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Abstract. We develop the theory of double multiplicative Poisson vertex algebras. These
structures, defined at the level of associative algebras, are shown to be such that they induce a
classical structure of multiplicative Poisson vertex algebra on the corresponding representation
spaces. Moreover, we prove that they are in one-to-one correspondence with local lattice dou-
ble Poisson algebras, a new important class among Van den Bergh’s double Poisson algebras.
We derive several classification results, and we exhibit their relation to non-abelian integrable
differential-difference equations. A rigorous definition of double multiplicative Poisson vertex
algebras in the non-local and rational cases is also provided.
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1. Introduction

Given a unital associative algebra V, Van den Bergh [VdB1] introduced the structure of a
double bracket on V as a map

{{−,−}} : V × V → V ⊗ V , (a, b) 7→ {{a, b}} ,

which is linear in both arguments and which enjoys properties of derivation and skewsymmetry,
see Subsection 3.1 for the definition. The importance of double brackets can then be realised
through representation theory as follows. Denoting by k the base field of V, we can form the
representation space Rep(V, N) parametrised by representations of V over kN , N ≥ 1. The
coordinate ring of this affine scheme is generated by the functions aij , where (aij)1≤i,j≤N is the
matrix-valued function on Rep(V, N) corresponding to a ∈ V. Then, it was observed by Van
den Bergh that the operation {−,−} on Rep(V, N) satisfying

{aij , bkl} = {{a, b}}′kj {{a, b}}
′′
il , a, b ∈ V, 1 ≤ i, j, k, l ≤ N , (1.1)

(here, we use a strong version of Sweedler’s notation : d′ ⊗ d′′ := d ∈ V ⊗ V) defines a
unique skewsymmetric biderivation over Rep(V, N). This gives an example of application of
the Kontsevich-Rosenberg principle [Ko, KR], which states that the non-commutative version
Pnc of a property P defined over commutative algebras should give back P when we go from an
associative algebra V to (the coordinate ring of) its representation spaces Rep(V, N). Further-
more, it was possible to generalise this construction using (1.1) to introduce non-commutative
versions of Lie algebras [S, ORS, DSKV], (quasi-)Poisson algebras [VdB1], Lie-Rinehart algebras
[VdB2], or Poisson vertex algebras [DSKV] and Courant-Dorfman algebras [FH]. This paper is
devoted to pursue the Kontsevich-Rosenberg principle even further using (1.1) by bringing to
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light the non-commutative version of multiplicative Poisson vertex algebras, which have recently
been introduced by De Sole, Kac, Valeri and Wakimoto [DSKVW1, DSKVW2].

To understand the objects at stake, recall that a Poisson algebra is a commutative algebra
V endowed with a Poisson bracket {−,−}. In other words, V is equipped with a Lie bracket
that is compatible with the commutative product on V , see Definition 2.1. Let us assume that
V admits an infinite order automorphism S ∈ Aut(V ) such that it commutes with the Poisson
bracket, i.e.

S ◦ {−,−} = {−,−} ◦ (S × S) , (1.2)

and such that, for a, b ∈ V , we have {Sn(a), b} = 0, for all but finitely many n ∈ Z. In this case,
we call V a local lattice Poisson algebra. Then, it was observed in [DSKVW1] that the Poisson
bracket on V can be equivalently understood in terms of a bilinear operation

{−λ−} : V × V → V [λ±1] , (1.3)

(here λ should be seen as a formal parameter) defined for any a, b ∈ V by

{aλb} =
∑
n∈Z

λn{Sn(a), b} . (1.4)

Note that only finitely many terms are non-zero in the right-hand side of (1.4). We refer to
Proposition 2.3 for a precise statement. Due to the defining properties of the Poisson bracket
and the compatibility with S given by (1.2), the map (1.3) inherits several useful properties: it
is skewsymmetric (2.2a), sesquilinear (2.1a), and it satisfies Leibniz rules (2.1b)–(2.1c) as well
as an analogue of Jacobi identity (2.2b). In full generalities, an operation on V of the form (1.3)
satisfying these assumptions is called a multiplicative Poisson vertex algebra, see Definition 2.2.
Hence, this proves a correspondence, that can be depicted as follows:

{local lattice Poisson algebras} 1−1←→ {multiplicative Poisson vertex algebras} (1.5)

As mentioned earlier, there is a non-commutative version of Poisson algebras due to Van den
Bergh [VdB1]. Our definition of a non-commutative version of multiplicative Poisson vertex
algebras is motivated by the correspondence (1.5). Namely, if we replace Poisson algebras
by Van den Bergh’s double Poisson algebras in (1.5), we end up with the notion of a double
multiplicative Poisson vertex algebra. The main ingredient used in the definition is then a double
multiplicative λ-bracket, which is a suitable “double” generalization of (1.4). This is a bilinear
map

{{−λ−}} : V × V → (V ⊗ V)[λ±1] ,

defined over an associative algebra V endowed with an automorphism S, see Definition 3.8.
Hence, in Proposition 3.14, we get the correspondence

{local lattice double Poisson algebras} 1−1←→ {double multiplicative Poisson vertex algebras}

which is the “double” analogue of (1.5). This analogy is precisely stated in Corollary 5.5, where
we show that the non-commutative correspondence (Proposition 3.14) implies the commutative
correspondence (Proposition 2.3) when going to representation spaces, i.e. when going from
V to V = k[Rep(V, N)]. That result crucially depends on Van den Bergh’s work [VdB1], and
the fact that a double multiplicative Poisson vertex algebra induces on representation spaces a
structure of multiplicative Poisson vertex algebra through a mapping of the form (1.1).

The relation that we have just outlined to the commutative theory developed in [DSKVW1,
DSKVW2] is crucial for applications. Indeed, it is shown in [DSKVW1, DSKVW2] how multi-
plicative Poisson vertex algebras are useful to understand the structure of differential-difference
equations. In our case, the non-commutative version of this theory allows us to understand
the structure of non-abelian (i.e. matrix-valued) differential-difference equations. We are able
to construct several families of integrable hierarchies of differential-difference equations in that
way, see e.g. §6.4.2. This important application to integrable systems motivates us in the
same way to investigate the double multiplicative Poisson vertex algebra structures on algebras
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of non-commutative difference functions extending the algebra of non-commutative difference
polynomials in ℓ ≥ 1 variables ui := ui,0

Rℓ = k⟨ui,n | 1 ≤ i ≤ ℓ, n ∈ Z⟩ , S(ui,n) = ui,n+1 .

We perform a classification of double multiplicative Poisson vertex algebra structures on R1 and
R2, see Proposition 4.8 and Theorem 4.14 respectively.

Layout of the paper. In Section 2, we review the correspondence between Poisson algebras
and multiplicative Poisson vertex algebras. We also introduce some operations induced on tensor
products of an algebra. In Section 3, we state the key definition of a double multiplicative Poisson
vertex algebra, before deriving several properties and examples. Next, we provide classification
results for double multiplicative Poisson vertex algebras as part of Section 4. Then, we explain in
Section 5 how a double multiplicative Poisson vertex algebra structure on an algebra V induces
a multiplicative Poisson vertex algebra structure on the associated (commutative) algebra VN =
k[Rep(V, N)]. In Section 6, we apply our theory to the study of differential-difference equations.
Finally, in Section 7 we outline how to modify double multiplicative Poisson vertex algebras in
the non-local or rational cases, and we provide several examples.

Relation to the work of Casati-Wang. While we were working on this project, we became
aware that a parallel investigation on double multiplicative Poisson vertex algebras was carried
out independently by Casati and Wang [CW2]. For the reader’s convenience, let us outline the
main differences between these two works. Firstly, Casati and Wang [CW2] introduced double
multiplicative Poisson vertex algebras on the space of non-commutative Laurent polynomials
with an infinite order automorphism, while we work in the more general setup of algebras of
non-commutative difference functions and we provide classification results in Section 4. Their
motivation stems from the integrability of non-abelian difference equations, which we also con-
sider in Section 6, though we do not study the several non-local examples gathered in [CW2,
Sect. 6]. Secondly, they compare the formalism of double multiplicative λ-brackets to the (dif-
ference version of the) θ-formalism of Olver and Sokolov [OS]. In particular, their comparison
uses a graded version of double multiplicative λ-brackets, which we do not consider. In the
present work, we exclusively use the formalism of double multiplicative Poisson vertex algebras
for computations, and we present a deeper study of their algebraic structure. For example, we
give a correspondence with lattice double Poisson algebras in §3.3, and we explain in Section
5 that double multiplicative Poisson vertex algebras induce usual multiplicative Poisson vertex
algebra structures (cf. [DSKVW1, DSKVW2]) on their representation spaces, in agreement with
the Kontsevich-Rosenberg principle.

Acknowledgments. We wish to thank Sylvain Carpentier for useful and stimulating discus-
sions. We are also grateful to Matteo Casati for sharing with us a preliminary version of the work
[CW2] and for enlightening discussions on this topic. M.F. is supported by a Rankin-Sneddon
Research Fellowship of the University of Glasgow. D.V. acknowledges the financial support of
the project MMNLP (Mathematical Methods in Non Linear Physics) of the INFN.

2. Preliminaries

Throughout the paper k denotes a field of characteristic zero (assumed to be algebraically
closed for computations), and unadorned tensor products are taken over k.

2.1. Commutative Poisson structures. In this subsection, we follow [DSKVW1]. All alge-
bras are unital commutative algebras over k.

Definition 2.1. A Poisson algebra is an algebra V endowed with a Poisson bracket, i.e. a linear
map

{−,−} : V ⊗ V → V , a⊗ b 7→ {a, b} ,
which is skewsymmetric, i.e. {a, b} = −{b, a}, satisfies the Left and right Leibniz rules

{a, bc} = {a, b}c+ b{a, c} , {ab, c} = {a, c}b+ a{b, c} ,
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and the Jacobi identity

{a, {b, c}} − {b, {a, c}} − {{a, b}, c} = 0 ,

for all a, b, c ∈ V .
A lattice Poisson algebra is a Poisson algebra V with an infinite order automorphism S ∈

Aut(V ), namely for all a, b ∈ V ,

S(ab) = S(a)S(b) and S({a, b}) = {S(a), S(b)} .

It is called local if, for every a, b ∈ V , {Sn(a), b} = 0 for all but finitely many n ∈ Z.

Definition 2.2. Let V be an algebra endowed with an automorphism S ∈ Aut(V ).
A multiplicative λ-bracket on V is a linear map

{−λ−} : V ⊗ V → V [λ±1], a⊗ b 7→ {aλb} ,

such that for any a, b, c ∈ V ,

{S(a)λb} = λ−1{aλb} , {aλS(b)} = λS({aλb}) , (sesquilinearity) (2.1a)

{aλbc} = {aλb}c+ b{aλc} , (left Leibniz rule) (2.1b)

{abλc} = {aλxc}
(

x=S
b
)
+
(

x=S
a
)
{bλxc} . (right Leibniz rule) (2.1c)

We say that V is a multiplicative Poisson vertex algebra if it admits a multiplicative λ-bracket
{−λ−} satisfying

{aλb} = −
∣∣
x=S
{bλ−1x−1a} , (skewsymmetry) (2.2a)

{aλ{bµc}} − {bµ{aλc}} − {{aλb}λµc} = 0 . (Jacobi identity) (2.2b)

In the above formulas, given an element a(λ) =
∑

k∈Z akλ
k ∈ V [λ±1], we use the notation

a(λx)
(

x=S
b
)
=
∑
k∈Z

akS
k(b)λk .

Furthermore, let us set mResλ a(λ) = a0. The next result can be found in [DSKVW1, §3.1].

Proposition 2.3. If V is a multiplicative Poisson vertex algebra with multiplicative λ-bracket
{−λ−} and automorphism S ∈ Aut(V ), then V is a local lattice Poisson algebra with the Poisson
bracket

{a, b} = mResλ{aλb} , a, b ∈ V . (2.3)

Conversely, if V is a local lattice Poisson algebra with Poisson bracket {−,−} and automorphism
S ∈ Aut(V ), then we can endow it with a structure of multiplicative Poisson vertex algebra with
the multiplicative λ-bracket

{aλb} :=
∑
n∈Z

λn{Sn(a), b} , a, b ∈ V . (2.4)

Remark 2.4. If V is simply a vector space with an invertible endomorphism S, we can define
the notion of a local lattice Lie algebra from Definition 2.1 by forgetting the derivation rules.
Similarly, a multiplicative Lie conformal algebra is obtained from Definition 2.2 by omitting the
Leibniz rules (2.1b)–(2.1c). Then, Proposition 2.3 can be weakened to an equivalence between
these two structures, and this result originally appeared in [GKK].

2.2. Operations on an algebra. Let V be a unital associative algebra over a field k of char-
acteristic 0.
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2.2.1. Basic operations. We introduce several notations following [VdB1, DSKV]. Given n ≥ 2,
we can form the tensor product V⊗n, which we see as an associative algebra for

(a1 ⊗ . . .⊗ an)(b1 ⊗ . . .⊗ bn) = a1b1 ⊗ . . .⊗ anbn .

When n = 2, we use a strong version of Sweedler’s notation

A =
∑
l

A′
l ⊗A′′

l =: A′ ⊗A′′ ∈ V ⊗ V

to denote elements. The permutation endomorphism (−)σ on V ⊗ V is given by

(a⊗ b)σ = b⊗ a . (2.5)

In full generalities for n ≥ 2, we introduce the permutation

V⊗n → V⊗n : a1 ⊗ . . .⊗ an 7→ (a1 ⊗ . . .⊗ an)
σ := an ⊗ a1 ⊗ . . .⊗ an−1 . (2.6)

We introduce the outer and inner bimodule structures on V ⊗ V by

aA b = aA′ ⊗A′′b , a ∗A ∗ b = A′b⊗ aA′′ , a, b ∈ V, A ∈ V ⊗ V . (2.7)

We define left and right V-module structures on V⊗n as follows. For 0 ≤ i ≤ n− 1,

b ∗i (a1 ⊗ . . .⊗ an) =a1 ⊗ . . .⊗ ai ⊗ bai+1 ⊗ ai+2 ⊗ . . .⊗ an ,

(a1 ⊗ . . .⊗ an) ∗i b =a1 ⊗ . . .⊗ an−i−1 ⊗ an−ib⊗ an−i+1 ⊗ . . .⊗ an .

For i = 0, these are just the multiplication on the left of the left-most component, and on the
right of the right-most component. In that case, we omit to write ∗0, so that bA = b ∗0 A and
Ab = A ∗0 b for any A ∈ V⊗n. We set ∗i+n = ∗i to define the operation for any i ∈ Z.

Next, we introduce tensor product rules as maps V ⊗ V⊗n → V⊗(n+1). For 0 ≤ i ≤ n− 1,

b⊗i (a1 ⊗ . . .⊗ an) =a1 ⊗ . . . ai ⊗ b⊗ ai+1 ⊗ . . .⊗ an ,

(a1 ⊗ . . .⊗ an)⊗i b =a1 ⊗ . . .⊗ an−i ⊗ b⊗ an−i+1 ⊗ . . .⊗ an ,

We omit the subscript for i = 0 from now on.

Finally, there is an associative product • on V ⊗ V defined by

A •B = A′B′ ⊗B′′A′′ . (2.8)

The permutation σ defined in (2.5) is an antihomomorphism for this product:

(A •B)σ = Bσ •Aσ . (2.9)

From (2.7) we get that the inner and outer bimodule structures of V ⊗ V are related to the
associative product in (2.8) as follows

A′BA′′ = A •B = B′′ ∗A ∗B′ .

We can define three possible left and right module structures for (V⊗2, •) on V⊗3, denoted by
•i, i = 1, 2, 3, as follows

A •1 (x⊗ y ⊗ z) = x⊗A′y ⊗ zA′′, (x⊗ y ⊗ z) •1 A = x⊗ yA′ ⊗A′′z,

A •2 (x⊗ y ⊗ z) = A′x⊗ y ⊗ zA′′, (x⊗ y ⊗ z) •2 A = xA′ ⊗ y ⊗A′′z,

A •3 (x⊗ y ⊗ z) = A′x⊗ yA′′ ⊗ z, (x⊗ y ⊗ z) •3 A = xA′ ⊗A′′y ⊗ z,

(2.10)

The following result appeared in [DSKV].

Lemma 2.5. (a) The •i left (and right) actions of V ⊗2 on V ⊗3 are indeed actions, i.e. they
are associative with respect to the •-product of V ⊗2:

A •i (B •i X) = (A •B) •i X and (X •i A) •i B = X •i (A •B) ,

for every A,B ∈ V ⊗2 and X ∈ V ⊗3.
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(b) The left •i and the right •j actions commute for every i, j = 1, 2, 3 such that |i− j| ≠ 21:

A •i (X •j B) = (A •i X) •j B

for every A,B ∈ V ⊗2 and X ∈ V ⊗3.
(c) The •1 and •3 left (resp. right) actions of V ⊗2 on V ⊗3 commute:

A •1 (B •3 X) = B •3 (A •1 X) and (X •1 A) •3 B = (X •3 B) •1 A ,

for every A,B ∈ V ⊗2 and X ∈ V ⊗3. (In general, the •i and •j left (resp. right) actions do
NOT commute if |i− j| = 1.)

2.2.2. Extending derivations and homomorphisms. Consider a derivation ∂ ∈ Der(V,M) where
M is a V-bimodule. We can extend ∂ to V⊗m by acting only on one copy of V as

∂(i) : V⊗m → V⊗(i−1)⊗M ⊗V⊗(m−i) , ∂(i)(a1⊗· · ·⊗am) = a1⊗· · ·⊗∂(ai)⊗· · ·⊗am , (2.11)

for any 1 ≤ i ≤ m. In particular, we denote the induced derivations ∂(1), ∂(m) on the leftmost
and rightmost factors by ∂L, ∂R respectively, i.e.

∂L : V⊗m →M ⊗ V⊗(m−1) , ∂R : V⊗n → V⊗(m−1) ⊗M ,

∂L(a1 ⊗ . . .⊗ am) = ∂(a1)⊗ . . .⊗ am , ∂R(a1 ⊗ . . .⊗ am) = a1 ⊗ . . .⊗ ∂(am) .
(2.12)

We also extend ∂ to V⊗m by

∂ :=
m∑
i=1

∂(i) : V⊗m −→ ⊕m
i=1

(
V⊗(i−1) ⊗M ⊗ V⊗(m−i)

)
,

∂(a1 ⊗ . . .⊗ am) =
n∑

i=1

a1 ⊗ . . .⊗ ai−1 ⊗ ∂(ai)⊗ ai+1 ⊗ . . .⊗ am .

(2.13)

When M = V⊗n, we call ∂ and n-fold derivation. For a 2-fold derivation ∂ ∈ Der(V,V⊗2) which
satisfies by definition

∂(ab) = a∂(b)′ ⊗ ∂(b)′′ + ∂(a)′ ⊗ ∂(a)′′b ,

we get for example that

∂(a⊗ b) = ∂L(a⊗ b) + ∂R(a⊗ b) , where

∂L(a⊗ b) = ∂(a)′ ⊗ ∂(a)′′ ⊗ b , ∂R(a⊗ b) = a⊗ ∂(b)′ ⊗ ∂(b)′′ .
(2.14)

We will use the natural bimodule structure on Der(V,V⊗2) induced by the inner bimodule
structure of V ⊗ V:

(a∂b)(f) = a ∗ ∂(f) ∗ b = ∂(f)′b⊗ a∂(f)′′ , a, b, f ∈ V , ∂ ∈ Der(V,V⊗2) .

Given a collection of 2-fold derivations ∂1, . . . , ∂ℓ in Der(V,V⊗2), we say that they are linearly
independent if the identity (ai, bi ∈ V)

ℓ∑
i=1

ai∂ibi = 0 , (2.15)

implies ai = 0 or bi = 0, for every i = 1, . . . , ℓ. If ℓ is infinite, we require that this condition is
satisfied for any finite subset of {∂i}ℓi=1 .

Assume that S ∈ Hom(V) is an algebra homomorphism. Then we can extend S to V⊗m by

S(a1 ⊗ . . .⊗ am) = S(a1)⊗ . . .⊗ S(am) . (2.16)

In particular, if S ∈ Aut(V), this defines an automorphism of Aut(V⊗m). As in the case of
derivations, we can adapt the construction to act on one copy of V only, or to consider an
arbitrary algebra homomorphism V1 → V2.

1There is a misprint in Lemma 2.5(b) in [DSKV] and the further assumption |i− j| ̸= 2 is omitted.
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2.2.3. Representation algebra. LetN ∈ N×. We define VN as the commutative algebra generated
by symbols aij for a ∈ V and 1 ≤ i, j ≤ N , which are subject to the relations

1ij = δij , (ab)ij =
∑

1≤k≤N

aikbkj , (αa+ βb)ij = αaij + βbij ,

for any a, b ∈ V, α, β ∈ k, 1 ≤ i, j ≤ N . We call VN the N -th representation algebra of
V. Clearly, VN is finitely generated if V has this property. Recall that VN is the coordinate
ring of the representation scheme Rep(V, N) parametrised by representations of V on kN . If
∂ ∈ Der(V), it induces a derivation of VN from its definition on generators as ∂(aij) = (∂(a))ij .
If S ∈ Aut(V), it induces an automorphism of VN as S(aij) = (S(a))ij .

