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Abstract: Water resources are vital to the survival of living organisms and contribute substantially
to the development of various sectors. Climatic diversity, topographic conditions, and uneven
distribution of surface water flows have made reservoirs one of the primary water supply resources in
Iran. This study used Landsat 5, 7, and 8 data in Google Earth Engine (GEE) for supervised monitoring
of surface water dynamics in the reservoir of eight Iranian dams (Karkheh, Karun-1, Karun-3, Karun-4,
Dez, UpperGotvand, Zayanderud, and Golpayegan). A novel automated method was proposed
for providing training samples based on an iterative K-means refinement procedure. The proposed
method used the Function of the Mask (Fmask) initial water map to generate final training samples.
Then, Support Vector Machines (SVM) and Random Forest (RF) models were trained with the
generated samples and used for water mapping. Results demonstrated the satisfactory performance
of the trained RF model with the samples of the proposed refinement procedure (with overall
accuracies of 95.13%) in comparison to the trained RF with direct samples of Fmask initial water map
(with overall accuracies of 78.91%), indicating the proposed approach’s success in producing training
samples. The performance of three feature sets was also evaluated. Tasseled-Cap (TC) achieved
higher overall accuracies than Spectral Indices (SI) and Principal Component Transformation of Image
Bands (PCA). However, simultaneous use of all features (TC, SI, and PCA) boosted classification
overall accuracy. Moreover, long-term surface water changes showed a downward trend in five
study sites. Comparing the latest year’s water surface area (2021) with the maximum long-term
extent showed that all study sites experienced a significant reduction (16–62%). Analysis of climate
factors’ impacts also revealed that precipitation (0.51 ≤ R2 ≤ 0.79) was more correlated than the
temperature (0.22 ≤ R2 ≤ 0.39) with water surface area changes.

Keywords: k-means; clustering; water; classification; random forests; support vector machines;
Iranian dams; reservoirs; long-term

1. Introduction

Unquestionably, water resources are vital for the survival of humans and other crea-
tures and contribute substantially to the development of various agricultural, industrial,
recreational, and environmental activities worldwide [1]. Population growth, urbanization,
and industrialization have increased water demand, requiring effective management and
monitoring of water resources to ensure food security, especially in countries with arid or
semi-arid climates such as Iran [2,3]. There have been many problems in different regions of
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Iran in the last few years, mainly in the central and southern provinces, due to the decrease
in the average annual precipitation, mismanagement, and misuse of water resources [4,5].
Iran’s climatic and hydrological conditions and the uneven rainfall distribution make the
dam’s reservoirs the primary solution for storing surface water flows to supply water for
drinking, agricultural and industrial sectors, suppress floods, and generate electricity [6].
Thus, long-term monitoring of water surface dynamics in the reservoirs can inform author-
ities about the overall change, which is a prerequisite for timely and effective management
of water resources [7].

Images acquired by Earth observation satellites have a wide coverage area, potentially
a high revisit frequency, and rich spectral information. Thus, they have widely been utilized
to map, monitor, and detect spatiotemporal changes in surface water resources in different
studies [8]. Several active and passive missions have been used, obtaining data in differ-
ent wavelengths of the electromagnetic (EM) spectrum, including Advanced Very-High-
Resolution Radiometer (AVHRR) [9], Moderate Resolution Imaging Spectroradiometer
(MODIS) [10], Visible Infrared Imaging Radiometer Suite (VIIRS) [11], Landsat [12,13],
Sentinel [14–16], Spot [17], and IKONOS [18].

There are currently petabytes of remote sensing data available to scientists, researchers,
engineers, and decision-makers that can be used for a wide range of applications. Especially
for large-scale and long-term studies, these data require huge storage spaces and powerful
hardware processing systems [19]. Today, with the development of cloud-based platforms
such as Google Earth Engine (GEE), it has been possible to process remote sensing data
online without downloading [20]. Various studies showed the effectiveness of GEE in
different remote sensing applications such as landcover classification [21,22], wetland
detection [23], water quality monitoring [24], flood mapping [19], and impact analysis of
drought and floods on croplands [25].

Water mapping algorithms can generally be categorized as threshold-based (TH) or
machine learning-based (ML) methods [26]. TH methods apply thresholds to spectral
indices derived from remote sensing images. These indices are based on the spectral
characteristics of water in different EM wavelengths. There are some popular water-
related indices, including Normalized Difference Water Index (NDWI) [27], Normalized
Difference Water Index (MNDWI) [28], and (Automated Water Extraction Index) AWEI [29].
MNDWI and AWEI were utilized in GEE to map and monitor surface water, lakes, and dam
reservoirs in [30]. Meanwhile, other studies combined several indices to make a knowledge-
based decision tree classifier for water mapping [26,31–34]. In TH methods, threshold
selection directly affects the results. Furthermore, selecting an appropriate threshold is
time-consuming and challenging for different images and study areas [35]. Since water
and non-water classes have high inter-class variability, their spectral characteristics may
vary spatially and temporally [36,37]. Moreover, TH methods might misclassify low-albedo
surfaces such as shadows and asphalts as well [29].

In ML methods, machine learning-based supervised classifiers such as SVM [38],
RF [39], and neural networks [40] are used to map surface water. These classifiers learn
to automatically distinguish water from non-water areas using training data [41]. The
provision of training data, especially in long-term and large-scale studies, is costly and
time-consuming [42]. Collecting reference samples through ground field surveys is not
possible for the past years. Additionally, some regions might be inaccessible, leading
to a non-uniform distribution of samples over the study area. Therefore, some studies
developed methods to produce training samples. For example, Refs. [43,44] used global
reference maps to generate training samples. They proposed threshold-based methods,
which relied on the existence of reference maps at the desired time. It is not guaranteed that
their utilized reference maps will continue to be produced in the future. Thus, an automatic
method to provide training data that is spatially and temporally robust is still lacking.

