satellite systems, including GPS (United States), GLONASS (Russia),
Galileo (European Union), and BeiDou (China), providing position,
navigation, and timing services regionally or globally. The GNSS pro-
vides signals from space that transmit positioning and timing data to
receivers. The receiver then utilizes the data to estimate its position
with respect to a reference frame, such as the International Terrestrial
Reference Frame (ITRF-2014) [24]. Thanks to an increased number of
2

geodetic satellites, the accuracy of the GNSS position has been recently
improved to sub-centimeter and even millimeter levels [25]. The hor-
izontal GNSS position time series, i.e., north and east directions, have
been utilized for various purposes, including studying plate tectonic
motion and earthquake activities, while the vertical component has
been used for studying groundwater variation, ocean and atmospheric
loading, and ice-snow loading among others [23,26].

The GNSS time series usually have jumps or discontinuities due
to several reasons, such as earthquakes, antenna problems, replace-
ment/maintenance of the station equipment, and change of the refer-
ence system, the location of which can be automatically determined by
seasonal-trend and machine learning algorithms [14,25]. Many studies
have focused on modeling noise in GNSS measurements. Kaczmarek
and Kontny [27] modeled GNSS coordinate time series by the least-
squares estimation and CWT to investigate the impact of measurement
noise on signal estimation. Ji et al. [28] estimated signals from GNSS
position time series by the weighted wavelet analysis. In another study,
they proposed an extended singular spectrum analysis to directly ana-
lyze unequally spaced GNSS height time series [29]. The source of noise
in GNSS measurements can be due to several factors, such as sensor
error, atmospheric, and ground noise. Although GNSS processing agen-
cies usually provide measurement errors and not the full covariance
matrices, many researchers showed the presence of correlated noise
in GNSS time series [30–32]. Considering the correlated noise may
significantly bias the estimation of spectral peaks in the least-squares
wavelet spectrogram (LSWS) [10,13]. Thus, it is crucial to understand
and carefully consider random and systematic noises coming from
the instrument/sensor itself prior to investigating the mechanism of
geophysical process [33].

The main contributions of this research are summarized below.

• Presenting the mathematical derivation of the stochastic confi-
dence level surface for LSWS, an unpublished part of the first
author’s PhD dissertation [12].

• Demonstrating the effect of measurement errors and missing data
on signal estimation using LSWA via simulation.

• Analyzing GNSS time series for a station in Rome by LSWA and
commenting on the spectral peaks in LSWS, considering jumps
and measurement errors.

• Discussing potential causes of trends and seasonal components by
analyzing GNSS time series provided by different agencies for the
same station as well as analyzing an Interferometric Synthetic
Aperture Radar (InSAR) time series that spatially includes the
station position.

The rest of the manuscript is organized as follows. First, the theoret-
ical parts of obtaining LSWS along with a computational optimization
technique for it are reviewed in Sections 2.1 and 2.2. The mathemat-
ical derivation of the stochastic confidence level surface for LSWS is
presented in Section 2.3. Then more description on how the LSWA
weighting process works in LSWAVE and JUST in the cases of equally or
unequally spaced time stamps is provided in Section 2.4. A simulation
experiment is carried out in Section 3 to show the effects of noise and
missing data on the spectrograms. A comprehensive analysis of the
historical north, east, and up (NEU) position time series acquired at the
GNSS receiver of Sapienza University of Rome is presented in Section 4
which also includes the trend estimation results for these time series be-
fore and after jump correction. Trend and spectrogram of an InSAR time
series for period 2018–2022, representing the vertical displacement of a
one-hectare area which contains the location of the GNSS receiver, are
also estimated and compared with the ones for the GNSS height time
series. Comments on potential impacts of jumps and known/unknown
a-priori variance factor on LSWS and trend estimations as well as noises
and missing data are provided in Section 5. This section also shows the
analyses of GNSS height time series provided by other agencies for the
same station, highlighting the uncertainties involved in the processing
of GNSS time series for the same station by different providers. Finally,
the conclusions are drawn in Section 6.
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2. Least-squares wavelet analysis revisited

Suppose that 𝐟 = [𝑓 (𝑡1),… , 𝑓 (𝑡𝑛)] is a time series of size 𝑛, where
𝑡𝑗 is the time when measurement 𝑓 (𝑡𝑗 ) is acquired. Note that 𝑡𝑗 can
be unequally spaced, i.e., 𝑡𝑗 − 𝑡𝑗−1 may not be the same for all 𝑗 in
{2, 3,… , 𝑛}. The measurements in real-world applications have uncer-
tainties, so assume that 𝐂𝐟 is the covariance matrix associated with
time series 𝐟 . Mathematically, vector 𝐟 is in a Hilbert space metricized
by 𝐂𝐟 [6]. In many applications, only the standard deviations of the
measurements are provided, i.e., 𝑓 (𝑡𝑖) is either statistically independent
rom 𝑓 (𝑡𝑗 ) or their dependency is neglected, so the covariance matrix
s diagonal. Let 𝐏 = 𝐂𝐟

−1 be the weight matrix associated with 𝐟 . Now
et 𝐲 be a time series segment of size 𝑅 (𝑅 ≤ 𝑛), determined for a time–
requency pair, and 𝐏𝐲 be the principal submatrix of 𝐏 associated with
[10].

.1. The normalized least-squares wavelet spectrogram (LSWS)

In practice, there might be certain components that are physically
nown and considered systematic noise, such as trends (linear or
on-linear), e.g., due to displacement, so they can be estimated and
emoved. Thus, consider 𝐲 containing 𝑞 constituents of known forms,
1,Φ2,… ,Φ𝑞 , e.g., trends or sinusoids of constant frequencies where

heir coefficients are not known. For example, Φ1 is the column vector
f all ones with dimension 𝑅, and Φ2 is the time column vector of the
egment. Note that the coefficients of Φ1 and Φ2, estimated after the
SWA process, represent the intercept and slope of the linear trend
itted to the segment, respectively. Now define the following design
atrices

=
[

cos
(

2𝜋𝜔 𝐭𝐲
)

, sin
(

2𝜋𝜔 𝐭𝐲
)

]

(1)

=
[

Φ1,Φ2,… ,Φ𝑞

]

, (2)

Φ =
[

Φ, Φ
]

, (3)

where 𝜔 is a given cyclic frequency and 𝐭𝐲 is the time vector of segment
𝐲. Note that the dimensions of Φ, Φ, and Φ are 𝑅×2, 𝑅×𝑞, and 𝑅×(𝑞+2),
respectively.

