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Functional adaptation of bone mechanical properties using
a diffusive stimulus originated by dynamic loads in bone
remodelling

Rachele Allena, Daria Scerrato, Alberto M. Bersani and Ivan Giorgio

Abstract. The present study proposes a mathematical model elucidating some aspects of the bio-
mechanical stimulus involved in bone remodelling, which, in our assumptions, acts as a diffusive
signalling agent for bones. The proposed mathematical model aims to scrutinize the behaviour
of bone tissues and their evolution over time by better understanding the mechanisms of bone
remodelling and offering new theoretical tools for developing more effective and efficient treatment
strategies for bone defects, trauma, or diseases. The bone remodelling process involves adapting
bone mechanical properties in response to dynamic loads. This adaptation is achieved through the
diffusive stimulus created by these loads. The result is a functional adaptation of the bone, wherein
it acquires the mechanical properties required to withstand the loads to which it is subjected. This
phenomenon has significant implications for the study of bone physiology and biomechanics. As
such, it is a topic of great interest to researchers and practitioners in the fields of orthopaedics,
sports medicine, and related disciplines. In this contribution, the mechanical behaviour is modelled
through a generalized three-dimensional deformable continuum that also takes into account the
porous nature of the bone tissue with a nonlinear constitutive law. Since we have focused the study
on the model of the stimulus and its interplay with the evolution of the tissue, an isotropic material
symmetry is adopted to simplify the problem. This formulation is promising because it permits
the bone tissue to evolve depending on the time-variability of the external mechanical loads, even
if the source of the stimulus is assumed to be the strain energy density.

Mathematics Subject Classification (2010). 74L15 Biomechanical solid mechanics.

Keywords. Bone remodelling, Fick’s laws of diffusion, Fourier’s laws of diffusion, bio-mechanical
stimulus, Growth Mechanics.

1. Introduction

The bone remodelling process is a lifelong process where aged or damaged bone tissue is removed
from the skeleton —a process called bone resorption— and new bone tissue is formed —a process
called ossification or new bone formation— ensuring turnover and renewal of bone tissues. Therefore,
it is essential for maintaining the structural integrity and function of bones and allowing the body to
adapt to changing mechanical and physiological demands. This process involves three main types of
cells: osteoclasts, which break down old bone; osteoblasts, which form new bone; and osteocytes, which
acquire information about the mechanical state of the tissue and activate the other two kinds of cells.
Bone remodelling serves several purposes: i) it helps to maintain normal calcium levels in the body;
ii) it allows the bone tissue to alter its strength and the architecture of its microstructure to optimize
bone functionality in response to external mechanical requests; iii) it helps repair micro-damage to
bones from everyday activity.
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Modelling bone remodelling is still a major challenge due to the complexity of the phenomenon.
In fact, it is regulated by biological, chemical and mechanical phenomena, which are still poorly
understood [1,2]. Bones respond to mechanical forces by adapting their structure and density through
a process known as mechanotransduction. When bones are subjected to dynamic loads, such as those
experienced during physical activity or exercise, they experience mechanical strain. In response to this
strain, bone cells are stimulated to initiate the remodelling process, leading to the formation of new
bone tissue in areas that experience increased load and the removal of old or damaged tissue in the
regions that experience reduced load. For instance, when a person engages in weight-bearing exercises
or activities that involve impact and muscle contractions, the bones experience dynamic loading. This
triggers a signalling cascade that involves various biochemical factors, leading to the activation of
osteoclasts for bone resorption and osteoblasts for bone formation. In essence, dynamic loads play
a crucial role in the bone remodelling process, helping to shape our bones and keep them strong
and healthy [3–6]. On the contrary, this process is less responsive to static loads. Indeed, upon the
application of a new constant load, the process undergoes an initial period of adjustment. However,
after a certain amount of time, the process becomes acclimated to the new load and reaches a state of
equilibrium. At this point, the evolution of the process stabilizes and is no longer subject to significant
changes. It is important to note that this stabilization only occurs when the new load is constant,
which allows the process to adapt and establish a new baseline.

During the last decades, several continuum models have been proposed to decipher the interac-
tions between the different physics driving bone reconstruction [7–13]. Most of these works assume
that the biological stimulus initiating bone remodelling does not spread but it maintains its local pro-
duction site. Successive works have hypothesized that the stimulus in a material particle depends on
a space average of the deformation in its neighbourhood. While these approaches are more realistic, it
is still not clear how the stimulus forms, propagates and is perceived. Additionally, several microscale
processes, such as the interstitial fluid flow across the lacuno-canalicular network, may play a critical
role in the stimulus generation and activity [14, 15]. However, it is unequivocal that the stimulus is
originated by biochemical processes, which facilitate the production of factors that diffuse within the
bone [16, 17]. Then, our main objective is to formulate a model that is valid at the macroscale and
accounts for the diffusion of biological stimulus during the process of bone remodelling. The stimulus
is considered a macroscopic source of canalicular flow, representing the mechanical state of the tissue,
and may influence the cellular behaviour over time [18–20].

