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ABSTRACT

The paper develops a robust and computationally efficient homogenization approach, grounded on exact local and integral moments, to
investigate the temporal evolution of effective dispersion properties of solute particles in periodic media possessing absorbing/desorbing
walls. Adsorption onto and desorption from active walls allow linear and reversible mass transfer between the solid surface and the fluid
phase. The transient analysis reveals some important features of the dispersion process that cannot be captured by asymptotic approaches
aimed at determining exclusively the long-range/large-distance dispersion properties. Two case studies are considered: the dispersion of an
analyte in a sinusoidal channel with adsorbing/desorbing walls and the retentive pillar array column for liquid chromatography. For both
systems, the transient analysis shows how the tortuous fluid motion induced by the sinusoidal walls or by the presence of pillars induces
wide and persistent temporal oscillations of the effective velocity and dispersion coefficient even for a steady (non-pulsating) Stokes flow.
The adsorption/desorption process strongly amplifies the phenomenon of the overshoot for the effective dispersion coefficient that, on short/
intermediate time scales, reaches values significantly larger than the asymptotic one. Moreover, the method proposed allows a detailed
analysis of the temporal evolution of the skewness of the marginal distribution of the analyte along the main stream direction. It clearly
shows that the time scale for achieving the macro-transport regime, which implies a Gaussian (symmetric) marginal pdf, is largely underesti-
mated if one bases the analysis on the attainment of constant asymptotic values for the effective velocity and for the dispersion coefficient.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0130648

I. INTRODUCTION

The study of the transient behavior of dispersion properties is
gaining more and more attention in connection with the development
of microfluidic devices for separation1–6,20 and mixing purposes.7–9

The miniaturization of analytical devices, reducing the device dimen-
sion, solvent consumption and analysis time, has moved the attention
toward the analysis and characterization of the transient behavior of
dispersion properties because asymptotic conditions are not always
achieved on the length-scales of the device.10–12 Moreover, when the
time scales of experimental observations reduce together with the
device dimensions, the accurate description of transient phenomena
becomes more and more important for a correct interpretation of
experimental results.13,14

Multiple-scale expansion,15,38 volume averaging,16–18 and Brenner’s
moment analysis19 are all equivalent strategies20–22 for identifying the

long-term properties of advecting-diffusing fields, i.e., for reducing a
transport problem, in its asymptotic regime, from the indefinite propaga-
tion in Rn to a cell problem in a bounded domainX 2 Rn.

In a series of recent papers,23–25 we extended the potentialities of
the Brenner’s theory,19,26 and proposed a theoretical approach based
on exact moment analysis for generic n-dimensional periodic struc-
tures with solid impermeable obstacles, yielding exact results for the
asymptotic values as well as for the transient dynamics of the effective
transport parameters, for point-sized and finite-sized particles.

In this paper, we further extend the exact moment approach to
include the presence of adsorbing-desorbing walls,27–30 to investigate
transient solute dispersion in chromatographic columns where
reversible/irreversible adsorption is the driving force for the separation.
The approach proposed is specifically suited for the transient analysis
of a reversible reaction that allows both adsorption and desorption with
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linear transfer rates,31,32 but it also permits to investigate, as limiting
cases, an infinitely fast adsorption/desorption process (local equilibrium
condition) as well as a first order irreversible adsorption reaction.33–38

The method proposed allows to investigate the transient behavior
of dispersion properties in any device in which periodic 2D or 3D unit
cells can be identified, overcoming the limitation of dealing with straight
channels (translationally invariant system) with a constant or slowly axi-
ally varying cross section.37,39–45 The transient analysis is not limited to
first and second order moments but includes also third-order
moments.38,46,47 Indeed, the evaluation of the degree of symmetry of a
particle marginal distribution is essential for characterizing the tran-
sitional phase (preasymptotic regime48–50). The transient analysis
permits a proper estimate of time/length to achieve the macrotransport/
asymptotic regime34,37,51 and how these time and length scales are influ-
enced by the adsorption/desorption dynamics and by the inlet condi-
tions.36 The exact moment method can be applied to any steady or
time-periodic velocity field,27,52 be it solenoidal, irrotational, or a superpo-
sition of the two. Therefore, it allows to investigate transient and asymp-
totic dispersion properties in hydromagnetic/electrokinetic flows53,54

as well as Casson fluid flows35,55 usually adopted in hemodynamics.
The presence of adsorbing/desorbing walls requires the introduc-

tion and description of the space-time evolution of exact local
moments in both the mobile and adsorbed phase. From exact local
moments, it is possible to investigate the time-dependent dispersion
features of the solute distribution in the two phases and how these are
influenced by transport parameters, such as the solute diffusivity and
the local adsorption/desorption transfer rates.

The exact moment approach is here applied to investigate the
time-dependent behavior of dispersion properties of a single solute in
a sinusoidal tube with reacting walls. Indeed, sinusoidal tubes repre-
sent one of the most investigated geometries, introduced to describe
the influence of section narrowing/widening on transport phenomena
in a variety of contexts as fractures, nanotubes,56 zeolites,57 cell biol-
ogy,58 blood vessels,59 entropic barrier/entropic trap.3,60–75 Moreover,
sinusoidal tubes are also widely investigated as models for stenosed
arteries in hemodynamics and the presence of reactive walls is relevant
to describe oxygen transport and atherogenesis (see Refs. 35 and 55
and references therein). In this work, a Newtonian fluid is considered,
but a non-Newtonian viscoelastic fluid (Casson) can be investigated as
well within the framework of the proposed moment approach.

The paper also addresses the transient analysis of dispersion
properties in a retentive pillar array column for liquid chromatogra-
phy.18,30 For both systems, the transient analysis shows how the tortu-
ous fluid motion, induced by the sinusoidal walls or by the presence of
pillars, causes wide and persistent temporal oscillations of the effective
velocity and dispersion coefficient even for a steady (non-pulsating)
Stokes flow. Moreover, the transient analysis shows that the phenome-
non of the overshoot for the effective dispersion coefficient, already
observed numerically and experimentally for non-reactive straight and
sinusoidal tubes,60,76–79 is largely amplified by the adsorption/desorp-
tion process.

The article is organized as follows. Section II introduces the exact
local and integral moments in the presence of adsorbing/desorbing
walls and discusses how the temporal evolution of the effective veloc-
ity, dispersion tensor and skewness of the marginal distribution can be
evaluated on the basis of the time-dependent exact lower-order
moments. Section III derives the asymptotic expression for the

dispersion properties in the general case and in the specific case of no-
slip boundary conditions for the fluid velocity field at the solid walls.
Sections IV and V focus on the analysis of the influence of adsorption/
desorption dynamics on the transient and asymptotic behavior of dis-
persion properties of a single solute in a sinusoidal channel and in the
microdevice with retentive pillars. For both systems, a detailed analysis
of the temporal evolution of the skewness of the marginal distribution
of the analyte along the main stream direction allows for a deeper
understanding and an accurate identification of the time scales for
achieving the long-term/large-distance macrotransport regime in the
presence of reactive walls.

II. STATEMENT OF THE PROBLEM

We model the convection/diffusion transport of a single solute in
a two-dimensional fluid domain Rf � R2 in the presence a solid non-
porous phase Rs ¼ ð[Ni¼1Ri

sÞ made by N solid obstacles fRi
sg

N
i¼1 of

any shape, whose global surface @Rs is completely or partially coated
with a thin adsorbing layer. Let ~D � @Rs be the absorbing portion
of @Rs and D the non-adsorbing one, such that ~D [ D ¼ @Rs (see
Fig. 1). Adsorption onto and desorption from ~D allow linear and
reversible mass transfer between the solid surface and the fluid phase.
It is assumed that there is no drift and surface diffusion80,81 of the ana-
lyte on @Rs.

Let vðxÞ be the flow field of a solvent (compressible or incom-
pressible) laden with the analyte and DðxÞ the position-dependent
diffusion tensor of the analyte. The transport equations for the
normalized concentration pðx; tÞ in the mobile (fluid) phase
Rf ¼ R2 � Rs and ~pð~x; tÞ in the stationary (adsorbed) phase ~D read
as follows:

@tpðx; tÞ ¼ �r � ðvðxÞ pÞ þ r � ðDðxÞrpÞ; (1)

ðvðxÞ p�DðxÞrpÞ � nj~x ¼ ðkað~xÞ p� kdð~xÞ ~pÞj~x ; (2)

ðvðxÞ p�DðxÞrpÞ � nj�x ¼ 0; (3)

@t~pð~x; tÞ ¼ ðkað~xÞ p� kdð~xÞ ~pÞj~x ; (4)

with the normalization conditionð
Rf

pðx; tÞdx þ
ð

~D

~pð~x; tÞd~x ¼ 1: (5)

In Eqs. (1)–(4), x is any point in the mobile phase Rf, ~x any point on
the adsorbing surface ~D, and �x any point on the non-adsorbent part D
of the boundary, where impermeability conditions apply, Eq. (3).

FIG. 1. Schematic representation of the infinite domain and of the orthogonal
Cartesian unit cell. Red boundaries indicate the adsorbing/desorbing surfaces.
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kað~xÞ [m/s] and kdð~xÞ [1/s] are the position-dependent adsorption
and desorption kinetic constants, respectively.

Let us assume that vðxÞ and DðxÞ, as well as kað~xÞ and kdð~xÞ are
spatially periodic over a unit lattice cell X,

viðx þm1L1e1 þm2L2e2Þ ¼ viðxÞ ; 8m1;m2 2 Z ;

Di;jðx þm1 L1 e1 þm2 L2 e2Þ ¼ Di;jðxÞ for i; j ¼ 1; 2;

kað~x þm1 L1 e1 þm2 L2 e2Þ ¼ kað~xÞ;
kdð~x þm1 L1 e1 þm2 L2 e2Þ ¼ kdð~xÞ;

(6)

where x ¼ ðx1; x2Þ are orthogonal Cartesian coordinates and L1 and
L2 are the periodicity lengths along the unit lattice vector e1; e2.

The scope of dispersion theory is to derive the asymptotic effec-
tive transport parameters, namely the entries of the effective velocity
field Vi

1 and the entries of the effective symmetric dispersion tensor
Di;j
1, entering the constant-coefficient advection-diffusion equation,

@t�p ¼ �Vi
1 @X;i�p þDi;j

1@X;i@X;j�p; (7)

describing the long-time/large-distance limit of the transport Eqs.
(1)–(4), defined on R2 and possessing periodic coefficients on the unit
cell X. In Eq. (7), the Xi, i¼ 1, 2 are the long-range spatial variables and
�pðX; tÞ is the long-range field representing the mean value of the solute
concentration (in both the mobile and adsorbed phase) averaged over
the periodicity cell X. We limit our analysis to two-dimensional systems
because R2 is the minimal space in which the tensorial nature of the
dispersion tensor can be appreciated. The extension to higher dimen-
sions is straightforward. In Eq. (7) and throughout the paper, Einstein’s
sum convention over repeated indexes has been adopted.

Moment analysis allows to derive the effective transport parame-
ters from the properties of the periodic fields viðxÞ and Di;jðxÞ, thus
transferring the analysis of the transport problem from R2 into a cell
problem defined in the periodicity cell X. This task can be accom-
plished by decoupling the spatial variables into local and global coordi-
nates and using the spatial moments of pðx; tÞ and ~pð~x; tÞ.

Indeed, the asymptotic effective transport parameters Vi
1 and

Di;j
1 can be estimated from the asymptotic behavior of the lower-order

terms of the integral moment hierarchy fMðqÞq1;q2ðtÞg defined as follows:

MðqÞq1;q2ðtÞ ¼
ð

Rf

ðx1Þq1 ðx2Þq2 pðx; tÞ dx þ
ð

~D
ð~x1Þq1 ð~x2Þq2 ~pð~x; tÞ d~x;

q1; q2 ¼ 0; 1;…;1; q ¼ q1 þ q2; (8)

where MðqÞq1;q2ðtÞ is the q-th order integral moment of the normalized
solute concentration in both fluid and adsorbed phase.