The known constituents of each segment (systematic noise) do
not have to be removed from the segment before estimation of the
spectral peaks corresponding to the segment. However, it speeds up
the computation if these constituents are estimated first and removed
from the segment while their correlations with the rest of segment
components are carried forward during the estimation of peak [2,10].
Thus, LSWA first estimates the coefficients of columns of Φ in Eq. (2),
hen it removes their contributions from segment 𝐲 to obtain the
esidual segment �̂�. More precisely, let 𝐲 = Φ 𝐜 to estimate 𝐜 using
he least-squares method as

̂ = 𝐍−1ΦT𝐏𝐲𝐲, (4)

where 𝐍 = ΦT𝐏𝐲Φ, and so �̂� = 𝐲 −Φ �̂�. Then use the model 𝐲 = Φ 𝐜 =
Φ 𝐜 +Φ 𝐜 to estimate 𝐜 as

̂ = 𝐍−1ΦT𝐏𝐲 �̂�, (5)

here 𝐍 = ΦT𝐏𝐲Φ − ΦT𝐏𝐲Φ 𝐍−1ΦT𝐏𝐲Φ (see Section 2.2 for the
erivation). Note that �̂� is a column vector of dimension two whose
ntries are the estimated coefficients of the cosine and sine function at
requency 𝜔. The amplitude LSWS is defined as [14]:

amp =
√

�̂�T�̂�. (6)

Let 𝐉 = Φ𝐍−1ΦT𝐏𝐲. The normalized LSWS (LSWS hereafter) is
efined by the following equation:

=
�̂�T𝐏𝐲Φ �̂�

T =
�̂�T𝐏𝐲𝐉�̂�
T , (7)
3

�̂� 𝐏𝐲 �̂� �̂� 𝐏𝐲 �̂�
Note that 𝑠 is in (0, 1), showing the amount of sine waveforms at cyclic
frequency 𝜔 contained in the residual segment 𝐲. The value of 𝑠, after
multiplied by 100, is named the percentage variance.

Geometrically, 𝐲 is first orthogonally projected onto the manifold
generated by columns of Φ. The residual segment �̂� is orthogonal to the

anifold generated by columns of Φ. Next, �̂� is orthogonally projected
onto the manifold generated by the columns of Φ, and the projected
vector is then orthogonally projected back onto �̂� to obtain Φ �̂�. Finally,
the ratio of the weighted length of the projected vector Φ �̂� to the
weighted length of �̂� shows the estimated spectral peak for the residual
segment �̂� as given by Eq. (7).

2.2. Computational optimization of the least-squares wavelet analysis

A similar methodology is used as in [4,5] to obtain Eq. (5). From
the model 𝐲 = Φ 𝐜 = Φ 𝐜+Φ 𝐜, coefficient vector 𝐜 is estimated by the
least-squares method as �̂� = 𝐍

−1
Φ

T
𝐏𝐲𝐲, where 𝐍 = Φ

T
𝐏𝐲Φ. Now 𝐍

−1

can be written as

𝐍
−1

=

[

ΦT𝐏𝐲Φ ΦT𝐏𝐲Φ

ΦT𝐏𝐲Φ ΦT𝐏𝐲Φ

]−1

=

[

𝐌𝟏 𝐌𝟐

𝐌𝟑 𝐌𝟒

]

, (8)

where

𝐌𝟏 =
(

ΦT𝐏𝐲Φ −ΦT𝐏𝐲Φ (ΦT𝐏𝐲Φ)−1ΦT𝐏𝐲Φ
)−1

= 𝐍−1 + 𝐍−1ΦT𝐏𝐲Φ 𝐌𝟒 ΦT𝐏𝐲Φ 𝐍−1, (9)

𝐌𝟐 = −𝐌𝟏 ΦT𝐏𝐲Φ (ΦT𝐏𝐲Φ)−1 = −𝐍−1 ΦT𝐏𝐲Φ 𝐌𝟒, (10)

𝟑 = −𝐌𝟒 ΦT𝐏𝐲Φ 𝐍−1, (11)

𝟒 =
(

ΦT𝐏𝐲Φ −ΦT𝐏𝐲Φ 𝐍−1ΦT𝐏𝐲Φ
)−1

, (12)

nd 𝐍 = ΦT𝐏𝐲Φ. It is assumed that matrices ΦT𝐏𝐲Φ and 𝐍 are regular.
Note that the number of rows in Φ and Φ is equal to the window size
in LSWA. Matrix 𝐍 is regular when the columns of Φ, consisting of the
constituents of known forms, are linearly independent. Depending on
the constituents of known forms and irregularity in time sampling, the
window size should be large enough (> the number of constituents of
known forms), so that the column vectors are mutually independent
and 𝐍 is regular, or else a pseudo-inverse may be computed [34].
[

𝐱
�̂�

]

= �̂� = 𝐍
−1
Φ

T
𝐏𝐲𝐲 =

[

𝐌𝟏 𝐌𝟐

𝐌𝟑 𝐌𝟒

][

ΦT𝐏𝐲𝐲
ΦT𝐏𝐲𝐲

]

, (13)

he following equation can be derived:

̂ = 𝐌𝟑 ΦT𝐏𝐲𝐲 +𝐌𝟒 ΦT𝐏𝐲𝐲
= −𝐌𝟒 ΦT𝐏𝐲Φ 𝐍−1ΦT𝐏𝐲𝐲 +𝐌𝟒 ΦT𝐏𝐲𝐲

= 𝐌𝟒 ΦT𝐏𝐲

(

𝐲 −Φ 𝐍−1ΦT𝐏𝐲𝐲
)

= 𝐍−1ΦT𝐏𝐲 �̂�, (14)

here 𝐍 = 𝐌𝟒
−1 = ΦT𝐏𝐲Φ − ΦT𝐏𝐲Φ 𝐍−1ΦT𝐏𝐲Φ, and �̂� = 𝐲 −

Φ 𝐍−1ΦT𝐏𝐲𝐲 is the estimated residual segment. Note that for each
requency, 𝐍 is a square matrix of order two, and so its inverse is

computationally efficient.

2.3. Stochastic significance of peaks in LSWS

One of the advantages of LSWS is that the significance of the peaks
can be statistically tested at a certain confidence level in a rigorous
manner. For theoretical derivation of the statistical tests in LSWS, an
assumption is made that the observed time series is derived from a
population of random variables following a multi-dimensional normal
distribution. Foremost, note that the normality assumption of observa-
tions has nothing to do with the calculation of spectrogram. Making
this assumption, it is possible to verify which peak is statistically sig-
nificant in the spectrogram, so it can be suppressed/removed from the
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spectrogram to search other hidden signatures, e.g., weaker periodic
or aperiodic components [6,10]. The process of suppressing/removing
spectral peaks is simply done by appending horizontally the column
vectors of cosine and sine at the known frequency to Φ in Eq. (2).
Note that unlike LSS, the stochastic significance of peaks in LSWS,
given by Eq. (7), depends on frequency [10]. Following a similar
technique described in [5,6,35], it is shown below how the probability
distribution function of LSWS is derived with a known covariance
matrix.