The present study introduces a generalized three-dimensional deformable continuum model to
simulate the mechanical behaviour of bone tissue. The model incorporates the porous nature of bone
tissue (see, for more details about the model of this aspect, [21–30]) and employs a nonlinear constitu-
tive law to simulate the mechanical response. The nonlinear behaviour is adopted in the formulation
because, during the evolution, the stiffness of the bone can become very small in specific regions where
negligible deformation occurs, allowing large displacement and deformations. To simplify the problem,
we have adopted an isotropic material symmetry. In this way, we can deal solely with the evolution of
one material parameter instead of many. Since this aspect is easily generalisable, as demonstrated in
previous work (e.g., [31]), the results obtained with the present formulation are likewise generalizable.
Our main focus has been to investigate the interaction between external mechanical loads and the
evolution of bone tissue. We have assumed that the source of the stimulus for tissue evolution is the
strain energy density, as in many previous works [32–34]. Two main improvements have to be noticed
with respect to our previous work [35]. First, to be more realistic, we consider a three-dimensional
(3D) geometry here, which mimics femoral diaphysis. Second, the external action is represented by a
dynamic cyclic torsion characterized by different frequencies to mimic the physiological load the bone
structure is subjected to.

The basic model employed for the stimulus in this contribution, given in prior works [32,35,36],
is an improvement of the theory formulated by T. Lekszycki and F. dell’Isola [37] in the continuum
context refining a former idea proposed by M. G. Mullender and R. Huiskes [38] in a discrete ap-
proach based on zones of influence of the osteocytes. However, the model proposed in [37], based
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on a space convolution without a direct time dependence, considers that the signal stemming from
the osteocytes in a given material particle of the bone was instantaneously transmitted throughout
the bone tissue. This assumption implies that if the stimulus source is not time-dependent, like the
strain energy density, the evolution is not affected by the time variability of the external loads, as
demonstrated in [34]. In that case, the only way to consider the time dependence of the stimulus is
to add a source which is time-dependent as, for example, dissipated energy [39]. As shown with the
numerical simulations performed here, the proposed formulation, instead based on a diffusion equation
governing the evolution of the stimulus, enables bone tissue to evolve based on the time-variability of
external mechanical loads, also considering the strain energy density as a source that generates the
bio-mechanical stimulus. This is because the stimulus is not instantaneously transmitted within the
tissue as in [37], but it has a response that depends on the time due to the diffusion phenomenon.
The results obtained investigating the effects of the stimulus source and external load frequencies on
the remodelling process demonstrate qualitatively the effectiveness of our approach in predicting the
mechanical behaviour of bone tissue. The proposed model offers a promising modelling tool to study
the evolution of bone tissue under external mechanical loads. Future work will focus on the exten-
sion of our model to incorporate anisotropic material symmetry and the development of techniques
to validate the model using experimental data. Furthermore, as damage is a crucial factor in bone
remodelling, future advancements will include the impact of damage in the model (see for modelling
tools [40–46]).

2. The model

2.1. Mechanical formulation

In this paper, we consider a three-dimensional 3D system composed of trabecular bone tissue charac-
terized by porosity. Generally, bone porosity exhibits various levels at different scales due to multiple
distinctive structures, such as inter-trabecular, lacunar-canalicular, and collagen-apatites porosity.
Here, we simplify the description to avoid excessive complexity in the model by employing a sin-
gle scalar variable for modelling the porosity in the framework of generalized continua, as done in
Biot [47, 48]. The rationale is to capture the overall behaviour of the tissue even at the expense of a
few losses in the detail of the description as a first level of approximation [49].

According to these assumptions, we introduce, as kinematical descriptors, the displacement u of
any material particle of the continuum model and the Lagrangian porosity φ as follows:

u = x−X (2.1)

φ(X, t) = n[χ(X, t)]J(X, t) (2.2)

where X is any particle of the system in the reference configuration, x = χ(X, t) is the position of
the particle X in the current configuration, n[χ(X, t)] is the Eulerian porosity and J = det(F) =
det(∇χ(X, t)) [50, 51].

It is worth noting that the stiffness of bones has the potential to undergo changes over time,
leading to a current configuration that may differ from its initial state. Moreover, since during this
evolution, certain regions may experience a massive decrease in stiffness due to an onset of porosity
where the material is unneeded, we implement a nonlinear behaviour to cover these compliant areas,
as in our previous works [35, 51], assuming that the mechanical response of the bone remains in the
elastic domain for the sake of simplicity. Therefore, the assumed measures of deformation, namely, the
finite strain tensor Eij(X, t) and the change of the Lagrangian porosity ζ(X, t) are introduced as:

Eij(X, t) =
1

2
(ui,j + uj,i + ui,kuk,j) (2.3)

ζ(X, t) = φ(X, t)− φ∗(X, t) (2.4)
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with φ(X, t) and φ∗(X, t) the Lagrangian porosities at the current and reference configurations, re-
spectively.

