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A B S T R A C T

This work focuses on minimum-time low-thrust orbit transfers from a prescribed low Earth orbit to a specified
low lunar orbit. The well-established indirect formulation of minimum-time orbit transfers is extended to
a multibody dynamical framework, with initial and final orbits around two distinct primaries. To do this,
different representations, useful for describing orbit dynamics, are introduced, i.e., modified equinoctial
elements (MEE) and Cartesian coordinates (CC). Use of two sets of MEE, relative to either Earth or Moon,
allows simple writing of the boundary conditions about the two celestial bodies, but requires the formulation
of a multiple-arc trajectory optimization problem, including two legs: (a) geocentric leg and (b) selenocentric
leg. In the numerical solution process, the transition between the two MEE representations uses CC, which
play the role of convenient intermediate, matching variables. The multiple-arc formulation at hand leads to
identifying a set of intermediate necessary conditions for optimality, at the transition between the two legs.
This research proves that a closed-form solution to these intermediate conditions exists, leveraging implicit
costate transformation. As a result, the parameter set for an indirect algorithm retains the reduced size of
the typical set associated with a single-arc optimization problem. The indirect heuristic technique, based on
the joint use of the necessary conditions and a heuristic algorithm (i.e., differential evolution in this study) is
proposed as the numerical solution method, together with the definition of a layered fitness function, aimed
at facilitating convergence. The minimum-time trajectory of interest is sought in a high-fidelity dynamical
framework, with the use of planetary ephemeris and the inclusion of the simultaneous gravitational action
of Sun, Earth, and Moon, along the entire transfer path. The numerical results unequivocally prove that the
approach developed in this research is effective for determining minimum-time low-thrust Earth–Moon orbit

transfers.
1. Introduction

In recent years, low-thrust electric propulsion has attracted an
increasing interest by the scientific community, and has already found
application in a variety of mission scenarios, such as NASA’s Deep Space
1 [1] and ESA’s SMART-1 [2]. The latter is the only low-thrust mission
to the Moon to date. Due to the high values of the specific impulse, low
thrust enables substantial propellant savings, at the expense of increas-
ing the time of flight. As a consequence, the use of low thrust as the
primary means of spacecraft propulsion is limited to robotic spaceflight.
Pioneering studies on low-thrust trajectories about a single attracting
body are due to Edelbaum [3], one of the first scientists to point out the
benefit of using low thrust in space. Most recently, extensive research
on the same subject was carried out by Petropoulos [4], Betts [5], and
Kechichian [6], to name a few. The interest in lunar exploration has
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considerably improved over the last 20 years, mainly due to evidence
of water ice deposits in the lunar polar regions [7], later ascertained
by Chandrayaan-1 [8] and Lunar Reconnaissance Orbiter [9]. Artemis,
the latest and most ambitious space program by NASA, is entirely
devoted to enhancing human presence and exploration endeavor on the
surface of the Moon. To this end, NASA intends to assemble an orbiting
space station in the vicinity of the Moon, which will be essential
for supporting manned facilities on the lunar surface and to facilitate
human exploration toward deep space [10]. Within this novel and
challenging framework, it is crucial to envision and ultimately design
an orbital roadmap connecting key orbits in the Earth–Moon system.
Thus, innovative and advantageous orbit transfer strategies in cislunar
space are of great practical interest at the present time.
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A large number of works in the recent scientific literature is devoted
to investigating optimal low-thrust trajectories in the framework of the
two-body problem, with both direct and indirect optimization meth-
ods [11–13]. On the other hand, limited research was dedicated to the
design of optimal paths in multibody environments. Minimum-fuel low-
thrust Earth–Moon trajectories from low Earth orbit (LEO) to low lunar
orbit (LLO) were investigated in the approximate framework of the
circular restricted three-body problem (CR3BP) by Pierson and Kluever,
assuming a fixed thrust-coast-thrust sequence and using a ‘‘hybrid’’
direct/indirect method, in both planar [14] and three-dimensional [15]
geometries. A few years later, Herman and Conway [16] employed
the method of collocation with nonlinear programming to address
minimum-fuel low-thrust Earth–Moon orbit transfers from an arbi-
trary Earth orbit to an arbitrary lunar orbit with continuous thrust.
In this context, an ephemeris model was employed, but the gravita-
tional action of the Sun was neglected. Betts and Erb [17] tackled
once more the problem of low-thrust Earth–Moon orbit transfers for
an application representative of ESA’s SMART-1 trajectory. The tran-
scription method was used in conjunction with modified equinoctial
elements (MEE), to retrieve the minimum-fuel path from an initial
Ariane 5 elliptic Earth parking orbit to a final elliptic polar lunar
orbit with periapse above the lunar south pole. Most recently, Pérez-
Palau and Epenoy [18] developed an indirect optimal control approach
for minimum-fuel trajectories from LEO to different lunar orbits in
the Sun–Earth–Moon bicircular restricted four-body problem. Other
effective strategies for the preliminary analysis of minimum-fuel Earth–
Moon orbit transfers were proposed by Mingotti, Topputo, and Bernelli-
Zazzera [19,20], by Zhang, Topputo, Bernelli-Zazzera, and Zhao [21],
and by Ozimek and Howell [22], leveraging low-thrust in conjunc-
tion with invariant manifolds [23], in the framework of the CR3BP.
Concurrently, remarkable works investigating low-energy transfers in
multibody dynamical frameworks were conducted by Lantoine, Russell,
and Campagnola [24] and by Epenoy and Pérez-Palau [25]. However,
despite the prosperity of this recent research topic, a rigorous indirect
optimization method for addressing multibody transfers with initial and
final orbits around distinct primaries was not proposed yet.

The research that follows addresses the problem of identifying
minimum-time low-thrust Earth–Moon orbit transfers, modeled in a
multibody dynamical framework. Besides Earth and Moon, the Sun
greatly affects the trajectories traveled by spacecraft in cislunar space.
Therefore, the gravitational action of the Sun is included in this analy-
sis. This study has the following objectives: (i) introduce a multiple-arc
formulation for the trajectory optimization problem under considera-
tion, using different representations for the spacecraft dynamical state,
(ii) derive the extended set of necessary conditions for optimality, (iii)
prove that all the multipoint conditions can be solved sequentially, also
taking advantage of implicit costate transformation, (iv) propose an
advanced indirect heuristic algorithm [26] as the numerical solution
method, and (v) test the technique at hand in the challenging mission
scenario of Earth–Moon orbit transfers in a high-fidelity dynamical
framework, with the use of planetary ephemeris and the inclusion of
the simultaneous gravitational action of Sun, Earth, and Moon, along
the entire transfer path.

This work is organized as follows. In Section 2, the reference frames
and the two representations for the spacecraft trajectory (i.e., Cartesian
Coordinates (CC) and MEE) are introduced, together with the govern-
ing equations for MEE. Details on the different mission legs and the
related (coexisting) state representations are provided in Section 3.
The multiple-arc formulation of the problem is the main subject of
Section 4, which also emphasizes the crucial role of the implicit costate
transformation to solve (in closed form) the intermediate multipoint
necessary conditions for optimality. Section 5 describes the solution
strategy, which features an indirect heuristic method. Finally, Section 6
is focused on the numerical solution of a variety of orbit transfers
between prescribed orbits, an initial LEO and distinct final low-altitude
331

lunar orbits.
2. Orbit dynamics

The topic of this research is three-dimensional spacecraft trajectory
optimization using low-thrust propulsion. The space vehicle is modeled
as a point mass and its orbital motion around the main attracting body
(either Earth or Moon) is investigated under the following assumptions:

(a) Sun, Earth, and Moon have spherical mass distribution;
(b) low thrust is steerable and throttleable and is provided by a

constant-specific-impulse and thrust-limited engine;
(c) the positions of Sun, Earth, and Moon are retrieved from a

high-fidelity ephemeris model [27].

Assumption (a) implies that the gravitational attraction obeys the in-
verse square law. This approximation is justified by the fact that, for
most of the transfer, the spacecraft is relatively far from both Earth and
Moon and, as a result, the effect of higher-order harmonics is negligible.

Denoting 𝑇 , 𝑐, 𝑚, and 𝑚0 the thrust magnitude, the exhaust velocity
of the propulsion system, the spacecraft mass, and its initial value,
respectively, assumption (b) yields the governing equation for the
spacecraft mass ratio 𝑚𝑅 = 𝑚∕𝑚0

̇ 𝑅 = �̇�
𝑚0

= − 𝑇
𝑚0 𝑐

= −
𝑢𝑇
𝑐

(1)

where 𝑢𝑇 = 𝑇∕𝑚0. Thus, the thrust acceleration magnitude is 𝑎𝑇 = 𝑢𝑇∕𝑚𝑅.
The remainder of this section describes two representations for the

spacecraft position and velocity, i.e., (1) Cartesian coordinates and
(2) modified equinoctial elements. As a preliminary step, some useful
reference frames are introduced.

2.1. Reference frames

The Earth-centered inertial reference frame (ECI J2000) and the
Moon-centered inertial reference frame (MCI) are defined with re-
spect to the heliocentric inertial reference frame (HCI), associated with
vectrix

N
𝑆
=
[

𝑐𝑆1 𝑐𝑆2 𝑐𝑆3
]

(2)

where 𝑐𝑆1 is the vernal axis (corresponding to the intersection of the
ecliptic plane with Earth’s equatorial plane), 𝑐𝑆3 is aligned with Earth’s
rbital angular momentum ℎ̂⊕, and the triad (𝑐𝑆1 , 𝑐𝑆2 , 𝑐𝑆3 ) is a right-

handed sequence of unit vectors.
The ECI reference frame is associated with vectrix

N
𝐸
=
[

𝑐𝐸1 𝑐𝐸2 𝑐𝐸3
]

(3)

where 𝑐𝐸1 and 𝑐𝐸2 lie on the Earth mean equatorial plane and are
coplanar with 𝑐𝑆1 , 𝑐𝐸3 points toward the Earth rotation axis and the triad
(𝑐𝐸1 , 𝑐𝐸2 , 𝑐𝐸3 ) is a right-handed sequence of unit vectors.