3. Double multiplicative Poisson vertex algebras

3.1. Review on double Poisson algebras. In this subsection we let V be a unital associative
algebra over k. We review the notion of double bracket and double Poisson algebra introduced
in [VdB1]. Example 3.4 is taken from [P], while Example 3.5 is a special case of [VdB1, §6.3]
for a one-loop quiver.

Definition 3.1. A double bracket (or 2-fold bracket) on V is a linear map

{{−,−}} : V ⊗ V → V ⊗ V , a⊗ b 7→ {{a, b}} ,
such that for all a, b, c ∈ V

{{a, b}} = −{{b, a}}σ , (cyclic skewsymmetry) (3.1a)

{{a, bc}} = {{a, b}} c+ b {{a, c}} , (left Leibniz rule) (3.1b)

{{ab, c}} = {{a, c}} ∗1 b+ a ∗1 {{b, c}} . (right Leibniz rule) (3.1c)

Given a double bracket, we introduce the maps{{
a, b′ ⊗ b′′

}}
L
=
{{
a, b′

}}
⊗ b′′ ,

{{
a, b′ ⊗ b′′

}}
R
= b′ ⊗

{{
a, b′′

}}
,{{

a′ ⊗ a′′, b
}}

L
=
{{
a′, b

}}
⊗1 a

′′ ,
{{
a′ ⊗ a′′, b

}}
R
= a′ ⊗1

{{
a′′, b

}}
.

Definition 3.2. A double Poisson algebra is an algebra V endowed with a double bracket such
that for all a, b, c ∈ V

{{a, {{b, c}}}}L − {{b, {{a, c}}}}R − {{{{a, b}} , c}}L = 0 . (Jacobi identity) (3.2)

In that case, we say that {{−,−}} is a double Poisson bracket.

Remark 3.3. In Definition 3.2, we chose the condition (3.2) which is given in [DSKV] and is
equivalent to the original condition of Van den Bergh [VdB1] :

{{a, {{b, c}}}}L + ({{b, {{c, a}}}}L)
σ + ({{c, {{a, b}}}}L)

σ2
= 0 .

Example 3.4. Let V = k[u]. It is shown in [P, VdB1] that a double bracket {{−,−}} on V is a
double Poisson bracket if and only if it satisfies

{{u, u}} = α(u⊗ 1− 1⊗ u) + β(u2 ⊗ 1− 1⊗ u2) + γ(u2 ⊗ u− u⊗ u2) ,

where α, β, γ ∈ k satisfy β2 = αγ.

Example 3.5. Let V = k⟨u, v⟩. Then {{u, u}} = 0 = {{v, v}}, {{v, u}} = 1 ⊗ 1 defines a double
Poisson bracket.

Double Poisson brackets can be seen as a non-commutative version of Poisson brackets due
to the next result, where we use the notations from §2.2.3.

Theorem 3.6. Assume that {{−,−}} is a double bracket on V. Then there is a unique skewsym-
metric biderivation on VN which satisfies for any a, b ∈ V, 1 ≤ i, j ≤ N ,

{aij , bkl} = {{a, b}}′kj {{a, b}}
′′
il . (3.3)

Furthermore, if {{−,−}} is a double Poisson bracket, then (VN , {−,−}) is a Poisson algebra.
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3.2. Definition and first properties. In the sequel we assume that V is a unital associative
algebra endowed with an infinite order automorphism S ∈ Aut(V).

Definition 3.7. A double multiplicative λ-bracket on V is a linear map

{{−λ−}} : V ⊗ V → (V ⊗ V)[λ±1] , a⊗ b 7→ {{aλb}}

such that

{{S(a)λb}} = λ−1 {{aλb}} , {{aλS(b)}} = λS({{aλb}}) , (sesquilinearity) (3.4a)

{{aλbc}} = {{aλb}} c+ b {{aλc}} , (left Leibniz rule) (3.4b)

{{abλc}} = {{aλxc}} ∗1
(

x=S
b
)
+
(

x=S
a
)
∗1 {{bλxc}} . (right Leibniz rule) (3.4c)

In (3.4c) and further we use the following notation (cf. Subsection 2.1): for P (λ) =
∑

n pnλ
n ∈

(V ⊗ V)[λ, λ−1] and a, b ∈ V, we let

a(|x=SP (λx)b) =
∑
n

a(λS)n(pnb) , (3.5)

namely, we substitute the variable x by the automorphism S acting on the terms enclosed in
parenthesis. Note that the two equations in (3.4a) imply

S {{aλb}} = {{S(a)λS(b)}} , a, b ∈ V . (3.6)

Given a double multiplicative λ-bracket, we introduce the maps{{
aλb

′ ⊗ b′′
}}

L
=
{{
aλb

′}}⊗ b′′ ,
{{
aλb

′ ⊗ b′′
}}

R
= b′ ⊗

{{
aλb

′′}} , (3.7a){{
a′ ⊗ a′′λb

}}
L
=
{{
a′λxb

}}
⊗1

(
x=S

a′′
)
, (3.7b){{

a′ ⊗ a′′λb
}}

R
=
(

x=S
a′
)
⊗1

{{
a′′λxb

}}
. (3.7c)

Definition 3.8. A double multiplicative Poisson vertex algebra is an algebra V endowed with a
multiplicative λ-bracket such that

{{aλb}} = −
∣∣
x=S
{{bλ−1x−1a}}σ , (skewsymmetry) (3.8a)

{{aλ {{bµc}}}}L − {{bµ {{aλc}}}}R −
{{
{{aλb}}λµ c

}}
L
= 0 . (Jacobi identity) (3.8b)

Remark 3.9. Under (3.8a) the rules (3.4b) and (3.4c) are equivalent.

The following result will be useful for computations.

Lemma 3.10. (a) The sesquilinearity relations

{{S(A)λB}}L(resp.R) = λ−1 {{AλB}}L(resp.R) ,

{{AλS(B)}}L(resp.R) = λS {{AλB}}L(resp.R) ,

hold if either A or B lies in V ⊗ V, and the other one lies in V.
(b) For every a ∈ V and B,C ∈ V⊗2, we have

{{aλB • C}}L = B •2 {{aλC}}L + {{aλB}}L •1 C ,
{{aλB • C}}R = B •2 {{aλC}}R + {{aλB}}R •3 C .
{{B • Cλa}}L = {{Bλxa}}L •3 (|x=SC) + {{Cλxa}}L •1 (|x=SB

σ) .
(3.9)

In the last equation we are using the notation (3.5).

Proof. Straightforward. □
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3.2.1. Property of Jacobi identity. Given a double multiplicative λ-bracket on V, introduce the
map

{{−λ −µ −}} : V⊗3 → V⊗3[λ±1, µ±1] ,

{{aλbµc}} := {{aλ {{bµc}}}}L − {{bµ {{aλc}}}}R −
{{
{{aλb}}λµ c

}}
L
.

(3.10)

A direct comparison with (3.8b) yields that a double multiplicative λ-bracket which is skewsym-
metric and such that the map (3.10) vanishes yields, by definition, a double multiplicative
Poisson vertex algebra structure on V.

Lemma 3.11. Given a skewsymmetric double multiplicative λ-bracket on V, we have{{
{{bµa}}λµ c

}}
L
= −

{{
{{aλb}}σλµ c

}}
L
.

Proof. Using skewsymmetry (3.8a) and the first identity in Lemma 3.10(a), we have{{
{{bµa}}λµ c

}}
L
= −

{{(
x=S

{{
aµ−1x−1b

}}σ )
λµ
c
}}

L
= −

{{
{{aλb}}σλµ c

}}
L
,

as desired. □

As an application of this lemma, remark that we can equivalently define (3.10) as

{{aλbµc}} := {{aλ {{bµc}}}}L − {{bµ {{aλc}}}}R +
{{
{{bµa}}σλµ c

}}
L
. (3.11)

The following properties of the operation (3.10) can also be proven.

Lemma 3.12. Given a double multiplicative λ-bracket {{−λ−}} on V, we have

{{aλbµS(c)}} = λµS({{aλbµc}}) , (3.12)

{{aλbµcd}} = c {{aλbµd}}+ {{aλbµc}} d . (3.13)

Furthermore, if {{−λ−}} is skewsymmetric, we have

{{aλbµc}} =
∣∣∣
x=S

{{
bµcλ−1µ−1x−1a

}}σ
, (3.14)

In particular, given a subset K0 ⊂ V such that the elements of K = {Si(u) | u ∈ K0, i ∈ Z}
generates V as an associative algebra, then the map (3.10) vanishes identically on V if and only
if we have {{aλbµc}} = 0 for any a, b, c ∈ K0.

Proof. The proof goes along the lines of Lemma 3.4 in [DSKV]. It is easy to get (3.12) by
combining sesquilinearity (3.4a) (only for the second argument) with the definition of the map
(3.10). In the same way, we can obtain (3.13) from the left Leibniz rule (3.4b).

To check (3.14), we note the following identities which require skewsymmetry (3.8a):

{{aλ {{bµc}}}}L =−
(∣∣∣

x=S

{{
{{bµc}}′ λ−1x−1a

}}σ)⊗ {{bµc}}′′
=−

∣∣∣
x=S

({{
{{bµc}}′ λ−1x−1ya

}}σ ⊗ ∣∣
y=S
{{bµc}}′′

)
=−

∣∣∣
x=S

({{
{{bµc}}′ λ−1x−1ya

}}
⊗1 (

∣∣
y=S
{{bµc}}′′)

)σ
=−

∣∣∣
x=S

{{
{{bµc}}λ−1x−1 a

}}σ
L
,

{{bµ {{aλc}}}}R =− (
∣∣
x=S
{{cλ−1x−1a}}′′)⊗

{{
bµ(
∣∣
x=S
{{cλ−1x−1a}}′)

}}
=−

∣∣∣
x=S

({{
bµ
{{
cλ−1(xµ)−1a

}}′}}⊗ {{cλ−1(xµ)−1a
}}′′)σ

=−
∣∣∣
x=S

{{
bµ
{{
cλ−1µ−1x−1a

}}}}σ
L
,{{

{{bµa}}σλµ c
}}

L
=
(
(
∣∣
x=S
{{bµa}}′)⊗

{{
{{bµa}}′′ λµxc

}}σ)σ
=−

∣∣
x=S

(
{{bµa}}′ ⊗

{{
cλ−1µ−1x−1 {{bµa}}′′

}})σ
=−

∣∣
x=S

{{
cλ−1µ−1x−1 {{bµa}}

}}σ
R
.
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Thus, writing {{aλbµc}} through (3.11), we get that (3.14) holds after writing the right-hand side
with (3.10).

For the second part of the lemma, note that as a consequence of (3.14) we can write

{{aλS(b)µc}} =µ−1 {{aλbµc}} , {{S(a)λbµc}} = λ−1 {{aλbµc}} ,
{{aλbdµc}} =(

∣∣
x=S

b) ∗2 {{aλdµxc}}+ {{aλbµxc}} ∗1 (
∣∣
x=S

d) , (3.15)

{{adλbµc}} =(
∣∣
x=S

a) ∗1 {{dλxbµc}}+ {{aλxbµc}} ∗2 (
∣∣
x=S

d) . (3.16)

Since we have derivation and sesquilinearity rules in the three arguments of the map (3.10), this
operation is completely determined by its value on the elements of K0. In particular, the map
(3.10) vanishes if and only if it does when evaluated on the elements of K0. □

3.3. Relation to local lattice double Poisson algebras. We introduce here the notion of
a local lattice double Poisson algebra, which is equivalent to that of a double multiplicative
Poisson vertex algebra.

Definition 3.13. A lattice double Poisson algebra is a double Poisson algebra V with an infinite
order automorphism S ∈ Aut(V), namely (a, b ∈ V)

S(ab) = S(a)S(b) and S({{a, b}}) = {{S(a), S(b)}} .

It is called local if, for every a, b ∈ V, we have

{{Sn(a), b}} = 0 , for all but finitely many values of n ∈ Z . (3.17)

For an element a(λ) =
∑

akλ
k ∈ V⊗n[λ±1], n ≥ 1, we define its multiplicative residue by

mResλ a(λ) = a0 .

Proposition 3.14. If V is a double multiplicative Poisson vertex algebra with double multiplica-
tive λ-bracket {{−λ−}} and automorphism S ∈ Aut(V), then V is a local lattice double Poisson
algebra with the double Poisson bracket

{{a, b}} = mResλ {{aλb}} , a, b ∈ V . (3.18)

Conversely, if V is a local lattice double Poisson algebra with double Poisson bracket {{−,−}}
and automorphism S ∈ Aut(V), then we can endow it with a structure of a double multiplicative
Poisson vertex algebra with the double multiplicative λ-bracket

{{aλb}} :=
∑
n∈Z

λn {{Sn(a), b}} , a, b ∈ V . (3.19)

Proof. Applying mResλ to both sides of equation (3.6) it follows that S {{a, b}} = {{S(a), S(b)}}.
Cyclic skewsymmetry of the double bracket (3.18) follows by applying mResλ to both sides of
(3.8a) and using the fact that mResλ a(λ) = mResλ a(λ

−1). Left and right Leibniz rules (3.1b)-
(3.1c), respectively Jacobi identity, for the double bracket (3.18) follow by applying mResλmResµ
to (3.4b)-(3.4c), respectively (3.8b).

Conversely, let {{aλb}}, a, b ∈ V be defined by (3.19). Note that {{aλb}} ∈ (V ⊗ V)[λ, λ−1] by
(3.17). Moreover, we have

{{S(a)λb}} =
∑
n∈Z

λn
{{
Sn+1(a), b

}}
= λ−1

∑
n∈Z

λn+1
{{
Sn+1(a), b

}}
= λ−1 {{aλb}} ,

and, using the fact that S is an automorphism,

{{aλS(b)}} =
∑
n∈Z

λn {{Sn(a), S(b)}} = λS
∑
n∈Z

λn−1
{{
Sn−1(a), b

}}
= λS {{aλb}} ,
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proving sesquilinearity (3.4a). Next, we have

{{abλc}} =
∑
n

λn (Sn(a) ∗1 {{Sn(b), c}}+ {{Sn(a), c}} ∗1 Sn(b))

=
∑
n

(λy)n
((

y=S
a
)
∗1 {{Sn(b), c}}+ {{Sn(a), c}} ∗1

(
y=S

b
))

=
(

y=S
a
)
∗1 {{bλyc}}+ {{aλyc}} ∗1

(
y=S

b
)
,

which proves the right Leibniz rule (3.4c) for (3.19). The left Leibniz rule (3.4b) can be proven
similarly. Finally, we prove the Jacobi identity for (3.19). Note that

{{aλ {{bµc}}}}L − {{bµ {{aλc}}}}R
=
∑
n,m

λmµn ({{Sm(a), {{Sn(b), c}}}}L − {{S
n(b), {{Sm(a), c}}}}R)

=
∑
n,m

λmµn {{{{Sm(a), Sn(b)}} , c}}L by (3.2)

=
∑
n

µn {{{{aλSn(b)}} , c}}L .

Hence, by (3.4a), we have

{{aλ {{bµc}}}}L − {{bµ {{aλc}}}}R
=
∑
n

µnλn
{{
Sn({{aλb}}′)⊗ Sn({{aλb}}′′), c

}}
L

=
∑
n

µnλn
{{
Sn({{aλb}}′), c

}}
⊗1 S

n({{aλb}}′′)

=
∑
n

(λµy)n
{{
Sn({{aλb}}′), c

}}
⊗1

(
y=S
{{aλb}}′′

)
=
{{
{{aλb}}λµ c

}}
L
.

This concludes the proof. □

We can get several examples of double multiplicative Poisson vertex algebras using Proposition
3.14.

Example 3.15. Let V be a double Poisson algebra with double Poisson bracket {{−,−}}. Con-
sider the unital associative algebra V = k[S, S−1] ⊗ V . In other words, V is isomorphic to the
direct sum of infinitely many copies of V and the automorphism S is the “shift” operator. We
can endow V with a lattice double Poisson algebra structure with

{{Sm ⊗ a, Sn ⊗ b}} = δm,n(S
n ⊗ Sn) {{a, b}} , a, b ∈ V . (3.20)

Example 3.16. As a special case of Example 3.15 consider the double Poisson algebra V from
Example 3.4 with α = 1 and β = γ = 0. Then V = k[S, S−1] ⊗ V = k⟨ui | i ∈ Z⟩, where
S(ui) = ui+1, i ∈ Z. The double Poisson bracket (3.20) on generators then reads

{{ui, uj}} = δij(uj ⊗ 1− 1⊗ uj) .

Using Proposition 3.14, we get a double multiplicative Poisson vertex algebra structure on V
defined on generators by

{{ui λuj}} = λj−i(uj ⊗ 1− 1⊗ uj) = (λS)j−i(ui ⊗ 1− 1⊗ ui) ,

and extended using sequilinearity and the Leibniz rules.

Example 3.17. Fix ℓ ≥ 1, and consider the algebra V = k⟨ur,i, vr,i | 1 ≤ r ≤ ℓ, i ∈ Z⟩ with the
automorphism S defined by S(ur,i) = ur,i+1 and S(vr,i) = vr,i+1. We can endow V with a lattice
double Poisson algebra structure (cf. Example 3.5) with

{{ur,i, us,j}} = 0 = {{vr,i, vs,j}} , {{vr,i, us,j}} = δrsδij 1⊗ 1 .
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By Proposition 3.14, we get a double multiplicative Poisson vertex algebra structure on V defined
on generators by

{{ur,i λus,j}} = 0 , {{vr,i λvs,j}} = 0 , {{vr,i λus,j}} = δrsλ
j−i 1⊗ 1 ,

and extended using sesquilinearity and Leibniz rules.

3.3.1. Finite order automorphism. The construction of this section still holds in the case when
S is an automorphism of finite order e ≥ 1. In that case, from the sesquilinearity axiom (2.1a),
we get that the following relation should be satisfied for every a, b ∈ V:

{aλb} = {S−e(a)λb} = λe{aλb} .

Hence, if S is an automorphism of finite order e ≥ 1, a double multiplicative λ-bracket is a map
{{−λ−}} : V ⊗ V → (V ⊗ V)[λ]/⟨λe − 1⟩, satisfying (3.4a), (3.4b) and (3.4c). Then we still have
Example 3.15 where k[S, S−1] should be replaced by k[S]/⟨Se − 1⟩. Furthermore, all results of
this and the next sections extend to this framework with little changes.

Example 3.18. Fix e ≥ 1 and consider the algebra V = k⟨uj | j ∈ Z/eZ⟩ with the automor-
phism S of V given by ui → ui+1. On V we can define the double Poisson bracket

{{ui, uj}} = δij(uj ⊗ 1− 1⊗ uj) ,

which can be obtained from e copies of Example 3.4 with α = 1, β = γ = 0. The automorphism
S of V has order e and commutes with {{−,−}}. Using Proposition 3.14, we get a double
multiplicative Poisson vertex algebra structure on V completely determined by

{{ui λuj}} = λ[j−i](uj ⊗ 1− 1⊗ uj) ,

where 0 ≤ [j − i] < e is the remainder of j − i modulo e. This example can be seen as a closed
chain version of Example 3.16.

Example 3.19. For ℓ ≥ 1, we form the algebra V = k⟨u1, . . . , uℓ, v1, . . . , vℓ⟩, which admits a
double Poisson bracket by taking ℓ copies of Example 3.5 :

{{ui, uj}} = 0 = {{vi, vj}} , {{vi, uj}} = δij 1⊗ 1 .

If we consider the automorphism S of V given by ui 7→ vi, vi 7→ −ui, we can show that (k ≥ 0)

S2k+1(ui) = (−1)kvi, S2k(ui) = (−1)kui , S2k+1(vi) = (−1)k+1ui, S
2k(vi) = (−1)kvi .

Hence, S has order 4. Moreover, we have

S({{vi, uj}}) = δij1⊗ 1 = −{{ui, vj}} = {{S(vi), S(uj)}} ,

from which it follows that S commutes with {{−,−}}. Using Proposition 3.14, we get a double
multiplicative Poisson vertex algebra structure on V completely determined by

{{ui λuj}} = δij(λ− λ3)(1⊗ 1) , {{vi λvj}} = δij(λ− λ3)(1⊗ 1) , {{vi λuj}} = δij(1− λ2)(1⊗ 1) .