Function of the Mask (Fmask) algorithm is a widely used pre-processing technique for
cloud, snow, ice, and cloud shadow removal in Landsat imageries, which also provides an
initial water map [45]. The Fmask water map can be generated over each Landsat scene,
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which can address the challenges mentioned earlier in the previous paragraph. However,
Fmask’s initial water map may contain errors in both water and non-water classes [46].
This study aimed to propose a novel method that provides training samples for water
mapping using supervised classification techniques based on the capabilities of the GEE.
The proposed methodology deployed an automated iterative-based K-means clustering
refinement procedure on the Fmask initial water map and generated reliable training data.
Generated samples were used to train machine learning-based classifiers, RF and SVM,
with different features derived from Landsat imageries. Water surface changes of eight
dam reservoirs located in three Iran provinces experiencing severe water challenges were
investigated using the proposed approach.

The remainder of the paper is structured as follows: first, in Section 2 (Materials and
Methods), a complete description of study sites, satellite-based data, and the framework
of the article are provided. In Section 3, obtained results are presented and will be further
discussed in Section 4 (Discussion). Finally, Section 5 states the conclusions of the article.

2. Materials and Methods
2.1. Study Sites

This study examined long-term changes in the water surface area in eight important
and prominent dams in Khuzestan (KHZ), Isfahan (ISF), and Chaharmahal and Bakhtiari
(CHB) provinces of Iran. About 11 million people live in these three provinces, which is
approximately 13% of Iran’s population. Multiple rivers, such as the Karun, Zayandehrood,
Karkheh, Dez, Jarahi, Marun, and Golpayegan rise and flow in CHB, ISF, and KHZ. How-
ever, these provinces face severe problems in supplying drinking and agricultural water [5].
In addition, these three provinces have a significant role in transferring water to the central
provinces of Iran, such as Yazd, Qom, and Kerman. Therefore, water problems in these
three provinces directly affect other provinces in the central regions of Iran. Figure 1 shows
Iran’s location and ISF, CHB, and KHZ in the central and southern regions. It also depicts
the location, Shuttle Radar Topographic Mission’s (SRTM’s) Digital Elevation Model (DEM),
the corresponding basin of each study site, the latest high-resolution Google Earth image of
dams, and some photos taken during extensive filed visits in 2019, 2020, and 2021 [47,48]. A
summary of the characteristics of each dam is presented in Table 1. This study investigated
changes in water surface area one year after the opening date of each dam until 2021 for
each dam. In the case of older dams, due to the limited number of satellite images, changes
were not examined before 1990 [26].

Sustainability 2022, 14, 8046 4 of 24 
 

2.2. Satellite-Based Data 

National Aeronautics and Space Administration’s (NASA’s) Landsat program is the 

longest-running Earth observation optical satellite. This study analyzed long-term water 

extent changes using orthorectified reflectance images of Operational Land Imager (OLI), 

Enhance Thematic Mapper-plus (ETM+), and Thematic Mapper (TM) sensors from the 

Landsat 8 (L8), 7 (L7), and 5 (L5) missions, respectively. The Landsat Ecosystem Disturb-

ance Adaptive Processing System (LEDAPS) algorithm was used to obtain reflectance in 

TM and ETM+ sensor images [49]. In the case of OLI sensor images, atmospheric correc-

tions were applied using the Land Surface Reflectance Code (LaSRC) algorithm [50]. The 

current study used six bands of Blue, Green, Red, NIR, SWIR1, and SWIR2 of these im-

ages. Six Landsat scenes covered the study sites, as shown in Figure 2a. Figure 2b also 

illustrates the number of images used by each mission from 1990 to 2021 (with cloud cov-

erage of less than 10%). We monitored water changes in eight study sites using about 800 

Landsat satellite images in this study. This large number of images can only be processed 

with cloud-based platforms such as GEE or powerful hardware systems. 

 

Figure 1. (a) Iran’s location and ISF, CHB, and KHZ provinces, (b) spatial distribution of the study 

sites and corresponding basins, (c) latest Google Earth satellite imagery of each study site, and (d) 

some photos taken (excluding UG) during the extensive field visits in 2019, 2020, and 2021. 

The amount of water stored in dams is influenced by two important climate factors, 

precipitation, and temperature [26,33,51]. The Famine Early Warning Systems Network 

(FEWS NET) Land Data Assimilation System (FLDAS) data was used to examine the re-

lationship between surface water area changes in each dam, Mean Annual Temperature 

(MAT), and Mean Annual Precipitation (MAP). FLDAS is a monthly freely available prod-

uct that uses Noah version 3.6.1 surface model with CHIRPS-6 hourly rainfall and is 

downscaled using the NASA Land Surface Data Toolkit [52]. It has provided information 

on climate-related variables since 1982. The Shuttle Radar Topography Mission (SRTM) 

30-m Digital Elevation Model (DEM), “USGS/SRTMGL1_003”, was also used to produce 

Figure 1. (a) Iran’s location and ISF, CHB, and KHZ provinces, (b) spatial distribution of the study
sites and corresponding basins, (c) latest Google Earth satellite imagery of each study site, and
(d) some photos taken (excluding UG) during the extensive field visits in 2019, 2020, and 2021.



Sustainability 2022, 14, 8046 4 of 24

Table 1. Characteristics of the study sites.

