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Abstract Our understanding of epigenetic mechanisms important for embryonic vascular development and cardiovascular
differentiation is still in its infancy. Although molecular analyses, including massive genome sequencing and/or in
vitro/in vivo targeting of specific gene sets, has led to the identification of multiple factors involved in stemness main-
tenance or in the early processes of embryonic layers specification, very little is known about the epigenetic commit-
ment to cardiovascular lineages. The object of this review will be to outline the state of the art in this field and trace
the perspective therapeutic consequences of studies aimed at elucidating fundamental epigenetic networks. Special
attention will be paid to the emerging role of nitric oxide in this field.
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1. Introduction
Nitric oxide (NO) is an important gaseous molecule that is syn-
thesized in virtually every living cell1,2 by three different nitric oxide
synthases, namely endothelial (eNOS), neuronal (nNOS), and induci-
ble (iNOS). Arginine is the substrate for NO synthesis, but the
synthases require oxygen and other co-factors, including tetrahydro-
biopterin and calmodulin, for efficient production of NO. NO con-
centration influences its effects. At 100 nanomolar (nM) or less it
typically activates cyclic guanosine monophosphate (cGMP) synthesis
and the protein kinase G (PKG) or ERK pathways. At higher concen-
trations, encompassing the 300–800 nM range, other factors/signalling
pathways become activated including the AKT pathway, the hypoxia
inducible factor-1a (HIF-1a), and p53 which is stabilized. At micro
and millimolar concentrations, nitrosation, and oxidative processes
prevail.3 In these conditions quite different effects may be achieved
ranging from cell proliferation to survival and senescence. However,
as a general paradigm, we may assume that lower NO levels are phys-
iological, whereas high concentrations may be lethal to the cell. The
relevance of NO in cardiovascular physiology and physiopathology
is largely demonstrated by the occurrence of severe dysfunctions
and diseases associated with its reduced availability. Diminished NO
levels have been, in fact, associated with atherosclerosis, cardiac
infarction, and diabetes, to cite some the most common

occurrences.4,5 In mice knock-out for NO synthases, several cardio-
vascular accidents may occur as a consequence of severe NO
deficiency, suggesting the cardiovascular system as the most important
NO target organ.6 Intriguingly, most of the NO effects have been
recently ascribed to its regulatory function on gene expression.
Specifically, an exquisite negative effect of NO on gene expression
has been reported in endothelial cells after a series of microarray
analysis.7,8 In other cell types, including neurons and hepatocytes,
NO has been found to positively regulate gene expression through
the activation of neurotrophins, proliferation-associated, or functional
genes.9,10 All in all, these observations confirm the importance of NO
as an important modulator of cellular function and provide consistent
basis for its role in epigenetics.

The US National Institutes of Health, proposing their epigenomics
initiative, recently stated that ‘epigenetics refers to both heritable
changes in gene activity and expression and to stable, long term, altera-
tions in the transcriptional potential of a cell that are not necessarily heri-
table’ (source: nihroadmap.nih.gov/epigenomics/). Indeed, epigenetics is
a very rapidly evolving field covering, in our view, not only inheritable
non-genomic chromatin-associated histone modifications but, nowa-
days, also those mechanisms that control transient changes in response
to sudden environmental modifications, with rapid functional conse-
quences on gene expression and/or cell metabolism, beyond covalent
modifications of histones and non-histone proteins.11–13
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The study of epigenetics then, encompasses all those extra- intra-
cellular messages able to introduce, in addition to DNA methylation
and RNA-based mechanisms, structural modifications of histones, and
non-histone proteins including acetylation, methylation, ubiquitination,
sumoylation, neddylation, isomeration, and others, by means of a large
number of dedicated modifying enzymes (Figure 1). Chromatin
changes may become inheritable and transmissible to descendants
avoiding the burden of primary DNA sequence modification.14,15 It
is currently unknown whether epigenetically modified non-histone
proteins may also be a source of ‘inheritable’ signals.