Starting from Eq. (8), the time-dependent effective transport
parameters can be defined and evaluated as follows:

V1ðtÞ ¼ dtM
ð1Þ
1;0 ; V2ðtÞ ¼ dtM

ð1Þ
0;1 ; (9)

D1;1ðtÞ ¼ 1
2
dtðr2

2;0Þ ¼
1
2
dtðMð2Þ2;0 � ðM

ð1Þ
1;0Þ

2Þ ¼
dtM

ð2Þ
2;0

2
�Mð1Þ1;0V

1ðtÞ;

(10)

D2;2ðtÞ ¼ 1
2
dtðr2

0;2Þ ¼
1
2
dtðMð2Þ0;2 � ðM

ð1Þ
0;1Þ

2Þ ¼
dtM

ð2Þ
0;2

2
�Mð1Þ0;1V

2ðtÞ;

(11)

D1;2ðtÞ¼D2;1ðtÞ¼1
2
dtðr2

1;1Þ¼
1
2
ðdtMð2Þ1;1�M

ð1Þ
1;0V

2ðtÞ�Mð1Þ0;1V
1ðtÞÞ:

(12)

The time-dependent effective velocity ViðtÞ, Eq. (9), represents the i-
th component of the instantaneous velocity of the center of mass of
the total solute distribution. ViðtÞ asymptotically converges toward
the effective velocity component Vi

1, entering the long-time/large-
distance macrotransport model Eq. (7). Correspondingly, the time-
dependent coefficientsD1;1ðtÞ andD2;2ðtÞ are an indirect measure of
the instantaneous variances r2

2;0 and r2
0;2 of the marginal probability

density functions F1ðx1; tÞ and F1ðx1; tÞ, where Fiðxi; tÞdxi represents
the fraction of solute particles (in both the mobile and adsorbed phase)
falling in the range ðxi; xi þ dxiÞ, regardless of the solute particle posi-
tion in the xj; j 6¼ i direction. Each component Di;jðtÞ asymptotically
converges towardDi;j

1, entering Eq. (7).
Third-order moments Mð3Þ3;0ðtÞ and Mð3Þ0;3ðtÞ allow the estimate of

the time-dependent skewness skð1;1ÞðtÞ and skð2;2ÞðtÞ of the marginal
pdfs F1ðx1; tÞ and F2ðx2; tÞ, respectively,

skð1;1ÞðtÞ ¼
l3;0

ðr2
2;0Þ

3=2
¼

Mð3Þ3;0 þ 3Mð2Þ2;0M
ð1Þ
1;0 � 2ðMð1Þ1;0Þ

3

ðMð2Þ2;0 � ðM
ð1Þ
1;0Þ

2Þ3=2
; (13)

skð2;2ÞðtÞ ¼
l0;3

ðr2
0;2Þ

3=2
¼

Mð3Þ0;3 þ 3Mð2Þ0;2M
ð1Þ
0;1 � 2ðMð1Þ0;1Þ

3

ðMð2Þ0;2 � ðM
ð1Þ
0;1Þ

2Þ3=2
: (14)

Here, l3;0 and l0;3 are the corresponding third-order centered

moments. Both skð1;1ÞðtÞ and skð2;2ÞðtÞ converge toward zero and the
time t� at which jskð1;1Þðt�Þj and jskð2;2Þðt�Þj become sufficiently small,
order Oð0:1Þ, can be assumed as the characteristic time of achieve-
ment of asymptotic conditions when the macrotransport Eq. (7) holds
true.

The possibility of evaluating all the time-dependent quantities
ViðtÞ; Di;jðtÞ, and skði;iÞðtÞ is intrinsically related to the possibility of
having an “exact” representation of the integral moment hierarchy

fMðqÞq1;q2ðtÞg Eq. (8) in terms of local variables defined onto the unit
cell X.

Let ðn1; n2Þ be the local coordinates of the unit lattice cell X,
0 � n1 � L1; 0 � n2 � L2. Any point x 2 R2, including boundary
points belonging to @Rs, can be uniquely specified as follows:

x ¼ ðn1 þm1L1Þ e1 þ ðn2 þm2L2Þ e2 ¼ nþ xm ; (15)

where the following compact notation n ¼ ðn1; n2Þ, xm ¼ m1L1 e1
þm2L2 e2; m ¼ ðm1;m2Þ, has been adopted. See Fig. 1 for a sche-
matic representation of the unit cell and the system of local coordi-
nates defined on it.

Substituting the expression Eq. (15) for the global coordinates x
into Eq. (8), the exact integral moments MðqÞq1;q2ðtÞ can be written as
follows:

MðqÞq1;q2ðtÞ ¼
X
m

ð
Xf

ðn1 þm1L1Þq1 ðn2 þm2L2Þq2 pðnþ xm; tÞ dn

þ
X
m

ð
~C
ð~n1 þm1L1Þq1 ð~n

2 þm2L2Þq2 ~pð~n þ xm; tÞ d~n

¼
ð

Xf

PðqÞq1;q2ðn; tÞdnþ
ð

~C

~P
ðqÞ
q1;q2ð~n; tÞd~n; (16)

where Xf is the portion of the unit cell occupied by the fluid phase, C
and ~C the non-adsorbing and the adsorbing portions of the solid
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boundary, respectively. The exact local moments PðqÞq1;q2ðn; tÞ in the

mobile phase and ~P
ðqÞ
q1;q2ð~n; tÞ in the adsorbed phase, defined on the

unit cell X and entering Eq. (16) for the global integral moments

MðqÞq1;q2ðtÞ, are the key quantities to be estimated for the evaluation of
the effective time-dependent transport parameters ViðtÞ; Di;jðtÞ, and
skði;iÞðtÞ.

If one is interested exclusively in the asymptotic values Vi
1 and

Di;j
1, then quantized local moments QðqÞq1;q2ðn; tÞ; ~Q

ðqÞ
q1;q2ð~n; tÞ and inte-

gral moments NðqÞq1;q2ðtÞ can be defined according to Brenner’s
approach,

QðqÞq1;q2ðn; tÞ ¼ ðm1L1Þq1 ðm2L2Þq2 pðnþ xm; tÞ;
~Q
ðqÞ
q1;q2ð~n; tÞ ¼ ðm

1L1Þq1 ðm2L2Þq2 ~pð~n þ xm; tÞ;

NðqÞq1;q2ðtÞ ¼
ð

Xf

QðqÞq1;q2ðn; tÞdnþ
ð

~C

~Q
ðqÞ
q1;q2ð~n; tÞd~n:

(17)

The definition Eq. (17) of integral moments fits into an asymptotic
theory of transport. It is, however, not fully rigorous and allows only
for the estimate of asymptotic effective transport parameters. Indeed,

it is rather straightforward to verify that NðqÞq1;q2ðtÞ 6¼ MðqÞq1;q2ðtÞ and that
only the exact local moments PðqÞq1;q2ðn; tÞ and ~P

ðqÞ
q1;q2ð~n; tÞ defined in

Eq. (16) are such that their integral over the periodicity cellX coincide,
at any time t> 0, with the expressions of the corresponding moments
of pðx; tÞ and ~pð~x; tÞ defined by Eq. (8).

Section IIA is devoted to the analysis of the space-time evolution
of exact local moments and to the evaluation of time-dependent effec-
tive transport parametersViðtÞ; Di;jðtÞ and skði;iÞðtÞ.

A. Space-time evolution of exact local and integral
moments

From the original transport model Eqs. (1)–(4), by enforcing the

definition Eq. (16) for the local moments PðqÞq1;q2ðn; tÞ and ~P
ðqÞ
q1;q2ð~n; tÞ

for any q1 � 0; q2 � 0; q ¼ ðq1 þ q2Þ � 0, one obtains the following
transport equation for the hierarchy of local moments:

@tP
ðqÞ
q1;q2ðn; tÞ ¼Ln PðqÞq1;q2

h i
þ q1 v1Pðq�1Þq1�1;q2

h
� @n;jðD1;jPðq�1Þq1�1;q2Þ � D1;j@n;jðPðq�1Þq1�1;q2Þ

i
þ q2 v2Pðq�1Þq1;q2�1 � @n;jðD2;jPðq�1Þq1;q2�1Þ

h
�D2;j@n;jðPðq�1Þq1;q2�1Þ

i
þ 2q1q2D

1;2Pðq�2Þq1�1;q2�1

þ q1ðq1 � 1ÞD1;1Pðq�2Þq1�2;q2

þ q2ðq2 � 1ÞD2;2Pðq�2Þq1;q2�2 8n 2 Xf ; (18)

@t~P
ðqÞ
q1;q2ð~n; tÞ ¼ kaP

ðqÞ
q1;q2ð~n; tÞ � kd~P

ðqÞ
q1;q2ð~n; tÞ 8~n 2 ~C ; (19)

whereLn½�� is the cell advection-diffusion operator,

Ln gðnÞ½ � ¼�@n;i viðnÞgðnÞ
� �

þ@n;i Di;jðnÞ@n;jgðnÞ
� �

¼�r� J gðnÞ½ �;

(20)

and J½�� is the flux operator,

Ji gðnÞ½ � ¼ vigðnÞ � Di;j@n;jgðnÞ i ¼ 1; 2: (21)

The local moments in the mobile phase PðqÞq1;q2 satisfy periodic
conditions on the boundaries of the periodic cell not occupied by solid
obstacles, i.e., on @X \ @Xf , and the following boundary conditions
on C and ~C:

J PðqÞq1;q2

h i
� nj�n ¼ �ðq1D1;iPðq�1Þq1�1;q2 þ q2D

2;iPðq�1Þq1;q2�1Þ ðei � nÞj�n ;

8�n 2 C; (22)

J PðqÞq1;q2

h i
� nj~n ¼ �ðq1D

1;iPðq�1Þq1�1;q2 þ q2D
2;iPðq�1Þq1;q2�1Þ ðei � nÞj~n

þ kaP
ðqÞ
q1;q2ð~n; tÞ � kd~P

ðqÞ
q1;q2ð~n; tÞ ; 8~n 2 ~C; (23)

the latter boundary condition (23) linking together the two sets of local
moments in the two phases.