Site River Opening Date Catchment Area (km2)

Karun-1 (K1)

Karun

1976 1436.6

Karun-3 (K3) 2005 3292.3

Karun-4 (K4) 2010 1177.5

Upper Gotvand (UG) 2012 3904.1

KArkhe (KA) Karkhe 2001 4318.5

DEZ Dez 1963 6268.6

GolPayegan (GP) Anaarbar 1970 3533.7

ZayandeRud (ZR) Zayenderud 1971 1599.3

2.2. Satellite-Based Data

National Aeronautics and Space Administration’s (NASA’s) Landsat program is the
longest-running Earth observation optical satellite. This study analyzed long-term water
extent changes using orthorectified reflectance images of Operational Land Imager (OLI),
Enhance Thematic Mapper-plus (ETM+), and Thematic Mapper (TM) sensors from the
Landsat 8 (L8), 7 (L7), and 5 (L5) missions, respectively. The Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) algorithm was used to obtain reflectance in TM
and ETM+ sensor images [49]. In the case of OLI sensor images, atmospheric corrections
were applied using the Land Surface Reflectance Code (LaSRC) algorithm [50]. The current
study used six bands of Blue, Green, Red, NIR, SWIR1, and SWIR2 of these images. Six
Landsat scenes covered the study sites, as shown in Figure 2a. Figure 2b also illustrates the
number of images used by each mission from 1990 to 2021 (with cloud coverage of less than
10%). We monitored water changes in eight study sites using about 800 Landsat satellite
images in this study. This large number of images can only be processed with cloud-based
platforms such as GEE or powerful hardware systems.
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Figure 2. (a) Landsat scenes over the study sites, and (b) number of used Landsat scenes (could
cover <10%) in each year.

The amount of water stored in dams is influenced by two important climate factors,
precipitation, and temperature [26,33,51]. The Famine Early Warning Systems Network
(FEWS NET) Land Data Assimilation System (FLDAS) data was used to examine the
relationship between surface water area changes in each dam, Mean Annual Tempera-
ture (MAT), and Mean Annual Precipitation (MAP). FLDAS is a monthly freely available
product that uses Noah version 3.6.1 surface model with CHIRPS-6 hourly rainfall and is
downscaled using the NASA Land Surface Data Toolkit [52]. It has provided information



Sustainability 2022, 14, 8046 5 of 24

on climate-related variables since 1982. The Shuttle Radar Topography Mission (SRTM)
30-m Digital Elevation Model (DEM), “USGS/SRTMGL1_003”, was also used to produce
a hill shadow mask of the study sites [48,53]. Furthermore, we investigated changes in
built-up areas based on MODIS Land Cover Type Yearly Global (MLCTY) 500 m data.
MLCTY was the only freely available yearly global landcover map with a long history
record (from 2001 to 2020) at the time of conducting the research [54]. Changes in built-up
areas can indicate population growth, directly affecting water demand [55].

2.3. Framework

Figure 3 gives an overview of this study’s framework, designed based on GEE capabili-
ties and fully implemented in this platform. Each step is described in the following sections.
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2.3.1. Pre-Processing of Landsat Data

Since the study area was large and covered by multiple Landsat scenes, cloud-free
composite images had to be generated first. High cloud-covered optical images were
practically unusable, so we used images with less than 10% cloud coverage. In order to
have more cloudless images, we used images acquired from August to September each year.
This period, coinciding with the end of summer, prevented the wrong estimations caused
by snow and ice. It was also the shortest period for generating a complete image mosaic
from study sites in all years (1990–2021). In addition, since the lowest water levels were
mainly reported at the end of summer in the reservoirs, this period could also estimate
the annual permanent water surface area in each reservoir [56]. For each Landsat scene,
low-quality pixels, clouds, cloud shadows, snow, ice, and Scan-Line Corrector (SLC)-Off
Gaps were masked out using the Fmask algorithm [45]. Then, we used the temporal
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aggregation technique with a median filter to produce cloud-free image mosaics. In this
technique, the median value of each image band is kept, and the possible noise in the initial
images can be reduced in the output composite [57]. This process was conducted for all
years between 1990 to 2021, resulting in a cloud-free composite over study sites with six
different bands (Red, Green, Blue, NIR, SWIR1, and SWIR2) for each year.

2.3.2. Feature Extraction

Three feature sets were extracted from generated cloud-free composites in the previous
step. Using different features could help boost the accuracy of water mapping because they
were used directly to generate training samples and detect water in the study sites. The
first feature set consisted of the top 3 components after the Principal Component Analysis
(PCA) transformation of image bands, containing more than 95% of initial Landsat spectral
bands information [58]. Additionally, we derived four spectral indices (SIs), Normalized
Difference Vegetation Index (NDVI) [59,60], MNDWI [28], (Enhanced Vegetation Index)
EVI [60,61], and AWEI [29]. Many studies extensively used these indices to map water in
remote sensing images [33,62,63]. It should be highlighted that several combinations of
different spectral indices were tested, among which the combination of NDVI, MNDWI,
EVI, and AWEI could achieve higher classification accuracies. Moreover, the Wetness,
Greenness, and Brightness components of the TC transformation were used as the third
feature set [64,65].