4. Double multiplicative Poisson vertex algebra structure on an algebra of
(non-commutative) difference functions

4.1. The algebra of non-commutative difference operators. Let V be a unital associa-
tive algebra with an automorphism S and consider the space (V ⊗ V)[S, S−1]. We extend the
associative product • on V ⊗V defined by (2.8) to an associative product on (V ⊗V)[S, S−1] by
letting, for a, b ∈ V ⊗ V and m,n ∈ Z:

aSm • bSn = (a • Sm(b))Sm+n =
(
a′Sm(b′)⊗ Sm(b′′)a′′

)
Sn+m , (4.1)

and extending it by linearity to (V ⊗ V)[S, S−1]. We then call (V ⊗ V)[S, S−1] the algebra
of scalar (non-commutative) difference operators. The action of a scalar difference operator
A(S) =

∑
n∈Z anS

n ∈ (V ⊗ V)[S, S−1] on f ∈ V is given by

A(S)f =
∑
n∈Z

a′nS
n(f)a′′n . (4.2)
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The adjoint of A(S) is the difference operator

A∗(S) =
∑
n∈Z

S−n • aσn =
∑
n∈Z

(
S−n(a′′n)⊗ S−n(a′n)

)
S−n , (4.3)

where in the second identity we used (4.1) (the element (1⊗ 1)Sk ∈ (V ⊗V)[S, S−1], k ∈ Z, will
be usually simply denoted by Sk). Using (2.9), it is immediate to check that

(A(S) •B(S))∗ = B∗(S) •A∗(S) , A(S), B(S) ∈ (V ⊗ V)[S, S−1] . (4.4)

The symbol of a scalar difference operator A(S) =
∑

n∈Z anS
n ∈ (V ⊗ V)[S, S−1] is the Laurent

polynomial

A(z) =
∑
n∈Z

anz
n ∈ (V ⊗ V)[z, z−1] . (4.5)

The formula for the symbol of products of scalar difference operators A(S)•B(S), and its adjoint
(A(S) •B(S))∗ is

(A •B)(z) = A(zS) •B(z) , (A •B)∗(z) = B∗(zS) •A∗(z) . (4.6)

More generally, for every ℓ ≥ 1, the space Matℓ×ℓ

(
(V ⊗ V)[S, S−1]

)
is an algebra with the

product (4.1) extended componentwise using matrix multiplication: if H(S) = (Hij(S))
ℓ
i,j=1,

K(S) = (Kij(S))
ℓ
i,j=1 ∈ Matℓ×ℓ

(
(V ⊗ V)[S, S−1]

)
, then (H • K)(S) = ((H •K)ij(S))

ℓ
i,j=1 ∈

Matℓ×ℓ

(
(V ⊗ V)[S, S−1]

)
, where

(H •K)ij(S) =
ℓ∑

k=1

Hik(S) •Kkj(S) ∈ (V ⊗ V)[S, S−1] .

We call it the algebra of (non-commutative) matrix difference operators over V. The action of

H(S) = (Hij(S))
ℓ
i,j=1 ∈ Matℓ×ℓ

(
(V ⊗ V)[S, S−1]

)
, where

Hij(S) =
∑
n∈Z

Hi,j;nS
n ∈ (V ⊗ V)[S, S−1] ,

(note that the sum is finite) on a vector F ∈ Vℓ is given by extending (4.2) componentwise

(H(S)F )i =

ℓ∑
j=1

Hij(S)Fj =

ℓ∑
j=1

H ′
i,j;nS

n(Fj)H
′′
i,j;n , i = 1, . . . ℓ . (4.7)

The adjoint of H(S) is the matrix difference operator H∗(S) =
(
H∗

j,i(S)
)ℓ
i,j=1

, where the scalar

difference operator H∗
ji(S) is obtained using (4.3). Equation (4.4) holds for A(S), B(S) ∈

Matℓ×ℓ

(
(V ⊗ V)[S, S−1]

)
as well. The symbol of the matrix difference operator H(S) is ob-

tained using equation (4.5) componentwise.

4.2. Algebras of non-commutative difference functions and double multiplicative
Poisson vertex algebras. Consider the algebra of non-commutative difference polynomials
Rℓ in ℓ variables ui, i ∈ I = {1, . . . , ℓ}. It is the algebra of non-commutative polynomials in the
indeterminates ui,n,

Rℓ = k⟨ui,n | i ∈ I, n ∈ Z⟩ ,
endowed with an automorphism S, defined on generators by S(ui,n) = ui,n+1, and partial deriva-

tives ∂
∂ui,n

: R → R⊗R, for every i ∈ I and n ∈ Z, defined on monomials by

∂

∂ui,n
(ui1,n1 . . . uis,ns) =

s∑
k=1

δik,iδnk,n ui1,n1 . . . uik−1,nk−1
⊗ uik+1,nk+1

. . . uis,ns , (4.8)

which are commuting 2-fold derivations of Rℓ (using the terminology of [DSKV]) such that

S ◦ ∂

∂ui,n
=

∂

∂ui,n+1
◦ S . (4.9)
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In (4.9), S is extended to V⊗2 using (2.16). Given the partial derivative ∂
∂ui,n

, i ∈ I, n ∈ Z,

recall the derivations
(

∂
∂ui,n

)
L
,
(

∂
∂ui,m

)
R
: V⊗2 → V⊗3 defined by (2.12).

Lemma 4.1. For any non-commutative difference polynomial f ∈ Rℓ, and i, j ∈ I and n,m ∈ Z,
the partial derivatives strongly commute, i.e. we have(

∂

∂ui,m

)
L

∂f

∂uj,n
=

(
∂

∂uj,n

)
R

∂f

∂ui,m
.

Proof. Same as the proof of Lemma 2.6 in [DSKV]. □

Definition 4.2. An algebra of difference functions in ℓ variables is a unital associative algebra
V, with an automorphism S, endowed with strongly commuting linearly independent (cf. (2.15))
2-fold derivations ∂

∂ui,n
: V → V ⊗ V, i ∈ I = {1, . . . , ℓ}, n ∈ Z, such that (4.9) holds and, for

every f ∈ V, we have ∂f
∂ui,n

= 0 for all but finitely many choices of indices (i, n) ∈ I × Z.

An example of such an algebra is the algebra Rℓ, endowed with the 2-fold derivations defined
in (4.8), or its localization by non-zero elements. Note that Rℓ is in fact an algebra of difference
functions in m variables, where 1 ≤ m ≤ ℓ. In this case we should think of the variables ui,
i > m as quasiconstants, i.e. they lie in the kernel of the 2-fold derivations defining the structure
of algebra of difference functions of V (see [DSK3]).

Theorem 4.3. (a) Any double multiplicative λ-bracket on Rℓ has the form (f, g ∈ Rℓ):

{{fλg}} =
∑
i,j∈I
m,n∈Z

∂g

∂uj,n
• λnSn{{uiλxuj}}λ−mS−m •

(∣∣∣
x=S

∂f

∂ui,m

)σ

. (4.10)

where • denotes the associative product on Rℓ ⊗Rℓ defined in (2.8), and we are using the
notation (3.5).

(b) Let V be an algebra of difference functions in ℓ variables. Let H(λ) be an ℓ× ℓ matrix with
entries in (V ⊗ V)[λ, λ−1]. We denote its entries by Hij(λ) = {{ujλui}}, i, j ∈ I. Then
formula (4.10) defines a double multiplicative λ-bracket on V.

(c) Equation (4.10) defines a structure of a double multiplicative Poisson vertex algebra on V if
and only if the skewsymmetry axiom (3.8a) and the Jacobi identity (3.8b) hold on the ui’s.

Proof. Similar to the proof for the analogue result in [DSKV, Th.3.10]. □

Remark 4.4. Let H(S) = (Hij(S)) ∈ Matℓ×ℓ

(
(V ⊗ V)[S, S−1]

)
, where Hij(S) is the scalar

difference operator with symbol Hij(λ) =
{{
ujλui

}}
(cf. (4.5)). Recalling the definition of

the adjoint matrix difference operator H∗(S) (cf. equation (4.3)), then skewsymmetry axiom
(3.8a) on generators means that the matrix difference operator H(S) is skew-adjoint, that is
H∗(S) = −H(S).

Definition 4.5. A matrix difference operator H(S) =
(
Hij(S)

)ℓ
i,j=1

, with entries Hij(S) ∈
(V ⊗ V)[S, S−1], such that the double multiplicative λ-bracket (4.10) with

{{
ujλui

}}
= Hij(λ)

satisfies skewsymmetry (3.8a) and Jacobi identity (3.8b) on the generators ui’s of the algebra of
difference functions V is called a (local) Poisson structure on V.

4.3. Double multiplicative Poisson vertex algebra structures on R1. In this section we
provide some classification results of double multiplicative Poisson vertex algebra structures on
R := R1 = k⟨ui|i ∈ Z⟩. Let

H(S) =
∑
k∈Z

fkS
k ∈ (R⊗R)[S, S−1]

be a difference operator with coefficients in R⊗R and define a double multiplicative λ-bracket
on R using the Master Formula (4.10) where

{{uλu}} = H(λ) =
∑
k∈Z

fkλ
k . (4.11)
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We have that
−{{uλ−1S−1u}}σ = −

∑
k∈Z

Skfσ
−kλ

k .

Hence, skewsymmetry holds on generators if and only if

fk = −Skfσ
−k , k ∈ Z . (4.12)

Next, using the Master Formula (4.10) and equation (4.11) we have that Jacobi identity on
generators becomes the following equation∑

i,j,k∈Z

(
λi+kµj

(
∂f ′

j

∂ui
• Sifk

)
⊗ f ′′

j − λjµi+kf ′
j ⊗

(
∂f ′′

j

∂ui
• Sifk

)

−λi+j+kµi+k

(
fk • Si+k

(
∂f ′

j

∂u−i

)σ
)
⊗1 S

i+kf ′′
j

)
= 0 .

(4.13)

Equation (4.13) can also be rewritten as∑
i,j,k∈Z

(
λi+kµj

(
∂

∂ui

)
L

(fj) •3 Sifk − λjµi+k

(
∂

∂ui

)
R

(fj) •1 Sifk

−λi+j+kµi+k

(
Si+k

(
∂

∂u−i

)
L

(fj) •3 fσ
k

)σ2
)

= 0 .

(4.14)

Arguing similarly to Lemma 2.6 in [DSKVW2], it is possible to show that

fk = fk(u, u1, . . . uk) , k ≥ 0 . (4.15)

Indeed, for any i > k ≥ 0 we obtain that fk is independent of ui by looking at the terms
in λi+Nµk and λkµN+i with N = max{i|fi ̸= 0}. We can obtain in the same way that for
i < −k ≤ 0, f−k is independent of ui; this is equivalent to having fk independent of ui for i < 0.

Let us assume that fk = 0, for k ̸= 0, in (4.11). By (4.15) and (4.12) we have that

{{uλu}} = f , where f = f(u) = −fσ .

In this case, the Jacobi identity (4.14) reads(
∂

∂u

)
L

(f) •3 f −
(

∂

∂u

)
R

(f) •1 f −
((

∂

∂u

)
L

(f) •3 fσ

)σ2

= 0 .

This is the same condition defining double Poisson structures on k[u]. By the results in [P, VdB1]
(see Example 3.4) we have that

f = α(u⊗ 1− 1⊗ u) + β(u2 ⊗ 1− 1⊗ u2) + γ(u2 ⊗ u− u⊗ u2) ,

where α, β, γ ∈ k are such that β2 = αγ.
Next, we study the case when fk ̸= 0 in (4.11), for some k ∈ Z. In the sequel, we will use the

following result.

Lemma 4.6. Let f, g ∈ R⊗R and k ∈ Z.
(a) If (

∂

∂uk

)
L

(f) •3 g =

((
∂

∂uk

)
L

(g) •3 fσ

)σ2

,

then
f ′ = suk + q , g′ = ukr + p , sp=qr ,

where s, q, r, p lie in the kernel of ∂
∂uk

.

(b) If (
∂

∂uk

)
R

(f) •1 g =

((
∂

∂uk

)
L

(gσ) •3 fσ

)σ2

,

then
f ′′ = uks+ q , g′′ = ruk + p , ps=rq ,
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where s, q, r, p lie in the kernel of ∂
∂uk

.

Proof. Let us prove part (a). Using (2.14), (2.6) and (2.10) we have(
∂

∂uk

)
L

(f) •3 g =

(
∂f ′

∂uk

)′
g′ ⊗ g′′

(
∂f ′

∂uk

)′′
⊗ f ′′

and ((
∂

∂uk

)
L

(g) •3 fσ

)σ2

= f ′
(
∂g′

∂uk

)′′
⊗ g′′ ⊗

(
∂g′

∂uk

)′
f ′′ .

Hence we need to solve the equation(
∂f ′

∂uk

)′
g′ ⊗ g′′

(
∂f ′

∂uk

)′′
⊗ f ′′ = f ′

(
∂g′

∂uk

)′′
⊗ g′′ ⊗

(
∂g′

∂uk

)′
f ′′ . (4.16)

This gives the conditions (
∂f ′

∂uk

)′′
∈ k ,

(
∂g′

∂uk

)′
∈ k ,

from which we get f ′ = suk + q and g′ = ukr + p, with s, q, r, p in the kernel of ∂
∂uk

. Hence,
∂f ′

∂uk
= s⊗1 and ∂g′

∂uk
= 1⊗ r. Substituting these expressions in (4.16) we get that s, q, r, p should

satisfy
s(ukr + p) = (suk + q)r ,

which implies sp = qr and concludes the proof of the claim. Part (b) is proven similarly. □

Let g = g(u) ∈ k[u]⊗k[u] ⊂ R⊗R (that is ∂g
∂un

= 0, for every n ̸= 0) and let r(λ) ∈ k[λ, λ−1]

be such that r(λ−1) = −r(λ). We consider the double multiplicative λ-bracket on R defined by

{{uλu}} = g • r(λS)gσ . (4.17)

Proposition 4.7. The λ-bracket (4.17) defines a double multiplicative Poisson vertex algebra
structure on R if and only if g is of the form (up to a constant multiple that can be absorbed in
r(λ))

g = (αu+ β)⊗ (αu+ β) , α, β ∈ k . (4.18)

Proof. The λ-bracket (4.17) is clearly skewsymmetric in view of the assumption on r(λ) and
(2.9). By a direct computation, using Lemma 3.10, equations (3.7a), (3.7b), the Master Formula
(4.10), the assumption on r(λ) and Lemma 2.5(b)-(c), the Jacobi identity on generators becomes(((

∂

∂u

)
L

(g) •3 g −
(

∂

∂u

)
R

(g) •1 g
)
•1 r(λS)gσ

)
•3 r(µS)gσ

+ g •2 r(λµS)

(((
∂

∂u

)
L

(gσ) •3 g − gσ •2
((

∂

∂u

)
L

(g)

)σ2
)
•3 r(λS)gσ

)

− g •2 r(λµS)
(((

∂

∂u

)
R

(gσ) •1 g − gσ •2
((

∂

∂u

)
R

(g)

)σ)
•1 r(µS)gσ

)
= 0 .

(4.19)

It is straightforward to check that if g is as in (4.18) then the LHS of (4.19) vanishes. On the
other hand, let us assume that r(λ) has order N > 1. Then, vanishing of the coefficient of
λ2NµN in the LHS of (4.19) gives(

∂

∂u

)
L

(gσ) •3 g − gσ •2
((

∂

∂u

)
L

(g)

)σ2

= 0 . (4.20)

Using the identity (A ∈ R⊗2, B ∈ R⊗3)

Aσ •2 Bσ2
= (B •3 A)σ

2

we have that

gσ •2
((

∂

∂u

)
L

(g)

)σ2

=

((
∂

∂u

)
L

(g) •3 g
)σ2

. (4.21)
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From (4.20) and (4.21) it follows that g ∈ k[u]⊗ k[u] must satisfy the equation(
∂

∂u

)
L

(gσ) •3 g =

((
∂

∂u

)
L

(g) •3 g
)σ2

.

By Lemma 4.6(a) with k = 0 and gσ in place of f , and using the fact that ker ∂
∂u ∩ k[u] = k,

we have g′ = au + b, g′′ = cu + d, where a, b, c, d ∈ k satisfy ad = bc. Hence, up to a constant
factor, it is necessary for g to be as in (4.18). This concludes the proof. □

For N ≥ 1, more generally, let us define a skewsymmetric double multiplicative λ-bracket on
R by

{{uλu}} = fλN − (λS)−Nfσ , (4.22)

where f ∈ R⊗R. The next result provides a classification of all the simplest non-trivial examples
of double multiplicative Poisson vertex algebra structures on R.

Proposition 4.8. Fix N ≥ 1. Then, (4.22) defines a double multiplicative Poisson vertex
algebra structure on R if and only if f = g • SNg, where g is as in (4.18).

We will prove the classification result by checking the conditions given by the Jacobi identity
(4.14) for fN := f , f−N := −S−N (fσ) and fk = 0 if k ̸= N,−N . Recall that by (4.15),
f = f(u, u1, . . . , uN ). First we need the following result.

Lemma 4.9. If the double λ-bracket (4.22) satisfies Jacobi identity, then f = f(u, uN ).

Proof. For 1 ≤ α ≤ N − 1, we get by looking at the terms in λN+αµN and λNµN+α in (4.14)
that (

∂

∂uα

)
L

(f) •3 Sα(f) = 0 ,

(
∂

∂uα

)
R

(f) •1 Sα(f) = 0 .

More explicitly, we expand the above identities using (2.10) and get(
∂f ′

∂uα

)′
Sα(f ′)⊗ Sα(f ′′)

(
∂f ′

∂uα

)′′
⊗ f ′′ = 0 , f ′ ⊗

(
∂f ′′

∂uα

)′
Sα(f ′)⊗ Sα(f ′′)

(
∂f ′′

∂uα

)′′
= 0 .

Since f ̸= 0, ∂f ′

∂uα
= 0 and ∂f ′′

∂uα
= 0 for 1 ≤ α ≤ N − 1, so that f = f ′(u, uN )⊗ f ′′(u, uN ). □

Proof of Proposition 4.8. Vanishing of the coefficient of λ2NµN in the LHS of (4.14) gives the
equation (

∂

∂uN

)
L

(f) •3 SNf =

((
∂

∂uN

)
L

(SNf) •3 fσ

)σ2

.

By Lemma 4.6(a) with k = N and SNf in place of g we get

f ′ = s(u)uN + q(u) , SNf ′ = uNr(u2N ) + p(u2N ) , sp = qr ,

where s, q ∈ k[u] = ker ∂
∂uN
∩ k⟨u, uN ⟩ and r, p ∈ k[u2N ] = ker ∂

∂uN
∩ k⟨uN , u2N ⟩. The condition

sp = qr then implies that f ′ = (αu+ β)(αuN + β) for some α, β ∈ k. Similarly, vanishing of the
coefficient of λNµ2N in the LHS of (4.14) and using (4.9) gives the equation(

∂

∂uN

)
R

(f) •1 SNf =

((
∂

∂uN

)
L

(SNfσ) •3 fσ

)σ2

,

which, again by Lemma 4.6(b) gives f ′′ = (γuN + δ)(γu+ δ). Hence,

f = f ′ ⊗ f ′′ = (αu+ β)(αuN + β)⊗ (γuN + δ)(γu+ δ)

= ((αu+ β)⊗ (γu+ δ)) • SN ((αu+ β)⊗ (γu+ δ)) .
(4.23)

Next, we show that αδ = βγ. By Proposition 4.7, this will conclude the proof of the claim. To
do so, we look at the vanishing of the coefficient of λNµN in the LHS of (4.14). This gives the
identity (

∂

∂u

)
L

(f) •3 f =

(
∂

∂u

)
R

(f) •1 f . (4.24)
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From (4.8) and (4.23) we have(
∂

∂u

)
L

(f) = α⊗ (αuN + β)⊗ (γuN + δ)(γu+ δ) ,(
∂

∂u

)
R

(f) = (αu+ β)(αuN + β)⊗ (γuN + δ)⊗ γ .

(4.25)

Substituting equations (4.25) in (4.24) we get that f need to satisfy the identity

α(αu+ β)(αuN + β)⊗ (γuN + δ)(γu+ δ)(αuN + β)⊗ (γuN + δ)(γu+ δ)

= (αu+ β)(αuN + β)⊗ (γuN + δ)(αu+ β)(αuN + β)⊗ γ(γuN + δ)(γu+ δ) ,

which is equivalent to α(γu+ δ) = γ(αu+ β) and implies αδ = βγ. □

Remark 4.10. In [CW2], it is shown that if R is a double multiplicative Poisson vertex algebra
for

{{uλu}} = fλ+ g + (λS)−1fσ ,

then g = 0 and f is as in Proposition 4.8.

4.4. Double multiplicative Poisson vertex algebra structures on R2. Let us consider
R2 = k⟨ui, vi|i ∈ Z⟩ with a double multiplicative Poisson vertex algebra structure such that
{{uλu}} = 0 and {{vλv}} = 0. The following result gives a criterion for such structure, and it is
proven in §4.4.1.

Proposition 4.11. Assume that R2 is equipped with the skewsymmetric double multiplicative
λ-bracket given by

{{uλu}} = 0, {{vλv}} = 0 , {{uλv}} =
∑
k∈Z

gkλ
k ∈ R2 ⊗R2[λ

±1] . (4.26)

Then R2 is a double multiplicative Poisson vertex algebra if and only if

gk =
∑

a,b,c,d=0,1

Kk
abcd v

aubk ⊗ uckv
d , Kk

abcd ∈ k ,

where the following conditions are satisfied:

• for all k, l ∈ Z distinct and for any a, b, c, d, a′, b′, c′, d′ ∈ {0, 1},

Kk
1bcdK

l
a′b′c′0 =Kk

0bcdK
l
a′b′c′1 , (4.27a)

Kk
ab1dK

l
a′0c′d′ =Kk

ab0dK
l
a′1c′d′ ; (4.27b)

• for any k ∈ Z and for any a, b, c, d ∈ {0, 1},

Kk
ab1ϵK

k
ϵ0cd =Kk

ab0ϵK
k
ϵ1cd , ∀ϵ = 0, 1 , (4.28a)

Kk
abϵ0K

k
1ϵcd =Kk

abϵ1K
k
0ϵcd , ∀ϵ = 0, 1 , (4.28b)

Kk
ab10K

k
10cd =Kk

ab01K
k
01cd , (4.28c)

Kk
ab00K

k
11cd =Kk

ab11K
l
00cd . (4.28d)

Example 4.12. If only finitely many coefficients αk := Kk
1111 ∈ k are non-zero, we get that

{{uλv}} =
∑
k∈Z

αk vuk ⊗ ukv λk , (4.29)

yields a double multiplicative Poisson vertex algebra. Indeed, all the conditions gathered in
Proposition 4.11 are quadratic relations in which at least one factor on each side has an index
0. In the same way, for αk := Kk

0000 ∈ k

{{uλv}} =
∑
k∈Z

αk 1⊗ 1 λk , (4.30)

yields trivially a double multiplicative Poisson vertex algebra.
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The double λ-brackets (4.29) and (4.30) are very similar to the two cases from the classification
with one generator given in Proposition 4.8. The following example is quadratic and has no
analogue in the case of an algebra generated by one element.