The ECI and the HCI reference frames are related through the
angle 𝜓⊕ (separating 𝑐𝑆1 from 𝑐𝐸1 ) and the ecliptic obliquity angle 𝜖⊕
(separating 𝑐𝑆3 from 𝑐𝐸3 ), both taken at a reference epoch 𝑡𝑟𝑒𝑓 ,

⎡

⎢

⎢

⎢

⎣

𝑐𝑆1
𝑐𝑆2
𝑐𝑆3

⎤

⎥

⎥

⎥

⎦

= 𝐑1

(

𝜖𝑟𝑒𝑓⊕
)

𝐑3

(

𝜓𝑟𝑒𝑓⊕
)

⎡

⎢

⎢

⎢

⎣

𝑐𝐸1
𝑐𝐸2
𝑐𝐸3

⎤

⎥

⎥

⎥

⎦

(4)

where 𝐑𝑗 (𝜃) denotes an elementary counterclockwise rotation about
axis 𝑗 by a generic angle 𝜃. Fig. 1 depicts the two reference frames and
the related angles.

It is important to underline that 𝑐𝑆1 and 𝑐𝐸1 are exactly superimposed
only at epoch J2000, that is the epoch at which the ECI reference frame
is set. At any other epoch, the ecliptic plane does not intersect the ECI
J2000 equatorial plane along 𝑐𝐸1 and, as a consequence, the angular
displacement 𝜓⊕ arises.

According to Cassini’s laws [28], the Moon rotation axis �̂�$, the
Moon orbit angular momentum 𝒉

⃖⃗
$, and the normal to the ecliptic

𝑆
plane 𝑐3 all lie in the same plane. Moreover, the vectors �̂�$ and 𝒉
⃖⃗
$
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Fig. 1. Reference frames HCI and ECI and related angles 𝜓 𝑟𝑒𝑓
⊕ and 𝜖𝑟𝑒𝑓⊕ .

Fig. 2. Geometry of unit vectors 𝑐𝑆3 , ℎ̂$, and 𝑐𝑀3 and related angles 𝛿$ and 𝜖$.

re located at opposite sides of the ecliptic pole 𝑐𝑆3 and are both subject
o clockwise precession, with a period of 18.6 years, because of the Sun
ravitational perturbation. Axis 𝑐𝑀3 is identified as the rotation axis �̂�$
t the reference epoch, while the remaining two axes 𝑐𝑀1 and 𝑐𝑀2 lie

in the Moon equatorial plane, orthogonal to �̂�$. Fig. 2 illustrates the
relative orientation of unit vectors 𝑐𝑀3 , 𝑐𝑆3 , and ℎ̂$. By definition, the
axis 𝑐𝑀1 is chosen to be coplanar with the line that connects Earth and
Moon at the reference epoch, lies on the plane orthogonal to 𝑐𝑀3 , and
is directed toward the far side of the Moon. Lastly, 𝑐𝑀2 is chosen such
that (𝑐𝑀1 , 𝑐𝑀2 , 𝑐𝑀3 ) is a right-handed sequence of unit vectors.

As an intermediate step for the definition of the MCI reference
frame, it is convenient to introduce the Moon orbital reference frame
(MO)

R
𝑀𝑂

=
[

�̂�$ �̂�$ ℎ̂$
]

. (5)

he MO reference frame is related to the HCI reference frame through
he Moon precession angle 𝜓$ (separating �̂�$ from 𝑐𝑆1 ) and the Moon
rbital plane obliquity angle 𝛿$ (separating ℎ̂$ from 𝑐𝑆3 )

�̂�$
�̂�$
ℎ̂$

⎤

⎥

⎥

⎥

⎦

= 𝐑1
(

𝛿$
)

𝐑3
(

𝜓$
)

⎡

⎢

⎢

⎢

⎣

𝑐𝑆1
𝑐𝑆2
𝑐𝑆3

⎤

⎥

⎥

⎥

⎦

(6)

here �̂�$ is the unit vector pointing toward the ascending node of the
oon orbit, ℎ̂$ is aligned with the Moon orbit angular momentum, and
̂$ is chosen such that (�̂�$, �̂�$, ℎ̂$) is a right-handed sequence of
nit vectors. Fig. 3 depicts the two reference frames and the related
ngles.

The Moon-centered inertial reference frame (MCI) is closely related
o the MO reference frame because �̂�$ is orthogonal to the plane
ontaining �̂�$, 𝒉

⃖⃗
$, and 𝑐𝑆3 . As a preliminary step, an auxiliary inertial

eference frame N
𝐴
=
[

𝑐𝐴1 𝑐𝐴2 𝑐𝐴3
]

at the reference epoch 𝑡𝑟𝑒𝑓 can be
efined in relation to the HCI reference frame
𝑐𝐴1
𝑐𝐴2
𝐴

⎤

⎥

⎥

⎥

= 𝐑1
(

−𝜖$
)

𝐑3

(

𝜓𝑟𝑒𝑓$

)

⎡

⎢

⎢

⎢

𝑐𝑆1
𝑐𝑆2
𝑆

⎤

⎥

⎥

⎥

. (7)
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𝑐3 ⎦ ⎣
𝑐3 ⎦
Fig. 3. Reference frames MO and HCI and related angles 𝜓$ and 𝜖$.

The Moon-centered inertial reference frame is obtained from the aux-
iliary inertial reference frame with a single elementary rotation about
axis 𝑐𝐴3 by angle 𝜃𝑟𝑒𝑓$ , where 𝜃𝑟𝑒𝑓$ is the angle that separates �̂�$ from
the projection of the unit vector from the Earth to the Moon �̂�⊕$ on
the plane orthogonal to 𝑐𝐴3 (= 𝑐𝑀3 ), at the reference epoch

⎡

⎢

⎢

⎢

⎣

𝑐𝑀1
𝑐𝑀2
𝑐𝑀3

⎤

⎥

⎥

⎥

⎦

= 𝐑3

(

𝜃𝑟𝑒𝑓$

)

⎡

⎢

⎢

⎢

⎣

𝑐𝐴1
𝑐𝐴2
𝑐𝐴3

⎤

⎥

⎥

⎥

⎦

. (8)

Thus, it is possible to link the MCI reference frame to the HCI reference
frame with a 3-1-3 sequence of elementary rotations by combining
expressions (7) and (8)

⎡

⎢

⎢

⎢

⎣

𝑐𝑀1
𝑐𝑀2
𝑐𝑀3

⎤

⎥

⎥

⎥

⎦

= 𝐑3

(

𝜃𝑟𝑒𝑓$

)

𝐑1
(

−𝜖$
)

𝐑3

(

𝜓𝑟𝑒𝑓$

)

⎡

⎢

⎢

⎢

⎣

𝑐𝑆1
𝑐𝑆2
𝑐𝑆3

⎤

⎥

⎥

⎥

⎦

. (9)

Then, the MCI reference frame can be related to the ECI reference frame
with a 3-1-3-1-3 sequence of elementary rotations (cf. Fig. 4), according
to the combination of Eqs. (4) and (9)

⎡

⎢

⎢

⎢

⎣

𝑐𝑀1
𝑐𝑀2
𝑐𝑀3

⎤

⎥

⎥

⎥

⎦

= 𝐑3

(

𝜃𝑟𝑒𝑓$

)

𝐑1
(

−𝜖$
)

𝐑3

(

𝜓𝑟𝑒𝑓$

)

𝐑1

(

𝜖𝑟𝑒𝑓⊕
)

𝐑3

(

𝜓𝑟𝑒𝑓⊕
)

⎡

⎢

⎢

⎢

⎣

𝑐𝐸1
𝑐𝐸2
𝑐𝐸3

⎤

⎥

⎥

⎥

⎦

. (10)

The corresponding rotation matrix binding the ECI reference frame to
the MCI reference frame is

𝐑
𝑀𝐶𝐼←𝐸𝐶𝐼

= 𝐑3

(

𝜃𝑟𝑒𝑓$

)

𝐑1
(

−𝜖$
)

𝐑3

(

𝜓𝑟𝑒𝑓$

)

𝐑1

(

𝜖𝑟𝑒𝑓⊕
)

𝐑3

(

𝜓𝑟𝑒𝑓⊕
)

(11)

where the angles 𝜓𝑟𝑒𝑓⊕ , 𝜖𝑟𝑒𝑓⊕ , 𝜓𝑟𝑒𝑓$ and 𝜃𝑟𝑒𝑓$ can all be retrieved from

planetary ephemeris at the reference epoch. The remaining angle 𝜖$ is
termed obliquity of the Moon equator and equals 1.62 degree [28].

In this work, the departure epoch is made to coincide with the
reference epoch 𝑡𝑟𝑒𝑓 .

Finally, the local vertical local horizontal frame represents a useful
system that can only be defined in relation to a main attracting body 𝐵
and rotates together with the space vehicle. It is associated with vectrix

R
𝐿𝑉 𝐿𝐻𝐵

=
[

�̂�𝐵 �̂�𝐵 ℎ̂𝐵
]

(12)

where �̂�𝐵 is aligned with the spacecraft position vector 𝒓
⃖⃗ 𝐵

(taken from
the center of mass of 𝐵), ℎ̂𝐵 points toward the spacecraft orbit angular
momentum, whereas �̂�𝐵 is aligned with the projection of the satellite
velocity 𝒗

⃖⃗
into the local horizontal plane and it is such that (�̂�𝐵 , �̂�𝐵 , ℎ̂𝐵)

is a right-handed sequence of unit vectors.
Because either the Earth or the Moon can be regarded as the main

attracting body, two distinct local vertical local horizontal reference
frames R and R can be introduced.
𝐿𝑉 𝐿𝐻𝐸 𝐿𝑉 𝐿𝐻𝑀
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Fig. 4. Elementary rotations linking the reference frames.