The covariance matrix is always Hermitian, i.e., it is equal to its
conjugate transpose, and positive semi-definite. For simplicity, it is
assumed that covariance matrix 𝐂𝐟 associated with 𝐟 is positive definite
nd so regular. Thus, 𝐏 = 𝐂𝐟

−1 is positive definite, and so are all its
rincipal submatrices 𝐏𝐲 [36]. Note that in case of singular 𝐂𝐟 , one

may obtain the pseudo-inverse of 𝐂𝐟 and obtain similar results [6,34]. A
square matrix 𝐌 is called idempotent if 𝐌𝐌 = 𝐌. Idempotent matrices
have many desirable properties. For instance, rank(𝐌) = trace(𝐌) [36].

Let 𝐉 = Φ 𝐍
−1
Φ

T
𝐏𝐲, 𝐉 = Φ 𝐍−1ΦT𝐏𝐲 and 𝐉 = Φ𝐍−1ΦT𝐏𝐲,

here 𝐍 = Φ
T
𝐏𝐲Φ, 𝐍 = ΦT𝐏𝐲Φ and 𝐍 = ΦT𝐏𝐲Φ − ΦT𝐏𝐲𝐉Φ. It is

traightforward to verify that 𝐉 and 𝐉 are idempotent. As shown in
Appendix, Eq. (7) is identical to

𝑠 =
𝐲T𝐏𝐲

(

𝐉 − 𝐉
)

𝐲

𝐲T𝐏𝐲
(

𝐈 − 𝐉
)

𝐲
. (15)

he denominator of Eq. (15) can be written as 𝐲T𝐏𝐲
(

𝐈−𝐉
)

𝐲 = 𝐲T𝐏𝐲
(

𝐉−
𝐉
)

𝐲+𝐲T𝐏𝐲
(

𝐈−𝐉
)

𝐲. Let 𝑄𝑠 = 𝐲T𝐏𝐲
(

𝐉−𝐉
)

𝐲 (signal) and 𝑄𝑛 = 𝐲T𝐏𝐲
(

𝐈−𝐉
)

𝐲
noise). Eq. (15) can be written as

=
𝑄𝑠

𝑄𝑠 +𝑄𝑛
=
(

1 +
𝑄𝑛
𝑄𝑠

)−1
. (16)

Noting that 𝐉 − 𝐉 is idempotent and

ank
(

𝐏𝐲
(

𝐉 − 𝐉
))

= rank
(

𝐉 − 𝐉
)

= trace
(

𝐉 − 𝐉
)

= trace
(

𝐉
)

− trace
(

𝐉
)

= 𝑞 + 2 − 𝑞 = 2, (17)

andom variable 𝑄𝑠 is distributed as chi-square distribution with 2
egrees of freedom, i.e., 𝑄𝑠 ∼ 𝜒2

2 , where symbol ∼ is used to show that
random variable follows a distribution [37, Chapter 9.8]. Similarly,

oting that 𝐈 − 𝐉 is idempotent and

rank
(

𝐏𝐲
(

𝐈 − 𝐉
))

= rank
(

𝐈 − 𝐉
)

= trace
(

𝐈 − 𝐉
)

= trace
(

𝐈
)

− trace
(

𝐉
)

= 𝑅 − (𝑞 + 2) = ℜ, (18)

andom variable 𝑄𝑛 is distributed as chi-square distribution with ℜ
egrees of freedom, i.e., 𝑄𝑛 ∼ 𝜒2

ℜ [37, Chapter 9.8]. Since 𝐏𝐲
(

𝐈 −
𝐉
)

𝐏−1
𝐲 𝐏𝐲

(

𝐉 − 𝐉
)

= 𝐏𝐲
(

𝐉 − 𝐉 − 𝐉 + 𝐉
)

= 𝟎, random variables 𝑄𝑠 and 𝑄𝑛
re statistically independent, and so 𝑄𝑛∕𝑄𝑠 follows (ℜ∕2)𝐹ℜ,2, where

𝐹 is the 𝐹 -distribution [37, Chapter 9.8]. Therefore, LSWS given by
Eq. (7) or (30) or (16) (all identical) follows the beta distribution with
parameters 1 and ℜ∕2, i.e., 𝑠 ∼ 𝛽1,ℜ∕2.

The null hypothesis 𝐻0 and alternative hypothesis 𝐻1 are defined
as follows:

𝐻0 ∶
𝑄𝑛
𝑄𝑠

≥ ℜ
2
𝐹ℜ,2,𝛼 , (19)

1 ∶
𝑄𝑛
𝑄𝑠

< ℜ
2
𝐹ℜ,2,𝛼 , (20)

here 𝛼 is the significance level (usually 𝛼 = 0.01 or 𝛼 = 0.05). Based
n the null hypothesis, one may only consider the lower tail end of 𝐹
ecause large values of ratio 𝑄 ∕𝑄 mean that the noise is significantly
4

𝑛 𝑠
arger than the signal, and so the signal is undetectable [6]. The
tochastic surface at (1 − 𝛼) confidence level for the spectrogram given
y Eq. (16) is

=
(

1 + ℜ
2
𝐹ℜ,2,𝛼

)−1
. (21)

If 𝑠 > 𝜁 , then 𝐻0 is rejected, and spectral peak 𝑠 is statistically
significant at (1−𝛼) confidence level. Note that the critical value given
by Eq. (21) depends on the segment size which may vary for each
time–frequency pair.

Using the relation 𝐹ℜ,2,𝛼 = 𝐹−1
2,ℜ,1−𝛼 = (2∕ℜ)(𝛼−2∕ℜ − 1)−1 [5,6,34],

Eq. (21) can be written as

𝜁 =
(

1 + 1
𝛼−2∕ℜ − 1

)−1
= 1 − 𝛼2∕ℜ. (22)

It is worthwhile mentioning that LSS of a time series with known
covariance matrix follows the beta distribution with parameter values
1 and (𝑛 − 𝑞 − 2)∕2, and so the critical value at (1 − 𝛼) confidence level
for LSS is 𝜁 = 1 − 𝛼2∕(𝑛−𝑞−2) [6]. In other words, in equations above
ssume that 𝑅 = 𝑛, where 𝑛 is the size of time series 𝐟 , and 𝐏𝐲 = 𝐏.