2.3.3. Proposed Method for Generating Training Samples

This study developed an automated method to generate training samples from both
water and non-water classes. As mentioned, the Fmask algorithm was used to remove
cloud, cloud shadow, snow/ice, and low-quality pixels in Landsat images. FMask is a multi-
pass algorithm that uses decision trees to label pixels in the scene prospectively; it then
validates or discards those labels according to scene-wide statistics. The algorithm provides
a binary map of each image’s water and non-water areas, which was used to provide initial
candidate training samples. However, based on visual interpretation and quantitative
assessments (provided in Section 3.1), this initial binary map contained some inevitable
errors in both classes. Consequently, refinement processes were required to obtain accurate
and reliable final samples. First, we randomly selected initial samples from both water and
non-water classes from the Fmask water map. It is worth noting that initial samples in
each class were randomly selected with different initial seeds (random number generators)
to contain diverse land cover classes, which avoided bias in the classification model. Due
to the possibility of confusion between water and hill shadows, SRTM elevation data
were used to produce a hill shadow mask [66]. The produced mask was used to remove
shadow pixels that were considered water samples in the initial training dataset. Water and
non-water samples have distinct spectral behaviors, so in the case of clustering, samples of
each class must also be grouped together in the same cluster. Otherwise, they are wrong
and have to be removed from the process. In other words, there were two groups of initial
water and non-water samples. Due to the different spectral signatures of the water and
non-water samples, these two groups must represent two separate clusters. Thus, in the
case of clustering, water samples that were clustered in the group of non-water samples
were mistakenly detected as water by the Fmask algorithm. Non-water samples clustered
in the water group were also incorrectly identified as non-water samples by the Fmask
algorithm. As a result, they must be excluded from the initial training set. We used the
iterative K-means clustering method to refine the selected sample [67]. Inputs to K-means
were the initial sample set and features of Landsat images (PCA, SI, and TC) for each year.
Initial samples were clustered in each feature space by K-means in the first iteration, and
the wrong samples were removed. In the second iteration, the filtered samples from the
previous step were clustered again, and the wrong samples were removed. The process
continued until no other sample was removed from each cluster.
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2.3.4. Classification

In this step, extracted features were classified using the training samples of each
class from the last step and two machine learning algorithms, Random Forest (RF) and
Support Vector Machines (SVM). Both methods showed satisfactory performance in related
research [38,39]. RF is an ensemble classifier consisting of many decision trees generated
during training, and the final class of a sample is determined based on majority voting
among these trees [68]. SVM is also a linear classification method that uses the training data
to find the optimal separating hyperplane between classes. If target classes are not linearly
separable, the kernel trick is used to project the input feature space to higher dimensions, in
which the data can be separated linearly [69]. In order to determine the input parameters of
RF and SVM methods, we combined the suggestions of previous studies and quantitative
analysis to achieve the highest classification accuracy on the test samples. In the RF method,
two parameters of “number of trees” and “number of features per split” were considered
equal to 100 and the square root of input features, respectively [70,71]. Additionally, in the
SVM method, we used the Radial Basis Function (RBF) as the kernel and set gamma to
1 and regularization parameter (C) to 10 [72]. Classification algorithms were trained on
5000 training samples from each class in each year, produced by the proposed automated
methodology. Training samples were equally distributed in all the study sites, which led
to training one classification model (RF or SVM) rather than eight classification models
each year for eight study sites. A trial-and-error strategy was employed to determine
the appropriate number of training samples (for values between 1000 and 10,000, with a
step of 1000, to get the highest overall classification accuracy on the validation samples).
Increasing the number of training samples to more than 5000 did not lead to a significant
increase in classification accuracy [73,74]. It should be highlighted that the same number
of samples (5000) derived from the initial Fmask water map were also directly used to
train classification models to investigate the effectiveness of the iterative clustering-based
refinement procedure.

2.3.5. Accuracy Assessment

Finally, the performance of the adapted RF and SVM models was evaluated using
test data. Test data were obtained from extensive field visits and visual interpretation
techniques using high-resolution satellite imageries such as Google Earth and Sentinel-2
data in three recent years (2019, 2020, and 2021) [33,75,76]. Field visits were conducted in
August and September of each year (see Figure 1d). A total of 2000 evaluation samples
were provided per class each year. As test samples were prepared by a completely different
procedure than training samples, it was possible to carefully examine how the proposed
methodology performed in generating training samples. Test samples had no involvement
in the training process and were also used for the accuracy assessment of the Fmask initial
water map and comparison of our results with global reference maps.

Different parameters of classification’s confusion matrix (Table 2), including Overall
Accuracy (OA), kappa coefficient, and User accuracy of each class (UAw and UAnw), were
used to quantitatively evaluate the results (Equations (1)–(3)) [77,78]. It should be high-
lighted that in a 2-class confusion matrix, UA of one class is equal to the producer accuracy
(PA) of the other class. True positives (TP) and true negatives (TN) represent the correct
classification of water and non-water pixels. A false positive (FP) is the incorrect classifi-
cation of water as non-water, whereas a false negative (FN) is the incorrect assignment of
non-water to the water class.

OA =
TP + TN

TP + FP + FN + TN
(1)

UAw =
TP

TP + FP
, UAnw =

TN
TN + FN

(2)

Kappa =
OA − Pe

1 − Pe
, Pe =

(TP + FN)(TP + FP)+(TN + FN)(TN + FP)
TN + FN

(3)
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Table 2. Confusion matrix of classification (TP = True Positive, TN = True Negative, FP = False
Positive, and FN = False Negative).

Test Data

Water Non-Water

Classification Result
Water TP FP

Non-Water FN TN

We also employed McNemar’s distribution-free statistical analysis to examine the
efficiency of various input features in water mapping. McNemar’s test compares the error
matrices of two classification results to determine how they have been improved [79]. In
doing so, the McNemar test calculates the z value:

z =
f12 − f21√

f12+f21
(4)

where f12 is the number of correctly classified pixels by the first classifier while incorrectly
classified by the second classifier and f21 is the number of correctly classified pixels by
the second classifier while incorrectly classified by the first classifier. z follows an χ2

distribution with a corresponding probability (p-Value). The more χ2 values and lower
p-Value, indicates the significant improvement between the two classifiers.

T-test statistical analysis was also applied to investigate the statistical significance of
surface water, Mean Annual Precipitation (MAP), and Mean Annual Temperature (MAT)
change slopes at three confidence levels (* or 90% or α < 0.1, ** or 95% or α < 0.05, and
*** or 99% or α < 0.01).