Chromatin modifications, both in terms of DNA and histone pro-
teins, represent the best-known consequence of the activation of epi-
genetic mechanisms. Chromatin consists in an organized sequence of
nucleosomes made of two series of histone H2A, H2B, H3, and H4
wrapped by 147 base pairs of genomic DNA. The projections of
histone tails from this core make histones susceptible to modification
by different families of enzymes.16

DNA methylation represents a fundamental epigenetic mechanism
regulating genomic activity and it is required for the proper develop-
ment of mouse and human embryos. It consists in the addition of
methyl groups to the dinucleotide CpG in the context of the so-called
CpG islands by the DNA methyltransferases (Dnmts) family of
enzymes. This process changes the biophysical properties of the
DNA, impairing its recognition by some proteins while allowing the
binding of others with the biological consequence of transcription
repression.17 Indeed, specific proteins, as the methyl-binding domain
proteins (MBDs) and the methyl CpG-binding protein 2 (MeCP2),
recognize methylated DNA, inhibiting transcription by creating a
repressive chromatin structure not accessible to the basal transcrip-
tional machinery, which contains, besides methylated CpGs, modified
histone proteins. The modification of histones at specific amino acid
residues is the triggering event determining the association of
chromatin-binding proteins with specific regions to direct the

structural change between the close (transcriptionally silent) and
open (transcriptionally competent) chromatin state.

One striking feature of histone modifications is their reversible
nature. Different families of enzymes add or remove chemical
groups from histones, allowing the fine tuning of gene transcription.18

Lysine (K) and arginine (R) methylation, K-acetylation, and serine/
tyrosine (S/Y) phosphorylation are the most well-characterized
histone modifications. Usually methylated CpG islands recruit
K-histone methyltransferases (HMTases)19,20 that methylate K9 on
histones H3. This modification increases histone H3 affinity for the
DNA, creating a highly packed chromatin structure, the so-called con-
stitutive heterochromatin, not accessible to any transcription factor
and/or proteins of the basal transcriptional machinery (represented
by RNAPolII and associated proteins). However, the transcriptional
repressive function of histone methylation is strongly influenced by
residues position and may vary according to the abundance of methyl-
ated residues and their degree of methylation (from mono- to
tri-methylation).

Opposite to methylation with a transcription repressive function,
typically occurring on histone H3 at K9 and K27, methylation of resi-
dues K4 and K79 on the same histone may result in a positive tran-
scription effect often fostered by the presence of other methylated
residues, such as Rs on histone H4, which may in turn be targeted
by negative transcription regulators leading to methylation of H4
K20.21,22 Conversely, acetylation of lysines by histone acetyltrasns-
ferases (HATs)23 and phosphorylation of serine and tyrosine residues
on histone tails by nuclear kinases, such as Msk24 and RSK2,25 neutral-
izes the histone positive charge, decreases their affinity for the DNA,
unwinds chromatin, and creates the conditions for access of those
specific regions by the basal transcriptional machinery. Therefore,
acetylation is usually associated with transcriptional activation.16 Its
counterpart, histone deacetylation, by histone deacetylases
(HDACs),23 has the opposite transcriptional effect. Beside their

Figure 1 General mechanisms of epigenetics. DNA methylation, post-translational modification of the histone tails, nucleosome sliding, and depo-
sition of histone variants are the principal mechanisms regulating chromatin structure and, consequently, gene transcription. Small non-coding RNAs
and post-translation modification of non-histone proteins have recently been found to be other important epigenetic regulatory mechanisms (modi-
fied from147). Ac, acetylation; Me, methylation.
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transcriptional properties, the pattern of histone modification defining
the so-called ‘histone code’ may have alternative functions including
those aimed at regulating histone incorporation into chromatin
during S phase (histone H4 K4 and K12 acetylation) or chromatin
condensation during mitosis (histone H2A and H3 phosphoryl-
ation).26 Several families of ATP-hydrolyzers, which break each of
the 14 histone–DNA contacts, are responsible for these processes.27

This ‘simple’ hydrolytic reaction accounts for: (i) nucleosome sliding
to a new position; and (ii) ejection or displacement of the histone
octamer.28 The ATP-remodelers also remove H2A–H2B dimers,
destabilizing the nucleosome,29 and replace it with H2A histone var-
iants.30 In conclusion, all these modifications account for the combina-
torial regulation of chromatin structure and function related to its
processing during replication or differentiation directed events.31