This critical value is frequency-independent for LSS but is frequency-
dependent for LSWS [10]. Therefore, the larger the segment size, in
the case of low frequency peaks in a spectrogram, the more significant
the smaller peaks are in the spectrogram from the statistical point of
view, and vice versa. In other words, at a fixed confidence level, the
peaks at higher frequencies should be stronger, i.e., should have higher
percentage variance, to be statistically significant at that confidence
level. The spectral peaks in LSWS generally must be stronger to be
statistically significant when there are missing measurements within a
given window because the degrees of freedom, defining the stochastic
confidence level surface in Eq. (22), is smaller than when there are no
missing measurements within the same window.

2.4. Empirical and statistical weights in LSWA

To better understand how LSWA estimates the spectral peaks when
using a Gaussian weight function, an example is illustrated in Fig. 1(a).
In this example, the sine waveforms have six complete cycles which
construct a Morlet wavelet [38] when they are multiplied by the
Gaussian weights. The cycles toward both ends of the Morlet wavelet
attenuate to zero, and the six cycles along with Morlet coefficient
0.0125 are the default settings of LSWA in LSWAVE and JUST as
recommended in [9,11,21]. Note that in LSWA, the Gaussian weights
adapt the sinusoids to Morlet wavelet in the least-squares sense. In
Fig. 1(b), the center of the Morlet wavelet is at the window center
shown in brown. The process of fitting the sine waveforms to the
segment considering the Gaussian weights is done within the window at
a given frequency to estimate the corresponding spectral peak. In the
earlier version of LSWA available in LSWAVE, the window translates
over time stamps of a time series, so no spectral peaks are estimated at
periods where there are no available measurements [10,13]. However,
the new version of LSWA available in JUST has a new feature that
the user can select a set of equally spaced times between the time
domain of the provided time series to estimate an equally spaced time
spectrogram [14]. For example, for a daily GNSS time series with many
missing values, a spectrogram can be estimated for a set of daily spaced
times. In another example, a spectrogram can be estimated for a set of
hourly spaced values for an astronomical time series with inherently
unequally spaced times.

To see how this process is done, in Fig. 1(b), an equally spaced time
sequence is displayed by red squares for computing a spectrogram. In
this case, the window center (Gaussian center) is located at the red
square, highlighted by the vertical arrow, and the window translates
from one red square to another while a spectral peak will be estimated
by Eq. (7) at each step. In the LSWA tool in JUST, when the user

decides to decompose a time series into an equally spaced time domain,
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Fig. 1. (a) a Morlet wavelet derived by multiplication of Gaussian and sinusoidal functions, and (b) a case of unequally spaced time stamps in black circles and equally spaced
time stamps in red squares for estimating spectral peaks on the equally spaced time stamps. Only the real part of the Morlet wavelet is shown in panel (b) for brevity.
the segmentation or windowing will be done on the selected equally
spaced time sequence for each frequency [10]. However, there is a
possibility that the windows at higher frequencies do not include the
minimum required number of measurements for spectral peak estima-
tion. For example, in Fig. 1(b), there are 20 points (black circles) at 1
cycle/year inside the window shown by the brown square while there
are 8 points within the window at 2 cycles/year shown by the brown
window. Since the wavelength is inversely proportional to frequency,
the window length (time difference between both sides of the window)
at 2 cycles/year is half of the window length at 1 cycle/year; however,
since there are missing data, the smaller window contains 8 points
(window size 8) instead of 10 points (window size 10). This could result
in the singularity of 𝐍 in Eq. (5) at higher frequencies when there are
many missing values [10]. Using additional points from each side of
the window to enlarge its size is a good solution; however, when the
time series are strongly non-stationary, it is recommended to assign
relatively lower weights to the measurements toward both ends of the
window which can be done by the Gaussian weights. Therefore, it is
recommended that users enlarge the window size at higher frequencies
by selecting larger values for window parameters, i.e., by increasing 𝐿1,
the number of sinusoidal cycles, and/or 𝐿0, the number of additional
datapoints [10,14]. Note that enlarging the window to include more
measurements will reduce the critical percentage variance. Finally, if
the measurement errors are also provided, their squared inverses may
be multiplied by the Gaussian weights within each window before
estimating a spectrogram [13,14].

Note that the choice of the weight matrix 𝐏𝐲 assigned to segment 𝐲
depends on the application and purpose. This matrix may be diagonal
or partially or fully populated. The weight matrix should be positive
definite to satisfy the weighted L2 norm minimization criterion in
LSWA. This matrix may also be ignored in LSWA, i.e., case of ordinary
LSWA [10]. When this matrix is diagonal, it is treated as a vector for
the sake of computational efficiency [13].

3. A simulation experiment

To investigate how the presence of noises, such as flicker and white
as well as the amount of missing values may contaminate spectrograms,
a 7-year-long daily displacement time series is simulated as follows:

𝑓 (𝑡) = 𝑓1(𝑡) + 𝑓2(𝑡) + 𝑓3(𝑡) + 𝑓4(𝑡) (23)

where 𝑓1(𝑡) is a flicker noise (inverse frequency) generated by MATLAB
commands ‘‘firls’’, ‘‘rand’’, and ‘‘filtfilt’’. First, the command ‘‘firls’’
is used to return an array containing 43 coefficients of an order-
42 finite impulse response (FIR) filter with an equally spaced set of
frequencies from 0 to 1 (fv) and amplitude response of 1∕(1 + fv2).
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Then ‘‘rand’’ is used to generate 2555 random numbers between 0 and
1 which together with the output of ‘‘firls’’ are entered in ‘‘filtfilt’’ to
produce 𝑓1(𝑡) of size 2555, corresponding to 7 years of daily samples,
see Fig. 2(a). The second component 𝑓2(𝑡) is a Gaussian white noise
generated by MATLAB command ‘‘randn’’, see Fig. 2(b). Also, 𝑓3(𝑡) =
(0.3+0.1𝑡) sin(2𝜋𝑡) and 𝑓4(𝑡) = −0.2𝑡, where 𝑡 = [1, 2, 3,… , 2555]∕365.256,
see Fig. 2.

3.1. Amplitude and normalized LSWSs

Fig. 3 shows the amplitude and normalized LSWSs of the simulated
time series and its components. The amplitude LSWSs are estimated
using Eq. (6). It is crucial to understand how to interpret the spectral
peaks in the amplitude and normalized LSWSs. Fig. 3(c) shows the
amplitude of annual peaks is increasing over time as can be seen in
Fig. 2(c) while Fig. 3(d) shows the percentage variance of 100% for the
annual peaks over time as expected. The flicker noise presents some
low frequency peaks (annual and semi-annual) mainly during 2015–
2016 and with a lower amplitude during 2016–2018, see Fig. 3(a).
These peaks have contaminated the spectrograms and have a significant
impact on estimating the annual peaks, i.e., the signal in Fig. 2(c)
that may represent ground deformation (see also the next section).
Comparing Fig. 3(b) and (h), the accuracy of LSWA in simultaneous
estimating and removing the annual peaks can be observed.