By further integrating Eq. (18) for PðqÞq1;q2 over the fluid domain Xf

and Eq. (19) for ~P
ðqÞ
q1;q2 over the adsorbed phase domain ~C, and enforc-

ing the boundary conditions for PðqÞq1;q2 , one arrives to the following
equation for the total time-dependent integral momentsMðqÞq1;q2ðtÞ,

dtM
ðqÞ
q1;q2 ¼ q1

ð
Xf

v1Pðq�1Þq1�1;q2 � D1;j@n;jðPðq�1Þq1�1;q2Þdn
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q1J1 Pðq�1Þq1�1;q2

� �
þ q2

ð
Xf

v2Pðq�1Þq1;q2�1 � D2;j@n;jðPðq�1Þq1;q2�1Þdn
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q2J2 Pðq�1Þq1 ;q2�1

� �
þ2 q1q2

ð
Xf

D1;2Pðq�2Þq1�1;q2�1dn

þ q1ðq1 � 1Þ
ð

Xf

D1;1Pðq�2Þq1�2;q2dn

þ q2ðq2 � 1Þ
ð

Xf

D2;2Pðq�2Þq1;q2�2dn: (24)

It is worth noting that exactly the same Eq. (24) is obtained if the
adsorbing layer is absent. However, the adsorption/desorption kinetics
is implicitly influencing the temporal evolution of the integral

moments because the local moments PðqÞq1;q2 in the mobile phase inter-

act with the local moments ~P
ðqÞ
q1;q2 in the adsorbed phase through the

boundary condition Eq. (23).
The same observation applies for the temporal evolution of the

effective velocities that, according to their definition Eq. (9), read as
follows:

ViðtÞ ¼
ð

Xf

J i Pð0Þ0;0

h i
dn ¼

ð
Xf

ðviPð0Þ0;0 � Di;j@n;jðPð0Þ0;0ÞÞdn i ¼ 1; 2;

(25)

thus involving exclusively the zeroth-order local moment Pð0Þ0;0 in the
mobile phase, the latter satisfying an advection-diffusion equation
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with no-flux boundary conditions on C and adsorptive boundary con-
ditions on ~C,

@tP
ð0Þ
0;0 ¼Ln Pð0Þ0;0

h i
; (26)

J Pð0Þ0;0

h i
� nj~n ¼ kaP

ð0Þ
0;0ð~n; tÞ � kd~P

ð0Þ
0;0ð~n; tÞ 8~n 2 ~C; (27)

J Pð0Þ0;0

h i
� nj�n ¼ 0 8�n 2 C: (28)

On the contrary, the temporal evolution of the dispersion tensor
entriesDi;jðtÞ

D1;1ðtÞ ¼
ð

Xf

ðv1 �V1ÞPð1Þ1;0 � D1;j@n;jðPð1Þ1;0Þ þ D1;1Pð0Þ0;0

h i
dn

�
ð

~C
V1~P

ð1Þ
1;0d~n; (29)

D2;2ðtÞ ¼
ð

Xf

ðv2 �V2ÞPð1Þ0;1 � D2;j@n;jðPð1Þ0;1Þ þ D2;2Pð0Þ0;0

h i
dn

�
ð

~C
V2~P

ð1Þ
0;1d~n; (30)

D1;2ðtÞ ¼
ð

Xf

1
2
ðv1 �V1ÞPð1Þ0;1 þ ðv2 �V2ÞPð1Þ1;0

h
�D1;j@n;jðPð1Þ0;1Þ � D2;j@n;jðPð1Þ1;0Þ þ 2D1;2Pð0Þ0;0

i
dn

�
ð

~C

1
2

V1~P
ð1Þ
0;1 þV2~P

ð1Þ
1;0

h i
d~n; (31)

involves explicitly the zeroth- and first-order local moment Pð0Þ0;0 ; P
ð1Þ
1;0 ,

and Pð1Þ0;1 in the mobile phase and the first-order local moments ~P
ð1Þ
1;0

and ~P
ð1Þ
0;1 in the adsorbed phase.
First- and second-order local moments in both the mobile and

adsorbed phase are involved in the computation of the time-
dependent skewness skð1;1ÞðtÞ and skð2;2ÞðtÞ, as they appear in the cen-
tered third-order moments,

dtl
ð3Þ
3;0 ¼ 3

ð
Xf

ðv1 �V1ÞPð2Þ2;0 � D1;j@n;jP
ð2Þ
2;0

h i
dn

þ 6
ð

Xf

ðD1;1 �D1;1ÞPð1Þ1;0dn

�
ð

~C
3V1~P

ð2Þ
2;0 þ 6D1;1~P

ð1Þ
1;0

h i
d~n; (32)

dtl
ð3Þ
0;3 ¼ 3

ð
Xf

ðv2 �V2ÞPð2Þ0;2 � D2;j@n;jP
ð2Þ
0;2

h i
dn

þ 6
ð

Xf

ðD2;2 �D2;2ÞPð1Þ0;1dn

�
ð

~C
3V2~P

ð2Þ
0;2 þ 6D2;2~P

ð1Þ
0;1

h i
d~n: (33)

A detailed analysis of the asymptotic properties, i.e., long-time/large dis-

tance features of local PðqÞq1;q2 ; ~P
ðqÞ
q1;q2 and integral MðqÞq1;q2ðtÞ moments, is

presented in Sec. III. Section II B focuses on the analysis of dispersion

features in the fluid and adsorbed phase separately and analyze how
they contribute to dispersion properties of the global solute distribution.

B. Correlation between moments

The problem formulation outlined above, introducing and describ-
ing the space-time evolution of local moments of the fluid and adsorbed
phases, allows to investigate the time-dependent dispersion features of
the solute distribution in the two phases. Indeed, each integral moment
MðqÞq1;q2 can be viewed as the summation of the two contributions,

MðqÞq1;q2ðtÞ ¼ mðqÞq1;q2ðtÞm
ð0Þ
0;0ðtÞ þ ~mðqÞq1;q2ðtÞ ~mð0Þ0;0ðtÞ;

mðqÞq1;q2ðtÞ ¼

ð
Xf

PðqÞq1;q2dnð
Xf

Pð0Þ0;0dn
; ~mðqÞq1;q2ðtÞ ¼

ð
~C

~P
ðqÞ
q1;q2d

~nð
~C

~P
ð0Þ
0;0d~n

;
(34)

wheremðqÞq1;q2 and ~mðqÞq1;q2 are the integral moment of the particle density

functions in the mobile and adsorbed phase, respectively, and the inte-

gral moment MðqÞq1;q2 is the convex combination of the single-phase

integral momentsmðqÞq1;q2 and ~mðqÞq1;q2 with weightsmð0Þ0;0 and ~mð0Þ0;0 repre-

senting the fraction of solute particles in the mobile and adsorbed
phase.

Starting from the single-phase integral moments, it is possible to
define and compute the single-phase effective velocities,

v1ðtÞ ¼ dtm
ð1Þ
1;0; ~v1ðtÞ ¼ dt ~mð1Þ1;0;

v2ðtÞ ¼ dtm
ð1Þ
0;1; ~v2ðtÞ ¼ dt ~mð1Þ0;1;

(35)

where viðtÞ are the velocity components of the center of mass of solute
particles in the mobile phase while ~viðtÞ refer to the solute particles in
the adsorbed phase.

Similarly, the variances s2i;i and ~s2i;i and the effective dispersion
tensors di;i and ~d

i;i
associated with the particle density function in

the mobile and adsorbed phase can be defined as follows:

d1;1ðtÞ ¼ 1
2
dtðs22;0Þ ¼

1
2
dtðmð2Þ2;0 � ðm

ð1Þ
1;0Þ

2Þ;

~d
1;1ðtÞ ¼ 1

2
dtð~s22;0Þ ¼

1
2
dtð~mð2Þ2;0 � ð~m

ð1Þ
1;0Þ

2Þ;
(36)

d2;2ðtÞ ¼ 1
2
dtðs20;2Þ ¼

1
2
dtðmð2Þ0;2 � ðm

ð1Þ
0;1Þ

2Þ;

~d
2;2ðtÞ ¼ 1

2
dtð~s20;2Þ ¼

1
2
dtð~mð2Þ0;2 � ð~m

ð1Þ
0;1Þ

2Þ:
(37)

From Eq. (35), it is possible to derive an explicit relationship
between the effective velocity Vi of the global solute distribution and
the single-phase effective velocities vi and ~vi. For example, for V1

one obtains

V1 ¼ v1 mð0Þ0;0 þ ~v1 ~mð0Þ0;0

h i
þ mð1Þ1;0dtm

ð0Þ
0;0 þ ~mð1Þ1;0dt ~mð0Þ0;0

h i
; (38)

where the first term between brackets is the convex combination of
the single-phase velocities and the second term quantifies how the
interaction between the two phases contributes to the effective velocity
of the global particle density function. By enforcing the conservation
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constrain mð0Þ0;0 þ ~mð0Þ0;0 ¼ 1, the interaction term can be rewritten as
follows:

h1ðtÞ ¼ mð1Þ1;0dtm
ð0Þ
0;0 þ ~mð1Þ1;0dt ~mð0Þ0;0

h i
¼ mð1Þ1;0 � ~mð1Þ1;0

h i
dtm

ð0Þ
0;0: (39)

For any initial condition in which the solute is entirely in the fluid
phase, the solute fraction in the fluid phase is always a decreasing func-
tion of time, i.e., dtm

ð0Þ
0;0 < 0 8t. It asymptotically converges to the

constant value limt!1mð0Þ0;0 ¼ c0, c0 representing the fraction of solute
particles in the mobile phase when dynamic equilibrium conditions
are reached. Simultaneously, limt!1 ~mð0Þ0;0 ¼ ~c0; ~c0 representing the
asymptotic fraction of solute particles in the adsorbed phase,
c0 þ ~c0 ¼ 1. Therefore, by considering that dtm

ð0Þ
0;0 ! 0 and

jmð1Þ1;0j > j~m
ð1Þ
1;0j, the interaction term has always an opposite sign with

respect to V1. The interaction between the fluid and adsorbed phases
results in an effective velocity of the global solute distribution that is
smaller, in absolute value, than the convex combination of the single-
phase velocities. Moreover, since the interaction term asymptotically
converges to 0, on the long term-large distance limit when dynamic
equilibrium conditions are reached, all the velocities coincide, i.e.,
V1
1 ¼ v1

1 ¼ ~v1
1 as the swarm of solute particle in the mobile and

adsorbed phase are traveling at the same speed.
A similar analysis can be performed for the variance r2

2;0 of the
global solute distribution, that can be expressed as the convex combi-
nation of the single-phase variances ðs22;0Þ and ð~s

2
2;0Þ plus an always

positive interaction term h2ðtÞ,

r2
2;0 ¼ s22;0 m

ð0Þ
0;0 þ ~s2

2;0 ~mð0Þ0;0

h i
þ mð0Þ0;0 ~mð0Þ0;0 ð~m

ð1Þ
1;0 �mð1Þ1;0Þ

2
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼h2ðtÞ

; (40)

that asymptotically converges toward a positive constant value

lim
t!1

h2ðtÞ ¼ lim
t!1

mð0Þ0;0 ~mð0Þ0;0 ð~m
ð1Þ
1;0�mð1Þ1;0Þ

2
h i

¼ c0~c0ð~c1� c1Þ2; (41)

because limt!1mð1Þ1;0 ¼ v1
1t þ c1; limt!1 ~mð1Þ1;0 ¼ ~v1

1t þ ~c1 and
v1
1 ¼ ~v1

1. Therefore, the variance of the global particle density function
is always larger than the convex combination of the single-phase varian-
ces. Equation (42) implies for the effective dispersion coefficientD1;1,

D1;1 ¼ d1;1 mð0Þ0;0 þ ~d
1;1

~mð0Þ0;0

h i
þ s22;0 dtm

ð0Þ
0;0 þ ~s2

2;0dt ~mð0Þ0;0 þ dth2
h i

: (42)

Since the interaction term h2ðtÞ is asymptotically constant, as well as

mð0Þ0;0 and ~mð0Þ0;0, it readily follows that when dynamic equilibrium condi-
tions are reached, all the effective dispersion coefficients coincide, i.e.,

D1;1
1 ¼ d1;1

1 c0 þ ~d
1;1
1 ~c0

h i
) D1;1

1 ¼ d1;1
1 ¼ ~d

1;1
1 : (43)

The same analysis can be performed forV2 andD2;2.