Small RNAs-dependent chromatin remodelling is a rapidly expand-
ing field of investigation. Usually, these small antisense RNAs interfere
with gene transcription (small interfering RNAs, siRNAs, and short
hairpin RNAs, shRNAs) creating a duplex with homologous DNA
target regions in order to impair the binding of transcriptional com-
plexes. Examples of siRNA-mediated gene silencing include the
gene promoter of the progesterone receptor,32 the huntingtin
protein,33 and eNOS.34 Intriguingly shRNAs allow long-term tran-
scriptional repression by recruiting onto the neighbouring chromatin
domain Dnmts, HDACs, and HMTases.35 For a detailed description of
RNA-based epigenetic mechanisms refer to Malecova and Morris.36

A further level of complexity is represented by the structural
organization of the chromatin in loops sticking to docking sites on
the nuclear envelope. For example, the progeroid phenotype is
caused by mutations in the nuclear membrane constituent LaminA
(LamA) or in its processing enzyme Zmpste-24, which correlates
with chromatin disorganization and transcriptional alterations. This
leads to the establishment of an aged epigenetic pattern.37 In the car-
diovascular system, the dysregulation of histone acetylation/deacetyla-
tion processes is an established cause of cardiac hypertrophy,38 and
inhibitors of HATs have been proved useful to prevent heart failure
(HF) in a rat animal model.39 These examples underlie the relevance
of the epigenetic processes also in human diseases, opening new fields
of investigations with possible therapeutic implications.

In this review, we will focus on those epigenetic events related to
embryonic development with special attention to the epigenetics of
vascular precursors. It must be anticipated, however, that the epige-
netic mechanisms important in vascular development remain, at
present, largely uncharacterized.11

2. Embryonic stem cells as a model
for early embryonic epigenetics
The formation of the embryonal vasculature goes through different
phases, the earliest of which are determined by the mesoderm deri-
vation of vascular precursors or haemangioblasts (Figure 2, for more
information see ref.40,41). It has been well established that the
expression of the vascular endothelial growth factor (VEGF) and its
receptor FLK1 is one if the most critical gain-of-function events deter-
mining the phenotype of blood and vascular progenitors.42–44 Rel-
evant to the scope of this review is the evidence that the
mesoderm is now accepted as the most important embryonic
source of early progenitor cells of endothelial, smooth muscle, and
cardiac origin.41,45–47

In spite of the criticism that the differentiation process taking place
in ‘in vitro’ cultured embryonic stem cell (ESC) does not properly
reflect the differentiation process ongoing during mouse or human
development, this cell system still remains a good and suitable
model to molecularly dissect the early differentiation machinery.
The ESC system, in fact, has been largely used to mimic in vitro the
early phases of the haemato- angio-differentiation process and to
investigate the implicated molecular processes.40,45,48,49 Although
human ESC (hESC)50 and other types of pluripotent cells, including
the inducible pluripotent stem cells (iPSs),51 have been recently
made available, the mouse ESC (mESC) must be considered the
best characterized.50,52 The recent views regarding the epigenetics
of mESC self-renewal and differentiation shed new light on the role
of histone modifications and the activity of specific epigenetic
enzymes, including members of the HDAC family or the Polycomb
group (PcG), either important for stemness maintenance than
for progression towards the early multi-layer embryo-like
structure.11,53–59

mESC are cultured in an undifferentiated state characterized by the
presence of a large amount of nucleosome-free chromatin. High levels
of histone H3 lysine 4 trimethylation (H3K4me3) and histone H4
acetylation (H4ac) are typically present in mESC transcriptionally
active regions.56,60,61 Remarkably, as a peculiar feature of undifferen-
tiated mESC, the presence of histone H3 trimethylated lysine 27
(H3K27me3),56,60,61 a repressive transcription mark, has also been
found associated to chromatin domains containing the H3K4me3
modification. The presence of bivalent (positive/negative) modifi-
cations is believed to provide a dual function: the counterbalance of
high levels of transcriptional activity and the priming of genomic
regions poised to be transcriptionally activated or silenced during
the subsequent steps of differentiation.56,57