3. Results
3.1. Accuracy of Water Mapping

Figure 4 illustrates the RGB Landsat composites, initial Fmask water maps, and
classification maps obtained from training RF model with initial samples of Fmask without
conducting the proposed iterative refinement procedure for 2021 in KA, DEZ, K1, K3, and
K4 reservoirs. It also depicts the quantitative accuracy assessment of the Fmask initial map
(Figure 4d) and RF classification map (Figure 4e) using test data (see Section 2.3.5) in 2021,
2020, and 2019 in all study sites. As can be seen, the Fmask initial map and classification
map of RF trained with initial Fmask samples contained significant misclassifications.
There was approximately an equivalent performance of both maps in all years. Moreover,
UAs of water and non-water classes did not exceed 82% in all years. Thus, if Fmask
initial water map was directly used to get final reference samples, there might be wrong
samples belonging to the other class. As a result, low performance of RF classification
model was observed (OA < 79%) when using the Fmask initial samples without refinement
procedures. Thus, the iterative K-means refinement procedure was utilized to refine
candidate water and non-water samples to obtain high-reliability training samples in water
and non-water classes.

Figure 5 depicts the distribution of the initial and final training samples of water and
non-water classes in two three-dimensional feature spaces, SI and TC. Water and non-water
samples were expected to be separated in different feature spaces because of their distinct
spectral signatures (left scatter plot in Figure 5a,b). However, some samples belonging to
the water class behaved similarly to non-water samples and vice versa because of initial
water map errors (see Figure 4). As a result, there was a low performance of the RF model
trained with the initial Fmask samples (Figure 4), indicating that direct use of the Fmask
initial water map could not generate accurate maps. After deploying the proposed iterative
clustering-based procedure, the incorrect samples were removed by using the iterative
K-means method, and the final samples were completely separated in both spaces (right
scatter plot in Figure 5a,b).
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Figure 4. KA, DEZ, K1, K3, and K4 study sites (a) Landsat RGB composite, (b) Fmask initial water
map, (c) Classification maps of RF model trained with all features and initial Fmask samples without
conducting the proposed iterative clustering-based refinement procedure. The values of UAw, UAnw,
and OA for (d) Fmask initial water map and (e) classification map of adapted RF in 8 study sites
using test samples (see Section 2.3.5).
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Generated training samples were used to train RF and SVM models. Trained classifiers
were validated for three consecutive years, 2021, 2020, and 2019 using test samples (see
Section 2.3.5). As test samples were prepared by a completely different procedure than
training samples, it was possible to carefully examine how the proposed methodology per-
forms in generating training samples. Figure 6 shows the quantitative accuracy parameters
(UAw, UAnw, OA, and kappa) for classifying different input properties (SI-, PCA-, TC-only,
and all features: SI, PCA, and TC) using two classification techniques, RF and SVM, in 2021,
2020, and 2019. The followings can be concluded.
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of the proposed methodology in 2021, 2020, and 2019.

(1) High classification OAs of RF and SVM in all three years (at least 93.74% by SVM in
2021) indicated the satisfactory performance of the proposed methodology for the
generation of training samples. The adapted RF using all features and direct initial
samples of Fmask resulted in OAs of around 80% (Figure 4). After deploying the
proposed methodology, OAs have increased by about 13%. As a result, the proposed
iterative clustering-based refinement procedure could effectively remove outliers of
initial samples from the Fmask water map and generate reliable training samples.

(2) Using all input features for classification led to the highest classification accuracy in
each year. For example, the OA values for the RF classifier were 95.82, 95.13, and
96.11% in 2021, 2020, and 2019, respectively. The TC features achieved higher accuracy
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than PCA and SI in all three years. In other words, the TC transformation resulted
in a better separation of target classes. Figure 5 also illustrated a better separation
of reference samples of both classes in the TC feature space relative to SI. SI showed
the weakest performance in all three years compared to the other two input features.
PCA transformation ranked second. To sum up, using all features led to an increase
of at least 1% (2019) and a maximum increase of 2.5% in OA (2021) compared to the
best feature set (TC).

(3) The RF model outperformed the SVM method in all parameters for each feature set.
For example, in the case of classifying all features in 2021, RF achieved an overall
accuracy of at least 0.5% greater than SVM in the same year. For the RF method, the
highest OA was related to 2019 with 96.11%, and the lowest was related to 2020 with
95.13. Meanwhile, SVM’s highest and lowest OAs were 95.64 % and 93.74% in 2019
and 2021, respectively. Also, RF achieved higher UA in both water and non-water
classes than SVM. RF’s UA was 96.25 in 2021 for water classes, whereas it was 95.4 for
non-water classes. They were 93.94% and 93.54% for SVM.

Furthermore, Table 3 highlights the McNemar’s test results between classification
maps obtained from all features (All) against TC-, PCA-, and SI-only using the RF model
based on test samples. In most cases, utilizing all features significantly improved the
classification results (p-Values < 0.001). Comparing TC features to other input features
(PCA and SI), TC features produced the closest results to the “All” case, as lower χ2 values
were reported (2021: 25.89, 2020: 9.97, and 2019: 7.48). Due to the better performance
compared to the other cases, our results were derived by the trained RF classifier using all
features and training samples from the proposed methodology in the following sections.

Table 3. Results of the McNermar’s test between classification results of different input features (All
vs. TC, PCA, and SI) for RF classifier.