III. ASYMPTOTIC ANALYSIS

In the long-time/large-distance limit, we assume that dynamic
equilibrium conditions are reached, so that the fraction of solute par-
ticles in the mobile phase (and therefore also in the adsorbed phase) of
the unit cell X no longer changes over time, this implying

lim
t!1

ð
Xf

@tP
ð0Þ
0;0ðn; tÞdn! 0 ; lim

t!1

ð
~C
@t~P

ð0Þ
0;0ð~n; tÞd~n ! 0: (44)

As a direct consequence of Eq. (44), in the long term, Pð0Þ0;0 and ~P
ð0Þ
0;0

converge toward stationary functions w0ðnÞ and ~w0ð~nÞ satisfying the
following pointwise relationship at the reactive boundary ~C,

lim
t!1

Pð0Þ0;0ðn; tÞ ¼ w0ðnÞ lim
t!1

~P
ð0Þ
0;0ð~n; tÞ ¼ ~w0ð~nÞ ¼

kað~nÞ
kdð~nÞ

w0ð~nÞ;

(45)

w0ðnÞ being the Frobenius eigenfunction of the advection-diffusion
operator Eq. (20) equipped with no-flux boundary conditions on the
entire solid boundary C [ ~C.

By replacing Pð0Þ0;0 with w0 into Eq. (25) for the effective time-
dependent velocities ViðtÞ, the asymptotic velocity components Vi

1
attain the form

Vi
1 ¼

ð
Xf

J i w0½ � dn ¼
ð

Xf

ðviw0 � Di;j@n;jw0Þdn i ¼ 1; 2: (46)

Let us now analyze the asymptotic properties of the local

moments Pð1Þ1;0ðn; tÞ and ~P
ð1Þ
1;0ð~n; tÞ. By considering that

lim
t!1

dtM
ð1Þ
1;0ðtÞ ! V1

1 ) lim
t!1

Mð1Þ1;0ðtÞ !V1
1t þ C1; (47)

the local moments Pð1Þ1;0ðn; tÞ and ~P
ð1Þ
1;0ð~n; tÞ on long time scales can be

expressed as follows:

lim
t!1

Pð1Þ1;0ðn; tÞ ¼ w0ðnÞ V1
1t þ b1;0ðnÞ

� �
;

lim
t!1

~P
ð1Þ
1;0ð~n; tÞ ¼ ~w0ð~nÞ V1

1t þ ~b1;0ð~nÞ
h i

; (48)

where ð
Xf

w0ðnÞ b1;0ðnÞdnþ
ð

~C
~w0ð~nÞ ~b1;0ð~nÞd~n ¼ C1: (49)

By replacing Eq. (49) into the transport equations Eqs. (18)–(23) for
local moments with q1 ¼ 1; q2 ¼ 0, one obtains that the stationary
cell field w0b1;0 in the fluid phase satisfies the following transport
equation and boundary conditions on the solid boundary,

Ln w0b1;0½ � ¼ w0ðV1
1 � v1Þ þ D1;j @n;jw0 þ @n;jðD1;j w0Þ; (50)

J w0b1;0½ � � nj~n ¼ �D
1;iw0 ðei � nÞ þ ~w0 V

1
1

� �
j~n 8~n 2 ~C; (51)

J w0b1;0½ � � nj�n ¼ �D1;iw0 ðei � nÞ
� �

j�n 8�n 2 C; (52)

and periodic boundary conditions on the edges of the periodicity
cell not occupied by solid obstacles. Correspondingly, the stationary
cell field ~w0

~b1;0 in the adsorbed phase satisfies the following
equation:

ð~w0
~b1;0Þj~n ¼

ka
kd
ðw0b1;0Þ �

~w0

kd
V1
1

	 
����
~n

8~n 2 ~C; (53)

and the asymptotic effective dispersion entryD1;1
1 attains the form
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D1;1
1 ¼

ð
Xf

D1;1 w0 dnþ
ð

Xf

ðv1 �V1
1Þðw0b1;0Þ

�
�D1;j@n;jðw0b1;0Þ

�
dn�V1

1

ð
~C
ð~w0

~b1;0Þd~n: (54)

Analogously, it can be shown that the asymptotic effective dispersion
entriesD2;2

1 andD1;2
1 attain the form

D2;2
1 ¼

ð
Xf

D2;2 w0 dnþ
ð

Xf

ðv2 �V2
1Þðw0b0;1Þ

�
�D2;j@n;jðw0b0;1Þ

�
dn�V2

1

ð
~C
ð~w0

~b0;1Þd~n; (55)

D1;2
1 ¼

ð
Xf

D1;2 w0 dnþ
1
2

ð
Xf

ðv1 �V1
1Þðw0b1;0Þ

�
�D1;j@n;jðw0b1;0Þ þ ðv2 �V2

1Þðw0b0;1Þ
�D2;j@n;jðw0b0;1Þ

�
dn

� 1
2

ð
~C
V1
1ð~w0

~b0;1Þ þV2
1ð~w0

~b1;0Þ
h i

d~n; (56)

where the stationary cell fields w0b0;1 and ~w0
~b0;1 satisfy the same Eqs.

(51)–(54) as w0b1;0 and ~w0
~b1;0 where v1, V1

1, and D1;j are replaced
with v2,V2

1, andD
2;j, respectively.

These results coincide with that obtained by Brenner and
Edwards19 in the limiting case of infinitely fast adsorption/desorption
process (kd !1) and constant ka=kd adsorption/desorption rate
ratio.

A similar approach can be adopted for the analysis of the asymp-
totic properties of the local second-order moments Pð2Þ2;0ðn; tÞ and
~P
ð2Þ
2;0ð~n; tÞ. The starting point of the subsequent analysis is the follow-

ing relationship between integral moments,

dtM
ð2Þ
2;0 ¼ dtr

2
2;0 þ 2Mð1Þ1;0dtM

ð1Þ
1;0 ; (57)

that asymptotically can be expressed as follows:

lim
t!1

dtM
ð2Þ
2;0 ¼ 2D1;1

1 þ 2V1
1

ð
Xf

Pð1Þ1;0ðn; t !1Þdn
 

þ
ð

~C

~P
ð1Þ
1;0ð~n; t !1Þd~n

!
: (58)

By enforcing Eq. (48) for the asymptotic behavior of Pð1Þ1;0ðn; tÞ and
~P
ð1Þ
1;0ð~n; tÞ, Eq. (58) can be rewritten as follows:

lim
t!1

Mð2Þ2;0 ¼ 2D1;1
1 t þ ðV1

1tÞ
2

þ 2V1
1t

ð
Xf

w0ðnÞb0ðnÞdnþ
ð

~C
~w0ð~nÞ~b0ð~nÞd~n

 !
þ C2;

(59)

and therefore the second-order local moments Pð2Þ2;0ðn; tÞ and

~P
ð2Þ
2;0ð~n; tÞ asymptotically can be expressed as follows:

lim
t!1

Pð2Þ2;0ðn; tÞ ¼ w0ðnÞ 2D1;1
1 tþ ðV1

1tÞ
2 þ 2V1

1b1;0ðnÞtþ c2;0ðnÞ
h i

;

(60)

lim
t!1

~P
ð2Þ
2;0ð~n; tÞ¼ ~w0ð~nÞ 2D1;1

1 tþðV1
1tÞ

2þ2V1
1

~b1;0ðnÞtþ~c2;0ð~nÞ
h i

;

(61)

where ð
Xf

w0ðnÞ c2;0ðnÞdnþ
ð

~C
~w0ð~nÞ~c2;0ð~nÞd~n ¼ C2: (62)

By replacing Eqs. (60) and (61) into the transport equations Eqs.
(18)–(23) for local moments with q1 ¼ 2; q2 ¼ 0, one obtains that the
stationary cell field w0c2;0 in the fluid phase satisfies the following
transport equation and boundary conditions on the solid boundary:

Ln w0c2;0½ � ¼ 2w0b1;0ðV1
1 � v1Þ þ 2w0ðD1;1

1 � D1;1Þ
þ 2D1;j @n;jðw0b1;0Þ þ 2 @n;jðD1;j w0b1;0Þ þ 2D1;1w0;

(63)

J w0c2;0½ � � nj~n ¼ �D1;iðw0b1;0Þ ðei � nÞ þ 2~w0
~b1;0V

1
1 þ 2~w0D

1;1
1

h i����
~n

8~n 2 ~C; (64)

J w0c2;0½ � � nj�n ¼ �D1;iðw0b1;0Þ ðei � nÞj�n 8�n 2 C; (65)

while the stationary cell field ~w0~c2;0 in the adsorbed phase satisfies the
following equation:

ð~w0~c2;0Þj~n ¼
ka
kd
ðw0c2;0Þ � 2

~w0
~b1;0
kd

V1
1 � 2

~w0

kd
D1;1
1

" #����
~n

8~n 2 ~C:

(66)

By replacing the asymptotic expressions Eqs. (48), (60), and (61) for
first-order and second-order local moments into Eq. (32) for the cen-
tered third-order moments, the following compact expressions for
dtl3;0 and dtl0;3 are obtained:

lim
t!1

dtl
ð3Þ
3;0 ¼ 3

ð
Xf

ðv1 �V1
1Þðw0c2;0Þ � D1;j@n;jðw0c2;0Þ

h i
dn

þ 6
ð

Xf

ðD1;1 �D1;1
1 Þðw0b1;0Þ

� �
dn

�
ð

~C
3V1

1ð~w0~c2;0Þ þ 6D1;1
1 ð~w0

~b1;0Þ
h i

d~n; (67)

lim
t!1

dtl
ð3Þ
0;3 ¼ 3

ð
Xf

ðv2 �V2
1Þðw0c0;2Þ � D2;j@n;jðw0c0;2Þ

h i
dn

þ 6
ð

Xf

ðD2;2 �D2;2
1 Þðw0b0;1Þ

� �
dn

�
ð

~C
3V2

1ð~w0~c0;2Þ þ 6D2;2
1 ð~w0

~b0;1Þ
h i

d~n ¼; (68)

where the stationary cell fields w0c0;2 and ~w0~c0;2 satisfy the same Eqs.
(63)–(66) as w0c2;0, and ~w0~c2;0 where v1, V1

1; D
1;j; w0b1;0, and

~w0
~b1;0 are replaced with v2, V2

1; D
2;j; w0b0;1, and ~w0

~b0;1,
respectively.

It can be observed that Eqs. (67) and (68) imply that both lð3Þ3;0
and lð3Þ0;3 in the long-time limit scale linearly with time,
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lim
t!1

dtl
ð3Þ
3;0 ¼ C3;0 ) lim

t!1
lð3Þ3;0 	 C3;0 t;

lim
t!1

dtl
ð3Þ
0;3 ¼ C0;3 ) lim

t!1
lð3Þ0;3 	 C0;3 t: (69)

Since also the variances r2
2;0 and r2

0;2 scale linearly asymptotically

lim
t!1

r2
2;0 	 2D1;1

1 t; lim
t!1

r2
0;2 	 2D2;2

1 t; (70)

then the time-dependent skewnesses skð1;1ÞðtÞ and skð2;2ÞðtÞ asymptot-
ically decay to zero as

lim
t!1

skð1;1Þ 	 C3;0

ð2D1;1
1 Þ

3=2
t�1=2; lim

t!1
skð2;2Þ 	 C0;3

ð2D2;2
1 Þ

3=2
t�1=2:

(71)

It is worth noting that the stationary cell fields b1;0 and ~b1;0 are
both defined modulo an additive constant. Indeed, if w0b1;0 and
~w0

~b1;0 are solutions of Eqs. (50)–(53), then also w0b1;0 þ Cw0 and
~w0

~b1;0 þ C~w0 are solutions of the same set of equations, C being a
constant, the same for both fields. However, the contribution of the
additive term is immaterial for the estimate of the effective asymptotic
dispersion tensor Di;j

1. By way of example, by replacing w0b1;0 þ Cw0

and ~w0
~b1;0 þ C~w0 into Eq. (54) forD

1;1
1 one obtains an extra term,

C
ð

Xf

ðv1 �V1
1Þw0 � D1;j@n;jðw0Þ

h i
dn� CV1

1

ð
~C

~w0d~n

¼ CV1
1 1�

ð
Xf

w0dn�
ð

~C
~w0d~n

 !
¼ 0; (72)

that is zero because of the normalization of the cell equilibrium
distribution.