Bone consists of a solid phase and porous space filled with bone marrow, interstitial fluids, blood,
and bone cells [37,52,53]. Based on the mixture theory, a representation of φ∗(X, t) can be introduced
as:

φ∗(X, t) = 1−
ρ∗(X, t)

ρ̂
(2.5)

where the volume fraction of the bone tissue is ρ∗(X,t)/ρ̂, being ρ∗ the apparent mass density of the
bone in the reference configuration and ρ̂ the real mass density of the bone without porosity.

To describe the mechanical behaviour of the bone tissue, we postulate a nonlinear energy density
E made of different contributions involving the deformation of the solid phase Us, the deformation of
the pores and thus the change in the fluid content Uf , and the fluid-solid coupling Ufs [54] as follows

E = Us + Uf + Ufs =

1

2
λ(ρ∗)EiiEjj + µ(ρ∗)EijEji

︸ ︷︷ ︸

Us

+
1

2
K1(ρ

∗)ζ2

︸ ︷︷ ︸

Uf

+
1

2
K2(ρ

∗) [ζ − (J − 1))]2

︸ ︷︷ ︸

Ufs

(2.6)

The behaviour of the solid phase is governed by the Saint-Venant constitutive model for materials
with geometrical nonlinearities; the porous deformation is addressed by the standard Biot constitutive
model [55, 56], while the exchange of energy between these two deformative modes generalize the
standard Biot constitutive model since the energy exchange involves the change of the Lagrange
porosity ζ and the nonlinear change of volume (J − 1) instead of its linear approximation, namely,
the trace of the infinitesimal strain tensor, as done in the original Biot model, which is linear. The
material parameters characterizing the model are the Lamé coefficients λ and µ, expressed as

λ =
ν Y (ρ∗)

(1 + ν)(1− 2ν)
, µ =

Y (ρ∗)

2 (1 + ν)
(2.7)

in terms of the Young modulus, which depends on bone density, as reported below [57]:

Y = Ymax

(
ρ∗

ρ̂

)2

(2.8)

with Ymax being the maximal bone elastic modulus, i.e., the one related to the mineral part of the
tissue without pores, and the Poisson ratio ν, which is kept constant for the sake of simplicity. The
coefficients K1 and K2 describe the compressibility and the micro-structure, respectively [51]. The
coefficient of compressibility, K1, introduced by Biot [47] can be expressed as:

K1 =

(
φ∗

Kf
+

(αB − φ∗)(1− αB)

Kdr

)
−1

(2.9)

where Kf is the stiffness of the fluid filling the pores,

Kdr =
Y (ρ∗)

3 (1− 2ν)
(2.10)

is the drained bulk modulus of the porous matrix, and αB (satisfying the inequality φ∗ ≤ αB ≤ 1)
is the Biot–Willis coefficient. The micro-structure coupling parameter K2, which is introduced in the
work of Biot [47], can be evaluated as follows:

K2 = αB K1 (2.11)

In the performed numerical simulations, we set

αB = a1ϕ
∗ + (1− a1) (2.12)

being a1 = 0.8.
As in our previous works [35, 51], the potential dissipation sources that may be found in the

fluid that fills the pores, in the bone solid matrix, or at the interface between the solid and the fluid
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phase are integrated through a Rayleigh functional that can be expressed, at a macroscopic level of
observation, as

2Ds = 2µv

(

ĖijĖij −
1

3
ĖiiĖjj

)

+ kvĖiiĖjj (2.13)

where Ė is the solid-matrix rate of deformation and µv and kv are two viscous coefficients related to
the deviatoric and hydrodynamic contribution of the deformation, respectively.

In this work, we consider only the remodelling time scale (i.e., order of months) [58]. However,
we recognise that the time scale involving mechanical loads (i.e., order of seconds) also plays a critical
role [59].

To analyse and obtain the resultant behaviour of the bone tissue subjected to external loads,
herein, we employed a generalized version of the principle of virtual work. It provides a powerful tool
for solving problems related to mechanical equilibrium and deformations. The principle of virtual work
is based on the idea that for a system in equilibrium, the total virtual work done by external and
internal forces is zero for any virtual kinematical descriptor; in the examined case, the displacement
field and the Lagrangian porosity, compatibly with the constraints of the system. If a dissipative
source is significant, we must consider the dissipated energy associated with any virtual kinematical
descriptor in the expression of the virtual work. Therefore, the Generalized Principle of Virtual Work
that we utilise becomes

∫

B∗

δE dB∗ +

∫

B∗

∂Ds

∂Ėij

δEij∂B
∗ =

∫

B∗

δW extdB∗ (2.14)

with δW ext describing the virtual work exerted by external loads, that can be expressed as

δW ext =

∫

∂τB∗

τiδuidS
∗ (2.15)

where this term takes into account the surface forces τi on the boundary δτB
∗ where they are applied.

Moreover, since we analyse only the slow time scale characteristic of the remodelling process, the
inertial effects are neglected in this work (see for more details [51]).