Example 4.13. For any α ∈ k×, the skewsymmetric double multiplicative λ-bracket given by

{{uλu}} = 0, {{vλv}} = 0, {{uλv}} =
(
v ⊗ uk + uk ⊗ v + αv ⊗ v + α−1uk ⊗ uk

)
λk ,

yields a double multiplicative Poisson vertex algebra. This can be obtained by checking the
conditions from Proposition 4.11 where for fixed k ∈ Z,

Kk
1010 = 1 = Kk

0101 , Kk
1001 = α , Kk

0110 = α−1 .

The four coefficients can not be chosen independently since, for example, (4.28c) yields

(Kk
1010)

2 = Kk
1001K

k
0110 = (Kk

0101)
2 .

Building on the previous example, the following result is proven in §4.4.2 and provides a
classification when there is only one non-zero element gk in (4.26).

Theorem 4.14. Assume that R2 is equipped with the skewsymmetric double multiplicative λ-
bracket given by

{{uλu}} = 0, {{vλv}} = 0, {{uλv}} = gλk , for g ∈ R2 ⊗R2 , k ∈ Z . (4.31)

Then R2 is a double multiplicative Poisson vertex algebra if and only if after a translation

(u, v) 7→ (u+ µ, v + ν) , µ, ν ∈ k , (4.32)

the element g satisfies exactly one of the following five conditions:

(i) g = a 1⊗ 1, a ∈ k;
(ii) g = a v ⊗ v, a ∈ k×;
(iii) g = a uk ⊗ uk, a ∈ k×;
(iv) g = a v ⊗ v + b [v ⊗ uk + uk ⊗ v] + b2

a uk ⊗ uk, a, b ∈ k×;
(v) g = a vuk ⊗ ukv + b [vuk ⊗ 1 + 1⊗ ukv] +

b2

a 1⊗ 1, a ∈ k×, b ∈ k.

Note that the distinct cases can not be related through (4.32), but some are equivalent if one
uses linear transformations. Indeed, cases (ii) and (iii) in Theorem 4.14 are related through

(u, v) 7→ (v, u) , a 7→ −a , k 7→ −k ,

while cases (ii) and (iv) are equivalent under the map (u, v) 7→
(
u, v − b

auk
)
.

Remark 4.15. If we have a double λ-bracket satisfying Theorem 4.14 of the form

{{uλu}} = 0 , {{vλv}} = 0 , {{uλv}} = g0 ∈ R2 ⊗R2 ,

then it defines a double Poisson bracket that is compatible with the automorphism S. Note
that quadratic double Poisson brackets on free algebras are classified in [ORS]. Modulo a linear
transformation, the three quadratic cases from Theorem 4.14 (with k = 0) are all equivalent to

{{u, u}} = 0 , {{v, v}} = 0 , {{u, v}} = v ⊗ v ,

which corresponds to Case 4 in [ORS, Theorem 1]. We also note that the quartic case from
condition (v) in Theorem 4.14 with k = 0 is a new example of double Poisson bracket, to the
best of our knowledge.

Remark 4.16. In view of the theory presented in Section 6, the interest of Proposition 4.11 lies in
the fact that these λ-brackets give rise to commuting families of differential-difference equations
as we have m

{{
ukλu

l
}}

= 0 trivially. The same holds with v replacing u.
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4.4.1. Proof of Proposition 4.11. We assume that {{uλv}} =
∑

k gkλ
k ̸= 0 from now on. We first

remark that the Jacobi identity (3.8b) with a = b = u and c = v has only its first two terms
which are non-zero since {{uλu}} = 0. Denoting it {{uλuµv}}, we can then compute that

{{uλuµv}} =
∑

k,l,n∈Z
λn+lµk

(
∂

∂vn

)
L

(gk) •3 Sn(gl)

−
∑

j,m,s∈Z
λjµm+s

(
∂

∂vm

)
R

(gj) •1 Sm(gs) ,

(4.33)

which must vanish. Similarly, we compute

{{vλvµu}} =
∑

k,l,n∈Z
λn+lµk Sk

(
∂

∂un−k

)
L

(gσ−k) •3 Sn+l(gσ−l)

−
∑

j,m,s∈Z
λjµm+s Sj

(
∂

∂um−j

)
R

(gσ−j) •1 Sm+s(gσ−s) ,

(4.34)

which must also vanish.

Lemma 4.17. For any k ∈ Z, gk depends only on v and uk.

Proof. Since {{uλv}} ∈ R2 ⊗R2[λ
±1], there exists

N+ = max{k | gk ̸= 0} , N− = min{k | gk ̸= 0} .

We now adapt [DSKVW2, Lemma 2.6]. Denoting gk = g′k ⊗ g′′k , we introduce for all k

i′k = max{i |
∂g′k
∂vi
̸= 0} , j′k = min{i |

∂g′k
∂vi
̸= 0} .

Assuming that i′k > 0, we see that the term in λi′k+N+µk in (4.33) is

(
∂

∂vi′
k

)
L

(gk) •3 Si′k(gN+),

which is non-zero by assumption, a contradiction. Thus i′k ≤ 0. Similarly, if j′k < 0, we look at

the term in λj′k+N−µk in (4.33) and get a contradiction. Thus the dependence of g′k on the (vs)
is only on v = v0.

In the exact same way, introduce

i′′k = max{i |
∂g′′k
∂vi
̸= 0} , j′′k = min{i |

∂g′′k
∂vi
̸= 0} .

If i′′k > 0 or j′′k < 0, we look at the terms in λkµi′′k+N+ or λkµj′′k+N− in (4.33) and get contradic-
tions. Thus gk depends only on v and the (us).

Next, we do the same with (4.34). For

r′′k = max{i |
∂g′′k
∂ui
̸= 0} , s′′k = min{i |

∂g′′k
∂ui
̸= 0} ,

we note that if r′′k > k or s′′k < k, then k + r′′−k > 0 or k + s′′−k < 0, so that by looking at the

term in λk+r′′−k−N−µk or λk+s′′−k−N+µk in (4.34) we get contradictions. Similarly, for

r′k = max{i |
∂g′k
∂ui
̸= 0} , s′k = min{i |

∂g′k
∂ui
̸= 0} ,

we get contradictions if r′k > k or s′k < k by looking at the terms in λkµk+r′−k−N− or λkµk+s′−k−N

in (4.34). Hence gk can only depend on uk. □

Lemma 4.18. We have that

gk =
∑

a,b,c,d=0,1

Kk
abcd v

aubk ⊗ uckv
d , Kk

abcd ∈ k .
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Proof. Due to the previous lemma, we can write (4.33) as

{{uλuµv}} =
∑
k,l∈Z

λlµk

[(
∂

∂v

)
L

(gk) •3 gl −
(

∂

∂v

)
R

(gl) •1 gk
]
. (4.35)

This vanishes if the following coefficient of λlµk is zero :

T 1
l,k :=

(
∂g′k
∂v

)′
g′l ⊗ g′′l

(
∂g′k
∂v

)′′
⊗ g′′k − g′l ⊗

(
∂g′′l
∂v

)′
g′k ⊗ g′′k

(
∂g′′l
∂v

)′′
. (4.36)

We can look at the first and third copies in the tensor product, and we see that to have cancel-
lations we need (

∂g′k
∂v

)′
∈ k ,

(
∂g′′l
∂v

)′′
∈ k .

These conditions mean that we must have for any k that

gk = vpk,1(uk)v + vpk,2(uk) + pk,3(uk)v + pk,4(uk) ,

for some pk,i(z) ∈ k[z]⊗ k[z].
Next, we remark that we can write (4.34) as

{{vλvµu}} =
∑
k,l∈Z

λlµk

[
Sk

(
∂

∂u−k

)
L

(gσ−k) •3 Sl(gσ−l)− Sl

(
∂

∂u−l

)
R

(gσ−l) •1 Sk(gσ−k)

]
.

(4.37)
So the term in λlµk is

T 2
l,k :=

(
∂Sk(g′′−k)

∂u

)′

Sl(g′′−l)⊗ Sl(g′−l)

(
∂Sk(g′′−k)

∂u

)′′

⊗ Sk(g′−k)

− Sl(g′′−l)⊗

(
∂Sl(g′−l)

∂u

)′

Sk(g′′−k)⊗ Sk(g′−k)

(
∂Sl(g′−l)

∂u

)′′

.

(4.38)

Looking at the first and third copies in the tensor product, we see that we need(
∂Sk(g′′−k)

∂u

)′

∈ k ,

(
∂Sl(g′−l)

∂u

)′′

∈ k .

These conditions mean that we must have for any k that

gσ−k = u−kqk,1(v)u−k + u−kqk,2(v) + qk,3(v)u−k + qk,4(v) ,

for some qk,i(z) ∈ k[z]⊗ k[z]. Gathering both conditions yield the result. □

To finish the proof of the proposition, we remark that the two conditions (4.28c)–(4.28d) with
fixed k ∈ Z and a, b, c, d ∈ {0, 1} are equivalent to the two identities

Kk
ab10K

k
10cd +Kk

ab11K
k
00cd =Kk

ab00K
k
11cd +Kk

ab01K
k
01cd , (4.39a)

Kk
ab10K

k
10cd +Kk

ab00K
k
11cd =Kk

ab11K
k
00cd +Kk

ab01K
k
01cd . (4.39b)

Lemma 4.19. We have {{uλuµv}} = 0 if and only if the identities (4.27a), (4.28b) and (4.39b)
hold.

Proof. The vanishing of {{uλuµv}} is equivalent to the vanishing of each T 1
l,k (4.36). Plugging

the form of gk in it, we get that∑
aibicidi=0,1

Kk
a1b1c1d1K

l
a2b2c2d2

[
a1 v

a2ub2l ⊗ uc2l vd2ub1k ⊗ uc1k vd1 − d2 v
a2ub2l ⊗ uc2l va1ub1k ⊗ uc1k vd1

]
.

So the factor appearing in front of the term va2ub2l ⊗ uc2l veub1k ⊗ uc1k vd1 is

Kk
1b1c1d1K

l
a2b2c2e −Kk

eb1c1d1K
l
a2b2c21 . (4.40)

If e = +1, this factor must vanish, but this is always true. If e = 0 instead and k ̸= l, (4.40)
must vanish, and this is equivalent to (4.27a). If e = 0 and k = l, note that the terms with the
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same b1+ c2 add up since the second factor of the tensor product becomes ub1+c2
k . If c2 = b1 = 0

or c2 = b1 = +1, we get that (4.40) vanishes which is equivalent to (4.28b).
If c2 + b1 = +1, we sum up the coefficients (4.40) for c2 = 0, b1 = +1 and c2 = +1, b1 = 0,

and this sum must vanish. This is (4.39b). □

In the same way, we prove the next result :

Lemma 4.20. We have {{vλvµu}} = 0 if and only if the identities (4.27b), (4.28a) and (4.39a)
hold.

Proof. The vanishing of {{vλvµu}} is equivalent to the vanishing of each T 2
l,k (4.38), which can

be simplified as∑
aibicidi=0,1

[Kk
a1b11d1K

l
a20c2d2 −Kk

a1b10d1K
l
a20c2d2 ]u

c2vd2l ⊗ va2l vd1k ⊗ va1k ub1 . (4.41)

The terms with k ̸= l must vanish and are equivalent to (4.27b). When k = l, analysing the
cases for a2 + d1 ∈ {0, 1, 2} gives (4.28a) and (4.39a). □

This finishes the proof of Proposition 4.11.

4.4.2. Proof of Theorem 4.14. By Proposition 4.11, we can write

g =
∑

a,b,c,d=0,1

Kabcd v
aubk ⊗ uckv

d , Kabcd ∈ k ,

and the constants Kabcd satisfy (4.28a)–(4.28d) (with the index k omitted). We will repeatedly
need the following identities, which are special cases of (4.28a)–(4.28d) containing squares:

K2
1011 =K1111K1001 = K2

1101 , K2
0010 = K0000K0110 = K2

0100 , (4.42a)

K2
1110 =K1111K0110 = K2

0111 , K2
1000 = K0000K1001 = K2

0001 , (4.42b)

K2
1100 =K1111K0000 = K2

0011 , K2
1010 = K1001K0110 = K2

0101 . (4.42c)

A. K1111 = 0. We must have

g =K0110uk ⊗ uk +K1001 v ⊗ v +K1010v ⊗ uk +K0101uk ⊗ v

+K1000 v ⊗ 1 +K0100uk ⊗ 1 +K00101⊗ uk +K00011⊗ v +K0000 1⊗ 1 .

A.1. Assume furthermore that K1001 = K0110 = 0. All the coefficients except K0000 must be
zero, and the latter can take an arbitrary value while (4.28a)–(4.28d) are satisfied. This is case
(i).

A.2. Assume furthermore that K0110 = 0, K1001 ̸= 0. We must have

g = K1001 v ⊗ v +K1000 v ⊗ 1 +K00011⊗ v +K0000 1⊗ 1 .

By (4.28b), K1000K1001 = K1001K0001 so that K1000 = K0001. Up to making the translation

v 7→ v− K1000
K1001

, we can assume that g = K1001 v⊗ v+K0000 1⊗ 1. Using (4.42b), K0000 = 0 and

all the conditions (4.28a)–(4.28d) are satisfied for an arbitrary K1001; this is case (ii).
A.3. Assume furthermore that K1001 = 0, K0110 ̸= 0. By an argument similar to A.2, we are

in case (iii) of the statement after a translation.
A.4. If K1001 ̸= 0 and K0110 ̸= 0, we can adapt the previous arguments to reduce to the case

g = K0110uk ⊗ uk +K1001 v ⊗ v +K1010v ⊗ uk +K0101uk ⊗ v ,

after a translation. Note that the second identity in (4.42c) must hold, hence the four coefficients
are non-zero. Moreover, we get from (4.28c) that K1001K1010 = K1001K0101, from which K1010 =
K0101. We must then be in case (iv), and it is easy to see that such a form will always satisfy
the conditions (4.28a)–(4.28d).

B. K1111 ̸= 0. We have as special cases of (4.28a) and (4.28b) that

K1111K1011 = K1101K1111 , K1110K1111 = K1111K0111 .
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Hence after the translation u 7→ u− K1011
K1111

, v 7→ v − K0111
K1111

, we can assume that there is no term

in g which is cubic in (uk, v). This in turn implies that

g = K1111 vuk ⊗ ukv +K1100 vuk ⊗ 1 +K0011 1⊗ ukv +K0000 1⊗ 1 .

The remaining terms are subject to the first identity in (4.42c), as well as K0000K1100 =
K0011K0000 which is a special case of (4.28d). Therefore g must be of the form given in case (v),
and it can be checked that g satisfies all the identities in (4.28a)–(4.28d).

5. Relation to representation spaces

Given an associative algebra V, recall that for N ≥ 1 we can form the N -th representation
algebra VN defined in §2.2.3. We also have that each S ∈ Aut(V) induces an automorphism
of VN from its definition on generators by S(aij) = (S(a))ij . We will prove the analogue of
Theorem 3.6 and [DSKV, §3.7] for multiplicative Poisson vertex algebras.

Theorem 5.1. Assume that {{−λ−}} is a double multiplicative λ-bracket on V. Then there is a
unique multiplicative λ-bracket on VN which satisfies for any a, b ∈ V, 1 ≤ i, j ≤ N ,

{aij λbkl} =
∑
n∈Z

(anb)
′
kj(anb)

′′
ilλ

n , where {{aλb}} =
∑
n∈Z

((anb)
′ ⊗ (anb)

′′)λn . (5.1)

Furthermore, if (V, {{−λ−}}) is a double multiplicative Poisson vertex algebra, then (VN , {−λ−})
is a multiplicative Poisson vertex algebra.

Proof. We begin by proving the first part, which is similar to [DSKV, Prop. 3.20].
The operation {−λ−} given by equation (5.1) is defined on generators and it is extended

uniquely to all elements of VN by the Leibniz rules (2.1b)–(2.1c). To ensure that {−λ−} is
well-defined, we need to show

{aij λ(bc)kl} =
N∑

u=1

{aij λbcucul} , (5.2)

and do the same with respect to the first entry. To see that (5.2) holds, we compute the left-hand
side using (3.4b) as follows :

{aij λ(bc)kl} =
∑
n∈Z

(anbc)
′
kj(anbc)

′′
ilλ

n

=
∑
n∈Z

[
(anb)

′
kj((anb)

′′c)il + (b(anc)
′)kj(anc)

′′
il

]
λn

=
∑
n∈Z

N∑
u=1

[
(anb)

′
kj(anb)

′′
iucul + bku(anc)

′
uj(anc)

′′
il

]
λn .

The same result can easily be obtained for the right-hand side of (5.2) using the Leibniz rule.
To get that {−λ−} defined by (5.1) is a multiplicative λ-bracket, it remains to check sesquilin-

earity (2.1a). This will follow if we can show that

{S(aij)λbkl} = λ−1{aij λbkl} , {aijλS(bkl)} = λS({aij λbkl}) . (5.3)

For the first identity in (5.3), we have

{S(aij)λbkl} ={S(a)ij λbkl} =
∑
n∈Z

(S(a)nb)
′
kj(S(a)nb)

′′
ilλ

n

=
∑
n∈Z

λ−1(anb)
′
kj(anb)

′′
ilλ

n = λ−1{aij λbkl} ,

where we used (3.4a) for the third equality. The second identity in (5.3) is checked in the same
way.

If we have a double multiplicative Poisson vertex algebra, we use (3.8a) in the form∑
n∈Z

(anb)
′ ⊗ (anb)

′′λn = −
∑
n∈Z

λ−nS−n
(
(bna)

′′ ⊗ (bna)
′)
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to get that

{aij λbkl} =
∑
n∈Z

(anb)
′
kj(anb)

′′
ilλ

n = −
∑
n∈Z

λ−nS−n
(
(bna)

′′
kj(bna)

′
il

)
=−

∑
n∈Z

λ−nS−n
(
(bna)

′
il(bna)

′′
kj

)
= −

(
x=S
{bkl λ−1x−1aij}

)
,

which gives that {−λ−} defined by (5.1) satisfies the skewsymmetry property (2.2a). Then, we
can conclude because Jacobi identity (2.2b) holds by Lemma 5.2 whenever (3.8b) does. □

For the next lemma, we introduce some notations to go from V⊗3 to VN . For any A =
a′ ⊗ a′′ ⊗ a′′′ ∈ V⊗3, and 1 ≤ i, j, k, l,m, n ≤ N , we define

Aij,kl,mn := a′ij a
′′
kl a

′′′
mn .

We extend this operation in the obvious way to associate Aij,kl,mn ∈ VN [λ±1, µ±1] to any A ∈
V⊗3[λ±1, µ±1].

Lemma 5.2. For any a, b, c ∈ V and 1 ≤ i, j, k, l, u, v ≤ N , if {{−λ−}} is a double λ-bracket
such that (3.8a) holds, then we have that

{aij λ{bkl µcuv}} − {bkl λ{aij µcuv}} − {{aij λbkl}λµcuv} = {{aλbµc}}uj,il,kv − {{bµaλc}}ul,kj,iv ,

where {−λ−} is defined by (5.1), while {{−λ −µ −}} is given by (3.10).

Proof. Using the Leibniz rules for a multiplicative λ-bracket and the definition (5.1), we have

{aij λ{bkl µcuv}} =
∑
q∈Z
{aij λ(bqc)′ul(bqc)′′kv}µq

=
∑
p,q∈Z

[
(ap(bqc)

′)′uj(ap(bqc)
′)′′il(bqc)

′′
kv + (ap(bqc)

′′)′kj(ap(bqc)
′′)′′iv(bqc)

′
ul

]
λpµq .