The same can be said for the stationary cell fields c2;0 and ~c2;0,
solutions of Eqs. (63)–(66), defined up to an additive constant, the
same for both fields, the choice of which has no influence on the esti-
mate of the centered third-order moment Eq. (67).

A. Asymptotic analysis for a uniform Frobenius
eigenfunction w0

The time-dependent and asymptotic formulations of the trans-
port problem, developed in Secs. II A–III, have a general validity. The
asymptotic analysis developed in this section is limited to the case of
no-slip boundary conditions for the fluid velocity field.

When the normal components of the velocity field vanish at all
the solid boundaries v � nj~n ¼ 0 8~n 2 C [ ~C, the Frobenius eigen-

function w0ðnÞ is uniform on Xf, i.e., w0ðnÞ ¼ w0 ¼ constant.

Therefore, by enforcing Eq. (46) and the integral constrain Mð0Þ0;0ðtÞ
¼ 1 (valid at any time instant t), the following expressions for w0 and
~w0ð~nÞ hold true:

w0 ¼
1
Vf

1
ð1þ KÞ ; ~w0ð~nÞ ¼

kað~nÞ
kdð~nÞ

w0; (73)

where Vf ¼ measðXf Þ is the measure (volume or area) of the fluid

phase, ~S ¼ measð~CÞ is the measure (area or length) of the adsorbing
boundary and K is the average retention factor

K ¼
~S
Vf

�
ka
kd


~C

;

�
ka
kd


~C

¼ 1
~S

ð
~C

kað~nÞ
kdð~nÞ

d~n: (74)

Moreover, since w0 is uniform on Xf, all the spatial derivatives of w0 are
zero and the effective asymptotic velocity components attain the form

Vi
1 ¼ x0

ð
Xf

viðnÞdn¼ 1
ð1þKÞ

1
Vf

ð
Xf

viðnÞdn
 !

¼ 1
ð1þKÞ hv

iiXf
;

(75)

representing the fluid velocity components vi, averaged over the fluid
volume of the unit cell and weighed with respect to the fraction of sol-
ute particles in the mobile phase, c0 ¼

Ð
Xf
w0 dn ¼ ð1þ KÞ�1.

By enforcing the further assumption of a uniform solute diffusiv-
ity, i.e.,Di;iðnÞ ¼ D ¼ constant; Di;j ¼ 0 for i 6¼ j, the transport equa-
tions (50)–(53) for the stationary b-field b1;0 simplify to

Ln b1;0½ � ¼ ðV1
1 � v1Þ; (76)

�Drb1;0 � nj~n ¼ �D ðe1 � nÞ þV1
1
ka
kd

	 
����
~n

8~n 2 ~C; (77)

�Drb1;0 � nj�n ¼ �D ðe1 � nÞj�n 8�n 2 C; (78)

ð~b1;0Þj~n ¼ ðb1;0Þ �
V1
1

kd

	 
����
~n

8~n 2 ~C; (79)

and the asymptotic dispersion entryD1;1
1 attains the form

D1;1
1 ¼

D
1þ K

þ 1
1þ K

hðv1 �V1
1Þ b1;0 � D @n;1ðb1;0ÞiXf

� V1
1

1þ K

*
ka
kd

~S
Vf

 !
b1;0j~n

+
~C

þ ðV
1
1Þ

2

1þ K

*
ka
kd

~S
Vf

 !
1
kd

+
~C

:

(80)

In the case of kað~nÞ and kdð~nÞ attain constant values on ~C, i.e., kað~nÞ ¼
ka ¼ constant and kdð~nÞ ¼ kd ¼ constant, Eq. (80) simplifies to

D1;1
1 ¼

D
1þ K

þ 1
1þ K

�
v1 �V1

1
� �

b1;0 � D @n;1ðb1;0Þ
�

Xf

�V1
1

K
1þ K

hb1;0j~n i~C þ ðV
1
1Þ

2 K
1þ K

1
kd
: (81)

The last term of the right-hand side of Eqs. (80) and (81) vanishes in the
limiting case of infinitely fast adsorption/desorption process in which
case kd !1 while the retention factor K assumes a finite value any-
way. The corresponding expressions for D2;2

1 and D1;2
1 can be easily

deducted from Eq. (81) and are not reported here for sake of brevity.
It is worth noting that Eq. (81) for D1;1

1 coincides with that
obtained by Yan et al.30 [Eq. (30) in their paper] by the method of vol-
ume averaging, by simply enforcing the following correspondences
ka=kd ¼ cd; kd ¼ k=d; f ¼ ðb1;0; b0;1Þ and setting to zero the arbi-
trary constant C1 entering the integral constrain Eq. (49).

IV. CASE STUDY I: THE SINUSOIDAL CHANNEL

We analyze the temporal evolution of dispersion properties of a
single solute in a sinusoidal tube in the presence of a steady-state pres-
sure-driven incompressible Stokes flow with no-slip boundary condi-
tions at the tube wall coated with a thin adsorbing layer characterized
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by uniform adsorption ka (m/s) and desorption kd (1/s) kinetic con-
stants. The solute diffusivity D is also assumed uniform in the fluid
domain and negligible in the adsorbed phase (no surface diffusion).

The sinusoidal channel with average radius R0, wavelength L and
wave amplitude dR0 can be viewed as the periodic repetition, along
the axial coordinate z, of a periodicity cell X of length L,

X ¼ ðr; f; hÞ j 0 � r � RðfÞ ; 0 � f � L ; 0 � h < 2p
� �

;

RðfÞ ¼ R0 þ ðdR0Þ sin ð2pf=LÞ;
(82)

because the global axial coordinate z can be expressed as z ¼ mLþ f
where m is the unit cell number and f 2 ½0; LÞ the local coordinate.
For this axially periodic medium, the fluid phase Xf coincides with X
and C ¼1 because the solid non-porous adsorbing phase ~C is the
entire tube wall ~C ¼ ðr; f; hÞ j r ¼ RðfÞ; 0 � f � L ; 0 � h < 2p

� �
.

The inlet condition analyzed is an impulsive injection of solute
uniformly distributed over the inlet cross section. This axisymmetric
inlet condition and the uniformity of the adsorption and desorption
kinetic constants simplify the dispersion problem to a 2d axisymmetric
transport problem, in which the particle density functions, and thus
also the local moments, are independent of the angular coordinate h.

For a fixed value of the dimensionless wave amplitude d, the
velocity field changes significantly with the dimensionless wavelength
k ¼ L=R0. Figure 2 shows the behavior of the streamlines for d
¼ 0:5; k ¼ 2; 5; and 10 and the intensity of the axial velocity compo-
nent vz=W,W being the reference velocity chosen as the average axial
velocity at the inlet section f¼ 0 of the unit cell. It can be observed
that for k < 3 a large recirculation zone appears in the region of the
maximum cross section enlargement. Also, the surface-over-volume
ratio ~S=V changes with k, attaining decreasing values as k increases,
namely ~SR0=V ’ 2:603; 1:942; and 1:821 for k ¼ 2; 5; and 10,
respectively.

For this axial-symmetric channel possessing axial spatial period-
icity, one is interested in evaluating the transient behavior (and the
asymptotic values) of the effective axial velocity VzðtÞ, the axial dis-
persion coefficient DzðtÞ and the skewness skzðtÞ of the marginal pdf
Fzðz; tÞ; Fzðz; tÞ dz representing the fraction of solute particles (in
both the mobile and adsorbed phase) falling in the range ðz; z þ dzÞ,
regardless of the radial (r) and angular (h) solute particle position. The
evaluation of these quantities requires the estimate of the space-time

evolution of the local moments PðqÞ and ~P
ðqÞ

where the simplified

notation PðqÞ ¼ PðqÞq;0 and ~P
ðqÞ ¼ ~P

ðqÞ
q;0; M

ðqÞ ¼ MðqÞq;0 ; m
ðqÞ ¼ mðqÞq;0;

~mðqÞ ¼ ~mðqÞq;0, and r2 ¼ r2
2;0 has been adopted because q2 ¼ 0 and

q ¼ q1 þ q2 ¼ q1 since only axial periodicity can be enforced, i.e.,
m ¼ m1; n ¼ n1 ¼ f. Correspondingly, the effective axial transport
parameters can be identified as VzðtÞ ¼ V1ðtÞ; DzðtÞ ¼ D1;1ðtÞ,
and skzðtÞ ¼ sk1;1ðtÞ with respect to the notation adopted in Sec. II.

The initial condition investigated is that of a uniform impulsive
solute distribution at the inlet section, i.e., pðr; h; z; 0Þ
¼ dðzÞ=ðpR2

0Þ; ~pðRðzÞ; h; zÞ ¼ 0, that for the local moments implies

Pð0Þðr; h; fÞ ¼ dðfÞ=ðpR2
0Þ; PðqÞðr; h; fÞ ¼ 0 for q > 0 and ~P

ðqÞðRðfÞ;
h; fÞ ¼ 0 for q � 0. For this initial condition, as for any initial condi-
tion that does not depend on the angular coordinate h, all the local
moments in both the mobile and adsorbed phase do not depend on h,

i.e., PðqÞðv; tÞ ¼ PðqÞðr; f; tÞ and ~P
ðqÞð~v; tÞ ¼ ~P

ðqÞðRðfÞ; f; tÞ.
The transport equations and boundary conditions for the hierar-

chy of local moments can be easily deducted from Eqs. (18)–(23) by
setting q1 ¼ q; q2 ¼ 0; e1 ¼ ez; ðv1; v2Þ ¼ ðvz; vrÞ; D1;1 ¼ D2;2

¼ D; D1;2 ¼ D2;1 ¼ 0, thus obtaining

@tP
ðqÞðv; tÞ ¼Lf;r P

ðqÞ½ � þ q vzPðq�1Þ � 2D @fðPðq�1ÞÞ
h i

þ qðq� 1ÞPðq�2Þ 8v 2 Xf ; (83)

J PðqÞ½ � � nj~v ¼ �qDPðq�1Þðez � nÞj~v þ kaP
ðqÞð~v; tÞ � kd~P

ðqÞð~v; tÞ ;
8~v 2 ~C; (84)

@t~P
ðqÞð~v; tÞ ¼ kaP

ðqÞð~v; tÞ � kd~P
ðqÞð~v; tÞ 8~v 2 ~C; (85)

where J½�� ¼ ðJz½��; Jr ½��Þ and Lf;r ½�� are the flux operator and
the cell advection-diffusion operator in cylindrical coordinates,
respectively,

J PðqÞ½ � ¼ Jr PðqÞ½ �er þ Jz PðqÞ½ �ez

¼ vrPðqÞ � D@rP
ðqÞ

� �
er þ vzPðqÞ � D@fP

ðqÞ
h i

ez; (86)

Lf;r P
ðqÞ½ � ¼ �r � J PðqÞ½ � ¼ �r�1@rðrJr PðqÞ½ �Þ þ @fJ

z PðqÞ½ �: (87)

FIG. 2. Streamlines of the velocity field in
the sinusoidal unit cell for d ¼ 0:5 and
k ¼ L=R0 ¼ 2; 5; and 10. Colors indicate
the intensity of the axial velocity compo-
nent vz=W , W being the average axial
velocity at the inlet section f¼ 0 of the
unit cell X. Panel (a) k¼ 2; panel (b)
k¼ 5; and panel (c) k¼ 10.
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According to Eq. (25), the effective time-dependent axial velocity
VzðtÞ can be computed as follows:

VzðtÞ ¼
ð

Xf

Jz Pð0Þ½ � dv ¼
ðL
0
df
ðRðfÞ
0

Jz Pð0Þ½ � 2prdr

¼
ð

Xf

ðvzPð0Þ � D@fðPð0ÞÞÞdv; (88)

converging asymptotically toVz
1, Eq. (75)

Vz
1 ¼

1
1þ K

hvziXf
¼ 1

1þ K
W

1þ d2=2
; K ¼

~S
Vf

ka
kb
: (89)

hvziXf
¼W=ð1þ d2=2Þ is the seepage fluid velocity.