.2. Cartesian coordinates

The spacecraft position and velocity can be identified in terms of
artesian components along an inertial reference frame 𝑁 . Variables

𝑥, 𝑦, and 𝑧 identify the spacecraft position in 𝑁 , while the variables
𝑣𝑥, 𝑣𝑦, and 𝑣𝑧 represent the Cartesian coordinates of the velocity. The
dynamical state of the space vehicle is identified by the state vector 𝒚
defined as

𝒚 =
[

𝑥 𝑦 𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝑚𝑅
]𝑇 . (13)

2.3. Modified equinoctial elements

In several applications, modified equinoctial elements are preferred
to classical orbit elements for numerical propagation, because they
have the remarkable advantage of avoiding singularities when circu-
lar or equatorial orbits are encountered (or approached). Modified
equinoctial elements can be introduced in terms of the classical orbit
elements, i.e., semimajor axis 𝑎, eccentricity 𝑒, inclination 𝑖, right
ascension of the ascending node (RAAN) 𝛺, argument of periapsis 𝜔,
and true anomaly 𝜃∗, as

𝑝 = 𝑎
(

1 − 𝑒2
)

𝑙 = 𝑒 cos (𝛺 + 𝜔)

𝑚 = 𝑒 sin (𝛺 + 𝜔) 𝑛 = tan 𝑖
2
cos𝛺

𝑠 = tan 𝑖
2
sin𝛺 𝑞 = 𝛺 + 𝜔 + 𝜃∗

(14)

where element 𝑝 is the semilatus rectum (𝑝 > 0), elements 𝑙 and 𝑚
depend on eccentricity and longitude of the periapsis 𝜔 = 𝛺 + 𝜔,
elements 𝑛 and 𝑠 depend on inclination and RAAN, and element 𝑞 is
the true longitude (−𝜋 < 𝑞 ⩽ 𝜋). These variables are nonsingular for
ll Keplerian trajectories, with the only exception of equatorial retro-
rade orbits (𝑖 = 𝜋). Letting 𝑥6≡𝑞 and 𝒛=

[

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5
]𝑇 ≡

[

𝑝 𝑙 𝑚 𝑛 𝑠
]𝑇 , the equations for the MEE are

�̇� = 𝐆
(

𝒛, 𝑥6
)

𝒂

̇ 6 =
√

𝜇
𝑥3
𝜂2 +

√

𝑥1
𝜇
𝑥3 sin 𝑥6 − 𝑥5 cos 𝑥6

𝜂
𝑎ℎ

(15)
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1

Fig. 5. Thrust angles 𝛼 and 𝛽 (0 < 𝛼 ⩽ 2𝜋, − 𝜋
2
⩽ 𝛽 ⩽ 𝜋

2
).

where 𝜇 represents the gravitational parameter of the main attracting
body, 𝜂 = 1 + 𝑥2 cos 𝑥6 + 𝑥3 sin 𝑥6 is an auxiliary function, 𝒂 =
[

𝑎𝑟 𝑎𝜃 𝑎ℎ
]𝑇 is the non-Keplerian acceleration exerted on the space

vehicle projected onto R
𝐿𝑉 𝐿𝐻

, and 𝐆 is a 5 × 3 matrix depending on 𝒛
and 𝑥6 only [29],

𝐆
(

𝒛, 𝑥6
)

=
√

𝑥1
𝜇

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 2𝑥1
𝜂 0

sin 𝑥6
(𝜂+1) cos 𝑥6+𝑥2

𝜂 − 𝑥4 sin 𝑥6−𝑥5 cos 𝑥6
𝜂 𝑥3

−cos 𝑥6
(𝜂+1) sin 𝑥6+𝑥3

𝜂
𝑥4 sin 𝑥6−𝑥5 cos 𝑥6

𝜂 𝑥2

0 0
1+𝑥24+𝑥

2
5

2𝜂 cos 𝑥6

0 0
1+𝑥24+𝑥

2
5

2𝜂 sin 𝑥6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(16)

The dynamical state of the space vehicle is identified by the state
vector 𝒙 defined as

𝒙 =
[

𝒛𝑇 𝑥6 𝑥7
]𝑇 ≡

[

𝒛𝑇 𝑥6 𝑚𝑅
]𝑇 . (17)

Two thrust angles 𝛼 and 𝛽 define the thrust direction in terms of its
components in R

𝐿𝑉 𝐿𝐻
(cf. Fig. 5), while the parameter 𝑢𝑇 , constrained

between 0 and 𝑢𝑚𝑎𝑥𝑇 , is designated to represent the thrust magnitude.
Thus, the control vector is given by

𝒖 =
[

𝑢1 𝑢2 𝑢3
]𝑇 ≡

[

𝑢𝑇 𝛼 𝛽
]𝑇 (18)

and the thrust acceleration in R
𝐿𝑉 𝐿𝐻

is

𝒂𝑇 =
[

𝑎𝑇 ,𝑟 𝑎𝑇 ,𝜃 𝑎𝑇 ,ℎ
]𝑇 =

𝑢1
𝑥7

[

s𝑢2c𝑢3 c𝑢2c𝑢3 s𝑢3
]𝑇 (19)

where 𝑠𝜃 and 𝑐𝜃 denote respectively the sine and cosine of a generic
angle 𝜃.

The state Eqs. (1) and (15) can be written in compact form as

�̇� = 𝒇 (𝒙, 𝒖, 𝑡) . (20)

In general, the boundary conditions are problem-dependent, and are
formally written in vector form as

𝜻
(

𝒙0,𝒙𝑓 , 𝑡0, 𝑡𝑓
)

=

[

𝜻0
(

𝒙0, 𝑡0
)

𝜻𝑓
(

𝒙𝑓 , 𝑡𝑓
)

]

= 𝟎. (21)

2.4. Third-body gravitational perturbation

When a spacecraft orbits a main attracting body, the gravitational
action of other massive bodies, usually referred to as third bodies, can
be regarded as a perturbation acting on the spacecraft. Denoting the
spacecraft with 2, the main attracting body with 1, the third body
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Table 1
Useful planetary physical parameters.

Celestial body 𝜇
[

km3

s2

]

𝑅
[

km
]

Sun 132712440041.279 Not used
Earth 398600.436 6378.136
Moon 4902.800 1737.400

with 3, and neglecting the mass of the space vehicle, the gravitational
perturbation exerted on body 2 due to body 3 is [30]

𝒂
⃖⃗
3𝐵 = 𝜇3

⎧

⎪

⎨

⎪

⎩

𝒓
⃖⃗ 13

− 𝒓
⃖⃗ 12

[(

𝒓
⃖⃗ 12

− 𝒓
⃖⃗ 13

)

⋅
(

𝒓
⃖⃗ 12

− 𝒓
⃖⃗ 13

)]
3
2

−
𝒓
⃖⃗ 13
𝑟313

⎫

⎪

⎬

⎪

⎭

(22)

here 𝒓
⃖⃗ 1𝑗

is the position vector of body 𝑗 (= 1, 2) relative to the
rimary, 𝑟1𝑗 is the position vector magnitude, and 𝜇3 is the gravitational
arameter of the perturbing body. Table 1 presents the gravitational
arameters and radii of the relevant celestial objects.

Because in the governing equations for MEE the non-Keplerian
cceleration appears through its components in the local vertical local
orizontal reference frame, both 𝒓

⃖⃗ 12
and 𝒓

⃖⃗ 13
must be projected onto

𝐿𝑉 𝐿𝐻
,

(𝐿𝑉 𝐿𝐻)
12 =

⎡

⎢

⎢

⎣

𝑟12
0
0

⎤

⎥

⎥

⎦

𝒓(𝐿𝑉 𝐿𝐻)
13 = 𝐑

LVLH←N
𝒓(𝑁)
13 (23)

ith 𝒓(𝑁)
13 coming from ephemeris data and N referring to either ECI or

CI.

. Trajectory design strategy

The orbit transfer of interest takes place in the Earth–Moon system
nd is inherently modeled in a multibody dynamical framework. The
imultaneous gravitational action of Sun, Earth, and Moon is included
long the entire transfer path. Use of MEE enables singularity-free
umerical propagation and a simple writing of the boundary condi-
ions associated with the terminal orbits. However, because during the
ransfer trajectory the spacecraft transitions from orbiting the Earth to
rbiting the Moon, two sets of MEE must be introduced: (a) Earth-
entered and ECI-related MEE (𝒙𝐸), associated with both N

𝐸
and

𝐿𝑉 𝐿𝐻𝐸
, and (b) Moon-centered and MCI-related MEE (𝒙𝑀 ), associated

ith both N
𝑀

and R
𝐿𝑉 𝐿𝐻𝑀

.