Besides specific chromatin marks, the undifferentiated state of
mESC is characterized by a series of transcription factors which are
necessary for stemness maintenance. Among these, Oct4 and
Nanog62– 64 are perhaps the best characterized, and recent evidence
demonstrated their co-existence in repressive transcription com-
plexes made of other transcription factors and the HDACs 1 and 2,
important members of the HDAC class I family.63,64 This finding, pro-
viding more information about the mechanism of stemness mainten-
ance, also underlies the importance of specific epigenetic enzymes
in this process. In this regard, PcG and the Trithorax group complexes
are important epigenetic regulators of mESC differentiation being,
respectively, implicated in the H3K27me3 and H3K4me3 modification
and playing a crucial role in transcription control during the undiffer-
entiated state or at the transition to lineage-associated gene
expression.60,65,66 HATs, such as p300 or regulators of DNA methyl-
ation as the TET protein family, emerged recently as additional classes
of epigenetic enzymes important for the regulation of stemness and
the initiation of mESC commitment.67–69 Many other epigenetic
factors or epigenetically regulated processes, including histone argi-
nine methylases, cell–cell positioning and cytokines secretion, are
implicated in mESC self-renewal, pluripotency, and differentiation, as
detailed in several reviews.14,54,59,65,70– 72

The presence of an open chromatin conformation and the
co-existence of an active transcriptional repression mechanism is a
remarkable feature of pluripotent mESC. The transition from self-
renewal to differentiation occurs in vivo upon environmental cues
and in vitro after leukaemia-inhibitory factor (LIF) withdrawal. Oscil-
lation of stemness factors and waves of chromatin conformational
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chances are among the very first events which follow LIF depri-
vation.44,51,70 From this perspective, the mESC biological system has
represented so far a unique source of information about the very
early epigenetic events leading to embryonic commitment, although
the number of studies focusing on this topic are still limited.53,67,73– 75

Nevertheless, our current understanding of mESC epigenetics let us
to envisage that important contributions unravelling the mechanism
of early vascular development are near to be discovered. The most

recent observations emerged in this specialized field will be object
of discussion in the next paragraphs.

3. Epigenetics of mesoderm
specification
The permanent repression of self-renewal and other non-specific
genes and the activation of early, tissue-specific molecular markers/

Figure 2 Vascular differentiation of ESCs. After gastrulation and formation of the three embryonic layers (ectoderm, mesoderm, and endoderm),
haemangioblasts arise from the mesodermal progenitors of both the embryonic mesoderm and the extra embryonic yolk sac. Haemangioblasts of the
yolk sac give rise to haematopoietic stem cells first and later to the early blood islands. Haemangioblasts arising from the embryonic mesoderm give
rise to aggregates which join the yolk sac-derived blood islands to origin the primitive vascular plexus and a primitive vasculature. After a remodelling
process, arterial, and venous endothelial cells differentiate to organize and consolidate the mature vasculature. From the venous ECs, lymphatic endo-
thelial cells arise to give rise to the specialized lymphatic vessels. HSC, haematopoietic stem cell; EC, endothelial cell.
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effectors represent a common mechanism of specification of early
germ layers. During development, the early mesoderm is marked by
the T-box (Tbx) transcription factor Brachyury.76,77 In mESCs,
many mesodermal gene promoters (e.g. GATA78 and Tbx family
members,76,77,79 Mixl1,80 and Brachyury76,77) are characterized by
bivalent chromatin domains, bearing simultaneously transcription
positive and negative histone modifications, and by the presence of
Oct4, Sox2, and Nanog, suggesting that these stem factors may
control these bivalent epigenetic marks and the expression of
mesodermal-specific genes. Although the precise molecular mechan-
ism controlling the balance of bivalent marks at gene-specific promo-
ters is not yet known,81– 84 it is conceivable that, upon external cues,
de-methylation of repressive H3K27me3 occurs, while the activating
H3K4me3 is maintained at specific mesodermal chromatin domains.
These chromatin regions are defined ‘poised’ for transcription.85