According to Eq. (29), the effective time-dependent axial disper-
sion coefficientDzðtÞ can be computed as follows:

DzðtÞ ¼ D
ð

Xf

Pð0Þdvþ
ð

Xf

ðvz �VzÞPð1Þ � D@fP
ð1Þ

h i
dv

�Vz
ð

~C

~P
ð1Þ
d~v; (90)

converging asymptotically to Dz
1 whose expression coincides with

that of D1;1
1 , Eq. (81) by identifying v1, V1

1, and @n;1 with vz, Vz
1,

and @f. Finally, the axial skewness skzðtÞ can be computed as follows:

skzðtÞ ¼

ðt
0
dtl

z
3ðt0Þdt0ðt

0
2Dzðt0Þdt0

 !3=2
; (91)

where

dtl
z
3ðtÞ ¼ 3

ð
Xf

ðvz �VzÞPð2Þ � D@fP
ð2Þ

h i
dv

þ 6 ðD�DzÞ
ð

Xf

Pð1Þdv

�
ð

~C
3Vz~P

ð2Þ þ 6Dz~P
ð1Þ

h i
d~v: (92)

Alternatively, the skewness can be computed directly from its defini-
tion Eq. (13) by computing first-, second-, and third-order integral
moments, the latter requiring the estimate of third-order local

moments Pð3Þ and ~P
ð3Þ
.

A. Asymptotic analysis

Preliminarily, asymptotic dispersion properties are analyzed as a
function of the dimensionless parameters, namely the cross-sectional
Pecl�et number Pe, the adsorption/desorption Damk€ohler numbers
Daa and Dad, the equilibrium constant c and the retention factor K,
defined as follows:

Pe ¼WrLr
D

; Daa ¼
kaLr
D

; Dad ¼
kdL2r
D

;

c ¼ Daa
Dad

; K ¼ ka
kd

~S
Vf
¼ c

~SLr
Vf

;

(93)

where the reference length Lr has been chosen as the tube radius at the
inlet section f ¼ 0; r ¼ R0 and the reference velocityWr is the average
fluid velocity at the inlet sectionW.

Figure 3 shows the behavior of the normalized effective axial
velocityVz

1=W, evaluated from Eq. (89), as a function of the equilib-
rium constant c for a straight tube d¼ 0, and for three different sinu-
soidal channels with the same d ¼ 0:5 and different values of the
dimensionless wavelength k ¼ 2; 5; and 10 (same as shown in Fig. 2).
The sinusoidal tubes and the straight channel are characterized by the
same inlet average velocityW and therefore by different seepage veloc-
ities hvziXf

, Eq. (89). The sigmoidal curve Vz
1=W vs c exhibits the

two expected limit values, i.e.,Vz
1 ! hvziXf

for c! 0 andVz
1 ! 0

for c!1. These results are independent of the Pecl�et value and
unaffected by the presence of a large recirculation/stagnant zone for
small wavelengths, e.g., k¼ 2. Indeed, differences between curves, cor-
responding to different values of k, are uniquely due to different sur-
face-to-volume ratios ~S=V because the three sinusoidal channels are
characterized by the same wave amplitude d and therefore the same
seepage velocity hvziXf

.
On the contrary, the Pecl�et value as well as the wavelength k

strongly influences the effective asymptotic dispersion coefficient Dz
1

as shown in Fig. 4 where the dimensionless height equivalent of a theo-
retical plateHETP�,

HETP� ¼ HETP
R0
¼ Dz

1
R0 V

z
1
¼ ðDz

1=DÞ
Pe ðVz

1=WÞ
; (94)

is shown as a function of Pe (Van Deemter plot82,83) for a straight tube
and for two different sinusoidal channels with k ¼ 2; 10. Specifically, Fig.
4(a) shows the Van Deeemter plots for c¼ 0, i.e., in the absence of the
adsorbing surface while Figs. 4(b)–4(d) show the same curves for c¼ 1
and for different values of Dad, namely Dad ¼ Daa ¼ 0:1; 1; and 100.

FIG. 3. Normalized asymptotic effective axial velocity Vz
1=W, Eq. (90), vs the

equilibrium constant c ¼ Daa=Dad for a straight cylindrical channel (dotted curve)
and for three different sinusoidal channels with d ¼ 0:5 and k ¼ 2; 5; and 10.
Blue points are the result obtained from the asymptotic scaling Mð1Þ1;0 	 Vz

1t.
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Focusing on the convection-enhanced regime (Pe � 10), Fig. 4(a) clearly
shows that, in the absence of adsorption, the HETP� increases signifi-
cantly as k decreases. The same phenomenon can be observed in the pres-
ence of adsorption [see Figs. 4(b)–4(d)] when the adsorption/desorption
process is faster than radial diffusion, Daa ¼ Dad ¼ 100. The effect of
wall curvature becomes less and less significant as the Damk€ohler num-
bers decrease. Indeed, for Daa ¼ Dad ¼ 0:1 the adsorption/desorption
process is slower than radial diffusion and becomes the controlling step.
As a consequence, the HETP� curves move toward higher values and
become almost independent of the wavelength k.

It must be observed that asymptotic effective parameters Vz
1

and Dz
1, reported in Figs. 3 and 4, are obtained from the asymptotic

analysis developed in Sec. IIIA, in agreement with long-range/large-
distance theoretical results developed in primis by Brenner and
Edwards19 for Dad !1, and subsequently by Yan et al.30 for any
finite value of Dad. These data can be used to check the validity and
reliability of the transient analysis of macrotransport parameters devel-
oped in Sec. IIA and here adapted to the case of the axial-symmetric
axial-periodic sinusoidal channel, Eqs. (84)–(93). Indeed, blue points
in Figs. 3 and 4 are the results for Vz

1=W and for HETP� obtained
via the numerical integration of Eqs. (84)–(86) for the hierarchy of
time-dependent local moments PðqÞðv; tÞ, subsequently evaluating the
asymptotic scalings Mð1Þ1;0 	 Vz

1t and r2
2;0 	 2Dz

1t as shown in
Fig. 5 for k¼ 10, c¼ 1, Pe¼ 100 and different values of Dad, namely

Dad ¼ Daa ¼ 0:05; 0:1; 1; and 100. The excellent agreement
between the results obtained from the asymptotic analysis (based on
the stationary cell field b1;0) and the asymptotic behavior of the tran-
sient analysis based on exact local moments, is a confirmation of the
reliability of the whole theoretical framework.

B. Transient analysis

The transient analysis is extremely important as it reveals some
important features of the dispersion process that are not evident or
cannot be captured by the asymptotic analysis. Figure 6 shows the
transient behavior for Pe¼ 100 of the normalized axial velocity
VzðsÞ=W, the normalized dispersion coefficientDzðsÞ=D, the disper-
sion coefficient rescaled onto its asymptotic valueDzðsÞ=Dz

1 and the
skewness skzðsÞ for a straight tube and for two different sinusoidal
channels, one with a large and one with a small wavelength k. The uni-
tary equilibrium constant c¼ 1 implies that Daa¼Dad, i.e., the
adsorption and desorption processes occur on the same time scales
and the parameter Dad dictates the rate-controlling step between
adsorption/desorption and radial diffusion for Pe> 10 (convection-
enhanced regime).

From the analysis of Fig. 6, many significant observations can be
derived that contribute to a deeper understanding of the physics of the
dispersion process in the presence of adsorption

FIG. 4. HETP� vs Pe for a straight tube
(dotted curves) and for three different sinu-
soidal channels with d¼0:5 and k¼2;
5;and10. Panel (a) c¼0, no adsorption.
Panel (b) c¼1, Daa¼Dad ¼100 (infinitely
fast adsorption/desorption process). Panel
(c) c¼1, Daa¼Dad¼1 (adsorption/
desorption time scale comparable to diffu-
sion time scale). Panel (d) c¼1, Daa¼Dad
¼0:1 (adsorption/desorption process slower
than radial diffusion). Blue points are the
result obtained from the asymptotic scaling
r2
2;0	2Dz

1t.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 122013 (2022); doi: 10.1063/5.0130648 34, 122013-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


1. For both straight and sinusoidal channels, the effective velocity
Vz and the effective dispersion coefficient Dz converge toward
asymptotic constant values Vz

1 and Dz
1 on the same dimen-

sionless time scale s�, namely s� ’ Pe=Dad for Dad < 1
(adsorption/desorption controlled process) and s� ’ Pe for
Dad > 1 (diffusion-controlled). On the contrary, a significant
skewness (skz > 0:1) of the marginal pdf Fzðz; tÞ is still present,
for all the Dad values investigated, on a time scale s� order of
104, i.e., two orders of magnitude larger that the Pe value.
Indeed, only after Vz and Dz attained the asymptotic values,
the marginal pdf Fz becomes unimodal and the skewness skz

starts to decay by settling onto the asymptotic s�1=2 branch.
Therefore, the time scale for achieving the macro-transport
regime, described by the macro-transport equation Eq. (7) that
implies a Gaussian (symmetric) marginal pdf, is largely under-
estimated if one bases the analysis on the attainment of a con-
stant velocity Vz

1 or a constant dispersion coefficient Dz
1.

2. The adsorption process strongly amplifies the phenomenon of
the overshoot for the effective dispersion coefficient Dz that, on
short/intermediate time scales, reaches values greater than
asymptotic one Dz

1. This phenomenon has been already
observed, in a much weaker form, by Vedel et al.,76 Vedel
and Bruus,84 and Adrover et al.25 in straight and sinusoidal chan-
nels for a pointwise initial condition in the absence of
wall adsorption. In the presence of wall adsorption, the

phenomenon of the overshoot is enormously amplified, especially
for large values of Dad that imply a fast adsorption process and
therefore a fast depletion of solute particles from the slow-
moving fluid near the adsorbing walls. This peculiar feature of
the dispersion coefficient in the presence of adsorption has been
already highlighted by Zhang et al.29 in dealing with a two-
dimensional straight channel with parallel adsorbing/desorbing
walls. The transient formulation developed in Sec. IIA permits to
extend the analysis of Zhang et al.,29 limited to straight channels,
to investigate the effect of wall curvature on the overshoot effect.
The effect of the sinusoidal wall on the temporal evolution of
the effective dispersion coefficient is two-fold:

(c) it induces large oscillations on short/intermediate time scales,
especially for large k, due to the continuous widening and nar-
rowing of the cross section. The peaks of the effective velocity
and effective dispersion coefficient occur when the particle
swarm passes through the section where the sinusoidal channel
has maximum narrowing. The peaks are particularly visible at
short time scales when the particle swarm is still compact and
has not yet been affected much by the dispersion process. In
fact, the first peaks correspond to instants of dimensionless
time s1 ’ 3=4k; s2 ’ 7=4k, and so on. Correspondingly, the
minima are at time instants s1 ’ 1=4k; s2 ’ 5=4k when the
particle swarm passes through the section where the sinusoidal
channel has maximum widening.