2.2. Remodelling formulation

Here, we briefly describe the mathematical framework of the remodelling process adopted. The general
model is consolidated, albeit referred to as a straightforward formulation involving only the evolution
of one material parameter. In particular, we consider the apparent bone mass density (ρ∗) evolution in
the reference configuration. This approach fits well the case of an isotropic material symmetry where
only two material constants are significant, and in most cases, the variability of the Poisson ratio is
negligible. Sometimes, this formulation is too simplistic, and an orthotropic or anisotropic material
symmetry is more accurate, but a complete formulation where all the material parameters are involved
could be very cumbersome to implement in an efficient model (see, e.g., [31]). Here, we decide to be
as simple as possible in addressing the remodelling phenomenon to better understand one aspect of
it: specifically, the evolution in time of a material parameter, namely, the Young modulus, which is
linked with a phenomenological relationship with the apparent bone mass density (see Eq. (2.8)).
Since in a more general model, as done in [31], the single material parameter could grow or decrease
with a governing equation which is very similar to the one used herein, it is possible to have significant
insight into the evolution of just one parameter with a very simple and effective model without the
distraction due to the presence of many parameters and their interplay.

The evolution of the apparent mass density is governed by its time derivative as a function of a
mechanical stimulus S(X, t) and the porosity φ(X, t) as [8, 37, 60–62]

∂ρ∗

∂t
(X, t) = A(S)H(φ) with 0 < ρ∗ ≤ ρ̂ (2.16)
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where A is a piece-wise linear function defined as follows

A(S) =







s(S − Ss) for (S − Ss) ≥ 0

0 for Sr < S < Ss

r(S − Sr) for (S − Sr) ≤ 0

(2.17)

where the coefficients s and r are the rates of growth and resorption, respectively, while Ss and Sr

are two thresholds that delimit the so-called ‘lazy’ zone which characterizes the homeostatic state.
These two thresholds are evaluated as the energy associated with the deformation of 2000 microstrains
and 600 microstrains, respectively (see [5]). The mechanical stimulus is a variable used to catch the
fundamental characteristics of the mechanical state of the bone tissue, and Eq. (2.17) represents a
control feedback action that aims to restore as much as possible the mechanical state in the reference
interval defined by Sr and Ss. The function H(φ) accounts for the porosity that plays a critical role
during the remodelling process. Actually, bone cells can migrate through pores and reach even remote
zones of the system to remove or synthesise bone. Two extreme scenarios can be envisaged: i) the
porosity is low, cells cannot freely migrate, and bone density does not change, and ii) the porosity is
high; thus, there is virtually no bone to be replaced. According to such scenarios, we set the maximal
value of H to about 0.55 porosity to provide the most efficient and realistic conditions for bone
remodelling to take place (see, for more details, [32]). In other words, the weight function H prevents
abnormal cellular activities when porosity is very low or high.

The mechanical stimulus S, in our model, is a result of the sensing capabilities of the osteocytes
and induces bone adaptation by the action of osteoclasts and osteoblasts that can modify the bone
solid phase and, consequently, its mechanical properties (i.e., the stiffness). This variable S is expressed
through a diffusion equation as in [32, 35]; in particular, we have:

∂S

∂t
− κ∆S = f(ρ∗)E − βS (2.18)

where κ and β are two scalar parameters being the latter activated only when S > 0, that is when
there is some stimulus. In fact, κ, which is the diffusion coefficient, is responsible for the diffusion
of the signal S inside the bone tissue, and β is a sink coefficient that is related to the metabolic
absorption of the stimulus once it is generated and diffused. The function f(ρ∗) is a proper signalling
weight, a sort of signal efficiency. In fact, the source term for the stimulus has been set to the elastic
energy density E , which we assume to be representative of the mechanical state of the bone. We set
this function f to be:

f(ρ∗) =
1

2

{

tanh

[

20

(
ρ∗

ρ̂
− 0.15

)]

+ tanh [20 (1− 0.15)]

}

(2.19)

This function is monotonically increasing and depends on the apparent mass density of the tissue. We
can imagine that osteocytes are distributed almost uniformly in the tissue as the first approximation;
hence, their density per unit volume could be assumed to be proportional to the volume fraction.
Moreover, the more the osteocytes are, the more their capability to ‘sense’ the mechanical state of the
bone is better; thus, we set this monotonic trend for f , and when the volume fraction is near 0.5, we
have the maximum efficiency of the osteocytes as we can deduce from the more efficient activity of
the osteoblast and osteoclast in that condition as derives from the values of H.

The initial value of S in the bone is set to be equal to 4.275×10−9, corresponding to homeostasis.
Regarding the boundary conditions, we set Neumann ones, assuming no stimulus flux is exchanged
with the outside.