3.1. Terminal orbits

The initial and final orbits (denoted respectively with subscripts 0
and 𝑓 ) have specified values of some orbit elements among 𝑎, 𝑒, 𝑖, 𝛺,
and 𝜔. Moreover, the initial mass ratio equals 1, meaning that 𝜻 has
at most 11 components (i.e., 𝜁1 through 𝜁6 associated with 𝜻0 and 𝜁7
through 𝜁11 associated with 𝜻𝑓 ). The departure orbit family consists of
circular low Earth orbits with specified radius 𝑝𝐸,0 and inclination 𝑖𝐸,0,

𝜻0
(

𝒙0, 𝑡0
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1,0 − 𝑝𝐸,0
𝑥22,0 + 𝑥

2
3,0

𝑥24,0 + 𝑥
2
5,0 − tan2 𝑖𝐸,0

2

𝑥7,0 − 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (24)

Two families of target orbits are considered in this work: (a) circular
low lunar orbits with specified radius 𝑝𝑀,𝑓 and inclination 𝑖𝑀,𝑓 ,

𝑓
(

𝒙𝑓 , 𝑡𝑓
)

=

⎡

⎢

⎢

⎢

⎢

𝑥1,𝑓 − 𝑝𝑀,𝑓

𝑥22,𝑓 + 𝑥23,𝑓
𝑥2 + 𝑥2 − tan2 𝑖𝑀,𝑓

⎤

⎥

⎥

⎥

⎥

. (25)
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⎣ 4,𝑓 5,𝑓 2 ⎦
nd (b) circular low lunar orbits with specified radius 𝑝𝑀,𝑓 , inclination
𝑖𝑀,𝑓 , and RAAN 𝛺𝑀,𝑓 ,

𝜻𝑓
(

𝒙𝑓 , 𝑡𝑓
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1,𝑓 − 𝑝𝑀,𝑓

𝑥22,𝑓 + 𝑥23,𝑓
𝑥4,𝑓 − tan 𝑖𝑀,𝑓

2 cos𝛺𝑀,𝑓

𝑥5,𝑓 − tan 𝑖𝑀,𝑓
2 sin𝛺𝑀,𝑓

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (26)

Terrestrial MEE are used for the initial boundary conditions associ-
ated with the departure orbit in ECI (𝜻0), while lunar MEE are used for
the final boundary conditions associated with the target lunar orbit in
MCI (𝜻𝑓 ).

3.2. Trajectory arcs and coordinate transformations

During the first portion of the transfer trajectory the spacecraft
orbits the Earth and its dynamical state is conveniently described
with Earth-related MEE. Conversely, once the spacecraft transitions to
orbital motion around the Moon, Moon-related MEE emerge as the best-
suited variables for describing its dynamical state. Thus, the transfer
trajectory can be virtually partitioned in two arcs: (a) a geocentric
arc and (b) a selenocentric arc. The timing for transitioning from one
representation to another is arbitrary, but proper selection of the in-
stant of transition facilitates the convergence of the numerical solution
process. In this study, the change in representation occurs as soon as
the spacecraft enters a sphere of influence (SOI) of the Moon of radius
𝜌𝑀 , i.e., when the following inequality is satisfied:

𝑟𝑀 − 𝜌𝑀 ⩽ 0 (27)

where 𝑟𝑀 represents the instantaneous distance of the space vehicle
from the Moon. Setting the SOI radius to 𝜌𝑀𝐿1

is a convenient and
reasonable choice, as 𝜌𝑀𝐿1

corresponds to the distance of the interior
libration point 𝐿1 from the Moon, in the dynamical framework of the
Earth–Moon CR3BP,

𝜌𝑀 = 𝜌𝑀𝐿1
= 𝑑

(

𝐿1,$
)

(28)

where 𝑑
(

𝐿1,$
)

indicates the distance between 𝐿1 and the Moon.
The procedure to obtain 𝒙𝑀 from 𝒙𝐸 encompasses five distinct

representations for the state of the space vehicle, and is given by the
following sequence of transformations:

(1) MEE2CC
transforms 𝒙𝐸 = 𝑴𝑬𝑬(𝐸𝐶𝐼)

𝐸 to 𝑪𝑪 (𝐸𝐶𝐼)
𝐸 = 𝒚𝐸 ;

(2) Change of primary
transforms 𝒚𝐸 = 𝑪𝑪 (𝐸𝐶𝐼)

𝐸 to 𝑪𝑪 (𝐸𝐶𝐼)
𝑀 = 𝒚(𝐸𝐶𝐼)𝑀 ;

(3) Change in orientation
transforms 𝒚(𝐸𝐶𝐼)𝑀 = 𝑪𝑪 (𝐸𝐶𝐼)

𝑀 to 𝑪𝑪 (𝑀𝐶𝐼)
𝑀 = 𝒚𝑀 ;

(4) CC2MEE
transforms 𝒚𝑀 = 𝑪𝑪 (𝑀𝐶𝐼)

𝑀 to 𝑴𝑬𝑬(𝑀𝐶𝐼)
𝑀 = 𝒙𝑀 .

The 𝑖-th step of the previous sequence, occurring at time 𝑡𝑖, can be
represented through the general expression for implicit state transfor-
mations

𝝌 𝑖
(

𝒙(𝑖+1),𝒙(𝑖), 𝑡𝑖
)

= 𝟎 (29)

where 𝒙(𝑖+1) and 𝒙(𝑖) indicate the state after and before transformation
𝑖, respectively, and 𝝌 𝑖 is a nonlinear vector function, whose dimension
equals the number of state components. It can be demonstrated that
each individual transformation can be expressed in explicit form, which
guarantees a unique solution for 𝒙(𝑖+1)

𝒙(𝑖+1) = 𝛬𝑖
(

𝒙(𝑖), 𝑡𝑖
)

(30)

It is also worth mentioning that state transformations 1, 3, and 4 do not
explicitly depend on time.
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For the problem at hand, even though the trajectory design strategy
requires passing through three additional representations for the dy-
namical state of the spacecraft, only Earth- and Moon-related MEE are
used for the numerical propagation of the path of the space vehicle.
Because of this, all four coordinate transformations of the sequence
must be performed simultaneously, i.e., 𝑡1 = 𝑡2 = 𝑡3 = 𝑡4.

. Multiple-arc formulation

This section is devoted to formulating the minimum-time transfer
roblem from an initial low Earth orbit to a final low lunar orbit. Low
hrust is assumed to be available at any time, and the continuous thrust
aw associated with the optimal orbit transfers must be determined. The
bjective functional of the minimum-time problem can be conveniently
efined in Mayer form,

= 𝑘𝐽 𝑡𝑡𝑟𝑎𝑛𝑠𝑓 (31)

here 𝑘𝐽 is an arbitrary positive constant and 𝑡𝑡𝑟𝑎𝑛𝑠𝑓 indicates the
uration of the transfer

𝑡𝑟𝑎𝑛𝑠𝑓 = 𝑡𝑓 − 𝑡0. (32)

ecause 𝑡0, which corresponds to the departure epoch, is specified, 𝑡0
an be set to 0 in Eq. (32) and the objective functional becomes

= 𝑘𝐽 𝑡𝑓 . (33)

.1. Formulation using MEE

Previous research [13] on minimum-time low-thrust orbit transfers
round a single attracting body demonstrated that the use of modified
quinoctial elements considerably mitigates the hypersensitivity of the
umerical solution on the initial values of the time-varying adjoint
ariables. Because MEE are employed, the spacecraft of interest is
overned by the state Eqs. (20) and is subject to boundary conditions
ritten in the form (21). In particular, the initial boundary conditions
pply to the geocentric arc, while the final boundary conditions pertain
o the selenocentric arc.

The state equations are directly affected by the non-Keplerian ac-
eleration exerted on the spacecraft, i.e., the resultant of the thrust
cceleration 𝒂𝑇 and the perturbing acceleration 𝒂𝑃 , projected onto the
VLH reference frame,

= 𝒂𝑇 + 𝒂𝑃 . (34)

he perturbing acceleration consists of the joint effect of the third-body
ravitational perturbation exerted by the two third bodies (either Moon
nd Sun in the geocentric arc or Earth and Sun in the selenocentric arc).
enoting the two third bodies with subscripts 3𝐵1 and 3𝐵2, in general

𝑃 = 𝒂3𝐵1
+ 𝒂3𝐵2

(35)

here the third-body perturbing acceleration is given by Eq. (22).
For the orbit transfer problem at hand, the set of coordinates that

epresent the dynamical state of the spacecraft changes as soon as the
pace vehicle enters the SOI of the Moon, i.e., when inequality (27) is
ulfilled. Because the entire trajectory is composed of five arcs (three
f which have zero length), this becomes a multiple-arc trajectory
ptimization problem with 𝑁 = 5. In each arc 𝑗, the state equations
re

̇ (𝑗) = 𝒇 𝑗
(

𝒙(𝑗), 𝒖(𝑗), 𝑡
)

= 𝒇 (𝑗). (36)

Denoting with 𝑡𝑗 the time at the 𝑗-th interface (between arc 𝑗 and
rc 𝑗 + 1), two additional functions are introduced

• scalar transition function 𝜓 , identifying the occurrence of the
transition between two consecutive arcs. In general, it is a func-
tion of 𝒙(𝑗+1)𝑖𝑛𝑖 , 𝒙(𝑗)𝑓𝑖𝑛 and 𝑡𝑗 ,

𝜓
(

𝒙(𝑗+1),𝒙(𝑗) , 𝑡
)

= 0 (37)
335

𝑗 𝑖𝑛𝑖 𝑓 𝑖𝑛 𝑗
• vector matching function 𝝌 , stating the (generally implicit)
matching relation for the state across two adjacent arcs. In gen-
eral, it is a function of 𝒙(𝑗+1)𝑖𝑛𝑖 , 𝒙(𝑗)𝑓𝑖𝑛 and 𝑡𝑗 , with the same dimension
as that of 𝒙. The vector matching function defines an isomorphic
mapping (i.e., a bijective relation) between 𝒙(𝑗+1)𝑖𝑛𝑖 and 𝒙(𝑗)𝑓𝑖𝑛 in an
open set of the state space,

𝝌 𝑗
(

𝒙(𝑗+1)𝑖𝑛𝑖 ,𝒙(𝑗)𝑓𝑖𝑛, 𝑡𝑗
)

= 𝟎. (38)

he number of interfaces is 𝑁 −1 and subscripts 𝑖𝑛𝑖 and 𝑓𝑖𝑛 denote the
nitial and final value of a given variable in the arc with index reported
n the superscript, respectively.