Similarly, −{bkl µ{aij λcuv}} can be written as∑
p,q∈Z

[
− (bq(apc)

′)′ul(bq(apc)
′)′′kj(apc)

′′
iv − (bq(apc)

′′)′il(bq(apc)
′′)′′kv(apc)

′
uj

]
λpµq ,

while −{{aij λbkl}λµcuv} can be written as∑
p,q∈Z

[
− ((apb)

′
qc)

′
uj((apb)

′
qc)

′′
kvS

q((apb)
′′
il)− ((apb)

′′
qc)

′
ul((apb)

′′
qc)

′′
ivS

q((apb)
′
kj)
]
λpµq ,

so that we get six terms for the left-hand side. Meanwhile, we can use (3.10) to get {{aλbµc}},
and we can write

{{aλbµc}}uj,il,kv =
∑
p,q∈Z

(ap(bqc)
′)′uj(ap(bqc)

′)′′il(bqc)
′′
kvλ

pµq

−
∑
p,q∈Z

(apc)
′
uj(bq(apc)

′′)′il(bq(apc)
′′)′′kvλ

pµq

−
∑
p,q∈Z

((apb)
′
qc)

′
ujS

q((apb)
′′)il((apb)

′
qc)kvλ

p+qµq .

If we use (3.11) to expand {{bµaλc}}, we can write

−{{bµaλc}}ul,kj,iv =−
∑
p,q∈Z

(bq(apc)
′)′ul(bq(apc)

′)′′kj(apc)
′′
ivλ

pµq

+
∑
p,q∈Z

(bqc)
′
ul(ap(bqc)

′′)′kj(ap(bqc)
′′)′′ivλ

pµq

−
∑
p,q∈Z

((apb)
′′
qc)

′
ulS

q((apb)
′)kj((apb)

′′
qc)

′′
ivλ

p+qµq .
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It now suffices to see that the left- and right-hand sides coincide since S(dmn) = S(d)mn for any
d ∈ A and indices 1 ≤ m,n ≤ N . □

Example 5.3. Using V from Example 3.16, we get for N ≥ 1 the representation algebra
VN = k[um,ij | m ∈ Z, 1 ≤ i, j ≤ N ] which is a multiplicative Poisson vertex algebra by
Theorem 5.1. The automorphism on VN is given by S(um,ij) = um+1,ij , and the multiplicative
λ-bracket satisfies

{um,ijλun,kl} = λn−m
(
un,kjδil − un,ilδkj

)
.

Example 5.4. Combining Proposition 4.8 with V = R1 and Theorem 5.1, we get for N ≥ 1
that the representation algebra VN (as in Example 5.3) is a multiplicative Poisson vertex algebra
for the multiplicative λ-bracket

{uijλukl} = (uuM )kj(uMu)ilλ
M − (uu−M )kj(u−Mu)ilλ

−M ,

where uij := u0,ij and M ≥ 1. For M = N = 1, if we set u := u11 we get that the commutative
polynomial algebra in one variable k[um | m ∈ Z] is equipped with the following multiplicative
λ-bracket

{uλu} = u2u21λ− u2u2−1λ
−1 . (5.4)

This can be seen as the “square” of the λ-bracket for the Volterra lattice [DSKVW2] given on
k[vs | s ∈ Z] by

{vλv} = vv1λ− vv−1λ
−1.

Indeed, we recover (5.4) for u = v2 up to a factor.

Corollary 5.5. The (non-commutative) correspondence between local lattice double Poisson
algebras and double multiplicative Poisson vertex algebras from Proposition 3.14 induces the
(commutative) correspondence between local lattice Poisson algebras and multiplicative Poisson
vertex algebras from Proposition 2.3 on representation spaces.

Proof. Fix a, b ∈ V for V a local lattice double Poisson algebra with double Poisson bracket
{{−,−}}. By Proposition 3.14, V is a double multiplicative Poisson vertex algebra with multi-
plicative λ-bracket given in (2.4).

Using Van den Bergh’s work [VdB1], (1.1) defines a Poisson bracket on VN . It is easy to check
that VN is a local lattice Poisson algebra by inducing S from V to VN as in §2.2.3. Alternatively,
we can use Theorem 5.1 to get a multiplicative λ-bracket on VN as follows. Recalling the first
equation in (5.1), we have

{aijλbkl} =
∑
n∈Z

λn(anb)
′
kj(anb)

′′
il

(3.19)
=

∑
n∈Z

λn {{Sn(a), b}}′kj {{S
n(a), b}}′′il

=
∑
n∈Z

λn{Sn(a)ij , bkl} =
∑
n∈Z

λn{Sn(aij), bkl} ,

in agreement with (2.4).
Starting from the double multiplicative Poisson vertex algebra instead, we get in a similar

fashion that the induced Poisson bracket on VN satisfies

{aij , bkl} = {{a, b}}′kj {{a, b}}
′′
il

(3.18)
= (a0b)

′
kj(a0b)

′′
il = mResλ

∑
n∈Z

(anb)
′
kj(anb)

′′
ilλ

n = mResλ{aijλbkl} .

This is consistent with (2.3). □

Corollary 5.5 can be summarised in terms of the commutative diagram depicted in Figure 1.

6. Connection to Integrable Systems

It is shown in [DSKV] that double Poisson vertex algebras provide a convenient framework to
study non-commutative partial differential equations. In this section we provide“multiplicative
versions” of some of the results in [DSKV] aimed at showing that double multiplicative Poisson
vertex algebras provide a convenient framework to study non-commutative differential-difference
equations. Several examples are presented in Section 6.4.
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(V, {{−,−}} , S) (V, {{−λ−}} , S)

(VN , {−,−}, S) (VN , {−λ−}, S)

Prop. 3.14

Prop. 2.3

(1.1) (5.1)

Figure 1.

6.1. The trace map and connection to Lie algebras. Let V be a unital associative algebra
endowed with an automorphism S of infinite order. We denote by m : V ⊗ V → V the mul-
tiplication map. We denote also by [V,V] ⊂ V the commutator subspace. For f ∈ V, we let
tr(f) ∈ V/[V,V] be the corresponding coset. Furthermore, for f ∈ V, we also let

∫
f be the coset

of f ∈ V in the quotient space

F := V/([V,V] + (S − 1)V) .
Given a double multiplicative λ-bracket {{−λ−}} on V we define the following map {−λ−} :

V ⊗ V → V[λ, λ−1] by
{aλb} = m{{aλb}} (6.1)

(the multiplication map on V ⊗ V is extended to a multiplication map m : (V ⊗ V)[λ, λ−1] →
V[λ, λ−1] in the obvious way), and we also define the map {−,−} : V ⊗ V → V by

{a, b} = m{{aλb}}|λ=1 . (6.2)

Lemma 6.1. If {{−λ−}} is a skewsymmetric double multiplicative λ-bracket on V, then the
following identity holds in V⊗2[λ±1, µ±1] (a, b, c ∈ V):

{aλ{{bµc}}} − {{bµ{aλc}}} − {{{aλb}λµc}} = (m⊗1){{aλbµc}} − (1⊗m){{bµaλc}} . (6.3)

where we set {aλb⊗ c} = {aλb} ⊗ c+ b⊗ {aλc}.

Proof. Let us compute the three terms on the LHS of (6.3). We get after a straightforward
computation

{aλ{{bµc}}} = (m⊗1){{aλ{{bµc}}}}L + (1⊗m){{aλ{{bµc}}}}R ,

{{bµ{aλc}}} = (1⊗m){{bµ{{aλc}}}}L + (m⊗1){{bµ{{aλc}}}}R ,

{{{aλb}λµc}} = (m⊗1){{{{aλb}}λµc}}L + (1⊗m){{{{aλb}}λµc}}R .

By skewsymmetry and Lemma 3.11, we can replace the last term in the RHS of the third equation
by −(1⊗m){{{{bµa}}λµc}}L. Combining the three equations above, we then get (6.3). □

Theorem 6.2. Let V be a unital associative algebra with an automorphism S, endowed with a
double multiplicative λ-bracket {{−λ−}}. Let {−λ−} and {−,−} be defined as in (6.1) and (6.2).

(a) S[V,V] ⊂ [V,V]. Hence, we have a well defined induced map (denoted, by abuse of notation,
by the same symbol) S : V/[V,V]→ V/[V,V], given by S(tr f) = tr(Sf).

(b) {[V,V]λV} = 0, and {Vλ[V,V]} ⊂ [V,V]⊗k[λ±1]. Hence, we have well defined induced maps
(denoted, by abuse of notation, by the same symbol)

{−λ−} : V/[V,V]× V → V[λ±1] ,

and
{−λ−} : V/[V,V]× V/[V,V]→ V/[V,V][λ±1] ,

given, respectively, by
{tr(f)λg} = m{{fλg}} , (6.4)

and
{tr(f)λ tr(g)} = tr(m{{fλg}}) . (6.5)
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(c) If the double multiplicative λ-bracket is skewsymmetric, then so is the λ-bracket (6.5):

{tr(f)λ tr(g)} = −{tr(g)λ−1S−1 tr(f)} .

(d) If the double multiplicative λ-bracket defines a structure of a double multiplicative Pois-
son vertex algebra on V, then the multiplicative λ-bracket (6.5) satisfies the Jacobi identity
(f, g, h ∈ V)

{tr(f)λ{tr(g)µ tr(h)}} − {tr(g)µ{tr(f)λ tr(h)}} = {{tr(f)λ tr(g)}λµ tr(h)} .

Hence, (6.5) endows V/[V,V] with a structure of multiplicative Lie conformal algebra (cf.
Remark 2.4). Furthermore, the λ-action (6.4) of V/[V,V] on V defines a representation of
the multiplicative Lie conformal algebra V/[V,V] given by conformal derivations of V.

(e) {[V,V] + (S− 1)V,V} = 0, and {V, [V,V] + (S − 1)V} ⊂ ([V,V] + (S− 1)V)⊗k[λ±1]. Thus,
we have well defined induced brackets (denoted, by abuse of notation, by the same symbol)

{−,−} : F × V → V ,

and

{−,−} : F × F → F ,

given, respectively, by

{
∫
f, g} := m{{fλg}}|λ=1 , (6.6)

and

{
∫
f,
∫
g} :=

∫
m{{fλg}}|λ=1 . (6.7)

(f) If the double multiplicative λ-bracket is skewsymmetric, then so is the bracket (6.7).
(g) If the double multiplicative λ-bracket defines a structure of a double multiplicative Poisson

vertex algebra on V, then the bracket (6.7) defines a structure of a Lie algebra on F . Fur-
thermore, the action of F on V, given by (6.6), defines a representation of the Lie algebra
F by derivations of V commuting with S.

Proof. Part (a) is straightforward, since S is an automorphism of V. Using the right Leibniz
rule we have, for a, b, c ∈ V,

{abλc} = m{{abλc}} = m
(
(|x=Sa)⊗1 {{bλxc}}+ {{aλxc}} ⊗1 (|x=Sb)

)
.

The expression in parenthesis in the RHS above is unchanged if we switch a and b (since x ⊗1

(y′⊗ y′′) = y′⊗ x⊗ y′ = (y′⊗ y′′)⊗1 x), so that we have {abλc} = {baλc}. Furthermore, we can
compute that

{aλbc} = m{{aλbc}} = m
(
{{aλb}}c+ b{{aλc}}

)
= {aλb}c+ b{aλc} .

Namely, the λ-action {aλ−} is by derivations of the associative product of V. This yields

{aλbc− cb} = [b, {aλc}] + [{aλb}, c] ∈ [V,V]⊗ k[λ±1] ,

which finishes the proof of part (b). Part (c) is immediate. Part (d) is a direct consequence of
Lemma 6.1. Finally, parts (e), (f) and (g) can be proven in the same way. Alternatively, one
can use the standard construction that associates with a multiplicative Lie conformal algebra V
the corresponding Lie algebra V/(S − 1)V and its representation on V . □

Remark 6.3. Lemma 6.1 and Theorem 6.2 are multiplicative versions of [DSKV, Lemma 3.5]
and [DSKV, Theorem 3.6], respectively.

6.2. Evolution differential-difference equations and Hamiltonian differential-difference
equations. Let V be an algebra of difference functions in the variable ui, i ∈ I = {1, . . . , ℓ},
see Definition 4.2. An evolution differential-difference equation over V has the form

dui
dt

= Pi ∈ V , i ∈ I . (6.8)
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Assuming that time derivative commutes with the automorphism S, we have
dui,n

dt = Sn(Pi),
and, by the chain rule, a function f ∈ V evolves according to

df

dt
=

∑
(i,n)∈I×Z

m
(
(SnPi) ∗1

∂f

∂ui,n

)
= XP (f) . (6.9)

We call F = V/([V,V] + (S − 1)V) the space of local functionals. An integral of motion is a
local functional

∫
f ∈ F constant in time:

d
∫
f

dt
=

∫ ∑
(i,n)∈I×Z

m
(
(SnPi) ∗1

∂f

∂ui,n

)
= 0 . (6.10)

We call vector field on V any derivation X : V → V of the form

X(f) =
∑

(i,n)∈I×Z

m
(
Pi,n ∗1

∂f

∂ui,n

)
, (6.11)

where Pi,n ∈ V for all i, n. Note that the RHS of (6.11) is a finite sum because ∂f
∂ui,n

= 0 for all

but finitely many choices of indices (i, n), as V is an algebra of difference functions.
An evolutionary vector field is a vector field commuting with the automorphism S. Gathering

(4.9) and (6.9), it must have the form

XP (f) =
∑

(i,n)∈I×Z

m
(
(SnPi) ∗1

∂f

∂ui,n

)
, (6.12)

for P = (Pi)
ℓ
i=1 ∈ Vℓ, called the characteristics of the evolutionary vector field XP .

Vector fields form a Lie algebra, and evolutionary vector fields form a Lie subalgebra, which
we denote respectively by Vect(V) and VectS(V). The Lie bracket of two evolutionary vector
fields XP , XQ ∈ VectS(V) takes the usual form

[XP , XQ] = X[P,Q] , where [P,Q]i = XP (Qi)−XQ(Pi) , i ∈ I .

Equation (6.8) is called compatible with another evolution differential-difference equation dui
dτ =

Qi, i ∈ I, if the corresponding evolutionary vector fields commute.
More generally, let V be a double multiplicative Poisson vertex algebra. The Hamiltonian

equation on V, associated with the Hamiltonian functional
∫
h ∈ F is

du

dt
= {
∫
h, u} , (6.13)

for any u ∈ V. An integral of motion for the Hamiltonian equation (6.13) is a local functional∫
f ∈ F such that {

∫
h,
∫
f} = 0. In this case, by Theorem 6.2(g), the evolutionary vector

fields Xh = {
∫
h,−} and Xf = {

∫
f,−} (called Hamiltonian vector fields) commute, hence

equations du
dt = {

∫
f, u} and (6.13) are compatible. If we are given a family of independent local

functionals {
∫
fk | k ∈ Z+} whose evolutionary Hamiltonian vector fields {Xfk | k ∈ Z+} are

pairwise commuting, we will say that the corresponding Hamiltonian equations defined through
(6.13) form an integrable hierarchy of Hamiltonian differential-difference equations.

Let us now assume that V is an algebra of difference functions in the variables ui, i ∈ I,
and that the double multiplicative λ-bracket {{−λ−}} on V is given by a Poisson structure H(S)
via (4.10), where {{uiλuj}} = Hji(λ). The Hamiltonian equation (6.13) becomes the following
evolution equation

dui
dt

= m
ℓ∑

j=1

Hij(S) •
( δh

δuj

)σ
, (6.14)

where we introduce the difference variational derivative δh
δuj
∈ V ⊗ V of h by

δh

δuj
=
∑
n∈Z+

S−n ∂h

∂uj,n
. (6.15)
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In equation (6.14) S is moved to the right of the • product, acting on δh
δuj

. Moreover, the Lie

bracket {−,−} on F defined by (6.7), becomes such that for all f, g ∈ V:

{
∫
f,
∫
g} =

∫ ∑
i,j∈I

m

(
δg

δuj

)σ

m

(
Hji(S) ∗1 m

(
δf

δui

)σ)
. (6.16)

Then, the notions of compatibility and of integrals of motion are consistent with those for general
evolution differential-difference equations, due to Theorem 4.3.

Remark 6.4. For H(S) ∈ Matℓ×ℓ(V ⊗ V)[S] and F ∈ V⊕ℓ, let H(S)F ∈ Vℓ be defined by

(H(S)F )i =
∑
j∈I

m(Hij(S) ∗1 Fj) =
∑

j∈I,n∈Z
H ′

ij,n(S
nFj)H

′′
ij,n . (6.17)

(Here, we used the notation Hij(S) =
∑

n∈Z(H
′
ij,n ⊗ H ′′

ij,n)S
n.) Then, formula (6.16) can be

written in the more traditional form

{
∫
f,
∫
g} =

∫
δg · (H(S)δf) ,

where (δf)i = m
(

δf
δui

)σ
and · denotes the usual dot product of vectors. The latter notation is

compatible with the theory of the variational complex developed in §6.3, cf. (6.25).

Remark 6.5. Many of the results derived so far are compatible with their commutative analogues
[DSKVW1, DSKVW2] when we go from V to the N -th representation algebra VN , N ≥ 1 (see
Section 6). The role of V/[V,V] is played by

VtrN := {trX (a) =
∑

1≤i≤N

aii | a ∈ V}

where we denote by X (a) = (aij) the matrix-valued function representing the element a ∈ V.
Similarly, we have to replace F by

FN := VtrN/( (S − 1)VtrN ) .

We note two important such results (assuming that V is a double multiplicative Poisson ver-
tex algebra). First, (6.6) induces a representation of the Lie algebra FN on V by derivations
commuting with S through

{
∫
trX (f),X (g)} = X (m {{fλg}} |λ=1) .

(The Lie bracket on FN is obtained by projecting this identity to FN × VtrN then FN × FN , in
agreement with (6.7).) Second, a Hamiltonian functional

∫
h ∈ F gives rise to such a functional∫

trX (h) ∈ FN , and (6.13) induces the following Hamiltonian equation at the level of the
representation algebra VN :

duij
dt

= {
∫
trX (h), uij} = (m {{hλu}} |λ=1)ij ,

for all u ∈ V and 1 ≤ i, j ≤ N . In particular, an integral of motion
∫
f ∈ F for

∫
h induces

the integral of motion
∫
trX (f) ∈ FN for

∫
trX (h), and a (“non-commutative”) integrable

hierarchy on V as defined above induces a non-abelian (i.e. matrix-valued) integrable hierarchy
on VN in the usual sense. Applying this point of view to the different examples gathered in §6.4
gives non-abelian integrable hierarchies of differential-difference equations.

6.3. de Rham complex over an algebra of difference functions. Let V be an algebra

of difference functions. The de Rham complex Ω̃(V) of V is defined as the free product of the
algebra V and the algebra k⟨δui,n | i ∈ I = {1, . . . , ℓ}, n ∈ Z⟩ of non-commutative polynomials

in the variables δui,n. The action of the automorphism S is extended from V to Ω̃(V) by letting
S(δui,n) = δui,n+1 for all (i, n) ∈ I × Z.

The algebra Ω̃(V) has a Z+-grading, denoted by p, such that f ∈ V has degree p(f) = 0 and

the δui,n’s have degree p(δui,n) = 1. We consider Ω̃(V) as a superalgebra, with superstructure
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compatible with the Z+-grading. Then, the subspace of elements of degree k, denoted Ω̃k(V),
consists of linear combinations of terms of the form

ω̃ = f1δui1,m1f2δui2,m2 . . . fkδuik,mk
fk+1 , where f1, . . . , fk+1 ∈ V . (6.18)

Note that Ω̃0(V) = V and Ω̃1(V) ≃ ⊕(i,n)∈I×ZVδui,nV.
We turn Ω̃(V) into a differential algebra by considering the de Rham differential δ on Ω̃(V)

defined as the odd derivation of degree 1 on the superalgebra Ω̃(V) satisfying

δf =
∑

(i,n)∈I×Z

( ∂f

∂ui,n

)′
δui,n

( ∂f

∂ui,n

)′′
∈ Ω̃1(V) for f ∈ V , and δ(δui,n) = 0 . (6.19)

The proof that δ is a differential, i.e. δ2 = 0, is a direct computation (it is the same as for the
algebra of differential functions, cf. [DSKV, §2.7]). Therefore we can consider the corresponding

cohomology complex (Ω̃(V), δ).
Given a vector field XP =

∑
(i,n)∈I×Zm ◦

(
Pi,n ∗1 ∂

∂ui,n

)
∈ Vect(V) (cf. (6.11)), we define the

associated Lie derivative LP : Ω̃(V) → Ω̃(V) as the even derivation of degree 0 which extends
XP from V, in such a way that LP (δui,n) = δPi,n, i ∈ I, n ∈ Z. We can also define the associated

contraction operator ιP : Ω̃(V)→ Ω̃(V) as the odd derivation of degree −1 given on generators
by ιP (f) = 0, for f ∈ V, and ιP (δui,n) = Pi,n. In analogy with [DSKV, Proposition 2.17],

we remark that Ω̃(V) is a Vect(V)-complex, which means that the following results hold in the
multiplicative setting as well.

Proposition 6.6. Fix P,Q ∈ VI×Z. Under the identifications P ↔ XP and Q↔ XQ, we have:

(a) [ιP , ιQ] = 0 ;
(b) [LP , ιQ] = ι[P,Q] ;
(c) [LP , LQ] = L[P,Q] ;
(d) LP = ιP δ + διP (Cartan’s formula).