FIG. 5. Transient behavior of Mð1ÞðsÞ
[panels (a) and (c)] and r2ðsÞ [panels (b)
and (d)] at Pe¼ 100 for a sinusoidal
channel with d ¼ 0:5, k¼ 10. Different
curves correspond to different values of
Dad ¼ 0:05; 0:1; 1; and 100, while Daa
¼ cDad . Arrows indicate increasing val-
ues of Dad. Dashed lines highlight the
asymptotic linear behaviors Mð1Þ=R0

	 ðVz
1=WÞ s and r2=R2

0 	 2ðDz
1=

DÞ s=Pe; s ¼ tW=R0 being the dimen-
sionless time. Panels (a) and (b): c¼ 1;
panels (c) and (d): c¼ 5.
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FIG. 6. Effective normalized axial velocity VzðsÞ=W, normalized dispersion coefficient DzðsÞ=D, rescaled dispersion coefficient DzðsÞ=Dz
1 and skewness skzðsÞ vs

s ¼ tW=R0 for a straight tube [panels (a), (d), (g), and (l)], a sinusoidal channel with d ¼ 0:5 and k¼ 10 [panels (b), (e), (h), and (m)] and a sinusoidal channel with d ¼ 0:5
and k¼ 2 [panels (c), (f), (i), and (n)]. Different curves correspond to different values of Dad ¼ 0:1; 0:2; 0:5; 1; 2; 5; 10; and 100 for c ¼ Daa=Dad ¼ 1 and Pe¼ 100.
Arrows indicate increasing values of Dad. Dotted curves represent the behavior in the non-adsorbing case, c¼ 0.
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(d) it further amplifies the overshoot effect, with respect to the
straight channel, especially for sinusoidal channels with small k,
characterized by the presence of a large recirculation zone for
the velocity field. The overshoot effect is further amplified
when higher retention factors are considered, as shown in
Fig. 7 representing the transient behavior of the rescaled disper-
sion coefficient DzðsÞ=Dz

1 for c¼ 5 and different values of
Dad in the straight tube and the sinusoidal channel with k¼ 2.

5. The adsorption/desorption process strongly affects the tempo-
ral evolution of the skewness skzðsÞ, shifting the curves toward
high positive values for a fast adsorption/desorption process

(Dad > 1) and to negative values for Dad < 1 when the adsorp-
tion/desorption process is the slow/controlling step. This fea-
ture can be readily appreciated by comparing the curves skzðsÞ
shown in Figs. 6(l)–6(n) with the corresponding ones in the
absence of adsorption on tube walls, c¼ 0.
Large positive or negative values for skz at intermediate time
scales s ’ 102 are associated with a bimodal shape of the mar-
ginal distribution Fz that recovers a unimodal behavior only
when the asymptotic behavior skzðsÞ 	 s�1=2 sets in, as con-
firmed by the analysis of the marginal pdfs shown in Fig. 8.
Figure 8 shows the marginal pdf Fz at time s¼ 100 for the total

FIG. 7. Transient behavior of the rescaled
dispersion coefficient DzðsÞ=Dz

1 for
Pe¼ 100, c¼ 5 and different values of
Dad ¼ 0:2; 2; 10; and 100 in the straight
tube [panel (a)] and the sinusoidal channel
with k¼ 2 [panel (b)].

FIG. 8. Global marginal distribution Fzðz; sÞ and weighted marginal distributions fzðz; tÞmð0Þ and ~f zðz; tÞ ~mð0Þ in the mobile and adsorbed phase for s ¼ tW=R0 ¼ 102,
Pe¼ 100, c¼ 1, and Daa ¼ Dad ¼ 0:1; 1; and 10. Panels (a)–(c) straight tube; Panels (d)–(f) sinusoidal tube with k¼ 10. Panels (g)–(i) sinusoidal tube with k¼ 2.
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solute distribution, resulting from the convex combination of
the two single-phase distributions fzðz; tÞ and ~f zðz; tÞ in the
mobile and adsorbed phase,

Fzðz; tÞ ¼ fzðz; tÞmð0Þ þ ~f zðz; tÞ ~mð0Þ; (95)

as discussed in Sec. II B. Focusing on the case of a straight chan-
nel, Figs. 8(a) and 8(b) show that for Dad ¼ 0:1; 1 the marginal
pdf Fz is bimodal with a first well pronounced peak due to the
particles in the adsorbed phase and a second peak (less pro-
nounced for Dad¼ 1) due to solute particles in the mobile
phase. A long left-side tail can be observed for Dad ¼ 0:1 [Fig.
8(a)] corresponding to a large negative skewness, skz ’ �1. For
Dad¼ 1, a bimodal/flat distribution can be observed, very dif-
ferent from a Gaussian distribution, even if it possesses a small
positive value of the skewness, skz ’ 0:2 almost coinciding with
that of the nearly Gaussian total solute distribution in the
absence of adsorption [shown as a dotted curve in Fig. 8(b)].
The bimodal shape is intrinsically due to the fact that particles
in the mobile and adsorbed phase are traveling at two very dif-
ferent effective velocities, as can be appreciated from the posi-
tion of the respective first order moments mð1Þ and ~mð1Þ, the
convex combination of which is the first order moment Mð1Þ,
i.e., the position of the center of mass of the total solute distri-
bution. On the contrary, for Dad¼ 10 at the same time s¼ 100,

the pdfs fz and ~f z overlap and the total pdf Fz is unimodal
although strongly asymmetrical as confirmed by the large posi-
tive value of the skewness, skz ’ 0:9. The dispersion process
needs two further decades in time to arrive at a marginal distri-
bution Fz of Gaussian type during which the skewness can
decay to zero as s�1=2. A very similar behavior is observed for
the sinusoidal channel with k¼ 10 [Figs. 8(d)–8(f)] where the
wavy shape of the channel wall induces significant oscillations
in the marginal pdf Fz without altering the general trend of the
curves. For k¼ 2, the effect of the sinusoidal wall is to shorten
the left-side tail for Dad ¼ 0:1; 1 due to the effect of the recircu-
lation zone for a slow adsorption/desorption process. For fast
adsorption/desorption (Dad¼ 10), the marginal pdf Fz at
s¼ 100, however highly oscillating, is unimodal as in the previ-
ous two cases.

The effect of adsorption on the dispersion process can be further
analyzed and understood by observing that, at short-intermediate time
scales, the effective velocity of the mobile phase vzðsÞ is significantly
larger than the effective velocity VzðsÞ of the total solute distribution,
as shown in Fig. 9. The faster the adsorption/desorption process, the
higher the peak for the velocity vz in the mobile phase, as expected due
to the fast removal of solute particles in the slow-moving region near
the tube walls. The effect of the increased velocity on the dispersion
coefficient dzðsÞ in the mobile phase is compensated by the removal of

FIG. 9. Transient behavior of the normalized velocities VzðsÞ=W ; vzðsÞ=W [panels (a)–(c)] and of the rescaled dispersion coefficients DzðsÞ=Dz
1; d

zðsÞ=Dz
1 [panels

(d)–(f)] for Pe¼ 100, c¼ 1 and different values of Dad ¼ 0:5; 5; and 50 for the straight tube [panels (a) and (d)] and for the sinusoidal channel with k¼ 10 [panels (b) and
(e)] and k¼ 2 [panels (c) and (f)]. Continuous lines refer to vzðsÞ=W and dzðsÞ=Dz

1 in the mobile phase, while dashed lines are the corresponding quantitiesVzðsÞ=W and
DzðsÞ=Dz

1 for the total solute distribution. Arrows indicate increasing values of Dad.
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solute particles in the wall region where the velocity gradients are
larger. For this reason, the dispersion coefficient dzðsÞ in the mobile
phase is smaller than the dispersion coefficient DzðsÞ of the total sol-
ute distribution at short time scales, and specifically before the peak
(overshoot effect). In point of fact, the analysis of the transient behav-
ior of dzðsÞ shows that the overshoot effect is actually due to a peak in
the dispersivity of the mobile phase that disappears when dynamic
equilibrium conditions are reached and the fractions mð0Þ and ~mð0Þ of
solute particles in the mobile and adsorbed phase become constant
and equal to limt!1mð0Þ ¼ c0 ¼ ð1þ KÞ�1; limt!1 ~mð0Þ ¼ ~c0
¼ Kð1þ KÞ�1, respectively.

V. CASE STUDY II: RETENTIVE PILLAR ARRAY
COLUMNS FOR LIQUID CHROMATOGRAPHY

This section analyzes the temporal evolution of dispersion prop-
erties of a single solute, driven by a pressure gradient along the x1

coordinate, in a 3D conduit with rectangular cross section (height
H¼ 19 and width 500lm) filled with an array of retentive pillars

(diameter d¼ 10 and height H¼ 19lm) arranged on an equilateral
triangular grid with sides selected such that the array possesses an
external porosity of 40%. This chromatographic column has been
experimentally realized by De Malsche et al.18 and the retention factor
was estimated as K¼ 0.25. The same device was investigated by Yan
et al.30 in order to estimate the asymptotic dispersion tensor Di;j

1
under the hypothesis of an instantaneous equilibrium between mobile
and adsorbed phase, i.e., Dad !1.

Here, we investigate the transient and asymptotic behavior of the
effective dispersion properties V1 andD1;1 in a wide range of Dad by
solving the transport equations for the hierarchy of local moments
defined on the periodic cell represented in Fig. 10. The transport prob-
lem is solved with the assumptions of a constant solute diffusivity D in
the mobile phase and no diffusion on the adsorbing layer. Two cases
are considered: (1) a 2D problem that overlooks the effect of the top
and bottom non adsorbing walls, z ¼ H; 0; (2) a fully 3D problem
accounting for the presence of the top and bottom walls where no-slip
boundary conditions apply for the velocity field and no-flux boundary
conditions are enforced for the local moments. In both cases, the inlet
condition is an impulsive injection of solute uniformly distributed
over the inlet cross section.

Figures 11(a) and 11(b) show the normalized axial component
v1=W of the fluid velocity field,W being the reference velocity chosen
as the seepage velocity along n1, i.e.,W ¼ ð

Ð
Xf

v1ðn; zÞ dn dzÞ=Vf , and
Vf the volume of the fluid domain Xf. Figure 11(b) also highlights the
streamlines on the 2D unit cell adopted for the 2D analysis of disper-
sion features.

FIG. 11. Normalized axial component v1=W of the fluid velocity field, W being the
seepage velocity along n1. Panel (a) view on different ðn2; zÞ planes; panel (b)
view on different ðn1; n2Þ planes and streamlines on the 2D periodic unit cell
adopted for the 2D problem.

FIG. 10. 3D periodic unit cell X of the retentive pillar array column. The orange
region is the fluid domain Xf, volume Vf. Red cylinders represent the retentive pil-
lars with diameter d. Black thick curves highlight the adsorbing/desorbing surface
~C. L1=L2 ¼

ffiffiffi
3
p
; H ¼ 1:9 d; ~S=Vf ’ 5:89, Porosity Vf=ðL1 
 L2 
 HÞ ’ 0:4.

The entire structure is obtained by the periodic repetition of the unit cell along the
local coordinates n1 and n2. Top and bottom impermeable walls are placed at
z ¼ H; 0.

FIG. 12. Panel (a) Van Deemter plot
HETP� ¼Dð1;1Þ1 =ðV1

1dÞ vs Pe¼Wd=
D for K ¼ 0.25 and Dad ¼ 1; 5; 20;
and100. Continuous lines refer to 3D
results. Dashed lines indicate 2D results.
The arrow indicates increasing values of
Dad. Panel (b) Experimental data for
HETP� vs Pe from Ref. 32 and compari-
son with 3D theoretical predictions for
K¼0.25 and Dad ¼ 75625 (blue
curves) and K¼0 (no adsorption, red
curve).
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Focusing first on the asymptotic behavior, Fig. 12(a) shows the
Van Deemter curves for K¼ 0.25 and different values of Dad ¼ 1;
5; 20; 50; and 100 as obtained from the solution of the transport
problem in the 2D and in the 3D periodic cells. As expected, the fully
3D problem furnishes higher values of the dispersion entry D1;1

1 and
therefore of the HETP� ¼ Dð1;1Þ=ðV1

1dÞ because it accounts for the
axial velocity gradients at the top and bottom wall (absent in the 2D
formulation of the problem) enhancing the dispersion process. This
result is in perfect agreement with the analysis of De Smet et al.85 that
observed that, for a similar device, the bottom and top walls contribute

significantly to band broadening. Differences between the 2D and the
3D problem are more pronounced for higher values of Dad and this
would imply an overestimate of Dad in the case of the 2D model is
adopted to analyze experimental data. Figure 12(b) shows the good
agreement between experimental data for the HETP� vs Pe taken
from18 and 3D model predictions in both the non-adsorbing case
K¼ 0 (no fitting parameters) and the adsorbing case with K¼ 0.25
and an estimated optimal value of Dad ¼ 756 25 corresponding to
an almost instantaneous equilibrium condition between the mobile
and adsorbed phase.