.2. Necessary conditions for optimality using MEE

Optimal control theory is applied to the previously defined
ontinuous-time dynamical system, for the purpose of obtaining the
irst-order necessary conditions for optimality, enabling the transla-
ion of the optimal control problem into a two-point boundary-value
roblem (TPBVP).

As an opening step, the two building blocks of the extended objec-
ive functional, a function of boundary conditions 𝛷 and 𝑁 Hamilto-
ian functions 𝐻 (𝑗), are introduced,

= 𝑘𝐽 𝑡𝑓 + 𝝈𝑇 𝜻 +
𝑁−1
∑

𝑗=1

(

𝜉𝑗𝜓𝑗 + 𝝂𝑇𝑗 𝝌 𝑗
)

(39)

(𝑗) = 𝝀(𝑗)
𝑇
𝒇 (𝑗) (40)

here 𝑁 is the total number of arcs, 𝝈, 𝜉𝑗 , and 𝝂𝑗 are time-independent
djoint variables conjugate to the multipoint conditions (21), (37), and
38), respectively, whereas 𝝀(𝑗) is the time-varying costate vector asso-
iated with the differential constraint arising from the state Eqs. (36).
he extended objective functional for multiple-arc problems is defined
s

𝐽 = 𝛷
(

𝒙0,𝒙𝑓 ,𝒑,𝝈, 𝑡0, 𝑡𝑓 , 𝑡1,… , 𝑡𝑁−1, 𝝂1,… , 𝝂𝑁−1,

𝒙(2)𝑖𝑛𝑖 ,… ,𝒙(𝑁)
𝑖𝑛𝑖 ,𝒙

(1)
𝑓𝑖𝑛,… ,𝒙(𝑁−1)

𝑓𝑖𝑛 , 𝜉1,… , 𝜉𝑁−1
)

+
𝑁
∑

𝑗=1
∫

𝑡𝑗

𝑡𝑗−1

[

𝐻 (𝑗) (𝒙(𝑗), 𝒖(𝑗),𝒑,𝝀(𝑗), 𝑡
)

− 𝝀(𝑗)
𝑇
�̇�(𝑗)

]

𝑑𝑡

(41)

where 𝑡𝑁 = 𝑡𝑓 .
The first differential of the augmented objective functional d𝐽 can

e obtained using the chain rule after lengthy developments [31],
mitted for the sake of brevity. Then, the necessary conditions for
ptimality can be derived by requiring d𝐽 = 0

𝜕𝛷
𝜕𝒙(𝑗+1)𝑖𝑛𝑖

= −𝝀(𝑗+1)
𝑇

𝑖𝑛𝑖 (42)

𝜕𝛷
𝜕𝒙(𝑗)𝑓𝑖𝑛

= 𝝀(𝑗)
𝑇

𝑓𝑖𝑛 (43)

𝜕𝛷
𝜕𝑡𝑗

= 𝐻 (𝑗+1)
𝑖𝑛𝑖 −𝐻 (𝑗)

𝑓𝑖𝑛 (44)

0 = −
(

𝜕𝛷
𝜕𝒙0

)𝑇
𝝀𝑓 =

(

𝜕𝛷
𝜕𝒙𝑓

)𝑇
(45)

0 =
𝜕𝛷
𝜕𝑡0

𝐻𝑓 = − 𝜕𝛷
𝜕𝑡𝑓

(46)

̇ (𝑗) = −
(

𝜕𝐻 (𝑗)

𝜕𝒙(𝑗)

)𝑇
(47)

𝒖(𝑗)∗ = arg min
𝒖(𝑗)

𝐻 (𝑗) (48)

𝑁
∑

∫

𝑡𝑗 𝜕𝐻 (𝑗)

𝜕𝒑
d𝑡 + 𝜕𝛷

𝜕𝒑
= 𝟎𝑇 (49)
𝑗=1 𝑡𝑗−1



Acta Astronautica 220 (2024) 330–344A. Beolchi et al.

𝑢

w
c
t
[

i
e

m
o

𝐻

S
c

𝐻

4

a
n
s
c
r
c
e
t
u
p
c
o

T
s
s

4

c
t
c

𝜆

𝜆

4

c
t
R

𝜆

𝜆

where subscript ∗ denotes the optimal value of the corresponding
variable and 𝒑 is a parameter vector collecting time-independent pa-
rameters which may be needed in modeling the dynamical system.

Application of the Pontryagin minimum principle (48) yields the
optimal expressions for the control components,

𝑢(𝑗,𝑜𝑝𝑡)1 = 𝑢(𝑚𝑎𝑥)𝑇

(𝑗,𝑜𝑝𝑡)
2 = 2 arctan

−𝐻 (𝑗)
𝑟

√

𝐻 (𝑗)2
𝑟 +𝐻 (𝑗)2

𝜃 −𝐻 (𝑗)
𝜃

𝑢(𝑗,𝑜𝑝𝑡)3 = arcsin
−𝐻 (𝑗)

ℎ
√

𝐻 (𝑗)2
𝑟 +𝐻 (𝑗)2

𝜃 +𝐻 (𝑗)2
ℎ

(50)

where 𝐻 (𝑗)
𝑟 , 𝐻 (𝑗)

𝜃 , and 𝐻 (𝑗)
ℎ are the coefficients that multiply 𝑎(𝑗)𝑇 ,𝑟, 𝑎

(𝑗)
𝑇 ,𝜃 ,

and 𝑎(𝑗)𝑇 ,ℎ in the expression for 𝐻 (𝑗), respectively.
The consequence of maximum thrusting at all times is that the mass

depletion rate becomes constant and the time behavior of the mass ratio
can be described by the following analytical expression:

𝑚𝑅 (𝑡) = 1 −
𝑢(𝑚𝑎𝑥)𝑇
𝑐

𝑡. (51)

This allows neglecting the mass ratio as a state component and 𝑢1
as a control component in the optimization process. Moreover, the
optimal expressions for the control components lead to the following
formulation for the Hamiltonian:

𝐻 (𝑗,𝑜𝑝𝑡) = 𝐻 (𝑗)
1 −

𝑢(𝑚𝑎𝑥)𝑇
𝑚𝑅

√

𝐻 (𝑗)2
𝑟 +𝐻 (𝑗)2

𝜃 +𝐻 (𝑗)2
ℎ (52)

where 𝐻 (𝑗)
1 is the portion of 𝐻 (𝑗) independent of 𝑢(𝑗)1 . The expressions

for 𝐻 (𝑗)
1 , 𝐻 (𝑗)

𝑟 , 𝐻 (𝑗)
𝜃 , and 𝐻 (𝑗)

ℎ , obtained after lengthy developments,
depend on both 𝒙(𝑗) and 𝝀(𝑗). Neglecting all superscripts for the sake
of conciseness, the Hamiltonian can be rewritten as

𝐻 (𝑜𝑝𝑡) =

𝐻1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐻1,0 +𝐻𝑟𝑎𝑃 ,𝑟 +𝐻𝜃𝑎𝑃 ,𝜃 +𝐻ℎ𝑎𝑃 ,ℎ

−
𝑢(𝑚𝑎𝑥)𝑇
𝑚𝑅

√

𝐻2
𝑟 +𝐻2

𝜃 +𝐻2
ℎ

. (53)

The blocks 𝐻1,0, 𝐻𝑟, 𝐻𝜃 and 𝐻ℎ in Eq. (53) are all linear in 𝝀

𝐻1,0 = 𝜆6

√

𝜇
𝑥31

(

1 + 𝑥2 cos 𝑥6 + 𝑥3 sin 𝑥6
)2 (54)

𝐻𝑟 =
√

𝑥1
𝜇

(

𝜆2 sin 𝑥6 − 𝜆3 cos 𝑥6
)

(55)

𝐻𝜃 =

√ 𝑥1
𝜇

1+𝑥2 cos 𝑥6+𝑥3 sin 𝑥6

{

2𝑥1𝜆1

+
[

𝑥3 + cos 𝑥6
(

2 + 𝑥2 cos 𝑥6 + 𝑥3 sin 𝑥6
)]

𝜆2
+

[

𝑥3 + sin 𝑥6
(

2 + 𝑥2 cos 𝑥6 + 𝑥3 sin 𝑥6
)]

𝜆3
}

(56)

𝐻ℎ =

√ 𝑥1
𝜇

2(1+𝑥2 cos 𝑥6+𝑥3 sin 𝑥6)
[

2
(

𝑥4 sin 𝑥6

− 𝑥5 cos 𝑥6
) (

𝜆6 + 𝑥2𝜆3 − 𝑥3𝜆2
)

+
(

𝑥24 + 𝑥
2
5 + 1

) (

cos 𝑥6𝜆4 + sin 𝑥6𝜆5
)]

.