Proof. These are equalities of derivations of the superalgebra Ω̃(V), so they only need to be
checked on generators. For example, let us establish (c). We start by noting that LP δ−δLP = 0
because it is an equality of derivations that is easily checked on the generators ui,n, δui,n. Thus,
using the identification from the statement, the left-hand side of (c) satisfies

[LP , LQ](f) =LP (XQ(f))− LQ(XP )(f) = [XP , XQ](f) , ∀f ∈ V ,
[LP , LQ](δui,n) =δ([LP , LQ](ui,n)) = δ([XP , XQ](ui,n)) .

Meanwhile, we get for the right-hand side

L[P,Q](f) =[XP , XQ](f) , ∀f ∈ V ,
L[P,Q](δui,n) =δ(L[P,Q](ui,n)) = δ([XP , XQ](ui,n)) . □

Our next step is to construct a reduction of the complex (Ω̃(V), δ).

Proposition 6.7. In the de Rham complex (Ω̃(V), δ) we have:

(a) The commutator subspace [Ω̃(V), Ω̃(V)] is compatible with the Z+-grading and is preserved
by δ.

(b) δ and S commute, therefore (S− 1)Ω̃(V) is compatible with the Z+-grading and is preserved
by δ.

(c) Given an evolutionary vector field XP of characteristics P = (Pi)
ℓ
i=1 (cf. (6.12)), The

associated Lie derivative LP and contraction operator ιP commute with the action of S on

Ω̃(V).

Proof. The proof is analog to the proof of Proposition 3.15 in [DSKV]. Part (a) follows imme-

diately since δ is a derivation of the associative product on Ω̃(V). Part (b) is proven if we can

show that δ(Sω̃) = S(δω̃) for every ω̃ ∈ Ω̃(V). Given ω̃1, ω̃2 ∈ Ω̃(V), it is easy to check that

[δ, S](ω̃1ω̃2) = [δ, S](ω̃1)S(ω̃2) + (−1)p(ω̃1)S(ω̃1)[δ, S](ω̃2) .
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Hence, to prove the claim it suffices to check that [δ, S] is zero on δui,n and f ∈ V. The identity

[δ, S](δui,n) = 0 is obvious from the second equation in (6.19) and the action of S on Ω̃(V). On
the other hand, using the first identity in (6.19) we have

S(δf) =
∑

(i,n)∈I×Z

(
S

∂f

∂ui,n

)′
δui,n+1

(
S

∂f

∂ui,n

)′′
and

δ(Sf) =
∑

(i,n)∈I×Z

(∂(Sf)
∂ui,n

)′
δui,n

(∂(Sf)
∂ui,n

)′′
.

Hence, [δ, S](f) = 0 by (4.9). Part (c) can be proven similarly. □

Thanks to Proposition 6.7(a-b), we can form the Z+-graded variational complex

Ω(V) = Ω̃(V)/
(
(S − 1)Ω̃(V) + [Ω̃(V), Ω̃(V)]

)
= ⊕n∈Z+Ω

n(V) , (6.20)

which is equipped with a differential induced by δ. Using Proposition 6.7(c), the Lie derivatives
LP and contraction operators ιP , associated with the evolutionary vector field XP of character-
istics P ∈ Vℓ, descend to well defined maps on the variational complex Ω(V).

Example 6.8. For Rℓ as in §4.2, the total degree vector field X∆, with characteristics ∆ =
(ui)

ℓ
i=1, is an evolutionary vector field on Rℓ. By adapting [DSKV, Theorem 2.18], we can show

that the contraction operator ι∆ associated with X∆ is a homotopy operator for the complex

(Ω̃(Rℓ), δ), hence it is acyclic: Hn(Ω̃(Rℓ), δ) = δn,0k. In the exact same way, we can see that
the complex (Ω(Rℓ), δ) is acyclic as well, i.e.

Hk(Ω(Rℓ), δ) = δk,0k . (6.21)

Next, we give an explicit description of the complex (Ω(V), δ) by adapting [DSK1, DSK2,
DSKV]. It is clear that Ω0(V) = F , the space of local functionals. For k ≥ 1, let us introduce

the space Σk(V) of arrays
(
Ai1...ik(λ1, . . . , λk−1)

)ℓ
i1,...,ik=1

with entries

Ai1...ik(λ1, . . . , λk−1) ∈ V⊗k[λ±1
1 , . . . , λ±1

k−1],

satisfying the following skewadjointness condition (i1, . . . , ik ∈ I):

Ai1...ik(λ1, . . . , λk−1) = −(−1)k|x=S

(
Ai2...iki1(λ2, . . . , λk−1, (λ1 . . . λk−1x)

−1)
)σ

, (6.22)

where σ denotes the action of the cyclic permutation on V⊗k as in (2.6), and we are using the
same notation as in (3.5). We claim that there is an isomorphism Ωk(V) ≃ Σk(V), which we
prove by writing explicitly the maps in both directions.

Fix a coset ω = [ω̃] ∈ Ωk(V), where ω̃ is as in (6.18). We map ω to the array A =(
Aj1...jk(λ1, . . . , λk−1)

)ℓ
i1,...,ik=1

∈ Σk(V), with entries Aj1...jk(λ1, . . . , λk−1) = 0 unless (j1, . . . , jk)

is a cyclic permutation of (i1, . . . , ik), and

Aj1...jk(λ1, . . . , λk−1) =
1

k
(−1)s(k−s)λ

ns+1

1 . . . λnk
k−sλ

n1
k−s+1 . . . λ

ns−1

k−1

(λ1 . . . λk−1S)
−ns
(
fs+1 ⊗ · · · ⊗ fk ⊗ fk+1f1 ⊗ f2 ⊗ · · · ⊗ fs

)
,

(6.23)

for (j1, . . . , jk) = (iσs(1), . . . , iσs(k)). The inverse map Σk(V )→ Ωk(V ) is given by( ∑
n1,...,nk−1∈Z

A
n1...nk−1

i1...ik
λn1
1 . . . λ

nk−1

k−1

)ℓ
i1,...,ik=1

7→

∑
i1,...,ik∈I

n1,...,nk−1∈Z

[
(A

n1...nk−1

i1...ik
)′δui1,n1 . . . (A

n1...nk−1

i1...ik
)

k−1︷︸︸︷
′ . . . ′δuik−1,nk−1

(A
n1...nk−1

i1...ik
)

k︷︸︸︷
′ . . . ′δuik

]
.

(6.24)

(Here, we use Sweedler’s notation.) It is not hard to verify that the maps (6.23) and (6.24) are
well defined and inverse to each other. Hence the space of degree k elements in the variational
complex Ωk(V) and the space of arrays Σk(V) can be identified using these maps.
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We can explicitly translate the differential δ of the variational complex Ω(V) to a differential
δ : Σk(V)→ Σk+1(V) under the above identification. For k = 0, we have

δ(
∫
f) =

(∑
n∈Z

S−nm
( ∂f

∂ui,n

)σ)ℓ
i=1

=
(
m
( δf

δui

)σ)ℓ
i=1

, (6.25)

where in the second identity we used equation (6.15). More generally, if k ≥ 1 and A =(
Ai1...ik(λ1, . . . , λk−1)

)ℓ
i1,...,ik=1

∈ Σk(V), we have that

(δA)i1...ik+1
(λ1, . . . , λk)

=
k

k + 1

∑
n∈Z

( k∑
s=1

(−1)s+1
( ∂

∂uis,n

)
(s)

A
i1

s
.̌..ik+1

(λ1,
s
ˇ. . ., λk)λ

n
s

+(−1)k(λ1 . . . λkS)
−n
(( ∂

∂uik+1,n

)
(1)

Ai1,...,ik(λ1, . . . , λk−1)
)σk
)
.

(6.26)

The notation
t
ˇ. . . means that we skip the the object in position t, σ denotes the action of the

cyclic permutation in (2.6), and we use the extended derivations (∂/∂ui,n)(s) : V⊗k 7→ V⊗(k+1)

defined through (2.11).

Equation (6.26), for k = 1 and F =
(
Fj

)ℓ
j=1
∈ Vℓ = Σ1(V), gives

(δF )ij(λ) =
1

2

∑
n∈Z

( ∂Fj

∂ui,n
λn − (λS)−n

( ∂Fi

∂uj,n

)σ)
. (6.27)

For F ∈ V⊕ℓ = Σ1(V), define the corresponding Frechet derivative

DF (λ) =

(∑
n∈Z

∂Fi

∂uj,n
λn

)ℓ

i,j=1

∈ Matℓ×ℓ(V ⊗ V)[λ, λ−1] .

From (6.27) we see that δF = 0 if and only if DF (S) is a selfadjoint non-commutative difference
operator.

For k = 2, let A =
(
Aij(λ)

)ℓ
i,j=1

∈ Σ2(V), i.e. the entries Aij(λ) ∈ V⊗2[λ, λ−1] satisfy

(|x=SAji(λ
−1S−1))σ = −Aij(λ). Equation (6.26) gives

(δA)ijk(λ, µ) =
2

3

∑
n∈Z

(( ∂

∂ui,n

)
L
Ajk(µ)λ

n

−
( ∂

∂uj,n

)
R
Aik(λ)µ

n + (λµS)−n
(( ∂

∂uk,n

)
L
Aij(λ)

)σ2
)
.

(6.28)

As an application of (6.21), we get the following result which is a multiplicative version of
[DSKV, Corollary 3.17].

Corollary 6.9. (a) A 0-form
∫
f ∈ Ω0(Rℓ) is closed if and only if f ∈ k+[Rℓ,Rℓ]+(S−1)Rℓ.

(b) A 1-form F =
(
Fi

)ℓ
i=1
∈ R⊕ℓ

ℓ = Σ1(Rℓ) is closed if and only if there exists a local functional∫
f ∈ Rℓ/([Rℓ,Rℓ] + (S − 1)Rℓ) such that Fi = m

(
δf
δui

)σ
for every i = 1, . . . , ℓ.

(c) A 2-form α =
(
Aij(λ)

)ℓ
i,j=1

∈ Σ2(Rℓ) is closed if and only if there exists F =
(
Fi

)ℓ
i=1
∈ R⊕ℓ

ℓ

such that

Aij(λ) =
1

2

∑
n∈Z

( ∂Fj

∂ui,n
λn − (λS)−n

( ∂Fi

∂uj,n

)σ)
,

for every i, j = 1, . . . , ℓ.

6.4. Examples.
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6.4.1. Integrable hierarchies on R1. Recall from Example 3.16 that R1 = k⟨ui | i ∈ Z⟩ is a
double multiplicative Poisson vertex algebra for

{{uiλuj}} = λj−i(uj ⊗ 1− 1⊗ uj) .

It is easy to check that the local functionals {
∫
uk | k ∈ Z+} satisfy {

∫
uk,
∫
ul} = 0 for any

k, l ∈ Z+, therefore the Hamiltonian vector fields that they define are pairwise commuting.
Note however that

du

dtk
:= {

∫
uk, u} = 0 , k ∈ Z+ ,

so these Hamiltonian vector fields do not yield non-trivial differential-difference equations. The
same observation can be made if we use the double multiplicative λ-bracket obtained by com-
bining Proposition 3.14 with any double Poisson bracket from Example 3.4 (the case above
corresponds to α = 1, β = γ = 0). We have been unable to construct an integrable hierarchy
on R1 starting with one of the cases from the classification given in Proposition 4.8. To get
non-trivial examples on R1, it seems necessary to use non-local double multiplicative Poisson
vertex algebras as defined in Section 7, see [CW1, CW2].

6.4.2. Integrable hierarchies on R2. As part of Proposition 4.11, we have constructed double
multiplicative Poisson vertex algebra structures on R2 = k⟨ui, vi | i ∈ Z⟩ such that

{{uλu}} = 0 , {{vλv}} = 0 .

In particular, the local functionals {
∫
uk | k ∈ Z+} satisfy {

∫
uk,
∫
ul} = 0 trivially, hence they

yield commuting Hamiltonian vector fields onR2. A similar result holds for the set of functionals
{
∫
vk | k ∈ Z+} by symmetry.

Example 6.10. Consider {{uλv}} = 1 ⊗ 1, which corresponds to case (i) of Theorem 4.14. We
easily compute that for the vector field d/dtk := 1

k{
∫
uk,−}, k ≥ 1, we have

dv

dtk
=

1

k
{
∫
uk, v} = 1

k
m
{{

ukλv
}} ∣∣

λ=1
= uk−1 ,

du

dtk
= 0 . (6.29)

Since d/dtk commutes with S by part (g) of Theorem 6.2, note that (6.29) is equivalent to the
Hamiltonian differential-difference equations

dvi
dtk

= uk−1
i ,

dui
dtk

= 0 , i ∈ Z .

Since the vector fields (d/dtk)k≥1 are pairwise commuting for different k ∈ Z+ due to {
∫
uk,
∫
ul} =

0, we get in this way an integrable hierarchy of differential-difference equations. The solution
to the k-th system of equations is simply given by ui(tk) = αi, vi(tk) = βi + tkα

k−1
i for i ∈ Z,

where αi, βi ∈ k. Compatibility of the solution with S implies that αi = α0, βi = β0 for each
i ∈ Z.

Remark 6.11. While we observed in Remark 6.5 that differential-difference equations on an
associative algebra V induce such equations on the representation algebra VN , N ≥ 1, solving
the equation on V does not provide all the solutions on VN . Combining Remark 6.5 and Example
6.10, we see that (6.29) induces the non-abelian equation

dX (v)
dtk

= X (u)k−1 ,
dX (u)
dtk

= 0 , (6.30)

while its solution u(tk) = α0, v(tk) = β0 + tkα
k−1
0 , leads to

X (u)(tk) = α0 IdN , X (v)(tk) = β0 IdN +tkα
k−1
0 IdN .

However, an arbitrary solution of (6.30) is of the form X (u)(tk) = A0, X (v)(tk) = B0 + tkA
k−1
0

for A0, B0 ∈ Matn×n(k).
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Example 6.12. Fix r ∈ Z, α ∈ k× and take

{{uλv}} =
(
α vur ⊗ urv + vur ⊗ 1 + 1⊗ urv + α−11⊗ 1

)
λr ,

corresponding to case (v) of Theorem 4.14. The Hamiltonian vector fields d
dtk

= 1
k{
∫
uk,−} are

commuting and they define the following differential-difference equations:

dv

dtk
= α vuk+1

r v + vukr + ukrv + α−1uk−1
r ,

du

dtk
= 0 . (6.31)

Example 6.13. Fix r ∈ Z, α ∈ k× and take as in Example 4.13

{{uλv}} =
(
α v ⊗ v + v ⊗ ur + ur ⊗ v + α−1ur ⊗ ur

)
λr ,

that corresponds to case (iv) of Theorem 4.14. The Hamiltonian vector fields d
dtk

= 1
k{
∫
uk,−}

are commuting and they define the following differential-difference equations:

dv

dtk
= αvuk−1

r v + (vukr + ukrv) + α−1uk+1
r ,

du

dtk
= 0 . (6.32)

Note that if we allow each ui to be invertible by working in k⟨u±1
i , vi | i ∈ Z⟩, we have commuting

Hamiltonian vector fields d
dtk

for any k ∈ Z (not only for k ∈ Z+). In particular, remark that

the differential-difference equation (6.32) defined for d
dt−k

can be transformed into (6.31) if we

relabel ur ↔ u−1
r .

6.4.3. Integrable hierarchies using a weak version of Jacobi identity. As a slight generalisation
of (6.32), it can be checked that the vector fields defining the differential-difference equations

dv

dtk
= αvuk−1

r v + (vukr + ukrv) + βuk+1
r ,

du

dtk
= 0 , k ∈ Z+ , (6.33)

commute for any fixed r ∈ Z and α, β ∈ k. By considering the equations associated with the
local functionals {

∫
uk | k ∈ Z+} for all the cases from Theorem 4.14, we can see that (6.33) can

not always be obtained from a double multiplicative Poisson vertex algebra structure on R2. It
can, nevertheless, be obtained from a double multiplicative λ-bracket (see Example 6.16) using
the framework that we introduce in this paragraph.

From now on, we consider a skewsymmetric double multiplicative λ-bracket {{−λ−}} on a
unital associative algebra V with an automorphism S. Recall that {−λ−} : V ⊗ V → V[λ±1]
denotes the associated map (6.1) obtained from {{−λ−}} by multiplication of the two factors. In
the same way, if {{−λ −µ −}} is the map (3.10) defined from {{−λ−}}, we introduce

{−λ −µ −} : V⊗3 → V[λ±1, µ±1] , {aλbµc} = m ◦(m⊗1) {{aλbµc}} . (6.34)

Lemma 6.14. For any a, b, c ∈ V,
{aλ{bµc}} − {bµ{aλc}} − {{aλb}λµc} = {aλbµc} − {bµaλc} . (6.35)

Proof. It follows from (6.3) by applying the multiplication map m. □

Recall from §6.2, that for the local functional
∫
f ∈ F , we denote by Xf its associated

Hamiltonian vector field. Recall also that F is a Lie algebra with Lie bracket (6.7) satisfying
{
∫
f,
∫
g} =

∫
{f, g}, where f, g ∈ V, and {f, g} is given by (6.2).

Lemma 6.15. Let
∫
f,
∫
h ∈ F . Then [Xf , Xh] = X{f,h} if and only if the derivation

Df,h := {fλhµ−}
∣∣
λ=µ=1

− {hµfλ−}
∣∣
λ=µ=1

(6.36)

vanishes identically.

Proof. By (6.35), we have for any c ∈ V that

[Xf , Xh](c) = ({fλ{hµc}} − {hµ{fλc}})
∣∣
λ=µ=1

=({{fλh}λµc}+ {fλhµ−} − {hµfλ−})
∣∣
λ=µ=1

={
∫
{fλh}

∣∣
λ=1

, c}+ Df,h(c) = X{f,h}(c) + Df,h(c) .
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Thus [Xf , Xh](c) = X{f,h}(c) if and only if Df,h(c), and we can conclude as c ∈ V is arbitrary.
The fact that Df,h is a derivation easily follows from (3.13). □

As a consequence of Lemma 6.15, the two Hamiltonian vector fields Xf , Xh commute when-
ever

∫
{f, h} = {

∫
f,
∫
h} = 0 and Df,h = 0 for Df,h defined through (6.36). In the case of a

a double multiplicative Poisson vertex algebra, the operation {{−λ −µ −}} (3.10) is identically

vanishing, so for any f, h ∈ V we have Df,h = 0. Therefore we have [Xf , Xh] = 0 whenever∫
{f, h} = 0, as we already observed in §6.2.
Building on the observation that we have just made, we can seek to construct commuting

families of vector fields in the presence of a skewsymmetric double multiplicative λ-bracket that
has some failure to satisfy Jacobi identity, i.e. when {{−λ −µ −}} is non-zero. This weaker notion
has been identified in [CW2] on V = R⟨ui,n | i ∈ I, n ∈ Z⟩ by studying bivector fields, see [CW2,
§4.4]. The main examples outside the class of double multiplicative Poisson vertex algebras that
they investigated [CW2, Sect.6] are the double quasi-Poisson brackets due to Van den Bergh
[VdB1]. Such double brackets have the property that {{−λ −µ −}} ̸= 0 has a particular form
that entails the vanishing2 of the associated map {−λ −µ −}. Note that these are very special
double multiplicative λ-brackets, because they have image in V⊗2 and not in V⊗2[λ±1]. Below,
we provide a new non-trivial example which is not independent of λ.

Example 6.16. Fix α, β ∈ k and r ∈ Z. Consider the skewsymmetric double multiplicative
λ-bracket on R2 = k⟨ui, vi | i ∈ Z⟩ given by

{{uλu}} = 0 = {{vλv}} , {{uλv}} = (v ⊗ ur + ur ⊗ v + αv ⊗ v + βur ⊗ ur)λ
r .

This operation does not satisfy Jacobi identity when αβ ̸= 1 because

{{uλuµv}} = (1− αβ)(v ⊗ ur ⊗ ur − ur ⊗ ur ⊗ v)λrµr .

Using this identity and (3.15)-(3.16), we get that for any M,N ≥ 1,{{
uMλu

N
µv
}}

=

M−1∑
m=0

N−1∑
n=0

(∣∣
y=S

um
)
∗1
(∣∣

x=S
un
)
∗2 {{uλyuµxv}} ∗1

(∣∣
x=S

uN−n−1
)
∗2
(∣∣

y=S
uM−m−1

)
=

M−1∑
m=0

N−1∑
n=0

(1− αβ)
[
vuM−m−1

r ⊗ uN−n+m
r ⊗ un+1

r − uM−m
r ⊗ uN−n+m

r ⊗ unr v
]
λrµr .

Therefore, from (6.34) we have {uMλu
N

µv}
∣∣
λ=µ=1

= (1 − αβ)MN(vuM+N
r − uM+N

r v). In

particular, this implies that for any k, l ∈ Z+ the derivation Duk,ul : R2 → R2 defined through

(6.36) with f = uk, h = ul vanishes on v. We trivially have Duk,ul(u) = 0 as {uλu} = 0, so that
Duk,ul = 0 identically. As a consequence of Lemma 6.15, we get that[

d

dtk
,
d

dtl

]
=

1

kl
{
∫
{uk, ul},−} , where

d

dtk
:=

1

k
{
∫
uk,−} .

As the local functionals {
∫

1
ku

k | k ∈ Z+} are such that {
∫
uk,
∫
ul} = 0, we thus obtain that their

Hamiltonian vector fields d
dtk

pairwise commute. The associated differential-difference equations

are given by (6.33).