Remarkably, chromatin within poised, non-mesodermal gene promo-
ter regions, becomes permanently silenced as the opposite event
occurs (e.g. H3K4 tri-methylation is lost, while H3K27-methylated
residues are accumulated). Further, DNA and H3K9 methylation
also account for the permanent repression of non-mesodermal
genes transcription. Although the withdrawal of LIF represents the
first signal triggering differentiation of mESCs into the three germ
layers, the mechanism by which a particular cell population within
the context of embryoid bodies (EBs) decide to differentiate into a
specific cell lineage is not fully understood. It has been suggested
that EB three-dimensional structure provides a proper environment
which allows the onset of spatio-temporal events closely related to
those occurring in vivo in the developing embryo.52 Moreover, it is
possible that a specific cell fate may be determined by the so-called
‘gene dosage’ of self-renewal transcription factors once a specific
differentiation process is activated. The intensity of gene dosage, in
fact, may determine the balance of epigenetic bivalent marks making
the cell ready to transcribe a specific gene. A demonstration of this
hypothesis is represented by the stemness-associated transcription
factor Oct3/4, whose differential expression levels may induce
either mesoderm differentiation86 or dedifferentiation to trophecto-
derm. However, we cannot invoke only transcription factors involve-
ment as the main mechanism regulating tissue specification.
Chromatin remodelling enzymes, such as histone methyltransferases
and demethylases, may respond to extra cellular signals, altering the
balance of histone marks. Indeed, the expression of the Polycomb
complex subunits Ezh2 and Eed decreases during differentiation and
may contribute to the resolution of the bivalent domains.87 The
removal of histone methylation marks represents, in fact, a critical
event for the resolution of the bivalent domains during the specifica-
tion of any cell lineage. Recently, several reports pointed out the
importance of H3K27 demethylases UTX and Jumomji domain-
containing family of demethylases (Jmjd3) and that of several other
members of the Jmjd as well as that of the LSD1 enzyme which cat-
alyses H3K4 demethylation.88,89 UTX and Jmjd3 associate with MLL
complexes,90 suggesting that removal of the H3K27me3 mark and
maintenance of the H3K4me3 in genes that become activated
during development are coordinated events.75

The remodelling of the chromatin structure by chromatin-
associated non-histone proteins is also probably involved in the
induction of mesoderm gene expression during differentiation.
Recently, it has been demonstrated that the high mobility group
(HMG) protein superfamily, such as HMG2A, is necessary for cardi-
ogenesis. By interacting with Smad transcription factors, HMGA2, in

fact, synergistically stimulates the transcription of the cardiogenic
Nkx2.5.91

The silencing of non-mesodermal genes is as critical as the acti-
vation of mesoderm specific genes for the proper establishment of
cell lineages. For example, LSD1,89 by associating with the CoREST
complex,92 demethylates H3K4 within neural gene promoters, ensur-
ing the repression of neural-specific genes during non-neural specifi-
cation. However, other epigenetic events, like microRNAs,93

participate in ensuring that non-mesodermal and self-renewal
factors are silenced during specification. A detailed description of
microRNAs involvement in mesoderm specification is beyond the
scope of the present manuscript and will be addressed elsewhere.

4. Molecular events during early
embryonic vascular development
Vascular structures derive from the extra- and intra-embryonic meso-
derm. The interaction between mesoderm and endoderm, however,
has been also found important providing instructive signals to the hae-
mangioblast, the common blood and vascular precursor, whose tran-
sient appearance precedes the intra-embryonic endothelial and mural
cell maturation and vessel formation.94 In vivo, upstream from the vas-
cular differentiation programme, lays the acquisition of the mesendo-
dermal and mesodermal features. Experiments carried out in
differentiating mESCs suggest that, as during embryo development,
mesoderm cells are committed to the blood lineage prior to the
occurrence of cardiovascular commitment. A role in this process is
covered by the transforming growth factor (TGF) b superfamily,
including TGFb, nodal, and bone morphogenetic proteins (BMPs),
the fibroblast growth factor (FGF), and the Wnt families.95– 97 The
activation of the canonical Wnt-dependent signalling pathway95 is
one of the earliest molecular event leading to mesoderm- and
endoderm-associated gene expression which includes Eomesodermin
(Eomes),77 Brachyury (T),77 Mix-like homeodomain 1,98,99 and
GATA6.98,99 Other transcription factors, soluble molecules and mem-
brane receptors are involved in the mesoderm patterning towards the
specification of vascular cells including Wnt/Frizzled, Delta/notch,
BMPs, TGFb, platelet-derived growth factor, FGF, Scl, Runx-1, Ets
and other molecules whose concerted action have been shown to
play a fundamental role.96,100 More recently some microRNAs101

have also been implicated.102,103 The concerted action of this molecu-
lar regulators determines the appearance of FLK1+ mesodermal/vas-
cular precursors, the endothelial specification, and the progression of
vasculogenesis.41,46 Interestingly, two FLK-1+ populations seem to
emerge in a timely regulated fashion from an original Brachyury posi-
tive population. The earliest corresponds to the haemangioblast,
which co-expresses Flk1 and Brachyury104 and contributes to the for-
mation of the primitive erithroid progenitors and the more mature
CD34+ cells.105 The second FLK1+ population is represented by
cardiovascular progenitors able to generate cardiac, endothelial, and
vascular smooth muscle cells (vSMCs).106