(57)

Linearity implies homogeneity of the costate equations. In fact, assum-
ing �̃� = 𝑘𝜆𝝀 would yield �̃� = 𝑘𝜆𝐻 , and ultimately

̇̃𝝀 = 𝜕�̃�
𝜕𝒙

= 𝑘𝜆
𝜕𝐻
𝜕𝒙

= 𝑘𝜆�̇� (58)

here 𝑘𝜆 is an arbitrary positive constant. As a result, although the
ostate components have no upper or lower bound, the search space for
he costate variables can be reduced to an arbitrary interval
𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥

]

, provided that 𝜆𝑚𝑖𝑛 < 0 and 𝜆𝑚𝑎𝑥 > 0. This property,
.e., scalability of the costate, can be leveraged to restrict the search space
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xplored by the numerical solution process.
The initial transversality condition on the Hamiltonian from Eq. (46)
ust not be enforced because 𝑡0 is specified and set to zero. On the

ther hand, the final transversality condition on the Hamiltonian yields

𝑓 = − 𝜕𝛷
𝜕𝑡𝑓

= −𝑘𝐽 . (59)

ince 𝑘𝐽 is an arbitrary positive constant, the final transversality
ondition is equivalent to the following inequality constraint:

𝑓 < 0. (60)

.3. Implicit costate transformation

The formulation of the Earth–Moon orbit transfer as a multiple-
rc optimization problem leads to establishing an extended set of
ecessary conditions for optimality. In particular, the multipoint neces-
ary conditions for optimality (42)–(44), together with the multipoint
onditions (37) and (38), represent a considerable number of additional
elations inherent to the multiple-arc formulation. These additional
onditions must be enforced in the numerical solution process. How-
ver, Eqs. (42)–(44) can be combined, for the purpose of obtaining
he matching relation for the costate variables between two consec-
tive arcs in an advantageous form. Appendix A proves that, for the
roblem at hand, the costate jump relation to enforce at the transitions
orresponding to each coordinate transformation 𝑖 (= 1,… , 4) can be
btained via implicit costate transformation,

(

𝜕𝝌 𝑗
𝜕𝒙(𝑗+1)𝑖𝑛𝑖

)−𝑇

𝝀(𝑗+1)𝑖𝑛𝑖 +
⎛

⎜

⎜

⎝

𝜕𝝌 𝑗
𝜕𝒙(𝑗)𝑓𝑖𝑛

⎞

⎟

⎟

⎠

−𝑇

𝝀(𝑗)𝑓𝑖𝑛 = 0. (61)

his single relation can be manipulated to obtain closed-form expres-
ions for either 𝝀(𝑗+1)𝑖𝑛𝑖 or 𝝀(𝑗)𝑓𝑖𝑛. Both relations are critical to the numerical
olution process, whose algorithmic steps are described in Section 5.

.4. Initial conditions for the geocentric arc

The initial conditions pertain to the geocentric leg, where Earth-
entered and ECI-related MEE are employed. Application of Eq. (45) to
he initial conditions (24) yields the following conditions on the initial
ostate:

2,0 𝑥3,0 − 𝜆3,0 𝑥2,0 = 0

4,0 𝑥5,0 − 𝜆5,0 𝑥4,0 = 0

𝜆6,0 = 0

. (62)

.5. Final conditions for the selenocentric arc

The final conditions pertain to the selenocentric leg, where Moon-
entered and MCI-related MEE are employed. Application of Eq. (45)
o the final conditions (25), with free RAAN, and (26), with specified
AAN, yields the following conditions on the final costate, respectively:

2,𝑓 𝑥3,𝑓 − 𝜆3,𝑓 𝑥2,𝑓 = 0

4,𝑓 𝑥5,𝑓 − 𝜆5,𝑓 𝑥4,𝑓 = 0

𝜆6,𝑓 = 0

(63)

𝜆2,𝑓 𝑥3,𝑓 − 𝜆3,𝑓 𝑥2,𝑓 = 0

𝜆6,𝑓 = 0
. (64)
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5. Method of solution

This section focuses on the numerical solution strategy. The tech-
nique being described aims at fulfilling all the necessary conditions
arising from the translation of the multiple-arc optimal control problem
into a TPBVP. The indirect approach is pursued via numerical search
over the solution space, performed through a heuristic optimization
algorithm.

5.1. Stratified-objective strategy

The heuristic optimization algorithm explores the search space and
follows a distinctive procedural behavior aimed at locating the min-
imum of a given scalar fitness function 𝛤 . When ordinary optimal
control problems are tackled, a fitness function is introduced that
evaluates the boundary conditions violation, for a specific choice of
the parameter set. On the other hand, problems of greater complexity
call for a shrewder fitness function design. In this research, because the
primary changes along the orbit transfer, some intermediate objectives
are introduced, besides the satisfaction of the necessary conditions at
the boundaries, for the purpose of facilitating the convergence of the
numerical solution process. In simpler terms, the fitness function is
structured in a way that allows using different expressions according
to the performance of the solution at hand.

Two intermediate objectives (𝛤1 and 𝛤2) are designed in order to
prompt two consecutive key events (𝐸𝑓1 and 𝐸𝑓2 ) that must occur in
very Earth–Moon orbit transfer:

(𝐸𝑓1 ) the spacecraft enters the SOI of the Moon;
(𝐸𝑓2 ) the Moon captures the spacecraft (i.e., the specific orbital energy

of the spacecraft relative to the Moon drops below a preselected
fraction of that of the target orbit).

hese two events represent the two separations between the three
ossible definitions, or layers, for 𝛤

(𝜰 ) =

⎧

⎪

⎨

⎪

⎩

𝛤1 (𝜰 ) before 𝐸𝑓1
𝛤2 (𝜰 ) between 𝐸𝑓1 and 𝐸𝑓2
𝛤3 (𝜰 ) after 𝐸𝑓2

(65)

where 𝜰 denotes the input parameter set in vector form.
Each formulation is aimed at shepherding the population members

to the next level. In fact, 𝛤1 and 𝛤2 are proportional to the spacecraft-
Moon distance and to the specific orbital energy of the spacecraft
relative to the Moon, respectively, whereas 𝛤3 retains the typical formu-
lation associated with ordinary optimal control problems. Furthermore,
scaling constants are introduced so that the algorithm assigns a lower
cost to a specific solution as it evolves to the next objective.

5.2. Indirect heuristic algorithm

The problem is solved with an indirect heuristic approach, by
enforcing all the necessary conditions for optimality, i.e., by solving
the corresponding TPBVP. In this work, the heuristic algorithm is
differential evolution [32]. The indirect heuristic method has three
major favorable features, i.e. (i) absence of any starting guess, because
only the search space for the unknown parameters is to be specified, (ii)
no special representation is assumed for the control variables time his-
tories, and (iii) enforcement of the analytical conditions for optimality
is obtained at the end of the process.

The numerical solution process employs a population of individuals,
where each population member corresponds to a unique set of unknown
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arameters. A detailed compendium of the key steps of the solution
ethod is provided in the following algorithm:

Algorithm 1: Forward Indirect Heuristic Algorithm
1. Identify the minimum set of parameters required to compute the

unknown components of the state and costate vectors 𝒙𝐸,0 and 𝝀𝐸,0
at 𝑡0.

2. For each individual 𝑖, with 𝑖 ⩽ 𝑁𝑃 (with 𝑁𝑃 denoting the number
of individuals), iterate the following sub-steps:

a. select the input values for the minimum set of parameters
identified at step 1;

b. compute the remaining unknown components of the state
and costate vectors 𝒙𝐸,0 and 𝝀𝐸,0 from the minimum set of
parameters using the necessary conditions at 𝑡0;

c. select the time of flight 𝑡𝑓 and set the mass ratio at 𝑡0 to
𝑚𝑅,0 = 1;

d. forward propagate both state and costate in the geocentric
arc with the respective governing equations, using the ex-
pressions presented in Eq. (50) for the control components,
until either an event condition is met or 𝑡 = 𝑡𝑓 . If event
𝐸𝑓1 does not occur, then compute 𝛤1, and consider the next
individual (i.e., go to step 2);

e. apply the interface conditions in order to obtain the values
for the state and costate vectors 𝒙𝑀,𝑖𝑛𝑖 and 𝝀𝑀,𝑖𝑛𝑖 (related to
the selenocentric segment) from the values of the state and
costate vectors 𝒙𝐸,𝑓𝑖𝑛 and 𝝀𝐸,𝑓𝑖𝑛 (related to the geocentric
segment) at the interface time 𝑡1, following the procedure
described in Section 3.2;

f. forward propagate both state and costate in the selenocentric
arc with the respective governing equations, using the ex-
pressions presented in Eq. (50) for the control components,
until either an event condition is met or 𝑡 = 𝑡𝑓 . If event
𝐸𝑓2 does not occur, then compute 𝛤2, and consider the next
individual;

g. continue the propagation of the selenocentric arc until either
an event condition is met or 𝑡 = 𝑡𝑓 ;

h. evaluate the Hamiltonian at 𝑡𝑓 , 𝐻𝑓 . If 𝐻𝑓 < 0 proceed to
the next step, otherwise set the value of 𝛤3 to the minimum
allowed value of 𝛤2 and consider the next individual;

i. evaluate the violation of the necessary conditions at 𝑡𝑓 and
then compute 𝛤3, whose value is a measure of the violation
of the final equality constraints. Then, consider the next
individual.

3. Once the fitness functions are obtained for all the population mem-
bers, use the differential evolution technique to generate a new
population.

4. Iterate the previous steps until some stopping criterion is met
(either the fitness function value associated with the best individual
drops below a given threshold or the maximum number of iteration
is reached).

In the case of free final RAAN, Algorithm 1 was used. This version of
he indirect heuristic algorithm is the most straightforward, mainly be-
ause it is based on forward propagation. However, in solving TPBVP,
ropagation can be performed either forward or backward in time, as
ong as the differential constraints are held throughout the entire path.