7. Non-local and rational double multiplicative Poisson vertex algebras

In this section we formalize the theory of non-local and rational double multiplicative Pois-
son vertex algebras. They play a crucial role in the context of non-commutative Hamiltonian
differential-difference equations, see [CW1, CW2]. The exposition follows [DSKVW1] where the
commutative case is treated.

2This property was already known by Van den Bergh, see [VdB1, Proposition 5.1.2].
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7.1. Non-local double multiplicative Poisson vertex algebras. Let V be a unital asso-
ciative algebra with an automorphism S. We denote by (V ⊗ V)[[λ, λ−1]] the space of bilateral
series

∑
n∈Z anλ

n, where an ∈ V ⊗ V for all n ∈ Z.
Non-local double multiplicative λ-brackets differ from local ones just in replacing in Definition

3.7 the algebra (V ⊗V)[λ, λ−1] by the vector space (V ⊗V)[[λ, λ−1]]. Note that in the non-local
case, despite the fact that (V ⊗ V)[[λ, λ−1]] is not an algebra, all axioms (3.4a), (3.4b), (3.4c),
(3.8a) and (3.8b) still make perfect sense. Hence we have the following definition.

Definition 7.1. A non-local double multiplicative Poisson vertex algebra is a unital associative
algebra V endowed with an automorphism S : V → V and a non-local double multiplicative
λ-bracket, {{− λ−}} : V ⊗ V → (V ⊗ V)[[λ, λ−1]] satisfying sesquilinearity (3.4a), Leibniz rules
(3.4b) and (3.4c), skewsymmetry (3.8a) and Jacobi identity (3.8b).

Let V be an algebra of non-commutative difference functions in ℓ variables ui, i ∈ I. We call
the space Matℓ×ℓ(V ⊗ V)[[S, S−1]], the space of non-local difference operators. Note that this
space is not an algebra with respect to the product (4.1), and its elements do not act on Vℓ
(such an action would involve divergent sums, cf. (4.2)). However, if H(S) = (Hi,j(S))i,j∈I ∈
Matℓ×ℓ(V ⊗ V)[[S, S−1]], then we can define a non-local double multiplicative λ-bracket on V
using the Master Formula (4.10) with {{uiλuj}} = Hji(λ), which makes sense also for bilateral
series. One can check that Theorem 4.3 still holds in the non-local case.

Theorem 7.2. Given an algebra of non-commutative difference functions V in ℓ variables ui,

i ∈ I, and an ℓ × ℓ matrix H(λ) =
(
Hij(λ)

)ℓ
i,j=1

∈ Matℓ×ℓ V[[λ, λ−1]], the double multiplicative

λ-bracket (4.10) defines a structure of non-local double multiplicative Poisson vertex algebra on
V if and only if skewsymmetry and the Jacobi identity hold on the generators ui. In this case
we call the matrix H a non-local Poisson structure on V.
Example 7.3. We can get examples of non-local double multiplicative Poisson vertex algebras
on an algebra of difference function in one variable u, which generalize the λ-bracket given
by (4.17)-(4.18). Indeed, note that in the proof of Proposition 4.7, equation (4.19), which is
the Jacobi identity on generators, still holds if we assume r(λ) =

∑
n∈Z rnλ

n ∈ k[[λ, λ−1]] and

such that r(λ) = −r(λ−1) in (4.17). Hence, for example, the non-local multiplicative λ-bracket
defined on V by letting

{{uλu}} = (u⊗ u) • r(λS)(u⊗ u) =
∑
n∈Z

rn(uun ⊗ unu)λ
n ,

and extended to V by the Master Formula (4.10), defines a non-local double multiplicative
Poisson vertex algebra structure on V. On the other hand, the proof of the “only if” part of
Proposition 4.7 does not generalize to the non-local setting since it heavily relies on the fact
that rn = 0 for every n > N for some N ∈ Z>0.

7.2. Pseudodifference operators. Let V be a unital associative algebra with an automor-
phism S. The algebra of non-commutative difference operators (V ⊗V)[S, S−1] defined in §4.1 is
Z-graded by the powers of S and can be completed either in the positive or negative directions,
giving rise to two algebras of non-commutative pseudodifference operators:

(V ⊗ V)((S)) = (V ⊗ V)[[S]][S−1] and (V ⊗ V)((S−1)) = (V ⊗ V)[[S−1]][S] .

In the sequel we will use the notation (V ⊗V)((S±1)) to denote (V ⊗V)((S)) or (V ⊗V)((S−1))
respectively, and it should not be confused with (V ⊗ V)((S, S−1)). Given a non-commutative
pseudodifference operator A(S) =

∑
n anS

n ∈ (V ⊗ V)((S±1)), its formal adjoint is (cf. (4.3))

A∗(S) =
∑
n

S−n • aσn ∈ (V ⊗ V)((S∓1)) , (7.1)

and its symbol is (cf. (4.5))

A(z) =
∑
n

anz
n ∈ (V ⊗ V)((z±1)). (7.2)

Formulas (4.6) still make sense for non-commutative pseudodifference operators.
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7.3. Pseudodifference operators of rational type. Let

k(z) =
{
p(z)

q(z)
| p(z), q(z) ∈ k[z], q(z) ̸= 0

}
denote the field of rational functions in the indeterminate z. It can be embedded in both spaces
of Laurent series k((z)) or k((z−1)). Indeed, if q(z) =

∑N
n=M qnz

n ∈ k[z], where 0 ≤M ≤ N , is
non-zero, then we can factor it as

q(z) = qMzM

(
1 +

N∑
n=M+1

qn
qM

zn−M

)
and expand 1

q(z) , via geometric series expansion, as an element of k((z)), or we can factor

q(z) = qNzN

(
1 +

N−1∑
n=M

qn
qN

zn−N

)
and expand 1

q(z) , via geometric series expansion, as an element of k((z−1)). We denote by ι±
the resulting embedding of the field of rational functions into the space of Laurent series

ι± : k(z) ↪→ k((z±1)) . (7.3)

For example, we have

ι+
1

1− z
=
∑
n≥0

zn ∈ k((z)) , ι−
1

1− z
= −

∑
n≥1

z−n ∈ k((z−1)) . (7.4)

From now on we will work with the algebra of pseudodifference operators (V ⊗ V)((S)) but all
the definitions and results still hold if we replace it by (V ⊗V)((S−1)) and use ι− in place of ι+.
Let f1, . . . fn+1 ∈ V ⊗ V and r1(z), . . . , rn(z) ∈ k(z), using (4.1) and the embedding ι+ defined
in (7.3) we define the following non-commutative pseudodifference operator

f1ι+r1(S) • f2ι+r2(S) • · · · • fnι+rn(S) • fn+1 ∈ (V ⊗ V)((S)) . (7.5)

For example, for f, g ∈ V ⊗ V, we have, using (7.4),

fι+
1

1− S
• g =

∑
n≥0

(f • Sn(g))Sn ∈ (V ⊗ V)((S)) .

Definition 7.4. A non-commutative pseudodifference operator of rational type with values in
V is a linear combination of non-commutative pseudodifference operators of the form (7.5). We
denote by Q(V) ⊂ (V ⊗ V)((S)) the space of non-commutative pseudodifference operators of
rational type.

It is clear from (7.5) and Definition 7.4 that Q(V) is an algebra with respect to the product
(4.1). Given a non-commutative pseudodifference operator of rational type

A(S) =
∑

f1ι+r1(S) • f2ι+r2(S) • · · · • fnι+rn(S) • fn+1

we define its adjoint A∗(S) by

A∗(S) =
∑

fσ
n+1ι+rn(S

−1) • fσ
n ι+rn−1(S

−1) • · · · • fσ
2 ι+r1(S

−1) • fσ
1 ∈ (V ⊗ V)((S)) . (7.6)

Note that (7.6) is an element of Q(V) and does not coincide with the formal adjoint in the space
(V ⊗ V)((S)) defined in §7.2 even though, by an abuse of notation, we are denoting it with the
same symbol. In fact, the adjoint of a pseudodifference operator in (V ⊗ V)((S)) is an element
of (V ⊗ V)((S−1)), see (7.1).

Remark 7.5. Pseudodifference operators of rational type may not be rewritten as the ratio of two
difference operators (that is, an expression of the form A(S)•B(S)−1, A(S), B(S) ∈ (V⊗V)[S]).
Indeed, let us assume that V is a division ring. In general V ⊗ V is not a division ring and the
(non-commutative) field of fractions of (V ⊗ V)[S] may not exist.
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7.4. Rational double multiplicative Poisson vertex algebras. Let V be a unital associa-
tive algebra with an automorphism S. By a rational double multiplicative λ-bracket on V, we
mean a double multiplicative λ-bracket as in Definition 3.7 with the only difference that we
assume

{{aλb}} = Aab(λ) ∈ (V ⊗ V)((λ)) (7.7)

being the symbol of a pseudodifference operator of rational type Aab(S) ∈ Q(V), for every
a, b ∈ V.

7.4.1. Definition. In analogy with the vector space (V ⊗ V)((λ)), we introduce for k ≥ 1

V⊗k((λ, µ)) =
{ ∑

m≥M,n≥N

am,nλ
mµn | am,n ∈ V⊗k,M,N ∈ Z

}
.

Let us remark that

V⊗k((λ, µ)) = V⊗k((λ))((µ)) ∩ V⊗k((µ))((λ)) .

The following results will be used throughout this section.

Lemma 7.6. Let T1, T2 be automorphisms of V, and let A(λ, µ) ∈ (V ⊗ V ⊗ V)((λ, µ)) and
B(λ, µ) ∈ (V ⊗ V)((λ, µ)). Then,

A(λT1, µT2) •i B(λ, µ) , B(λT1, µT2) •i A(λ, µ) ∈ (V ⊗ V ⊗ V)((λ, µ)) .

Proof. Straightforward. □

Lemma 7.7. Let A(S) ∈ Q(V) be a pseudodifference operator of rational type. Then,

{{aλA(µ)}}L , {{aλA(µ)}}R , {{A(λ)λµa}}L ∈ (V ⊗ V ⊗ V)((λ, µ)) ,

for every a ∈ V.

Proof. Recall from Definition 7.4 that A(S) is a finite linear combination of pseudodifference
operators as in (7.5). Hence, it suffices to prove the claim for

A(S) = A1(S) • · · · •An(S) ,

where Ai = fiι+(r(S)), fi ∈ V ⊗V, ri(S) ∈ k(S), i = 1, . . . , n. We will prove that {{aλA(µ)}}L ∈
(V ⊗ V ⊗ V)((λ, µ)), by induction on n.

For n = 1 we have {{aλA(µ)}}L = {{aλf1}} ι+(r1(µ)) which clearly lies in (V ⊗ V)((λ, µ)). Let
us now assume that {{aλA(µ)}}L ∈ (V ⊗ V ⊗ V)((λ, µ)), and let f ∈ V ⊗ V, r(S) ∈ k(S). Then,
by Lemma 3.10 we have

{{aλfι+(r(µS)) •A(µ)}}L = {{aλf}} ι+(r(µS)) •1 A(µ) + fι+(r(λµS)) •2 {{aλA(µ)}}L . (7.8)

Note that, by the base case we have that {{aλf}} ι+(r(µ)) ∈ (V ⊗ V ⊗ V)((λ, µ)). Moreover,
fι+(r(λµ)) ∈ (V ⊗ V)((λ, µ)). Hence, the RHS of equation (3.10) lies in (V ⊗ V ⊗ V)((λ, µ)) by
Lemma 7.6 and the inductive assumption. The other claims can be proven similarly. □

We say that a rational double multiplicative λ-bracket as in (7.7) is skewsymmetric if

Aab(λ) = −A∗
ba(λ) , (7.9)

for every a, b ∈ V (cf. Remark 4.4). In (7.9) we are using the formal adjoint (7.6) in Q(V).
Hence, (7.9) is equivalent to an identity in the space Q(V).

Definition 7.8. A rational double multiplicative Poisson vertex algebra is a unital associative
algebra V endowed with an automorphism S and a rational double multiplicative λ-bracket
{{−λ−}} : V⊗V → (V⊗V)((λ)) (i.e. for every a, b ∈ V, {{aλb}} is the symbol of a pseudodifference
operator of rational type Aab(S) ∈ Q(V), cf. (7.7)) satisfying skewsymmetry (7.9) and Jacobi
identity (3.8b).
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Note that, if {{−λ−}} has values in (V ⊗ V)((λ)) then
{{aλ {{bµc}}}}L ∈ (V ⊗ V ⊗ V)((λ))((µ)) ,

while
{{bµ {{aµc}}}}R ∈ (V ⊗ V ⊗ V)((µ))((λ)) .

Since these two terms lie in different spaces, the Jacobi identity could not make sense. However,
for a rational double multiplicative λ-bracket (7.7), by Lemma 7.7, all three terms of the Jacobi
identity lie in (V ⊗ V ⊗ V)((λ, µ)), hence it is well-defined.

Let V be an algebra of non-commutative difference functions in ℓ variables ui, i ∈ I. We
call the space Matℓ×ℓ(Q(V)), the space of matrix pseudodifference operators of rational type.
If H(S) = (Hi,j(S))i,j∈I ∈ Matℓ×ℓ(Q(V)), then we can define a rational double multiplicative
λ-bracket on V using the Master Formula (4.10) with {{uiλuj}} = Hji(λ) and get an analogue of
Theorem 4.3.

Theorem 7.9. Given an algebra of non-commutative difference functions V in ℓ variables ui,

and an ℓ × ℓ matrix H(λ) =
(
Hij(λ)

)ℓ
i,j=1

∈ Matℓ×ℓ(Q(V)), the double multiplicative λ-bracket

(4.10) defines a structure of rational double multiplicative Poisson vertex algebra on V if and
only if skewsymmetry and the Jacobi identity hold on the generators ui. In this case we call the
matrix H a Poisson structure of rational type on V.
Proof. It suffices to show that {{fλg}} defined by the RHS of (4.10) is the symbol of a pseudod-
ifference operator of rational type, for every f, g ∈ V. The rest is the same as in the proof of
Theorem 4.3. The claim follows since the RHS of (4.10) is the symbol of a finite sum of products
of elements in Q(V) and (V ⊗ V)[S, S−1] ⊂ Q(V). □

Example 7.10. We have the analogue of the λ-bracket (4.17) (see also Example 7.3) in the
rational case. Let R denote the algebra of non-commutative difference polynomials in one
variable u and let r(λ) ∈ k(λ) be a rational function such that r(λ) = −r(λ−1). Then, consider
the double multiplicative λ-bracket on R defined by

{{uλu}} = gι+r(λS) • gσ ,
where g = (αu+β)⊗ (αu+β), α, β ∈ k. Skewsymmetry and Jacobi identity hold on generators
(same proof as for Proposition 4.7) and by Theorem 7.9 we get a rational double multiplicative
Poisson vertex algebra structure on R.
Remark 7.11. Let V be an algebra of non-commutative difference functions in ℓ variables. We
introduce the following sets

Loc(V) := {H(S) ∈ Matℓ×ℓ

(
(V ⊗ V)[S, S−1]

)
| H(S) local Poisson structure on V} ,

NonLoc(V) := {H(S) ∈ Matℓ×ℓ

(
(V ⊗ V)[[S, S−1]]

)
| H(S) non-local Poisson structure on V} ,

Rat(V) := {H(S) ∈ Matℓ×ℓ (Q(V)) | H(S) Poisson structure of rational type on V} ,
(cf. Definition 4.5 and Theorems 7.2 and 7.9). We point out that despite there is the obvious
inclusion Matℓ×ℓ (Q(V)) ⊂ Matℓ×ℓ

(
(V ⊗ V)[[S, S−1]]

)
, we have

Rat(V) ̸⊂ NonLoc(V)
in view of the difference in the skewsymmetry axiom in Definitions 7.1 and 7.8. As an example,
let V be an algebra of non-commutative difference functions in one variable u. By Example 7.10
we have that

{{uλu}} = ι+
1 + λ

1− λ
(1⊗ 1) = 1⊗ 1 +

∑
n≥1

2(1⊗ 1)λn , (7.10)

defines a rational double multiplicative Poisson vertex algebra structure on V, since r(λ) = 1+λ
1−λ

satisfies r(λ) = −r(λ−1). The latter condition is equivalent to the skew-symmetry axiom (7.9).
On the other hand, if we think of (7.10) as a non-local double multiplicative λ-bracket, we can
compute

−|x=S {{uλ−1x−1u}} = −1⊗ 1−
∑
n≥1

2(1⊗ 1)λ−n ,
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which is clearly different from {{uλu}} so that the skew-symmetry axiom (3.8a) does not hold in
the non-local case. Finally, it is immediate to check that

Rat(V) ∩NonLoc(V) = Loc(V) .

7.4.2. Poisson structure of rational type for the non-commutative Narita-Itoh-Bogoyavlensky
hierarchy. LetR = R1 be the algebra of non-commutative difference polynomials in one variable
u. For a(z), b(z), c(z), d(z) ∈ k(z) we consider, using the symbol map (7.2), the following
pseudodifference operator of rational type

H(S) = (1⊗ u)ι+a(S) • (1⊗ u) + (1⊗ u)ι+b(S) • (u⊗ 1)

+ (u⊗ 1)ι+c(S) • (1⊗ u) + (u⊗ 1)ι+d(S) • (u⊗ 1) ∈ Q(R) .
(7.11)

By (7.6) we have

H∗(S) = (u⊗ 1)ι+a(S
−1) • (u⊗ 1) + (1⊗ u)ι+b(S

−1) • (u⊗ 1)

+ (u⊗ 1)ι+c(S
−1) • (1⊗ u) + (1⊗ u)ι+d(S

−1) • (1⊗ u) .
(7.12)

Using the notation (3.5), the skewsymmetry condition H(S) = −H∗(S) is equivalent to the
identity [

ι+a(x) + ι+d(x
−1)
]
(1⊗ (|x=Su)u) +

[
ι+d(y) + ι+a(y

−1)
]
(u(|y=Su)⊗ 1)

+
[
ι+b(x) + ι+c(y) + ι+b(x

−1) + ι+c(y
−1)
]
((x=Su)⊗ (|y=Su)) = 0 .

(7.13)

Since 1⊗(|x=Su)u, u(|y=Su)⊗1 and (x=Su)⊗(|y=Su) are linearly independent, then the skewsym-
metry of H(S) is equivalent to the conditions

d(z) = −a(z−1) , b(x) + b(x−1) = −c(y)− c(y−1) . (7.14)

Since the LHS of the second equation in (7.14) is independent of y and the RHS is independent
of x, then they need to be both equal to a constant 2α ∈ k. Hence,

b(z) = b1(z) + α , b1(z) = −b1(z−1) , c(z) = c1(z)− α , c1(z) = −c1(z−1) . (7.15)

Inserting the first condition in (7.14) and the conditions in (7.15) in the definition of H(S) given
in (7.11), we see that H(S) is skewadjoint if and only if it has the form

H(S) = (1⊗ u)ι+a(S) • (1⊗ u) + (1⊗ u)ι+b(S) • (u⊗ 1)

+ (u⊗ 1)ι+c(S) • (1⊗ u)− (u⊗ 1)ι+a(S
−1) • (u⊗ 1) ,

(7.16)

where b(z) = −b(z−1) and c(z) = −c(z−1).

Theorem 7.12. The pseudodifference operator H(S) in (7.16) defines a rational double multi-
plicative Poisson vertex algebra structure on R if and only if for some k ≥ 1 and p ∈ Z,

a(z) = zpa1(z
k) , a1(z) := α

1

1− z
,

b(z) = c(z) = b1(z
k) , b1(z) = β

1 + z

1− z
,

(7.17)

where α, β ∈ k are such that α(2β + α) = 0.

Before proving Theorem 7.12 we need some preliminary results. Let H(S) be as in (7.16) and
let us define a double multiplicative λ-bracket on R by setting

{{uλu}} = H(λ) = (1⊗ u)ι+a(λS) • (1⊗ u) + (1⊗ u)ι+b(λS) • (u⊗ 1)

+ (u⊗ 1)ι+c(λS) • (1⊗ u)− (u⊗ 1)ι+a(λ
−1S−1) • (u⊗ 1) ∈ (R⊗R)((λ)) ,

(7.18)

and extending to R by the Master Formula (4.10).
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Proposition 7.13. Jacobi identity on generators holds for the double multiplicative λ-bracket
(7.18) if and only if the rational functions a(z), b(z), c(z) ∈ k(z), with b(z−1) = −b(z) and
c(z−1) = −c(z), satisfy

(ι+b(z) + ι+b(w)) ι+b(zw)− ι+b(z)ι+b(w) = γ ,

(ι+c(z) + ι+c(w)) ι+c(zw)− ι+c(z)ι+c(w) = γ ,

(ι+b(z) + ι+b(w)) ι+a(zw) + ι+a(z)ι+a(w) = 0 ,

(ι+c(z) + ι+c(w)) ι+a(zw) + ι+a(z)ι+a(w) = 0 ,

(7.19)

for some γ ∈ k.

Proof. For convenience in the computations, let us use notation (3.5) to rewrite (7.18) as

{{uλu}} = ι+a(λx) (1⊗ (|x=Su)u) + ι+b(λx) ((|x=Su)⊗ u)

+ ι+c(λy) (u⊗ (|y=Su))− ι+a(λ
−1y−1) (u(|y=Su)⊗ 1) .