3.2. Effect of missing values on spectrogram

To show how effectively LSWA can estimate the signals in presence
of noises and missing values, the same simulated time series shown
in Fig. 2(e) is employed. Different percentage amount of data (20%,
40%, 60%, 80%) are removed from the time series at random, and an
amplitude LSWS is estimated for each case, see Fig. 4. The estimated
annual signal obtained from each amplitude LSWS (ordinary) along
with its root mean square error (RMSE) is shown in Fig. 4(b). The time
interval for all the amplitude LSWSs is daily, and the annual signal is
obtained from each of these LSWSs. The RMSE of the annual signal
without simultaneous fitting of a linear trend within each window
is also calculated as 0.065 mm, showing a larger error as compared
to the case when a linear trend is also fitted simultaneously within
each window (RMSE = 0.059 mm). Most of the error in estimating
the annual signal is observed during 2015–2017, mainly due to the
presence of flicker noise as mentioned in the previous subsection.
Considering appropriate weights, 𝐏𝐲, defined from the simulated flicker
noise, has improved the annual signal estimation, see Table 1. This
table also shows that the RMSE of the weighted LSWA when estimating
the annual signal is approximately 0.02 mm less than the ordinary
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Fig. 2. The components of a 7-year-long daily simulated time series: (a) 𝑓1(𝑡) is a flicker noise, (b) 𝑓2(𝑡) is a Gaussian white noise, (c) 𝑓3(𝑡) is an annual component whose
amplitude increases over time, (d) 𝑓4(𝑡) is a linear trend, and (e) 𝑓 (𝑡) is the simulated time series.
Table 1
RMSE comparison between the ordinary and weighted LSWA for estimating the annual
signal (ground truth) shown in Fig. 2(c).

Amount of missing
data

0% 20% 40% 60% 80%

RMSE (Ordinary
LSWA)

0.059 0.071 0.083 0.092 0.125

RMSE (Weighted
LSWA)

0.047 0.054 0.061 0.064 0.087

LSWA. It is worth noting that in many monitoring techniques, such as
InSAR and very long baseline interferometry (VLBI), time series may
have many missing values due to atmospheric conditions and sensor
issues, highlighting the importance of signal processing tools, such as
LSWA (e.g., [39,40]). In this work, also note that regardless of whether
the input time series is equally spaced or not, all the spectrograms are
estimated on regular daily time intervals (equally spaced). The cyclic
frequencies are also equally spaced, incrementing by 0.1 cycles/year.

4. A real-world application

In this section, LSWA is applied to analyze geodetic time series
that are unequally spaced and contain jumps. First the seasonal and
trend components for the entire time series are estimated by LSWAVE.
Next, the stochastic surfaces for spectrograms in two cases of equally
spaced and unequally spaced time domains are demonstrated. Finally,
some comments on the stochastic significance of spectral peaks in the
spectrograms are presented.

4.1. Study site and datasets

The GNSS receiver with station ID (M0SE00ITA) is in the Faculty
of Civil and Industrial Engineering at Sapienza University of Rome,
6

near the Saint Peter in Chains church close to the Colosseum, Fig. 5.
The north, east, and up position time series shown in red circles in
Fig. 6(a)–(c), respectively, are downloaded from https://doi.org/10.
13120/b6aj-2s32 (Last accessed on 24/09/2023) [41]. The north-east-
up (NEU) reference position is 41.89311◦N, 12.49326◦E, and 120.567 m
above the mean sea level (IGb14/WGS84). Each time series shows
the difference between the measured and NEU reference positions and
centralized using its mean [41]. The NEU time series have four known
discontinuities or jumps whose dates are provided by the Royal Obser-
vatory of Belgium website http://www.epncb.oma.be/ (Last accessed
on 24/09/2023). The jump locations are shown by the brown dashed
lines in Fig. 6. The cause of the most significant jumps on 19/06/2007
and 13/04/2012 was due to antenna changes while the other two jumps
on 06/04/2009 and 30/10/2016 with relatively lower magnitudes
were due to impact of L’Aquila earthquake occurred near L’Aquila, the
capital of Abruzzo, and the Norcia earthquake occurred near Norcia in
the province of Perugia in Umbria, respectively [42,43]. The NEU time
series have a size of 6252 with 3.34% missing values. Fig. 7 shows
the number of measurements for each year. Note that the start and
end dates of the daily time series are 15/10/2004 and 30/06/2022,
respectively.

InSAR is another advanced remote sensing technique for ground
deformation monitoring [44,45]. The European Ground Motion Service
(EGMS) has recently released a product for ground motion monitor-
ing which utilizes InSAR data derived from Sentinel-1 satellites for
both ascending and descending orbits https://egms.land.copernicus.eu/
(Last accessed on 01/01/2024). The EGMS Ortho 2018–2022 product
contains regularly sampled spatial points (100 m grid), where each
point is associated with a displacement time series with sampling
rate of 6-day [46]. To further evaluate the trend results and spectral
peaks in LSWS, an EGMS Ortho-Vertical time series is also employed,
representing the ground vertical motion of a one hectare area which

includes the GNSS receiver location.

https://doi.org/10.13120/b6aj-2s32
https://doi.org/10.13120/b6aj-2s32
https://doi.org/10.13120/b6aj-2s32
http://www.epncb.oma.be/
https://egms.land.copernicus.eu/
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Fig. 3. The amplitude LSWSs (left panels) and normalized LSWSs (right panels) of: (a)–(b) the flicker and Gaussian white noise shown in Fig. 2(a)–(b), (c)–(d) the annual component
shown in Fig. 2(c), (e)–(f) the simulated GNSS time series shown in Fig. 2(e), and (g)–(h) the simulated GNSS time series after suppressing annual peaks. The contour lines separate
statistically significant peaks at 99% confidence level. The color bars are fixed to aid visualization, except for panel (d).
4.2. Velocity estimation before and after jump removal

Fig. 6 illustrates the estimated linear trends of GNSS time series
considering their standard errors before (in red) and after (in blue)
the jump removal. The LSSA tool in LSWAVE or JUST is applied to
estimate the trend lines. The straight red line for each time series
shown in Fig. 6 is obtained by fitting the linear trend constituents
while the blue line is obtained after entering the jump indices and
annual cyclic frequency in the LSSA software. In geodetic time series,
such as very long baseline interferometry (VLBI) and GNSS time series,
the velocity is usually constant for many years; however, jumps can
occur due to many factors, such as earthquakes and antenna changes.
In other words, all the linear pieces between the jumps usually have
a consistent slope [5, Chapter 8]. Therefore, for each linear piece, an
independent intercept is estimated, but a unique slope is estimated for
all the pieces as illustrated in black in Fig. 6. This is also inline with the
7

trend estimates provided at http://www.epncb.oma.be/ (Last accessed
on 24/09/2023).