3. Numerical simulations of a 3D illustrative case

In this section, we employ the proposed model to evaluate its predictive abilities through a finite
element formulation. It is worth noting that the ability of this model to predict the outcome of bone
evolution is of particular interest in its potential applicability in real-world scenarios as well as many
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Figure 1. Schematic representation of the 3D system under study. The cylindrical sample
is constituted only by isotropic bone tissue. It is subjected to a dynamic cyclic torsion on
the upper surface and the displacements are fully constrained on the bottom surface.

medical applications. The finite element formulation provides a robust framework for this purpose,
which facilitates accurately evaluating the model performance. Specifically, we consider a simplified
cylindrical specimen with a length of 15 cm and a radius of 2 cm, representative of a femoral diaphysis
in an academic example (see Fig. 1 for a visual representation of the setup). The specimen is solely
composed of bone tissue, with an initial apparent bone mass density ρ∗ uniformly distributed. A
reference frame is introduced with the X3-axis aligned with the axis of the cylinder and having the
origin coinciding with the centre of the bottom circular base of the specimen. The components of the
displacement of the cylinder bottom surface are fully constrained, while on the top surface, a sinusoidal
force per unit surface τ (X1, X2, t) which produces a twisting deformation, is applied as follows

τ (X1, X2, t) = A0(X2 e1 −X1 e2) sin(2πΩ t) (3.1)

where A0 is a nominal amplitude for the distribution of force applied and Ω is the frequency. The
lateral surface is free from any mechanical load. The model parameters used in the numerical analysis
are reported in Table 1.

In this paper, we employed COMSOL Multiphysics software to conduct the numerical investi-
gation. The partial differential equations constituting the proposed model previously delineated are
directly solved with a weak formulation that implements the finite element analysis. The simulation
results were obtained through a parametric analysis of the most important parameters characteristic
of the adopted model: the frequency of the external load and the sink coefficient β.

4. Results and discussion

In order to scrutinize the numerical results, two probe points located within the cylinder have been
considered. The first point, denoted as point 1, is situated in the centre of the specimen (0, 0, 7.5) cm,
while the second point, denoted as point 2, is located on the lateral surface of the cylinder, precisely
at (2, 0, 7.5) cm.

We have performed two distinct sets of simulations aiming to evaluate the impact of the frequency
Ω (Fig. 2) and coefficient β (Fig. 5) on: 1) the stimulus S, 2) the apparent mass density ρ∗, and 3)
the bone elastic modulus Y . Our findings provide crucial insights into how these variables interplay
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L (cm) 15

r (cm) 2

ρ̂ (kg/m3) 1800

ν 0.3

Ymax (GPa) 17

νv (N s/m2) 2.57x1012

kv (N s/m2) 2.06x1012

s (s/m2) 1.27x10−7

r (s/m2) 1.06x10−7

Ss (J) 848.23

Sr (J) 254.47

κ (m2/s) 1.6x10−4

β 0.6

ψ (N) 1.68x10−3

A0 (MPa/m) 200

Table 1. Material parameters used in the numerical analysis.

and affect the overall outcome. These results hold significant value and can help in advancing the
knowledge of the field. In the former case, we have let the frequency vary between Ω = 0.01 cycles
per reference time (CpT), 0.1 CpT, and 1 CpT, and we have set β = 0.1. In the latter case, β takes
the values of 0.01, 0.1 and 1 while Ω = 1 CpT. It has been established that the reference time tref
is equivalent to one week, which amounts to 604800 seconds. This characteristic time for the bone
remodelling process has been put in place to ensure consistency and accuracy in our simulations, which
examine the behaviour of the bone tissue at a slow time scale. Indeed, the standard period of time
for an entire cycle of mass turnover in trabecular bone is about 120 days [58]. Therefore, a unit time
of 1 week is a sufficiently small unit of time that is simultaneously accurate and still saves computing
power.

Analysing the variability in the outcome of the remodelling process due to the frequency of the
external torque applied to the sample (Fig. 2), we observe from the panels (A), (B), and (C) that the
level of the stimulus S produced from the external mechanical stimulation changes with the frequency.
More precisely, we remark that the average trend of the stimulus is the same, especially for point 2
(see, for comparison, Fig. 3). However, the local slope varies significantly due to the actual frequency.
Therefore, the transient behaviour turns out to be quite different. Indeed, the lower the frequency,
the more delay appears in the onset in the initial slope. On the contrary, as the frequency increases,
the general behaviour tends to be asymptotically the same. As the frequency increases at point 2,
the stimulus has a more extensive boost during the initial stage due to the average trend, while in
the middle of the specimen (point 1), we notice little resorption or no evolution in all the cases. The
disparity in the spatial behaviour of the sample can be attributed to the distribution of energy density
within. In the twisting case analysed, it is common knowledge that the deformation energy tends
to localize at the lateral surface, while it is nearly negligible at the sample centre. To illustrate this
distribution, in Fig. 4, the evolution of the stimulus S over time is reported in the entire 3D sample
for the configuration defined by Ω = 1 and two values of β, 0.1 (see first row of Fig. 4, corresponding
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to Fig. 2(C)) and 1 (see second row of Fig. 4, corresponding to Fig. 5(C)). One can observe that the
stimulus increases on the periphery of the sample, whereas it stays very close to its initial value inside.
Furthermore, the asymptotic behaviour observed in Fig. 2 (A:C) implies that over a certain frequency,
if the stimulus source is the energy density, the dependence of the bone evolution on time due to time-
variable loads becomes inconsequential; thus, the influence of the external dynamic stimulation is valid
but in a suitable range of frequencies where the transient behaviour occurs in a period comparable
with the cycle of remodelling, namely 120 days.