All vs. TC All vs. PCA All vs. SI

Year χ2 p-Value χ2 p-Value χ2 p-Value

2021 25.89 <0.001 41.88 <0.001 106.51 <0.001
2020 9.97 <0.01 23.14 <0.001 57.63 <0.001
2019 7.48 <0.01 19.66 <0.001 37.15 <0.001

3.2. Long-Term Change Analysis

The proposed methodology utilized the initial water map of Fmask to generate training
samples. An initial Fmask water map can be generated from any Landsat image using the
Fmask algorithm. Hence, the proposed method was temporally transferable to generate
training samples, meaning it could be applied at different years. Thus, the proposed
framework was deployed to examine the long-term surface water area of study sites in
this section. Figure 7 presents the computed long-term surface water area in our study
sites. Results indicated that study sites could be ranked as follows based on the average
area of the lake surface: 1-KA, 2-UG, 3-DEZ, 4-K1, 5-K3, 6-ZR, 7-K4, and 8-GP. KA and GP
reservoirs with an average area of 72.71 km2 and 1.8 km2 were the largest and smallest,
respectively. As can be seen, out of eight study sites, five dams (K1, K3, DEZ, ZR, and
GP) showed a general downward trend, among which ZR and GP experienced a more
dramatic decline. Their area was estimated at about 15 km2 and 1 km2 in 2021, respectively.
In comparison, it was about 36 km2 and 2.7 km2 in 1990, which showed an approximately
60% fall. The area of the ZR reservoir has always been less than the long-term average since
2008. Moreover, the current area (2021) of K1, K3, DEZ, ZR, and GP has decreased by about
5, 5.5, 12, 9.5, and 0.8 km2 compared to their long-term averages (µ). In the case of older
dams (K1, DEZ, ZR, and GP), the largest surface area of the reservoir occurred before 2000,
and in the last 20 years, the water surface area has always been less than the wettest year
(the year with the largest water surface area, which is shown by the green bar in Figure 7).
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For example, the largest area of the K1 and DEZ was observed in 1997 and 1992, while it
was 1993 for ZR and GP.
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Figure 7. Long-term change analysis of water surface area in the study sites.

The overall trend for UG, K4, and KA dams, built after 2000, was upward. This
uptrend was slight for the K4 dam (trend line slope: 0.1). In comparison, the UG dam
showed the sharpest upward trend among our study sites. However, the water area in all
dams experienced a significant downward trend in the last three years. Comparing the
latest year (2021) and the wettest year of each dam, our study sites showed 39% (DEZ), 16%
(UG), 62% (GP), 28% (K1), 31% (K3), 22% (K4), 44% (KA), and 58% (ZR) reduction in the
reservoir area, respectively. Furthermore, the t-test statistical analysis also indicated that all
dams have a changing slope of at least 90% confidence. DEZ, ZR, and K1 change slopes
were statistically significant at 99% (α < 0.01) confidence level, indicating that surface water
area would decrease by about 3.5, 7.1, and 2.25 km2 in the upcoming decade, respectively.
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UG change slope had the lowest confidence compared to the other dams. The level of
confidence in other reservoirs was 95% (α < 0.05).

As mentioned earlier, all dams had a lower water surface area in 2021 than in the
wettest year. There was at least a 16% decrease (UG dam) in the reservoir’s current area in
all study sites compared to the maximum. The dam’s reservoir area decreased from the
outer edges of the lakes, which were usually shallow, and the areas that have remained
unchanged are the deepest [63,76]. Comparisons showed the current critical condition of
some dams. In ZR and GP dams, about 58% and 62% of the reservoir vanished compared
to the wettest year. KA and DEZ also experienced a dramatic decrease of about 40%.

ZR had the sharpest downward trend among study sites. Taking ZR as an example,
Figure 8 demonstrates the surface water extent changes between the maximum (1993),
minimum (2013), and latest year closest to the long-term average area (2019). As can be seen,
12.23 km2 of water was detected in all three dates and there was 26.9 km2 disappearance of
the water extent in 2013 with respect to 1993.
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Figure 8. Surface water extent changes in ZR study site between maximum area in 1993, minimum
area in 2013, and the latest year closest to the average long-term area in 2019.

3.3. Influence of Precipitation and Temperature

As mentioned in the satellite-based data Section 2.2, we used FLDAS data to get the
Mean Annual Precipitation (MAP) and Mean Annual Temperature (MAT) every year for
each dam’s basin from September to September (Figure 9). Here, we investigated the
relationship between MAP and MAT with the reservoir’s water surface area. MAP trended
downward in K1, DEZ, ZR, K3, and GP dams, which were exactly the ones experiencing a
decline in water surface area. In the case of KA, UG, and K4 dams, showing an upward
trend in the water surface area, the MAP overall trend was also growing. Therefore, the
overall trend of MAP and water surface area was similar in our study sites. Additionally,
there was mainly an increase in the water surface area where the MAP peaks. For example,
2019 was one of the rainiest years, causing destructive floods in Iran’s southern and central
regions [80]. The increase in rainfall was directly reflected in the water surface area in 2019.
As shown in Figure 7, most dams in 2019 had the highest water surface area in recent years.
It should be noted that MAP slopes were statistically significant at a confidence level of at
least 90%.
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Figure 9. Mean Annual Precipitation (MAP) and Mean Annual Temperature (MAT) in the corre-
sponding basins of the study sites.

MAT showed an increasing trend in both growing and declining dams. K1, DEZ, ZR,
K3, and GP dams, having a downward trend in water surface area, experienced an upward
trend in MAT as well. Similarly, MAT increased in KA, UG, and K4 dams with an upward
water surface area trend. Moreover, ZR and GP dams, located in ISF, had lower MAT than
other study sites, mostly located in KHZ, one of the warmest regions in Iran. In Table 4, we
used the coefficient of determination (R2) parameter to investigate the correlation between
MAP and MAT with the water surface (R2

MAP and R2
MAT). As can be seen, there was a

higher correlation between MAP and water surface area, which ranges between 0.51 (K4) to
0.79 (DEZ). In comparison, MAT showed less correlation with water surface area, ranging
between 0.22 (KA and K3) to 0.39 (ZR).

Table 4. Long-term correlation analysis between MAP and MAT with water surface area in the
study sites.