The estimated intercept and slope of the linear trend and amplitude
of the annual component for each time series are listed in Table 2.
The estimated velocity using method B is more in agreement with
the estimated velocity by Tunini et al. [41]. However, method B has
relatively smaller estimated errors. It is worthwhile mentioning that
through simulation, it is also shown that simultaneous seasonal-trend
fit can estimate the slope (velocity) more accurately than the simple
linear regression, e.g., [12, Section 3.5] and [47, Section VII].

4.3. Stochastic confidence level surfaces for two cases

The 3D and 2D views of a stochastic surface at 99% confidence level
for the GNSS time series are illustrated in Fig. 8, respectively. Panels

http://www.epncb.oma.be/
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Fig. 4. The amplitude spectrograms of the simulated position time series for different amount of missing values.
(a) and (b) are calculated based on the windows of fixed size at each
cyclic frequency translated over time stamps of the GNSS time series.
The gaps in the stochastic surface, appeared as the vertical blank lines
in Fig. 8(b) particularly in years 2005, 2006, and 2020, are due to the
missing measurements in the GNSS time series (Fig. 7). This is for the
8

case when users want to compute the critical variances only at the times
when there are measurements.

Fig. 8(c) and (d) respectively show the 3D and 2D views of a
stochastic surface for the GNSS time series when daily regular time
stamps are considered as described in Section 2.4. One can observe
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Fig. 5. The geographic location of the GNSS station in Rome, Italy. The maps are produced by the authors using Google Satellite in QGIS. More photos taken by camera are
available at https://network.igs.org/M0SE00ITA (Last accessed on 24/09/2023). The red squares in the top right map show the epicenters of L’Aquila, Amatrice, Norcia earthquakes,
respectively.
Table 2
The estimated linear trend and annual components of the GNSS time series shown in Fig. 6 at 99% confidence level. Method A is
simple linear trend fit considering the measurement errors but without jump correction. Method B is the simultaneous seasonal-trend
fit considering the jumps and measurement errors. The intercepts are the estimated differences between the position on 15/10/2004
and the NEU reference position, estimated from the centralized GNSS time series.

Direction Method Intercept (mm) Velocity (mm/year) Annual amplitude (mm)

A −142.529 ± 0.037 16.003 ± 0.004
North B −143.655 ± 0.026 16.374 ± 0.003 1.198 ± 0.018

Tunini et al. [41] 16.500 ± 0.080

A −180.408 ± 0.041 20.228 ± 0.004
East B −179.755 ± 0.024 20.579 ± 0.002 1.072 ± 0.018

Tunini et al. [41] 20.870 ± 0.100

A 2.615 ± 0.110 −0.305 ± 0.011
Up B −2.382 ± 0.070 −0.421 ± 0.007 1.503 ± 0.051

Tunini et al. [41] −0.410 ± 0.180
that the critical variances increase as the window size decreases. Note
that the calculation of this surface is based on the windows of fixed
length at each cyclic frequency translated over equally spaced daily
time stamps. Thus, since the window size may change when there are
missing values, the critical variance can further increase as it is more
evident in years 2005, 2006, and 2020 when there are more missing
measurements (see Fig. 8(d)). This is for the case when users want
to compute the critical variances for daily spaced time stamps. In the
following section, this stochastic surface is used. In other words, a
spectrogram on daily spaced time stamps is estimated for each GNSS
time series and if spectral peaks stand above the stochastic surface in
Fig. 8(c), then they are significant at 99% from the statistical point of
view.

4.4. The least-squares wavelet analysis of GNSS time series

In this section, LSWA of the NEU GNSS time series are presented. In
Figs. 9 and 10, the panel below each time series shows its corresponding
time–frequency spectrogram (LSWS). First to see the potential effect
of considering measurement errors (uncertainties) in the estimation
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of spectrogram, LSWSs of the height time series without and with
considering the measurement errors are illustrated in Fig. 9(a) and
(b), respectively. Note that the jumps are not removed in Fig. 9. The
peaks with relatively higher variance within white contour curves are
statistically significant at 99% confidence level. In other words, these
peaks stand above the stochastic surface shown in Fig. 8(c). Note that
the stochastic confidence level surface for all these spectrograms are
identical. However, some of the spectral peaks become statistically sig-
nificant or insignificant when the measurement errors are considered.
To aid the comparison, the spectral peaks at 1 cycle/year (annual)
and 6 cycles/year are illustrated in Fig. 9(c) and (d), respectively,
which are the cross-sections of spectrograms shown in Fig. 9(a) and
(b) and Fig. 10(c). The annual peaks are statistically significant in
all years, but they are less significant from 2013 to 2015 and much
less significant after 2018. The spectral peaks with cyclic frequencies
higher than 6 cycles/year observed toward the end of 2016 in the
spectrogram of the height time series may probably be due to the
effect of Norcia earthquake that remained statistically significant with
or without considering measurement errors and even after the jump

https://network.igs.org/M0SE00ITA
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Fig. 6. The NEU GNSS time series and their estimated linear trends before (in red) and after the jump removal (in blue). The estimated linear trend of five pieces with a fix slope
(velocity), used to correct the time series, is shown in black. The vertical dashed lines show the jump locations.
Fig. 7. A bar chart showing the number of available daily measurements for each year.
removal as illustrated in Fig. 10(c). This is investigated further in the
discussion section.

The NEU time series along with their standard errors after removing
the trend line of five pieces, shown by black lines in Fig. 6, are
illustrated in Fig. 10. Their corresponding LSWSs are also shown in the
panels below them. It is evident that the annual peaks are statistically
10
significant in all the three time series. The percentage variance of the
annual peaks in the height time series after 2018 are much lower
than the ones in the east time series. Considering appropriate weight
matrices in LSWA can significantly improve the estimation of spectral
peaks in spectrogram [10,48]. Fig. 10(d) shows LSWS by considering
a fully populated covariance matrix based on adjusted white noise
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Fig. 8. The 3D and 2D representation of the stochastic surfaces at 99% confidence level, (a) and (b) when the critical values are estimated for the input time–frequency grid,
where the times are the times of measurements, and (c) and (d) when the critical values are estimated for the regular time–frequency grid, i.e., daily time stamps.
and flicker noise from the techniques described in [32,49]. Comparing
panels (c) and (d), one can observe a significant reduction in the
percentage variance of the spectral peaks.