The second row of panels of Fig. 2, from (D) to (F), exhibits the trend of the apparent mass
density ρ∗. At point 1, for all the examined cases where the stimulus has a little drop, the mass
density is relatively unaffected, being the stimulus in the so-called range ‘lazy zone’, characteristic
of the homeostatic state. However, in point 2, depending on the level of stimulus reached, we note
that for the low frequency, Ω = 0.01 CpT, the mass density has no significant alteration for a longer
period; while increasing the load frequency, the production of new bone tissue is promoted earlier.
Moreover, since the average stimulus is the same, we note that the rate of growth is the same for the
mass density even though, at the same instant, the level of mass density is different for the delay in
commencing the synthesis of new bone.

The panels of Fig. 2, from (G) to (I), show the elastic modulus Y . Because it is related to the
bone mass density by means of the monotonic relationship (2.8), these panels are characterized by the
same trend as the previous row for the mass density.

Figure 5 shows the influence of the parameter β, which takes the values {0.01, 0.1, 1}, in the
bone evolution. We note from the panels (A), (B), and (C) that the level of the stimulus S tends to
have lower levels as the sink coefficient β grows. The same trend is observed in both probe points; due
to the small scale of the stimulus at point 1, in Fig. 6, the plot of the stimulus has been zoomed in for
clarity. The effect of these changes has a larger impact on the central zone, i.e., point 1. In this region,
there is a certain amount of stimulus due to the diffusion but it disappears faster as the β coefficient
increases. Thus, we note the most significant resorption in panel (F) related to the biggest value of β
tested. In the other two cases at point 1, we have almost the same behaviour with a sudden drop at the
end of the simulation for the smallest value of β. This effect is difficult to explain since it results from
different effects that play a role in it, such as the speed in the diffusion of the stimulus and the overall
value of the stimulus. Regarding point 2, we have almost no change in the bone production, just a
slight perceptible delay at the beginning of the process in the last case, namely, β = 1. Once again,
this odd behaviour is the combination of different factors acting simultaneously; thus, it is not an easy
task to understand the reason beyond it. Finally, the evolution of the Young modulus is depicted in
the panels from (G) to (I). The qualitative behaviour of it matches with the one of the mass density,
as expected.

In summary, the present contribution aims to model the mechanical behaviour of bone tissue
employing a generalized three-dimensional deformable continuum, which takes into account the porous
nature of the tissue with a nonlinear constitutive law. In this work, indeed, we generalize some results
from previous works, where we applied the mathematical model to two-dimensional (2D) geometries
constituted by bone and graft region [35, 51]. To simplify the problem, we have adopted an isotropic
material symmetry, focusing on the interplay between the tissue evolution and the stimulus model.
This formulation shows promise, as it allows the bone tissue to evolve based on the time-variability of
external mechanical loads, even if the source of the stimulus is assumed to be the strain energy density,
which is notoriously not rate-dependent. Therefore, unlike other similar models for the stimulus (see
[37]), the fundamental effects of dynamic loads on the remodelling process can be taken into account
because of the time dependency introduced by the diffusive nature attributed to the stimulus due to the
transient behaviour. However, this dependence is characteristic of only a range of frequencies; beyond
a certain threshold, it disappears. This behaviour is not in contradiction with the clinic experience. In
the rehabilitative treatments, only a few specific frequencies seem to be optimal for bone production.
Hence, it is worth investigating this aspect more together with introducing dissipative energy as a
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Figure 2. Influence of the frequency Ω on the stimulus S (A:C), the apparent mass
density ρ∗ (D:F) and the bone elastic modulus Y (G:I) for point 1 (dashed blue line)
and point 2 (solid green line). β = 0.1 and Ω = 0.01 CpT (A,D,G), Ω = 0.1 CpT
(B,E,H) and Ω = 1 CpT (C,F,I).

co-source of the stimulus to have a more comprehensive dependence on the time variability of the
load.
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Figure 3. Time history of the stimulus S at point 2 for the different frequencies Ω
evaluated and β = 0.1.

Figure 4. Evolution over time of the stimulus S for the configurations defined by
Ω = 1 and β = 0.1 (A:E) and Ω = 1 and β = 1 (F:L).
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Figure 5. Influence of the coefficient β on the stimulus S (A:C), the apparent mass
density ρ∗ (D:F) and the bone elastic modulus Y (G:I) for point 1 (dashed blue line)
and point 2 (solid green line). Ω = 1 CpT and β = 0.01 (A,D,G), β = 0.1 (B,E,H)
and β = 1 (C,F,I).
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hensive approach for bone remodeling under medium and high mechanical load based on cellular activity,”
Math. Mech. Complex Syst., vol. 8, no. 4, pp. 287–306, 2020.