The regulation of FLK expression is complex and dependent on ill-
defined transcription mechanisms.68,74 A body of evidence indicates
that the HIF family has a role in this process suggesting that environ-
mental cues, such as the oxygen gradient, may also play an important
function during vascular development.107 – 110 Other lines of evidence
shows that the activity of HATs has a relevant role in mesoderm spe-
cification67,111 and FLK transcription.68 Noteworthy, HATs and
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HDACs are associated with HIF modulating its function, suggesting
therefore that epigenetic regulators possibly activated by environ-
mental signals are very important in the early commitment to meso-
derm and during vascular differentiation.112,113

5. Epigenetics of vascular
development
It is unclear whether specific epigenetic events are required for vascu-
lar development. It is however of recent observation that the altera-
tion of epigenetic molecules such as the expression of HDAC7
altered the development of the normal vasculature probably trough
an abnormal remodelling of the extracellular matrix.63,114 –116 Other
epigenetic events involving HDAC function are triggered by shear
stress53,117 which is required for later angiogenic processes possibly
occurring at the embryo/foetal boundary in the presence of a
beating heart. Several lines of evidence support the role of HDACs
in vascular development indicating that they could be crucial during
the embryonic differentiation of vascular endothelial precursors as
well as during regenerative processes occurring in adult individuals.
Acetylases also play important although less characterized functions.
Acetylation of histone at specific loci seems to control vascular
gene expression in endothelial and smooth muscle cells.8,117,118 The
differentiation of vSMCs, in fact, depends on the activity of transcrip-
tion factors known to modify chromatin structure at promoter level
by increasing the local concentration of p30067,116,119 –121 which in
turn locally modifies the ‘histone code’16 allowing an open chromatin
configuration and transcription of lineage specific genes. The role of

other epigenetic modifications or enzymes in the regulation of early
and late phases of the vascular development is currently unknown.
It is envisaged however that, due to the complexity of the cardiovas-
cular system control network, further studies will be necessary to
clarify the important contribution of environmental stimuli leading
to vascular-specific combinatorial histone tail modifications,118,122

that of non-histone proteins and the role of epigenetic enzymes
other than HAT and HDACs.72

6. Epigenetic regulation of the nitric
oxide signalling molecules
The soluble guanylate cyclase1 (sGC1) promoter has been recently
described.123 At present there is little or no information regarding
its epigenetic regulation and that of other NO signalling molecules
with the exception of eNOS which, on the contrary, has been
thoroughly investigated. From an epigenetic point of view, it has
been demonstrated that the eNOS proximal promoter is
un-methylated in endothelial cells, but heavily methylated in
non-endothelial cell types.124 Further, Ets1, Sp1, and Sp3 transcription
factors are recruited to the eNOS promoter in endothelial cells and
not in vSMCs124 while MeCP2 is preferentially recruited to eNOS
promoter in vSMCs.125 Of note, epigenetic processes have been
found important also in the regulation of the other NO synthase iso-
forms. The methylation of K4 in histone H3 leads, in fact, to the
expression of iNOS in chondrocytes126 and the nNOS promoter is
activated in neuronal cells by a nuclear factor kappa B
(NFkB)-dependent chromatin remodelling mechanism.127 This

Figure 3 A model for NO-dependent epigenetic effect during ESC vascular differentiation. NO may be produced both by ligand-activated receptors
and environmental cues (e.g. shear stress), which activate the PI3K/Akt pathway leading to eNOS phosphorylation. Cytosolic NO, in turn, induces
class II HDACs nuclear translocation via PP2A activation and post-translational modification (mainly tyrosine nitration and S-nitrosylation) of transcrip-
tion factors. NO may exert its function in the nucleus after diffusion from the cytosol. Further, it may be directly produced by the nuclear eNOS (ref).
In the nuclear compartment, NO post-translationally modify HDAC2 and transcription factors. Altogether, these processes lead both to the repres-
sion of stem and non-mesodermal genes and to the activation of vascular genes. Tyr-nitration, tyrosine nitration; BH4, tetrahydrobiopterin.
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experimental evidence highlights the importance of epigenetic mech-
anisms in the establishment of tissue-specific gene expression of NOS
and may contribute to the epigenetic activities of NO.