(7.20)

We start by computing explicitly the three terms appearing in the Jacobi identity

{{uλ {{uµu}}}}L − {{uµ {{uλu}}}}R =
{{
{{uλu}}λµ u

}}
L
. (7.21)

By a long but straightforward computation, using the first equation in (3.7a), sesquilinearity
(3.4a), the left Leibniz rule (3.4b) and (7.20), we get

{{uλ {{uµu}}}}L
= ι+a(λx)ι+b(λµxy)

(
1⊗ (|x=Su)(|y=Su)⊗ u

)
(7.22)

+ ι+b(λx)ι+b(λµxy)
(
(|x=Su)⊗ (|y=Su)⊗ u

)
(7.23)

+ ι+b(λµxy)ι+c(λy)
(
(|x=Su)⊗ (|y=Su)⊗ u

)
(7.24)

− ι+a(λ
−1y−1)ι+b(λµxy)

(
(|x=Su)(|y=Su)⊗ 1⊗ u

)
(7.25)

+ ι+a(λx)ι+c(µz)
(
1⊗ (|x=Su)u⊗ (|z=Su)

)
(7.26)

+ ι+b(λx)ι+c(µz)
(
(|x=Su)⊗ u⊗ (|z=Su)

)
(7.27)

+ ι+c(λy)ι+c(µz)
(
u⊗ (|y=Su)⊗ (|z=Su)

)
(7.28)

− ι+a(λ
−1y−1)ι+c(µz)

(
u(|y=Su)⊗ 1⊗ (|z=Su)

)
(7.29)

− ι+a(λx)ι+a(µ
−1z−1)

(
1⊗ (|x=Su)u(|z=Su)⊗ 1

)
(7.30)

− ι+a(µ
−1z−1)ι+b(λx)

(
(|x=Su)⊗ u(|z=Su)⊗ 1

)
(7.31)

− ι+a(µ
−1z−1)ι+c(λy)

(
u⊗ (|y=Su)(|z=Su)⊗ 1

)
(7.32)

+ ι+a(λ
−1y−1)ι+a(µ

−1z−1)
(
u(|y=Su)⊗ (|z=Su)⊗ 1

)
(7.33)

− ι+a(λ
−1µ−1y−1z−1)ι+a(λy)

(
u⊗ (|y=Su)(|z=Su)⊗ 1

)
(7.34)

− ι+a(λ
−1µ−1y−1z−1)ι+b(λy)

(
u(|y=Su)⊗ (|z=Su)⊗ 1

)
(7.35)

− ι+a(λ
−1µ−1y−1z−1)ι+c(λz)

(
u(|y=Su)⊗ (|z=Su)⊗ 1

)
(7.36)

+ ι+a(λ
−1µ−1y−1z−1)ι+a(λ

−1z−1)
(
u(|y=Su)(|z=Su)⊗ 1⊗ 1

)
. (7.37)
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Similarly, but using the second equation in (3.7a) instead, we get

{{uµ {{uλu}}}}R
= ι+a(λµxy)ι+a(µx)

(
1⊗ 1⊗ (|x=Su)(|y=Su)u

)
(7.38)

+ ι+a(λµxy)ι+b(µx)
(
1⊗ (|x=Su)⊗ (|y=Su)u

)
(7.39)

+ ι+a(λµxy)ι+c(µy)
(
1⊗ (|x=Su)⊗ (|y=Su)u

)
(7.40)

− ι+a(λµxy)ι+a(µ
−1y−1)

(
1⊗ (|x=Su)(|y=Su)⊗ u

)
(7.41)

+ ι+a(λx)ι+a(µy)
(
1⊗ (|x=Su)⊗ (|y=Su)u

)
(7.42)

+ ι+a(λx)ι+b(µy)
(
1⊗ (|x=Su)(|y=Su)⊗ u

)
(7.43)

+ ι+a(λx)ι+c(µz)
(
1⊗ (|x=Su)u⊗ (|z=Su)

)
(7.44)

− ι+a(λx)ι+a(µ
−1z−1)

(
1⊗ (|x=Su)u(|z=Su)⊗ 1

)
(7.45)

+ ι+a(µy)ι+b(λx)
(
(|x=Su)⊗ 1⊗ (|y=Su)u

)
(7.46)

+ ι+b(λx)ι+b(µy)
(
(|x=Su)⊗ (|y=Su)⊗ u

)
(7.47)

+ ι+b(λx)ι+c(µz)
(
(|x=Su)⊗ u⊗ (|z=Su)

)
(7.48)

− ι+a(µ
−1z−1)ι+b(λx)

(
(|x=Su)⊗ u(|z=Su)⊗ 1

)
(7.49)

+ ι+a(µy)ι+c(λµyz)
(
u⊗ 1⊗ (|y=Su)(|z=Su)

)
(7.50)

+ ι+b(µy)ι+c(λµyz)
(
u⊗ (|y=Su)⊗ (|z=Su)

)
(7.51)

+ ι+c(λµyz)ι+c(µz)
(
u⊗ (|y=Su)⊗ (|z=Su)

)
(7.52)

− ι+a(µ
−1z−1)ι+c(λµyz)

(
u⊗ (|y=Su)(|z=Su)⊗ 1

)
. (7.53)

Finally, using (3.7b), sesquilinearity (3.4a), the right Leibniz rule (3.4c) and (7.20) we get

{{
{{uλu}}λµ u

}}
L

= ι+a(λµxy)ι+b(µ
−1x−1)

(
1⊗ (|x=Su)⊗ (|y=Su)u

)
(7.54)

+ ι+b(λµxy)ι+b(µ
−1y−1)

(
(|x=Su)⊗ (|y=Su)⊗ u

)
(7.55)

+ ι+b(µ
−1y−1)ι+c(λµyz)

(
u⊗ (|y=Su)⊗ (|z=Su)

)
(7.56)

− ι+a(λ
−1µ−1y−1z−1)ι+b(µ

−1z−1)
(
u(|y=Su)⊗ (|z=Su)⊗ 1

)
(7.57)

+ ι+a(λµxy)ι+c(λx)
(
1⊗ (|x=Su)⊗ (|y=Su)u

)
(7.58)

+ ι+b(λµxy)ι+c(λy)
(
(|x=Su)⊗ (|y=Su)⊗ u

)
(7.59)

+ ι+c(λµyz)ι+c(λy)
(
u⊗ (|y=Su)⊗ (|z=Su)

)
(7.60)

− ι+a(λ
−1µ−1y−1z−1)ι+c(λz)

(
u(|y=Su)⊗ (|z=Su)⊗ 1

)
(7.61)

− ι+a(λµxy)ι+a(λ
−1x−1)

(
(|x=Su)⊗ 1⊗ (|y=Su)u

)
(7.62)

− ι+a(λ
−1y−1)ι+b(λµxy)

(
(|x=Su)(|y=Su)⊗ 1⊗ u

)
(7.63)

− ι+a(λ
−1y−1)ι+c(λµyz)

(
u(|y=Su)⊗ 1⊗ (|z=Su)

)
(7.64)

+ ι+a(λ
−1µ−1y−1z−1)ι+a(λ

−1z−1)
(
u(|y=Su)(|z=Su)⊗ 1⊗ 1

)
(7.65)

− ι+a(λµxy)ι+a(µx)
(
1⊗ 1⊗ (|x=Su)(|y=Su)u

)
(7.66)

− ι+a(µy)ι+b(λµxy)
(
(|x=Su)⊗ 1⊗ (|y=Su)u

)
(7.67)

− ι+a(µy)ι+c(λµyz)
(
u⊗ 1⊗ (|y=Su)(|z=Su)

)
(7.68)

+ ι+a(µz)ι+a(λ
−1µ−1y−1z−1)

(
u(|y=Su)⊗ 1⊗ (|z=Su)

)
. (7.69)
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The following terms cancel in the Jacobi identity (7.21):

(7.24)− (7.59) = 0 , (7.25)− (7.63) = 0 , (7.26)− (7.44) = 0 , (7.27)− (7.48) = 0 ,

(7.30)− (7.45) = 0 , (7.31)− (7.49) = 0 , (7.36)− (7.61) = 0 , (7.37)− (7.65) = 0 ,

(7.38) + (7.66) = 0 , (7.50) + (7.68) = 0 ,

and using the fact that b(z) = −b(z−1) we have also the cancellation

(7.39) + (7.54) = 0 , (7.51) + (7.56) = 0 .

Next, observe that equation (7.21) can be understood as an identity in the space V ⊗ V ⊗ V
with coefficients in k[x±1, y±1, z±1]((λ, µ)). Since the elements u⊗ u⊗ u, 1⊗ u2⊗ u, u2⊗ 1⊗ u,
u⊗ u2 ⊗ 1, u2 ⊗ u⊗ 1, 1⊗ u⊗ u2 and u⊗ 1⊗ u2 are linearly independent, the Jacobi identity
(7.21) holds if and only if each coefficient of these elements vanishes, leading to seven further
identities that we want to prove being equivalent to the four conditions (7.19).

Collecting the terms (7.23), (7.28), (7.47), (7.52), (7.55) and (7.60) acting on u⊗ u⊗ u, and
using the fact that b(z) = −b(z−1) we then get the following identity(

ι+b(λx)ι+b(λµxy) + ι+b(µy)ι+b(λµxy)− ι+b(λx)ι+b(µy)
)(

(|x=Su)⊗ (|y=Su)⊗ u
)

=
(
ι+c(λy)ι+c(λµyz) + ι+c(µz)ι+c(λµyz)− ι+c(λy)ι+c(µz)

)(
u⊗ (|y=Su)⊗ (|z=Su)

)
.
(7.70)

Note that the LHS of (7.70) is independent of z, hence of µ, while the RHS is independent of
x, hence of λ. This forces both sides to be a constant multiple of u ⊗ u ⊗ u. This condition is
equivalent to the first two conditions in (7.19).

Next, collecting the terms (7.22), (7.41), and (7.43) acting on 1⊗ u2 ⊗ u we get the identity(
ι+a(λx)ι+b(λµxy) + ι+a(λµxy)ι+a(µ

−1y−1)− ι+a(λx)ι+b(µy)
)(

1⊗ (|x=Su)(|y=Su)⊗ u
)
= 0 .

(7.71)

Using the fact that b(z) = −b(z−1) the identity (7.71) is equivalent to the third condition in
(7.19). We get the same condition looking at the coefficient of u2 ⊗ u⊗ 1 and u⊗ 1⊗ u2.

Finally, collecting the terms (7.29), (7.64), and (7.69) acting on u2⊗ 1⊗u we get the identity(
ι+a(λ

−1y−1)ι+c(µz)− ι+a(λ
−1y−1)ι+c(λµyz)

+ ι+a(µz)ι+a(λ
−1µ−1y−1z−1)

)(
u(|y=Su)⊗ 1⊗ (|z=Su)

)
= 0 .

(7.72)

Using the fact that c(z) = −c(z−1) the identity (7.72) is equivalent to the fourth condition in
(7.19). We get the same condition by looking at the coefficient of 1 ⊗ u ⊗ u2 and u ⊗ u2 ⊗ 1.
This concludes the proof. □

Lemma 7.14. Let R(z), Q(z) ∈ k((z)).
(a) Let γ ∈ k. Then, R(z) satisfies the equation (in k((z, w)))

(R(z) +R(w))R(zw)−R(z)R(w) = γ , (7.73)

if and only if R(z) = β or R(z) = R1(z
k) for k ≥ 1 and

R1(z) = β
(
1 + 2

∑
n≥1

zn
)
= β ι+

1 + z

1− z
, (7.74)

where β2 = γ.
(b) Let R(z) = R1(z

k) for some k ≥ 1 and R1(z) as in (7.74). Then Q(z), satisfies the equation
(in k((z, w)))

(R(z) +R(w))Q(zw) +Q(z)Q(w) = 0 , (7.75)

if and only if

Q(z) = α
∑
n≥0

znk+p = ι+
αzp

1− zk
, p ∈ Z , (7.76)

where α, β ∈ k satisfy α(2β + α) = 0.
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Proof. For part (a) it is straightforward to check that R(z) = β or R(z) as in (7.74), with β2 = γ,
solve (7.73). On the other hand, let N ∈ Z and let us write R(z) =

∑
n≥N rnz

n, with rN ̸= 0.

Then, (7.73) becomes∑
m≥2N,n≥N

rm−nrnz
mwn +

∑
m≥N,n≥2N

rn−mrmzmwn −
∑

n,m≥N

rmrnz
mwn = γ . (7.77)

If N < 0, then equating the coefficient of z2NwN in both sides of (7.77) we get r2N = 0, hence
rN = 0, which is a contradiction. If N > 0, equating the coefficient of zNwN in both sides of
(7.75) we get again r2N = 0, which leads to a contradiction. Hence, it remains to consider the
case N = 0. By equating the coefficient of z0w0 in both sides of (7.75) we get r20 = γ, which
leads to r0 = β with β2 = γ. By equating the coefficient of zkwk, k > 0, in both sides of (7.75)
we get

(2β − rk)rk = 0 .

Hence, rk = 2β or rk = 0, for k ≥ 1. Let k ≥ 1 be the smallest integer such that rk = 2β ̸= 0
but rh = 0 for all 1 ≤ h < k. We claim that for each n ≥ 1, rnk = rk while rnk+h = 0 for
1 ≤ h < k. This is shown by induction. Looking at the coefficient of zkwnk in (7.75), we get
rkr(n−1)k − rkrnk = 0 which yields the first equality. For the second, we look at the coefficient

of zkwnk+h in (7.75) which gives rkr(n−1)k+h − rkrnk+h = 0.
Hence, either rn = 0 for every n ≥ 1, thus R(z) = β, or the non-zero terms are rnk = 2β, for

every n ≥ 1 and some k ≥ 1, which gives that R(z) = R1(z
k) for R1(z) as in (7.74). This proves

part (a).
For part (b), it is straightforward to check that Q(z) in (7.76) solves (7.75). Moreover, if

Q(z) is a solution to (7.75), then zpQ(z) is also a solution, for every p ∈ Z. Hence, discarding
the trivial solution Q(z) = 0, we are left to seek solutions of the form Q(z) =

∑
n≥0 qnz

n with

q0 ̸= 0. Using (7.74) to expand R(z) = R1(z
k), we rewrite (7.75) as

2β
(
1 +

∑
m≥1

zmk +
∑
n≥1

wnk
)∑
ℓ≥0

qℓz
ℓwℓ +

∑
n,m≥0

qmqnz
mwn = 0 . (7.78)

Equating the coefficient of zℓwℓ, ℓ ≥ 0, in both sides of (7.78) we get

2βqℓ + q2ℓ = 0 . (7.79)

Next, looking at the coefficient of zh+nkw0, for 1 ≤ h < k and n ≥ 1, we find that qh+nkq0 = 0.
Since q0 ̸= 0 by assumption, this yields

qj = 0 if j /∈ kZ≥0 . (7.80)

Finally, if we look at the coefficient of znkw0, n ≥ 1, we get q0(2β + qnk) = 0. Together with
the condition (7.79), we get that q0(q0− qnk) = 0, hence qnk = q0. Combining this identity with
(7.80), we see that qℓ = 0 except if ℓ is a multiple of k, in which case qnk = q0. Due to (7.79),
we see by adding the trivial solution Q(z) = 0 that we can write q0 = α, where α ∈ k is such
that α(2β + α) = 0. This concludes the proof of part (b). □

Proof of Theorem 7.12. By Theorem 7.9 we need to show that the double multiplicative λ-
bracket defined by (7.18) satisfies skewsymmetry and Jacobi identity on generators. Skewsym-
metry holds since, by construction, H(S) = −H∗(S). By Proposition 7.13 Jacobi identity holds
on generators if and only if the four conditions in (7.19) are satisfied. By Lemma 7.14(a) and
the fact that b(z) = −b(z−1), c(z) = −c(z−1), the first two conditions in (7.19) give that

b(z) = β
1 + zk

1− zk
, c(z) = β

1 + zk̃

1− zk̃
,

for some β ∈ k and k, k̃ ≥ 1. By Lemma 7.14(b) , the third equation in (7.19) is satisfied if and
only if

a(z) =
αzp

1− zk
, p ∈ Z ,
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where α ∈ k is such that α(2β + α) = 0. Similarly, the fourth equation in (7.19) is satisfied if
and only if

a(z) =
α̃zp̃

1− zk̃
, p̃ ∈ Z ,

where α̃ ∈ k is such that α̃(2β + α̃) = 0. Equating both forms for a(z) yields that k̃ = k, p̃ = p,
and α̃ = α, which concludes the proof. □

Remark 7.15. Let us introduce the following notation (motivated by (4.2)): ru = 1⊗u, lu = u⊗1,
cu = lu − ru and au = lu + ru. By Theorem 7.12 with α = −1, β = 1/2, k = 1 and p = q + 1 for
q ≥ 1, we have that the pseudodifference operator of rational type

H(S) = −ruι+
Sq+1

1− S
• ru +

1

2
ruι+

1 + S

1− S
• lu +

1

2
luι+

1 + S

1− S
• ru − luι+

S−q

1− S
• lu

=

q∑
i=1

(
ruS

i • ru − luS
−i • lu

)
− 1

2
au • cu −

1

2
cuι+

1 + S

1− S
• cu ,

(7.81)

defines a Poisson structure of rational type onR. The operatorH(S) in (7.81) appeared in [CW2]
(without the use of the embedding ι+) and it is called the non-local Poisson structure of the
non-commutative Narita-Itoh-Bogoyavlensky lattice hierarchy. However, note that H(S) does
not define a non-local Poisson structure on R in the sense of Theorem 7.2. Indeed, let us replace
in (7.16), the Laurent series ι+a(z), ι+b(z) and ι+c(z) by bilateral series A(z), B(z), C(z) ∈
k[[z, z−1]] such that B(z) = −B(z−1), C(z) = −C(z−1). The same computations as in the proof
of Proposition 7.13 show that H(S) is a non-local Poisson structure if and only if conditions
(7.19), obtained by replacing ι+a(z), ι+b(z) and ι+c(z) with A(z), B(z), C(z), hold. It is not
hard to check that the only solution to those equations is then A(z) = B(z) = C(z) = 0.

Remark 7.16. Motivated by the works [EKV1, EKV2] on a modification of the commutative
Narita-Itoh-Bogoyavlensky lattice hierarchy, it is natural to ask whether there exists a rational
Poisson structure with constant coefficient K(S) = ι+r(S)(1⊗ 1), r(z) ∈ k(z), compatible with
the rational Poisson structure H(S) from Theorem 7.12. Compatibility means that H(S)+K(S)
is a rational Poisson structure as well. By Example 7.10, K(S) is a rational Poisson structure
if and only if r(z) = −r(z−1). Let {{uλu}}H = H(λ) be as in (7.20), and let us set {{uλu}}K =
K(λ) = ι+r(λ)(1 ⊗ 1). Then, by Theorem 7.9, H(S) +K(S) is a rational Poisson structure if
and only if {{uλu}} = {{uλu}}H + {{uλu}}K defines a rational double multiplicative Poisson vertex
algebra. To check this, it suffices to verify that Jacobi identity (7.21) holds. Using the fact that
H(S) and K(S) are rational Poisson structures this reduces to the condition{{

uλ {{uµu}}H
}}

K,L
− {{uµ {{uλu}}H}}K,R =

{{
{{uλu}}Hλµu

}}
K,L

. (7.82)

Equation (7.82) is equivalent to the following three equations for the rational function r(z) (we
omit the details of the computations):

(ι+b(zx)− ι+b(wx)) ι+r(zwx) + ι+a(zx)ι+r(w) + ι+a(w
−1x−1)ι+r(z) = 0 ,

(ι+b(zx) + ι+b(zw)) ι+r(w)− ι+a(zw)ι+r(z) + ι+a(zx)ι+r(zwx) = 0 ,

(ι+b(zx) + ι+b(zw)) ι+r(w) + ι+a(z
−1w−1)ι+r(z)− ι+a(z

−1x−1)ι+r(zwx) = 0 ,

(7.83)

where a(z) and b(z) are as in (7.17). Let us show that these conditions imply r(z) = 0, i.e. there
is no compatibility between the two Poisson structures. (We explain the case when a(z) ̸= 0,
and we leave to the reader the case with a(z) = 0, b(z) ̸= 0.) Subtracting the second and third
equations in (7.83), and using (7.17) we get that r(z) should satisfy the identity

(1− (zw)k−2p)ι+a(zw)ι+r(z) = (1− (zx)k−2p)ι+a(zx)ι+r(zwx) . (7.84)

Note that the LHS of (7.84) does not depend on x. Hence, we can set x = w in the RHS of
(7.84) and get that r(z) satisfies ι+r(z) = ι+r(zw

2) whenever k ̸= 2p. This forces r(z) = γ, for
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some γ ∈ k. Since r(z) = −r(z−1), we then have r(z) = 0. When k = 2p (which is a positive
even integer by Theorem 7.12), the first equation in (7.83) for w = x becomes

ι+
α((zx)p − (zx)−p)

1− (zx)2p
ι+r(z) = 0 ,

after using the form of a(z) given in (7.17). Since the first term does not vanish, we must have
r(z) = 0.
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