[21] A. Grillo and S. Di Stefano, “A formulation of volumetric growth as a mechanical problem subjected to
non-holonomic and rheonomic constraint,” Mathematics and Mechanics of Solids, vol. 28, pp. 2215–2241,
2023.

[22] A. Grillo, G. Wittum, A. Tomic, and S. Federico, “Remodelling in statistically oriented fibre-reinforced
materials and biological tissues,” Mathematics and Mechanics of Solids, vol. 20, no. 9, pp. 1107–1129,
2015.

[23] A. Misra, L. Placidi, F. dell’Isola, and E. Barchiesi, “Identification of a geometrically nonlinear micro-
morphic continuum via granular micromechanics,” Zeitschrift für angewandte Mathematik und Physik,
vol. 72, pp. 1–21, 2021.

[24] L. Placidi, E. Barchiesi, F. dell’Isola, V. Maksimov, A. Misra, N. Rezaei, A. Scrofani, and D. Timofeev,
“On a hemi-variational formulation for a 2D elasto-plastic-damage strain gradient solid with granular
microstructure,” Mathematics in Engineering, vol. 5, pp. 1–24, 2022.

[25] L. Placidi, D. Timofeev, V. Maksimov, E. Barchiesi, A. Ciallella, A. Misra, and F. dell’Isola, “Micro-
mechano-morphology-informed continuum damage modeling with intrinsic 2nd gradient (pantographic)
grain–grain interactions,” International Journal of Solids and Structures, vol. 254, p. 111880, 2022.

[26] L. Placidi, F. dell’Isola, N. Ianiro, and G. Sciarra, “Variational formulation of pre-stressed solid–fluid mix-
ture theory, with an application to wave phenomena,” European Journal of Mechanics-A/Solids, vol. 27,
no. 4, pp. 582–606, 2008.

[27] S. Massoumi and G. La Valle, “Static analysis of 2D micropolar model for describing granular media by
considering relative rotations,” Mechanics Research Communications, vol. 119, p. 103812, 2022.

[28] G. La Valle, B. E. Abali, G. Falsone, and C. Soize, “Sensitivity of a homogeneous and isotropic
second-gradient continuum model for particle-based materials with respect to uncertainties,” ZAMM-
Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik,
p. e202300068, 2023.

[29] M. Laudato and M. Mihaescu, “Analysis of the contact critical pressure of collapsible tubes for biomedical
applications,” Continuum Mechanics and Thermodynamics, pp. 1–12, 2023.

[30] G. La Valle, “A new deformation measure for the nonlinear micropolar continuum,” Zeitschrift für ange-
wandte Mathematik und Physik, vol. 73, no. 2, p. 78, 2022.

[31] I. Giorgio, F. dell’Isola, U. Andreaus, and A. Misra, “An orthotropic continuum model with substructure
evolution for describing bone remodeling: an interpretation of the primary mechanism behind Wolff’s
law,” Biomechanics and Modeling in Mechanobiology, vol. 22, no. 6, pp. 2135–2152, 2023.

[32] I. Giorgio, F. dell’Isola, U. Andreaus, F. Alzahrani, T. Hayat, and T. Lekszycki, “On mechanically driven
biological stimulus for bone remodeling as a diffusive phenomenon,” Biomech. Model. Mechanobiol, vol. 18,
no. 6, pp. 1639–1663, 2019.

[33] I. Giorgio, U. Andreaus, F. dell’Isola, and T. Lekszycki, “Viscous second gradient porous materials for
bones reconstructed with bio-resorbable grafts,” Extreme Mechanics Letters, vol. 13, pp. 141–147, 2017.



Functional adaptation of bone mechanical properties using a diffusive stimulus 15

[34] I. Giorgio, U. Andreaus, D. Scerrato, and F. dell’Isola, “A visco-poroelastic model of functional adaptation
in bones reconstructed with bio-resorbable materials,” Biomechanics and modeling in mechanobiology,
vol. 15, no. 5, pp. 1325–1343, 2016.

[35] R. Allena, D. Scerrato, A. Bersani, and I. Giorgio, “A model for the bio-mechanical stimulus in bone
remodelling as a diffusive signalling agent for bones reconstructed with bio-resorbable grafts,” Mechanics
Research Communications, vol. 129, p. 104094, 2023.

[36] D. Scerrato, I. Giorgio, A. M. Bersani, and D. Andreucci, “A proposal for a novel formulation based
on the hyperbolic Cattaneo’s equation to describe the mechano-transduction process occurring in bone
remodeling,” Symmetry, vol. 14, no. 11, p. 2436, 2022.

[37] T. Lekszycki and F. dell’Isola, “A mixture model with evolving mass densities for describing synthesis
and resorption phenomena in bones reconstructed with bio-resorbable materials,” ZAMM - Z. Angew.
Math. Mech, vol. 92, no. 6, pp. 426–444, 2012.