7. Epigenetics of nitric oxide
During early embryonic life production of NO by eNOS will not
occur until a valid shear stress will be generated by a beating
heart.128,129 It will occur well after the vascular bed it is formed and
will contribute to its definitive maturation. It is currently unknown
whether, in living mammalian embryos, NO and/or its derivatives
may be present and playing active morphogenetic role before this
stage. In vitro, mESC express detectable levels of nNOS and iNOS
and, upon LIF deprivation, start to synthesize cGMP which mediates
many of the NO-dependent metabolic effects.130 Of note, a series
of recent experiments demonstrated that mESC are very sensitive
to NO donors.53,63 Specifically, in the presence of various sources
of NO, EBs developed more efficiently forming larger beating areas,
indicating a pro-cardio-vasculogenic effect of this molecule.131 In
this regard, further evidence has pointed-out that shear stress,
which elevates the intracellular level of NO in endothelial cells, as
well as the direct exposure of adult endothelial or mESC to NO
donors, determine the up-regulation of vascular genes including
CD31, FLK/KDR, smooth muscle actin and the alpha-sarcomeric
actin.8,18,63,117

Notably, the NO pathway mediates activation of the telomerase
catalytic subunit (TERT) upon VEGF addition in an in vivo model of
hind-limb ischaemia, during vascular and muscle regeneration.132

Recently, TERT acquired a relevant role in angiogenesis, as
mediator/effector of the VEGF-induced vascularization and capillaro-
genesis. Furthermore, in human umbilical vein endothelial cells
(HUVECs), TERT transcription is regulated by NO/endothelial NOS
signalling which, in combination with the oestrogen receptor
pathway, contributes to chromatin remodelling, histone modification,
and gene activation.133– 135

Interestingly, other observations indicated that different post-
translational modifications exert a strong regulatory control on epige-
netic enzymes. Specifically, cysteine-S-nitrosylation represses class I
HDAC2 function136,137 and a similar effect to HDAC1 and 2 is
obtained by alkylating agents.138 An opposing NO effect has been
reported for class II HDACs that were activated and nuclear localized
in cells exposed to NO donors8 (Figure 3). This event was found
crucial for cellular differentiation in adult as well as mESC.63,139 In
the latter, the activity of class I and II HDAcs including HDAC3, 4,
and 7 could be associated with an important role in the regulation
of gene expression. Although it has been reported that a member
of the class II HDAC family, namely HDAC5, counteracts angiogen-
esis,140 in the presence of a reduced class II HDAC content or activity
the expression of vascular markers was significantly impaired.63 These
observations shed new light on epigenetics in the regulation of vascu-
lar differentiation and development. HDACs regulation emerges, in
fact, as important in this biological process and suggests that different
portions of the genome associated with the control of vascular devel-
opment could be regulated by these enzymes. In this context a ques-
tion arises about HDACs and the vascular regeneration processes to
which vascular precursors may give an important contribution.
Priming mESC with NO, in fact, activated a mesoderm/vascular differ-
entiation programme which determined a significant improvement of
tissue regeneration and vascular structures formation in an in vivo

model of hind-limb ischaemia.63 The evidence that the angiogenic
process is significantly reduced by HDACs inhibitors141 – 145 further
supports the possibility that HDAC-dependent regulatory mechan-
isms are important in triggering this process.

8. Concluding remarks
The epigenetics of vascular development is still in its primordial age.
Although remarkable progress has been made in recent years
towards the comprehension of epigenetic signals and molecular
mechanisms underlying embryonal differentiation and vascular
lineage commitment, several questions remain unanswered. One of
the most important is related to the identification of those chromatin
regions active or inactive during embryonic vascular development
and/or vascular regeneration in adult tissues. This information is of
enormous relevance not only for its scientific value and the under-
standing of novel and important biological processes but for its poten-
tial implications in the definition of novel therapeutic strategies aimed
at promoting angiogenesis and tissue repair. We believe, in fact, that
the definition of environmentally driven signals and their effects on
chromatin structure, gene expression and protein function will lead
to the identification of degeneration/regeneration molecules whose
activity could be controlled by specifically tailored epigenetically
active drugs.146
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