4.5. The least-squares wavelet analysis of InSAR time series

Normalized spectrograms and linear trends are estimated for the
part of GNSS time series from 2018 and the EGMS Ortho-Vertical time
series (2018–2022). The results are illustrated in Fig. 11. Both time
series show a declining trend but with slightly different velocities.
The percentage variance of the annual peaks increases over time as
can be observed in both LSWSs displayed in Fig. 11(a) and (b), while
the spectral peaks at higher frequencies have irregular patterns. These
peaks are likely due to flicker noise, atmospheric noise, and errors
caused during the preprocessing including phase-unwrapping that are
discussed further in the following sections. Overall, the trend results
and annual peaks almost agree in both time series.

5. Discussion

5.1. Weight matrices and stochastic surfaces in LSWA

Pagiatakis discussed the stochastic significance of spectral peaks in
LSS in two cases, covariance matrix with known and unknown a-priori
variance factor [6]. In the case of known a-priori variance factor, the
random variables 𝑄𝑛 and 𝑄𝑠 in Eq. (16) are distributed as the chi-square
distribution, while in the case of unknown a-priori variance factor,
the a-posteriori variance factor is estimated from the data, and so the
random variables 𝑄𝑛 and 𝑄𝑠 follow the Fisher distribution. Whether
the a-priori or a posteriori variance factor is used, it will be canceled
out from the ratio in Eq. (7), and so this factor has no effect of the
estimation of spectral peak. However, from the statistical point of view,
the spectral peak should be slightly stronger (taller) to be statistically
significant at the same confidence level. From [6, Figs. 4 and 5], it can
be deduced that if a spectral peak is statistically significant at 99%
11
confidence level for the case of known a-priori variance factor, then
the peak is also statistically significant at 95% confidence level whether
the variance factor is known or unknown for all segment sizes. If the
segment size is larger than 150, then the critical percentage variances
are almost identical for known and unknown variance factor scenarios.
In the present study, the GNSS segment sizes at the maximum estimated
cyclic frequency of 12 (cycles/year) roughly include 180 measurements
as 6 cycles are used within each window, so the stochastic significance
of the estimated peaks at 99% are independent of the choice of which
variance factor is used in the calculation of the covariance matrix of
the estimated parameters.

Though the variance factor does not have any influence on the
spectral peaks estimated by Eq. (16), the relative weights assigned to
measurements within each window can make a significant difference.
In the present study, at each cyclic frequency, the weight matrix 𝐏𝐲
associated with segment 𝐲 was obtained by the Gaussian values mul-
tiplied by the inverse of squared errors which empirically metricized
each segment. Theoretically, the weight matrix is diagonal and positive
definite, and so all the derivations shown in Section 2 remain valid.
The weight matrices play a crucial role in estimating trend and spectral
components and in searching for hidden signatures [10]. Ghaderpour
et al. [48, Appendix 1] also showed the advantages of considering
fully and partially populated weight matrices in estimating the spectral
peaks in LSWS through experiments.

5.2. Effect of jumps, noises, and missing values in signal estimation

Another crucial factor that may significantly bias the trend and
spectral estimations is systematic noise, e.g., the presence of jumps
or discontinuities. It was shown in Figs. 6, 9 and 10 that accurate
jump removal plays a crucial role in robustly estimating the trend
and spectral components of the GNSS time series. The locations of
the significant jumps due to antenna changes on the 19/06/2007
and 13/04/2012 in the position time series were known in the GNSS
time series analyzed in this research. The other two jumps on the
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Fig. 9. The analysis of height (up) time series after removing the linear trend without jump removal: (a) without considering measurement errors, and (b) with considering
measurement errors. The panels with the jet color bars are spectrograms. The contour lines separate the statistically significant peaks at 99% confidence level. Panels (c) and (d)
show the spectral peaks at 1 cycle/year and 6 cycles/year, respectively, obtained from the cross-sections of spectrograms in panels (a) and (b) and Fig. 10(c). The red lines in
panels (c) and (d) are respectively the cross-sections of the stochastic confidence level surface at 1 cycle/year and 6 cycles/year, shown in Fig. 8(d).
08/04/2009 and 30/10/2016 had a lower bias on trend and spectral
estimations. It is worth mentioning that the JUSTjumps tool in JUST
can also be used for efficiently detecting jump locations in a time series
when they are unknown [14]. Table 1 demonstrated the robustness of
weighted LSWA for estimating signals for different noise levels and
number of missing values. Generally, in the presence of noise, the
higher the number of missing values, the lower the accuracy of signal
estimation. Comparing the RMSEs of ordinary LSWA and weighted
LSWA in Table 1 shows that appropriate weights assigned to noisy
measurements (the case of weighted LSWA) provided a robust signal
estimation.

5.3. Flicker noise observed in GNSS position time series

It is known that GNSS position time series contains colored noise
(flicker noise or pink noise) and white noise; however, the source of
such intrinsic noise is still unclear [49–52]. For example, Rebischung
et al. [53] discussed that real crustal displacements generated by non-
tidal loading deformations is another contributor to the flicker noise.
Likewise, InSAR displacement time series also present colored noise due
to several factors, such as errors caused during phase-unwrapping and
atmospheric noise [39,45,46]. Note that the high frequency peaks may
not always represent sensor noise, and it could potentially explain a
geophysical mechanism.

The LSWS of height time series shown in Fig. 10(c) presented
many aperiodic signatures. In particular, the spectrogram of the height
time series showed statistically significant spectral peaks during August
to December 2016. There is a possibility that Amatrice and Norcia
earthquakes in 2016 might have contributed to these high frequency
12
peaks. To verify possible origins of these peaks, LSSA was applied to
the segment of the height time series from August to December 2016
(four-month duration). The LSS detected a peak at 6.7 cycles/year
that matched the most significant peak illustrated in Fig. 10(c). The
estimated amplitude of the sinusoids corresponding to this peak at 6.7
cycles/year was 2.21 ± 0.32 mm.