Site R2
MAP R2

MAT Site R2
MAP R2

MAT

K1 0.69 0.29 K3 0.54 0.22

DEZ 0.79 0.23 UG 0.73 0.29

ZR 0.63 0.39 K4 0.51 0.27

KA 0.6 0.22 GP 0.65 0.31
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4. Discussion

This study developed an approach for providing reliable training data for supervised
machine learning models. Our method did not rely on the existence of reference maps
and used Fmask initial water map to generate training samples. Due to the feasibility
of applying Fmask on any Landsat image, it could provide training data for supervised
classifiers for any Landsat scene. Both quantitative and visual analysis showed that Fmask
initial map contained some errors in both classes (Figure 4). Moreover, the direct use
of Fmask samples to train classification models resulted in low classification accuracies
(Figure 4). Therefore, it was essential to use refining processes to generate accurate training
samples. Iterative K-means clustering was used to refine initial random samples of both
classes. Initial and final training samples were compared in two 3D feature spaces, SI and
TC (Figure 5). Due to the errors in the initial map, some samples of each class behaved
similarly to the other. However, the wrong samples were eliminated by iterative K-means,
and final training samples were separated after refining the initial points using the proposed
methodology in 3D feature spaces. RF and SVM classifiers were trained using the generated
samples and achieved high quantitative accuracies in three recent years (OA ≥ 93.39%)
(Figure 6), indicating the satisfactory performance of the proposed methodology for training
samples generation.

The performance of RF and SVM methods in water mapping was also compared
(Figure 6). Both methods achieved high OAs and kappa coefficients according to the
results. However, the RF method outperformed SVM. Other studies also showed the better
performance of the RF [81,82]. We also evaluated the efficiency of different input features
in water mapping (Figure 6). The results show that simultaneous use of all features (TC,
PCA, and SIs) increased the classification accuracy. TC-only features achieved the highest
classification accuracy. Additionally, PCA-only features outperformed SI-only, the same
as other studies [83]. The superiority of TC features to the SIs was also reported in [84].
A better separation was also observed between water and non-water samples in the 3D
feature space of TC than in SIs space (Figure 5).

The long-term change analysis of water surface area in study sites demonstrated a
general downward trend for five dams (K1, K3, DEZ, ZR, GP), among which ZR and GP
experienced a more severe decrease (Figure 7). K4, KA, and UG dams had an increasing
overall trend. However, comparing the latest year (2021) and the wettest year of each dam,
all study sites showed significant reductions in the reservoir area, ranging from 16% (UG)
to 62% (GP).

Relationship analysis between MAT and MAP with water surface area indicated that
MAT is less correlated with water surface area, which revealed that precipitation had a
more significant influence on the reservoir water surface area than the temperature [33,76]
(Table 4). The results showed that the overall trend of MAP acted the same as the overall
trend of water surface area changes (compare Figures 7 and 9). In addition, an increase or
decrease in surface water area was the same as an increase or decrease in MAP. Note that
the heaviest annual precipitation did not necessarily lead to the greatest water extent. For
example, the heaviest annual precipitation in GP and DEZ basins occurred in 2019 (Figure 9).
However, the maximum surface water extent was not observed in 2019 (Figure 7) because
there were other factors to consider, such as water demand and dam topography.

Floods and drought events directly affected the dam lake area. For example, 2019
floods in Iran’s southern and central regions resulted in a sharp increase in water surface
area in most study sites [80]. Additionally, between 1999 to 2001, the water surface area of
ZR and GP dams, located in ISF, experienced a dramatic decline. In 2000, GP dam had the
lowest water surface area in the recent 31 years and the lowest lake areas of ZR occurred
in 2000, 2012, and 2013. Some studies pointed out the most severe droughts in ISF in the
mentioned years [85–87]. A severe drought in KHZ province was also reported in 2008
by [88], when K1, K3, DEZ, and KA Dams had low water surface area.

As depicted in Figure 1b, four K3, K4, K1, and UG reservoirs have been constructed
on the Karun River. However, they showed different overall trends. Mentioned dams
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were arranged sequentially, so the amount of water they contained was directly affected
by previous reservoirs [89]. Therefore, the upward slope of K4 could be a result of its
location atop other dams. K4 dynamics were tracked only from 2011 to 2021 since it was
opened in 2010. The short 10-year period of monitoring and flood events of 2019 may
be other contributing factors. K4 and K1, located after K3, showed a downward trend.
Since the Khersan River also flows into the reservoir of this dam, K4 experienced a more
gradual decline than K1. UG, the last dam built on the Karun River, showed an upward
trend. It could also be due to the Lali River joining Karun just before UG. However, in
the UG, the short period of monitoring water dynamics and 2019 flood events should also
be considered.

Reservoir regulation pattern is also an important element for change analysis. Regulat-
ing reservoirs, mainly divided into annual and multi-year, have a certain storage capacity
that can be used to regulate the inflow process [90]. The regulating performance corre-
sponds to the available storage capacity. The annual regulating reservoir can well regulate
the water inequality within the year. The multi-year regulating reservoir can achieve the
water distribution between years [91].

Water demand is another element that influences the amount of water stored in dam
reservoirs. Our investigations indicated a rising trend at a 99% confidence level in the total
area of built-up regions in the three provinces of ISF, KHZ, and CHB using the MLCTY
product. A growing population is directly proportional to an increasing built-up area [55].
As a result of population growth, water demand in various drinking, agricultural, and
industrial sectors increase. Therefore, the downward trend in precipitation, and the upward
trend in temperature and water demand can contribute to reducing water in reservoirs. The
situation can pose a danger to society’s food security, particularly since ISF, KHZ, and CHB
are Iran’s critical agricultural centers and affect a large portion of the country’s population
because agricultural activities mostly depend on the reservoir’s water [92].

4.1. Comparison with Similar Studies

The proposed methodology used the Fmask initial water map to generate training
samples for supervised classification. The Fmask initial water map could be derived
by applying the Fmask algorithm to any Landsat scene. Thus, the proposed method
was temporally transferable in providing training data, meaning that it could be used to
generate training samples in different times. Thus, the proposed framework gave us the
possibility of comparing our results with different reference global and Iranian maps. In
this section, we compare our results with some reference maps of the same articles.