[38] M. Mullender and R. Huiskes, “Proposal for the regulatory mechanism of Wolff’s law,” Journal of or-
thopaedic research, vol. 13, no. 4, pp. 503–512, 1995.

[39] I. Giorgio, U. Andreaus, D. Scerrato, and P. Braidotti, “Modeling of a non-local stimulus for bone remod-
eling process under cyclic load: Application to a dental implant using a bioresorbable porous material,”
Mathematics and Mechanics of Solids, vol. 22, no. 9, pp. 1790–1805, 2017.

[40] L. Placidi, E. Barchiesi, and A. Misra, “A strain gradient variational approach to damage: a comparison
with damage gradient models and numerical results,” Mathematics and Mechanics of Complex Systems,
vol. 6, no. 2, pp. 77–100, 2018.

[41] B. E. Abali, A. Klunker, E. Barchiesi, and L. Placidi, “A novel phase-field approach to brittle damage
mechanics of gradient metamaterials combining action formalism and history variable,” 2021.

[42] B. Vazic, B. E. Abali, H. Yang, and P. Newell, “Mechanical analysis of heterogeneous materials with
higher-order parameters,” Engineering with Computers, pp. 1–17, 2021.

[43] M. Cuomo, L. Contrafatto, and L. Greco, “A variational model based on isogeometric interpolation for
the analysis of cracked bodies,” International Journal of Engineering Science, vol. 80, pp. 173–188, 2014.

[44] A. Battista, L. Rosa, R. dell’Erba, and L. Greco, “Numerical investigation of a particle system com-
pared with first and second gradient continua: Deformation and fracture phenomena,” Mathematics and
Mechanics of Solids, vol. 22, no. 11, pp. 2120–2134, 2017.

[45] M. Spagnuolo, M. E. Yildizdag, X. Pinelli, A. Cazzani, and F. Hild, “Out-of-plane deformation reduc-
tion via inelastic hinges in fibrous metamaterials and simplified damage approach,” Mathematics and
Mechanics of Solids, vol. 27, no. 6, pp. 1011–1031, 2022.

[46] M. Valmalle, A. Vintache, B. Smaniotto, F. Gutmann, M. Spagnuolo, A. Ciallella, and F. Hild, “Local–
global dvc analyses confirm theoretical predictions for deformation and damage onset in torsion of pan-
tographic metamaterial,” Mechanics of Materials, vol. 172, p. 104379, 2022.

[47] M. A. Biot, “Mechanics of deformation and acoustic propagation in porous media,” J. Appl. Phys., vol. 33,
no. 4, pp. 1482–1498, 1962.

[48] M. A. Biot, “Generalized theory of acoustic propagation in porous dissipative media,” The Journal of the
Acoustical Society of America, vol. 34, no. 9A, pp. 1254–1264, 1962.

[49] S. C. Cowin, “Bone poroelasticity,” J. Biomech., vol. 32, no. 3, pp. 217–238, 1999.

[50] O. Coussy, Poromechanics. John Wiley & Sons, 2004.

[51] D. Scerrato, A. M. Bersani, and I. Giorgio, “Bio-inspired design of a porous resorbable scaffold for bone
reconstruction: A preliminary study,” Biomimetics, vol. 6, no. 1, 2021.

[52] Y. Lu and T. Lekszycki, “Modelling of bone fracture healing: influence of gap size and angiogenesis into
bioresorbable bone substitute,” Math. Mech. Solids., vol. 22, no. 10, pp. 1997–2010, 2017.

[53] E. Bednarczyk and T. Lekszycki, “A novel mathematical model for growth of capillaries and nutrient
supply with application to prediction of osteophyte onset,” ZAMP - Z. fur Angew. Math. Phys, vol. 67,
no. 4, pp. 1–14, 2016.

[54] I. Giorgio, M. De Angelo, E. Turco, and A. Misra, “A Biot–Cosserat two-dimensional elastic nonlinear
model for a micromorphic medium,” Continuum Mechanics and Thermodynamics, vol. 32, no. 5, pp. 1357–
1369, 2020.



16 R. Allena, D. Scerrato, A. M. Bersani and I. Giorgio

[55] M. A. Biot, “Mechanics of deformation and acoustic propagation in porous media,” Journal of applied
physics, vol. 33, no. 4, pp. 1482–1498, 1962.

[56] S. C. Cowin and J. W. Nunziato, “Linear elastic materials with voids,” J. Elast., vol. 13, no. 2, pp. 125–147,
1983.

[57] J. D. Currey, “The effect of porosity and mineral content on the Young’s modulus of elasticity of compact
bone,” Journal of biomechanics, vol. 21, no. 2, pp. 131–139, 1988.

[58] E. F. Eriksen, “Cellular mechanisms of bone remodeling,” Rev. Endocr. Metab. Disord., vol. 11, no. 4,
pp. 219–227, 2010.

[59] P. Heinemann and M. Kasperski, “Damping induced by walking and running,” Procedia Eng., vol. 199,
pp. 2826–2831, 2017.
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