There are other agencies who provide GNSS time series for the same
station (M0SE). For example, EUREF Permanent Network (EPN) Central
Bureau https://epncb.oma.be/ (Last accessed on 01/01/2024) provides
the residual GNSS height time series, and Nevada Geodetic Laboratory
http://geodesy.unr.edu/ (Last accessed on 01/01/2024) provides GNSS
height time series for the same station. Fig. 12 illustrates LSWSs of
these time series using the same input parameters (jump locations and
window size parameters) as for estimating LSWS in Fig. 10(c) with a
fixes color bar to aid visualization. Comparing Fig. 10(c) with Fig. 12,
one can clearly observe the irregular patterns for the spectral peaks
at high frequencies. These differences most likely indicate positioning
errors specific to the particular GNSS height time series used.

Furthermore, the annual cycles of the NEU time series were less
significant between years 2018 and 2021 as seen in Figs. 10 and 12. To
further investigate whether the spectral peaks in year 2016 as observed
in Fig. 10(c), magnified in Fig. 13(a) are linked to the Amatrice and
Norcia earthquakes, another GNSS height time series located in Perugia
was also analyzed by LSWA. The geographic location of this GNSS sta-
tion is also displayed in Fig. 5. The LSWS of this GNSS time series does
not have any statistically significant peak at any frequencies from 6 to
12 cycles/year, see Fig. 13(b). Fig. 13(c) and (d) show the magnified
sections of the LSWSs in Fig. 12 which indicates that the spectral peak
at 6.7 cycles/year in Oct-Nov 2016 are likely due to positioning errors

https://epncb.oma.be/
http://geodesy.unr.edu/
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Fig. 10. (a)–(c) The LSWA results of north, east, and height (up) GNSS time series after jump and trend removal considering measurement errors, and (d) The LSWA results using
a fully populated covariance matrix instead of a diagonal matrix. The contour lines separate the statistically significant peaks at 99% confidence level.

Fig. 11. The trend analysis and LSWA for (a) GNSS time series, and (b) EGMS Ortho-Vertical time series. The white contour lines surround parts of the spectrogram found to be
statistically significant at 99% confidence level.
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Fig. 12. The LSWA results of the GNSS height time series for M0SE00ITA provided by (a) EPN Central Bureau and (b) Nevada Geodetic Laboratory after jump and trend removal
considering measurement errors with the same window size parameters and jump locations as for Fig. 10(c). The contour lines separate the statistically significant peaks at 99%
confidence level. Panels (c) and (d) show the spectrograms obtained by entrywise averaging and multiplying of the spectrograms displayed in panels (a), (b), and Fig. 10(c).
and modeling rather than seismic noise. Employing a fully populated
covariance matrix based on adjusted white and flicker noises in LSWA
instead of a diagonal matrix could potentially improve the estimation
of spectral peaks in the spectrograms as shown in Fig. 10(d), though
the computational cost can significantly increase.

The GNSS height time series provided by the three different agen-
cies for the same station show different seasonal patterns across the
time–frequency domain. To better visualize this, the spectrograms in
Fig. 10(c), Fig. 12(a) and (b), with the same input parameters and
dimensions, are entrywise averaged to display in Fig. 12(c) and en-
trywise multiplied to display in Fig. 12(d). The entrywise averaging
(multiplying) in this context means that the variances of spectral peaks
corresponding to the same pair of time and frequency in the three
spectrograms are being averaged (multiplied). Fig. 12(d), motivated
by the cross-wavelet transform [11], clearly shows the annual peaks
are dominant and more significant in 2010 for all three time series.
Likewise, short duration monthly peaks (12 cycles/year) in 2005 and
2015 are more dominant in all the three time series. As discussed
in [22,33,54], seasonal peaks observed in GNSS measurements could
be due to several reasons, such as thermal deformation, hydrological
loading, as well as error in modeling and sensors. Therefore, it is
crucial to understand and handle the uncertainties in the measurements
and models first before investigating the potential geophysical mech-
anisms that cause the components of GNSS time series. Models like
the Least-Squares Cross-Wavelet Analysis (LSCWA) [13,39,40] could
also be useful to investigate the potential coherency and phase delay
between components of GNSS time series and other time series, such as
14
air pressure, temperature, and groundwater that are subject to future
investigation.

6. Conclusions

In this research, the mathematical derivation of the stochastic con-
fidence level surface for the least-squares wavelet spectrogram was
presented. A simulation experiment was carried out to demonstrate
the robustness of LSWA for signal estimation in presence of noises and
missing values. The stochastic significance of peaks in the spectrogram
for cases of empirical and statistical weights was demonstrated for
GNSS position time series in Rome, Italy. It was shown that the critical
variance depends on the window size which increases as window size
decreases, indicating that the percentage variance of spectral peaks at
higher frequencies must be higher to be significant from statistical point
of view. It was demonstrated that ignoring the jumps due to antenna
change and earthquake can significantly bias spectrograms and trend
estimations. Therefore, considering measurement errors as well as jump
removal are crucial for a more robust seasonal-trend estimation. All the
three GNSS components (north, east, up) contained annual components
likely linked to hydrological loading and/or thermal deformation. The
results of the EGMS Ortho-Vertical time series showed a similar annual
cycle pattern and a declining trend as the GNSS height time series
during 2018–2022. The LSWSs of the GNSS height time series from
three different agencies were also compared in this research and their
joint spectrograms showed dominant annual cycles, more significant in
2010 and less significant from 2018 to 2020. Future studies shall focus
on investigating possible origins of annual and semi-annual cycles and
flicker noise in the GNSS position time series.
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Fig. 13. (a) A magnified section of LSWS illustrated in Fig. 10(c), (b) the LSWS of the height time series of GNSS receiver with ID: UNPG00ITA in Perugia, Italy, (c)–(d) magnified
sections of LSWSs illustrated in Fig. 12(a) and (b), respectively. The contour lines separate the statistically significant peaks at 99% confidence level. The vertical dashed lines
show the locations of jumps or discontinuities. The blue dashed line shows the location of a disturbance due to Amatrice earthquake on August 24, 2016, and the brown dashed
line on October 30, 2016, shows the location of a jump due to Norcia earthquake. The discontinuity on May 24, 2017, in panel (b) is also due to antenna changes.
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Appendix

In this Appendix, it is proven that Eq. (7) can be written as Eq. (15).
First note that from Eq. (3), 𝐉 = Φ 𝐍−1ΦT𝐏 , and 𝐍 = ΦT𝐏 Φ, one can
𝐲 𝐲
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herefore,
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aking the transpose of both sides of Eq. (27), it can be seen that
𝐲𝐉𝐉 = 𝐏𝐲𝐉. Since 𝐉𝐉 = 𝐉 (Eq. (27)) and
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t can be verified that
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where the parameters are the same as the ones in Eq. (13). Therefore,
Eq. (7) is identical to
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This proves that Eq. (7) is identical to Eq. (15).
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