A similar version of the algorithm, based on backward propagation,
as used in the case of specified final RAAN. Backward propagation

s made possible thanks to the existence of the analytical expression
or the mass ratio (51). This allows the identification of a minimum
et of parameters for the backward propagation algorithm that retains
he same size as that used in the forward propagation algorithm. Back-
ard propagation is advantageous in the case of specified final RAAN,
ecause the final orbit family is more constrained than the initial
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orbit family. The backward algorithm is undoubtedly less intuitive with
respect to the forward version. Furthermore, the two consecutive key
events (𝐸𝑏1 and 𝐸𝑏2 ) in the backward case are not only the opposite of
those presented in Section 5.1, but are also in reverse order:

(𝐸𝑏1 ) the spacecraft escapes the Moon (i.e., the specific orbital energy
of the spacecraft relative to the Moon rises above a preselected
fraction of that of the target orbit);

(𝐸𝑏2 ) the spacecraft leaves the SOI of the Moon.

In this case, subscripts 𝑖𝑛𝑖 and 𝑓𝑖𝑛 refer to the new independent
variable 𝜏 = 𝑡𝑓 − 𝑡. Therefore, the matching conditions at the interface
relate (𝑥(𝑗+1)𝐸,𝑖𝑛𝑖 , 𝜆

(𝑗+1)
𝐸,𝑖𝑛𝑖 ) to (𝑥(𝑗)𝑀,𝑓𝑖𝑛, 𝜆

(𝑗)
𝑀,𝑓𝑖𝑛), because the geocentric arc is

encountered after the selenocentric arc in the backward integration
process.

Algorithm 2: Backward Indirect Heuristic Algorithm
1. Identify the minimum set of parameters required to compute the

unknown components of the state and costate vectors 𝒙𝑀,𝑓 and
𝝀𝑀,𝑓 at 𝑡𝑓 .

2. For each individual 𝑖, with 𝑖 ⩽ 𝑁𝑃 (with 𝑁𝑃 denoting the number
of individuals), iterate the following sub-steps:

a. select the input values for the minimum set of parameters
identified at step 1;

b. compute the remaining unknown components of the state
and costate vectors 𝒙𝑀,𝑓 and 𝝀𝑀,𝑓 from the minimum set
of parameters using the necessary conditions at 𝑡𝑓 ;

c. evaluate the Hamiltonian at 𝑡𝑓 , 𝐻𝑓 . If 𝐻𝑓 ≥ 0 set the value
of 𝛤1 to infinity and consider the next individual (i.e., go to
step 2);

d. select the time of flight 𝑡𝑓 and set the mass ratio at 𝑡𝑓 to
𝑚𝑅,𝑓 = 1 − 𝑡𝑓 𝑢

(𝑚𝑎𝑥)
𝑇 ∕𝑐;

e. backward propagate both state and costate in the selenocen-
tric arc with the respective governing equations, using the
expressions presented in Eq. (50) for the control components,
until either an event condition is met or 𝑡 = 𝑡0. If event
𝐸𝑏1 does not occur, then compute 𝛤1, and consider the next
individual;

f. continue the propagation of the selenocentric arc until either
an event condition is met or 𝑡 = 𝑡0. If event 𝐸𝑏2 does not
occur, then compute 𝛤2, and consider the next individual;

g. apply the interface conditions in order to obtain the values
for the state and costate vectors 𝒙𝐸,𝑖𝑛𝑖 and 𝝀𝐸,𝑖𝑛𝑖 (related to
the geocentric segment) from the values of the state and
costate vectors 𝒙𝑀,𝑓𝑖𝑛 and 𝝀𝑀,𝑓𝑖𝑛 (related to the selenocen-
tric segment) at the interface time 𝑡1, following the inverse
procedure of that needed in Algorithm 1;

h. backward propagate both state and costate in the geocentric
arc with the respective governing equations, using the ex-
pressions presented in Eq. (50) for the control components,
until either an event condition is met or 𝑡 = 𝑡0;

i. evaluate the violation of the necessary conditions at 𝑡0 and
then compute 𝛤3, whose value is a measure of the violation
of the initial equality constraints. Then, consider the next
individual.

3. Once the fitness functions are obtained for all the population mem-
bers, use the differential evolution technique to generate a new
population.

4. Iterate the previous steps until some stopping criterion is met
(either the fitness function value associated with the best individual
drops below a given threshold or the maximum number of iteration
is reached).

The performance of the numerical implementation of the previously
described solution process can be improved by introducing canonical
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nits, for both distance and time. The distance unit DU and time unit
U are chosen such that

U = 𝑅𝐸 𝜇𝐸 = 1 DU3

TU2
. (66)

6. Numerical results

A low-thrust three-dimensional orbit transfer is considered in the
non-autonomous continuous-time Sun–Earth–Moon dynamical frame-
work. The space vehicle is modeled as a point mass equipped with
a constant-specific-impulse and thrust-limited engine, whose perfor-
mance is characterized by the two following propulsion parameters,
chosen in compliance with current technological capabilities:

𝑢(𝑚𝑎𝑥)𝑇 = 10−4 𝑔0 𝑐 = 30 km
s (67)

with 𝑔0 = 9.80665 m∕s2. The departure epoch, which determines the
positions of the three mentioned celestial bodies at the beginning of
the orbit transfer, is set to June 1, 2025 at 0:00 UTC.

The departure low Earth orbit is selected to be circular, with speci-
fied altitude and inclination

𝑝𝐸,0 = 𝑅𝐸 + 452 km 𝑖𝐸,0 = 51.6◦. (68)

The target low lunar orbit is selected to be circular, with specified
altitude and inclination

𝑝𝑀,𝑓 = 𝑅𝑀 + 100 km 𝑖𝑀,𝑓 = 90◦. (69)

The choice of a family of low-altitude circular polar lunar orbit is
convenient for a wide range of applications of practical interest. First
of all, coverage of the lunar south pole and easy access to the lunar
surface.

6.1. Free final RAAN

As a first step, the minimum set of parameters associated with
a solution to the problem at hand is obtained, together with each
parameter search interval (corresponding to step 1 of Algorithm 1).
The minimum set of parameters is retrieved after introducing the time-
independent parameters 𝛺𝐸,0, that is the initial value of the RAAN, and
𝜆𝐸4,5,0

, a useful parameter for the initial values of the fourth and fifth
component of the costate vector.

The initial state and costate vectors are expressed as functions of
the previously introduced parameters as

𝒙𝐸,0 =
[

𝑝𝐸,0 0 0 tan 𝑖𝐸,0
2 𝑐𝛺𝐸,0 tan 𝑖𝐸,0

2 𝑠𝛺𝐸,0 𝑥𝐸6,0

]𝑇

𝝀𝐸,0 =
[

𝜆𝐸1,0
𝜆𝐸2,0

𝜆𝐸3,0
𝜆𝐸4,5,0

𝑐𝛺𝐸,0 𝜆𝐸4,5,0
𝑠𝛺𝐸,0 0

]𝑇
.

(70)

It is easy to verify that this peculiar representation for the initial state
and costate vectors satisfies the necessary conditions at the initial time
(24) and (62), and enables the definition of the minimum set of initial
parameters

𝜰 =
[

𝑡𝑓 𝛺𝐸,0 𝑥𝐸6,0
𝜆𝐸1,0

𝜆𝐸2,0
𝜆𝐸3,0

𝜆𝐸4,5,0

]𝑇
. (71)

Each individual corresponds to a specific selection of these unknown
parameters. The lower and upper bounds of the search space of each
parameter are collected in two vectors,

𝑳𝑩𝛶 =
[

𝑡(𝑚𝑖𝑛)𝑓 −𝜋 −𝜋 𝜆𝑚𝑖𝑛 𝜆𝑚𝑖𝑛 𝜆𝑚𝑖𝑛 𝜆𝑚𝑖𝑛
]𝑇

𝑼𝑩𝛶 =
[

𝑡(𝑚𝑎𝑥)𝑓 𝜋 𝜋 𝜆𝑚𝑎𝑥 𝜆𝑚𝑎𝑥 𝜆𝑚𝑎𝑥 𝜆𝑚𝑎𝑥
]𝑇 (72)

where 𝑡(𝑚𝑖𝑛)𝑓 = 𝜏 𝑡𝑓 and 𝑡(𝑚𝑎𝑥)𝑓 = 𝑡𝑓∕𝜏, 𝑡𝑓 is a first-order estimate of the
transfer time, whose derivation is provided in Appendix B, whereas
𝜏 = 3∕4 is a positive constant, whose value indicates the confidence on
the estimate of the transfer time. Furthermore, 𝜆 = −1 and 𝜆 = 1,
𝑚𝑖𝑛 𝑚𝑎𝑥
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Fig. 6. Time histories of 𝑝, 𝑒, and 𝑖 in the geocentric leg.

in compliance with the scalability of the costate variables discussed in
Section 4.1.

The equality necessary conditions at the final time (25) and (63) are
collected in the auxiliary vector 𝑸,

𝑸 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥𝑀1,𝑓
− 𝑝𝑀,𝑓

𝑥2𝑀2,𝑓
+ 𝑥2𝑀3,𝑓

− 𝑒2𝑀,𝑓

𝑥2𝑀4,𝑓
+ 𝑥2𝑀5,𝑓

− tan2 𝑖𝑀,𝑓
2

𝜆𝑀2,𝑓
𝑥𝑀3,𝑓

− 𝜆𝑀3,𝑓
𝑥𝑀2,𝑓

𝜆𝑀4,𝑓
𝑥𝑀5,𝑓

− 𝜆𝑀5,𝑓
𝑥𝑀4,𝑓

𝜆𝑀6,𝑓

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (73)

Thus, fitness function 𝛤3 employed by the forward numerical solution
method is

𝛤3 (𝜰 ) =
√

𝑤1𝑄2
1 +𝑤2𝑄2

2 +𝑤3𝑄2
3 +𝑤4𝑄2

4 +𝑤5𝑄2
5 +𝑤6𝑄2

6 (74)

where 𝑄𝑖 (with 𝑖 = 1,… , 6) is the 𝑖-th component of vector 𝑸, and the
weighting coefficients 𝑤𝑖 are all set to 1, except for 𝑤2 = 100.