First, we compared our results in 2017 with the first public Iranian landcover map
presented in [93]. The mentioned map was freely accessible in GEE as “Iran Land Cover
Map v1 13-class (2017)”, last accessed on March 2022. They proposed a threshold-based
method that migrates ground truth samples from a reference year to any target year based
on similarity measures. Visual comparisons are provided in Appendix A (Figure A1). It
was revealed that the results of this article are more accurate, indicating the satisfactory
performance of the proposed methodology in the training sample generation. Although
they used optical and synthetic aperture radar (SAR) images with higher spatial resolution,
their results showed considerable errors in water mapping.

Figure A2 in Appendix A visually compares our results with two global maps, World
Cover and Joint Research Center (JRC), for 2020 in three K3, UG, and K1 study sites [13,94].
World Cover map is a publicly available landcover with a spatial resolution of 10 m. JRC is
a 30-m long-term global water map [13]. Adapted RF trained with the samples generated
by the proposed methodology could produce comparable results with two global reference
maps, which were generated using different data sources and complex methods [76].
Quantitative results using the same test data (see Section 2.3.5) also indicated that adapted
RF has achieved an OA of 95.13%, higher than JRC and World Cover maps by about
0.5% and 1.7%. The adapted RF’s superior performance indicated the proposed method’s
usefulness for generating training samples.



Sustainability 2022, 14, 8046 17 of 24

4.2. Limitations, Uncertainities and Future Trends

This study investigated long-term inter-annual changes of water surface area in differ-
ent dam lakes using satellite images for 31 years at a fixed time period in each year. Due to
the dynamics of water surface area over a year, intra-annual changes can be considered
to analyze overall trends and different factors more effectively [26]. In addition, we ex-
amined the long-term changes of eight dams in southern and southwestern parts of Iran.
Considering more study sites in other parts of the world could provide an accurate view
of dam reservoir status. It should be noted that changes were analyzed based on water
surface area. Developing methods for calculating the reservoir’s water volume not only
helps scientists, managers, and policy-makers examine the dam’s overall changes in more
detail but also helps them study other dam-related issues such as sedimentation [95].

The proposed framework of this research was designed based on GEE capabilities. All
results were also obtained in GEE cloud-based platform. Researchers in different applica-
tions can perform processes online in GEE without downloading satellite images, remote
sensing products, or having powerful local processing systems. However, it had some
limitations in computational time and memory capacity [33,51]. As a result, especially in
large study areas or long-term studies, a limited number of input features and training sam-
ples can be used. Moreover, there were not various ready-to-use algorithms for users, and
applying some methods such as Artificial Neural Networks and Deep Learning techniques
requires at least offline training [41,93].

In this study, temperature and precipitation parameters were considered as climate
factors to investigate their correlation with water surface area. Other climate factors such
as evapotranspiration can be examined [76,96]. In addition, other parameters such as
anthropogenic activities and industrial sector needs can help identify the most influential
factors on water storage in dam reservoirs [26,51]. We used Landsat satellite imageries
with a spatial resolution of 30 m. Therefore, they may cause errors in identifying narrow
river channels [76]. Mixed pixels at land-water boundaries may affect classification results
as well [29,32]. Thus, satellite imageries with higher spatial resolution, such as Sentinel-2,
can be more effective. However, Sentinel-2 images cannot be used in long-term studies
since it was launched in June 2015. Utilizing multi-source data (optical and SAR imageries)
in water mapping can also be followed [97,98]. Moreover, we used traditional machine
learning classifiers, RF and SVM. Future research can use ensemble classifiers and deep
neural networks (i.e., convolutional networks), which have shown superior performance in
different applications [78,99–101].

5. Conclusions

This study proposed a novel automated method of training sample generation for su-
pervised monitoring of surface water extent changes using Landsat images. The framework
of the study was developed and implemented based on GEE cloud-processing platform
capabilities. An Iterative K-means clustering was deployed on an initial set of training
samples derived from the Fmask water map to provide reliable training samples. These
samples were used to train SVM and RF supervised classification models. Eight Iranian
reservoirs, located in regions that face severe problems in supplying drinking and agri-
cultural water, were selected to evaluate the performance of the proposed framework.
Test samples were provided during extensive field surveys and visual interpretation of
high-resolution satellite imageries. As test samples were prepared by a completely differ-
ent procedure than training samples and were not involved in the training phase, they
could carefully examine how the proposed methodology generated training samples. Both
quantitative and qualitative results revealed that adapted classification models performed
well in classifying water and non-water classes, indicating the proposed novel iterative
clustering-based method’s success in training sample generation. A comparison of RF and
SVM classifiers showed better performance of the RF method in water mapping. Moreover,
simultaneous use of TC, PCA, and SI features improved classification accuracy. However,
TC-only features achieved higher accuracy than PCA-only and SI-only in water mapping.
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Long-term change analysis of all study sites showed a downward trend of five dams
(K1, K3, DEZ, ZR, GP), among which ZR and GP have experienced a more severe decrease.
In addition, the water surface area of all dams in 2021, compared to the long-term maximum,
showed significant reductions (39% (DEZ), 16% (UG), 62% (GP), 28% (K1), 31% (K3),
22% (K4), 44% (KA), and 58% (ZR)). We also analyzed the effect of two climate factors,
precipitation, and temperature, on the water surface changes. The results showed that
precipitation is more correlated with long-term changes in water surface area (R2 between
0.51 (K4) to 0.79 (DEZ)). Based on the current state and overall trend of the study sites
and the possibility of water scarcity in Iran due to increasing temperature, decreasing
precipitation, and population growth, it can be said that all forms of consumption, from
individual use to the supply chains of large companies and agricultural sectors, have to be
reformed as soon as possible.
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