FIG. 13. Effective normalized axial veloc-
ity V1ðsÞ=W, rescaled axial dispersion
coefficient D1;1ðsÞ=D1;1

1 and skewness
skð1;1ÞðsÞ vs s ¼ tW=d for the 2D prob-
lem [panels (a), (c), and (e)] and the 3D
problem [panels (b), (d), and (f)]. Different
curves correspond to K¼ 0.25, Pe¼ 50
and different values of Dad ¼ 1; 5; 20;
50; and 100. Arrows indicate increasing
values of Dad. Dashed curves in panel F
are the long time scale behavior of the 2D
problem, reported for direct comparison
with 3D results.
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The analysis on the 2D and the 3D unit cells furnishes different
results also as it regards the transient behavior of dispersion process,
as shown in Figs. 13(a)–13(f). The presence of the pillars induces a tor-
tuous fluid motion which causes oscillations in the temporal evolution
of both the effective axial velocityV1ðsÞ and the axial dispersion coef-
ficient Dð1;1ÞðsÞ similar to that observed in the sinusoidal channel.
Oscillations are more damped in the 3D case. As in the sinusoidal
channel, the skewness of the marginal distribution F1ðx1; tÞ converges
toward 0 slower than V1ðsÞ and Dð1;1ÞðsÞ converge toward their
asymptotic values. However, the convergence toward a Gaussian mar-
ginal distribution is significantly faster than in the sinusoidal channel
especially for large Dad values corresponding to a diffusion-controlled
process. The skewness is overestimated in the 2D analysis on short/
intermediate time scales but the asymptotic behavior almost coincides
in the 2D and the 3D analyses. Unlike what is seen in the sinusoidal
channels, the skewness converges to zero from negative values, which
implies a left-side persisting tail of the marginal distribution.

VI. CONCLUSIONS

The homogenization method here proposed represents a robust
and computationally efficient continuous approach to investigate the
temporal evolution of effective dispersion properties in periodic media
with adsorbing/desorbing walls.

The method is based on the introduction of exact local and inte-
gral moments. No assumptions must be made on the nature of the
velocity field, apart from a sufficient regularity and periodicity on the
unit-cell.

The estimate of the transient behavior of the effective velocity
vector and the effective dispersion tensor requires exclusively the solu-
tion of the time-dependent advection-diffusion equations for the zero-
order and first-order exact local moments, defined on the unit-cell.
This implies an enormous reduction of the computational efforts and
a significant improvement of the accuracy of the results when com-
pared to direct numerical simulation (DNS) approaches that require
the solution of the advection-diffusion equation for the analyte con-
centration in the entire fluid domain. Indeed, if the entire device con-
sists of the periodic repetition of N identical periodic cells, the
computational cost of the DNS approach is equal to N/2 of the com-
putational cost of the moment-based approach. In the case of the
retentive pillar array column, the number N of periodic cells is order
of 105.

The dynamics of third-order exact moments allows an accurate
estimate of the temporal evolution of the asymmetry of the marginal
distribution of the analyte along the main flow direction. This permits
to correctly identify the time and length scales characterizing the
achievement of the macro-transport conditions.

As a first case study, the exact moment method is applied to ana-
lyze transient dispersion properties of point-sized particles in sinusoi-
dal tubes, under the action of a pressure-driven Stokes flow.
Numerical results are in excellent agreement with stochastic dynamic
simulations in a wide range of Peclet values.

A very rich dynamic behavior, characterized by wide and persis-
tent temporal oscillation, is observed for both the effective axial veloc-
ity and the axial dispersion coefficient in both microfluidic systems
analyzed, namely the sinusoidal channel and the chromatographic col-
umn with retentive pillars. The global effect of the retentive walls is (i)
to amplify the overshoot effect of the axial dispersion, characterizing

the pre-asymptotic regime, and (II) to slow down the relaxation of the
skewness of the marginal distribution toward zero, implying a slower
convergence toward a Gaussian distribution characterizing the settling
of the macrotransport regime. From a practical point of view, it is
important to take into account the temporal fluctuations and the over-
shoot effect of the effective dispersion coefficient for accurate estima-
tion of the minimum device length that will ensure that
macrotransport conditions are achieved.

One possible and straightforward application of the exact
moment method is the transient and asymptotic analysis of mass
transport in streaming blood (pulsatile or steady conditions) through a
stenotic artery with mass transfer at the rigid boundary. This interest-
ing problem will certainly be the subject of future investigation.
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NOMENCLATURE

bi;jðnÞ; ~bi;jð~nÞ (m) b-field in the mobile, adsorbed phase
c0, ~c0 (-) Fraction of solute particles in the mobile,

adsorbed phase
ci;jðnÞ; ~ci;jð~nÞ (m2 c-field in the mobile, adsorbed phase

DðxÞ (m2/s) Position-dependent diffusion tensor of the
analyte

Daa, Dad (-) Adsorption, desorption Damk€ohler number
Fiðxi; tÞ (1/m) marginal probability density function

hqðtÞ Interaction term for the qth order moment
H (m) Height of the pillars
HETP� Dimensionless Height Equivalent of a

Theoretical Plate
J½�� Flux operator

kað~xÞ (m/s) Position-dependent adsorption kinetic
constant

kdð~xÞ (1/s) Position-dependent desorption kinetic
constant

K (-) Average retention factor
L (m) Wavelength of the sinusoidal channel
Li (m) Periodicity length along the unit lattice

vector ei
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mi (-) Unit cell number along the unit lattice vec-
tor ei

mðqÞq1;q2ðtÞ (mq) qth order integral moments in the mobile
phase

~mðqÞq1;q2ðtÞ (m
q) qth order integral moments in the adsorbed

phase
MðqÞq1;q2ðtÞ (mq) qth order integral moment of the total solute

distribution
NðqÞq1;q2ðtÞ (mq) Integral moment defined according to

Brenner’s approach
pðx; tÞ (1/m3) Normalized analyte concentration in the

mobile phase
~pð~x; tÞ (1/m2) Normalized analyte concentration in the

adsorbed phase
�pðX; tÞ (1/m3) Average analyte concentration over the peri-

odicity cell
PðqÞq1;q2ðn; tÞ (mq/m3) Exact local moments in the mobile phase

~P
ðqÞ
q1;q2ð~n; tÞ (m

q/m2) Exact local moments in the adsorbed phase
Pe (-) Pecl�et number
qi (-) Order of the moment along the unit lattice

vector ei
QðqÞq1;q2ðn; tÞ (mq/m3) Quantized local moments in the mobile phase
~Q
ðqÞ
q1;q2ð~n; tÞ (m

q/m2) Quantized local moments in the adsorbed
phase

R0 (m) Average radius of the sinusoidal channel
skði;jÞðtÞ (-) Time-dependent skewness
~S (m2)/(m) Area/length of the adsorbing boundary
vðxÞ (m/s) Eluent velocity field

Vf (m
3)/(m2) Volume/area) of the fluid phase

w0ðnÞ (1/m3) Frobenius eigenfunction of the Laplacian
operator in the mobile phase

~w0ð~nÞ (1/m2) Counterpart of w0ðnÞ in the adsorbed phase
W (m/s) Average axial velocity at the inlet section of

the unit cell of the sinusoidal channel
x; ~x Any point in the mobile, adsorbed phase

�x Any point on the non-adsorbent part of the
obstacle surface

X Long-range spatial variable

Greek symbols

c (-) Equilibrium constant
C, ~C Non-adsorbing, adsorbing portion of solid boundary

of cell domain
D, ~D Non-absorbing, absorbing portion of solid boundary

of the domain
d (-) Dimensionless wave amplitude of the sinusoidal

channel
f Local coordinate in the sinusoidal channel

k (-) Dimensionless wavelength of the sinusoidal channel
lð3Þi;j (m3) Centered third-order moments of the global solute

distribution
n; ~n Local coordinates in the mobile, adsorbed phase

Rf Fluid domain
Rs Solid domain

r2
i;j (m

2) Variances of the global solute distribution
s Dimensionless time

v; ~v Local coordinates in the sinusoidal channel in the
mobile, adsorbed phase

X Cell domain
Xf Fluid cell domain

Calligraphic symbols

di;j; ~d
i;j
(m2/s) Effective dispersion tensor in the mobile,

adsorbed phase
di;j1;

~d
i;j
1 (m2/s) Asymptotic effective dispersion tensor in the

mobile, adsorbed phase
Di;j (m2/s) Entries of the effective symmetric dispersion

tensor
Di;j
1 (m2/s) Entries of the asymptotic effective symmetric dis-

persion tensor
Ln½�� Cell advection-diffusion operator
Lf;r ½�� Cell advection-diffusion operator in cylindrical

coordinates
s2i;j; ~s2i;j (m

2) Variances of the particle density functions in the
mobile, adsorbed phase

vi; ~vi (m/s) Velocity component of solute particles in the
mobile, adsorbed phase

vi1; ~vi1 (m/s) Asymptotic velocity component of solute par-
ticles in the mobile, adsorbed phase

Vi (m/s) Entries of the effective velocity field
Vi
1 (m/s) Entries of the asymptotic effective velocity field

APPENDIX: NUMERICAL ISSUE

Numerical results for the stationary velocity field and for the
space-time evolution of local moments in 2D and 3D geometries
were obtained by solving the corresponding partial differential
equations with a commercial software enforcing finite-element
method (Comsol 5.5).

For the velocity field, the incompressible Navier–Stokes pack-
age (Stokes flow) in stationary conditions was adopted with P2þP1
Lagrange elements (velocityþpressure).

FIG. 14. Mesh adopted for the 3D problem. The velocity field and the transport
problems for PðqÞq1;q2 and

~P
ðqÞ
q1;q2 were solved on a smaller portion of the domain (1/4)

by enforcing the symmetry conditions along both the vertical z axis and the horizon-
tal y axis.
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For the numerical integration of the coupled transport equa-
tions for PðqÞq1;q2 and ~P

ðqÞ
q1;q2 Eqs. (18)–(23), the coefficient form PDE

and the boundary ODEs packages were adopted and solved in tran-
sient conditions (time-dependent segregated approach). Lagrangian
quadratic elements have been chosen. MUMPS linear solved was
adopted with relative tolerance 10�3 and absolute tolerance 10�6.
The number of finite triangular elements for the 2D axial-
symmetric sinusoidal channel was order of 2
 105 with a non-
uniform mesh. Smaller elements were located at the sinusoidal
boundary (maximum element size 2
 10�3) and at the periodic
boundaries f ¼ 0; k (maximum element size 1
 10�3). For the 3D
microchannel, numerical results in stationary and transient condi-
tions were obtained on a tetrahedral mesh consisting of 6
 105

domain elements, about 4
 104 boundary elements, and 1
 103

edge elements (see Fig. 14). The meshes adopted guarantee that the
numerical results obtained are mesh independent for all the values
of Pe investigated, namely Pe 2 ð10�1; 103Þ.
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