The numerical solution process employs 200 individuals. After 2956
iterations, the best individual corresponds to a value of the fitness
function equal to 4.018 ⋅ 10−7. The time of flight equals 84.85 days
(geocentric and selenocentric arcs lasting 71.84 days and 13.01 days,
respectively), whereas the final mass ratio is 0.7604. The optimal initial
and final RAAN equal −22.5◦ and 207.3◦, respectively.

Fig. 6 depicts the time histories of Earth-centered and ECI-related
𝑝, 𝑒, and 𝑖 in the geocentric leg, while Fig. 7 depicts the time histories
of Moon-centered and MCI-related 𝑝, 𝑒, and 𝑖 in the selenocentric
leg. Similarly, Fig. 8 portrays the geocentric optimal thrust angles
associated with 𝐿𝑉 𝐿𝐻

𝐸
, whereas Fig. 9 illustrates the selenocentric

optimal thrust angles associated with 𝐿𝑉 𝐿𝐻
𝑀

. For the purpose of

displaying the discontinuity in the costate variables at the transition
between the two legs, the time history of 𝜆6 is portrayed in Figs. 10
and 11 for the geocentric and selenocentric leg, respectively. A zoom
on the jump in the costate variable is illustrated in Fig. 12. Figs. 13
and 14 depict the complete minimum-time transfer path in the ECI
J2000 reference frame and in the synodic reference frame centered at
the Earth, respectively. Lastly, Fig. 15 shows the lunar-captured portion
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Fig. 7. Time histories of 𝑝, 𝑒, and 𝑖 in the selenocentric leg.

Fig. 8. Time history of geocentric thrust angles.

Fig. 9. Time history of selenocentric thrust angles.
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Fig. 10. Time history of 𝜆6 in the geocentric leg.

Fig. 11. Time history of 𝜆6 in the selenocentric leg.

Fig. 12. Zoom on the discontinuity of 𝜆6 at the interface.
340
Fig. 13. Minimum-time orbit transfer in ECI J2000.

Fig. 14. Minimum-time orbit transfer in the Earth-centered synodic reference frame.

Fig. 15. Selenocentric portion of the minimum-time orbit transfer in MCI.
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of the trajectory in the MCI reference frame, displaying the inward
spiraling motion around the Moon.

Spiraling motion is ubiquitous when low thrust is employed. This is
discernible in the vicinity of both the Earth and the Moon in Fig. 13.
However, because the transfer trajectory is portrayed in ECI J2000, the
selenocentric segment of the minimum-time path appears to be helical
due to the orbital motion of the Moon. Also, it is clearly visible that the
selenocentric leg takes almost half of the orbit period of the Moon.

6.2. Specified final RAAN

If the RAAN of the lunar orbit is specified, Algorithm 2 is employed.
The minimum set of parameters is retrieved more easily, without the
introduction of any additional parameter,

𝜰 =
[

𝑡𝑓 𝑥𝑀6,𝑓
𝜆𝑀1,𝑓

𝜆𝑀2,𝑓
𝜆𝑀3,𝑓

𝜆𝑀4,𝑓
𝜆𝑀5,𝑓

]𝑇
. (75)

Each individual corresponds to a specific selection of these unknown
parameters. The lower and upper bounds of the search space of each
parameter are collected in two vectors,

𝑳𝑩𝛶 =
[

𝑡(𝑚𝑖𝑛)𝑓 −𝜋 𝜆𝑚𝑖𝑛 𝜆𝑚𝑖𝑛 𝜆𝑚𝑖𝑛 𝜆𝑚𝑖𝑛 𝜆𝑚𝑖𝑛
]𝑇

𝑼𝑩𝛶 =
[

𝑡(𝑚𝑎𝑥)𝑓 𝜋 𝜆𝑚𝑎𝑥 𝜆𝑚𝑎𝑥 𝜆𝑚𝑎𝑥 𝜆𝑚𝑎𝑥 𝜆𝑚𝑎𝑥
]𝑇 (76)

where 𝑡(𝑚𝑖𝑛)𝑓 , 𝑡(𝑚𝑎𝑥)𝑓 , 𝜆𝑚𝑖𝑛, and 𝜆𝑚𝑎𝑥 are defined exactly as specified after
Eq. (72).

The final state and costate vectors are expressed as

𝒙𝑀,𝑓 =
[

𝑝𝑀,𝑓 0 0 tan 𝑖𝑀,𝑓
2 𝑐𝛺𝑀,𝑓

tan 𝑖𝑀,𝑓
2 𝑠𝛺𝑀,𝑓

𝑥𝑀6,𝑓

]𝑇

𝝀𝑀,𝑓 =
[

𝜆𝑀1,𝑓
𝜆𝑀2,𝑓

𝜆𝑀3,𝑓
𝜆𝑀4,𝑓

𝜆𝑀5,𝑓
0
]𝑇
.

(77)

It is easy to verify that this representation for the final state and costate
vectors satisfies the necessary conditions at the final time (26) and (64).

The equality necessary conditions at the initial time (24) and (62)
are collected in the auxiliary vector 𝑸,

𝑸 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥𝐸1,0
− 𝑝𝐸,0

𝑥2𝐸2,0
+ 𝑥2𝐸3,0

− 𝑒2𝐸,0
𝑥2𝐸4,0

+ 𝑥2𝐸5,0
− tan2 𝑖𝐸,0

2
𝜆𝐸2,0

𝑥𝐸3,0
− 𝜆𝐸3,0

𝑥𝐸2,0
𝜆𝐸4,0

𝑥𝐸5,0
− 𝜆𝐸5,0

𝑥𝐸4,0
𝜆𝐸6,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (78)

Thus, fitness function 𝛤3 employed by the backward numerical solution
method is

𝛤3 (𝜰 ) =
√

𝑤1𝑄2
1 +𝑤2𝑄2

2 +𝑤3𝑄2
3 +𝑤4𝑄2

4 +𝑤5𝑄2
5 +𝑤6𝑄2

6 (79)

where 𝑄𝑖 (with 𝑖 = 1,… , 6) is the 𝑖-th component of vector 𝑸, and the
weighting coefficients 𝑤𝑖 are all set to 1.

Four distinct selections of 𝛺𝑀,𝑓 are considered (i.e., {0, 90, 180,
270}◦). This time, the numerical solution process employs 100 indi-
viduals. The results for each value of the RAAN of the lunar orbit are
summarized in Table 2. As expected, the time of flight of each of the
minimum-time orbit transfers with specified final RAAN is higher than
that of the minimum-time path with free final RAAN. In particular,
𝛺𝑀,𝑓 = 90◦ experiences the greatest time penalty, followed by 𝛺𝑀,𝑓 =
0◦, 𝛺𝑀,𝑓 = 270◦, and 𝛺𝑀,𝑓 = 180◦. The differences in terms of
transfer time among different solutions can be more clearly interpreted
by considering that the solution with free final RAAN ultimately settles
in the desired lunar orbit with final RAAN of 207.3◦. In fact, when lunar
orbits with specified 𝛺𝑀,𝑓 are targeted, it seems reasonable to expect
a longer time of flight as the angular displacement between the desired
final RAAN and the optimal (free) RAAN increases. Fig. 16 portrays
the planar projection of the three-dimensional selenocentric legs of the
five minimum-time paths in the equatorial plane of the MCI reference
frame, and provides a clear visualization of the angular displacement
341
Table 2
Performance and departure RAAN of minimum-time paths for different values of the
final lunar RAAN.
𝛺𝑀,𝑓 𝛺𝐸,0 𝛤 (𝑜𝑝𝑡)

3 𝑡(𝑜𝑝𝑡)𝑓 𝑚(𝑜𝑝𝑡)
𝑅,𝑓

[◦] [◦] [−] [day] [−]

Free −22.49 4.02 ⋅ 10−7 84.85 0.760
0 5.97 2.71 ⋅ 10−4 90.34 0.745
90 −23.03 2.64 ⋅ 10−4 90.63 0.744
180 −13.37 2.63 ⋅ 10−4 85.63 0.758
270 −7.50 3.63 ⋅ 10−4 89.23 0.748

Fig. 16. Planar (Moon equatorial) projection of the selenocentric legs of the
minimum-time paths.

Fig. 17. Three-dimensional view of the selenocentric legs of the minimum-time paths.

associated with each solution with specified final RAAN. In addition, a
three-dimensional view of the selenocentric legs is presented in Fig. 17,
for the primary purpose of highlighting the different ways in which
each solution approaches the orbital plane of the associated target orbit.

7. Concluding remarks

This study addresses minimum-time low-thrust transfers from low
Earth orbit to low lunar orbit, extending the indirect formulation of
minimum-time low-thrust orbit transfers about a single attracting body
to a framework in which initial and final orbits are placed around
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two distinct primaries. The underlying optimization problem is very
challenging, because during the orbit transfer the spacecraft transi-
tions from orbiting the Earth to orbiting the Moon. This complication
is addressed by formulating the problem at hand as a multiple-arc
optimization problem, consisting of a geocentric leg followed by a se-
lenocentric leg. The multiple-arc approach requires switching between
coexisting representations for the dynamical state of the spacecraft at
the transition between consecutive arcs. Correspondingly, a matching
relation for the costate, in the form of implicit costate transforma-
tion, is derived and enforced at the junction between the two arcs.
Modified equinoctial elements are employed to model orbit dynamics,
while Cartesian coordinates play the role of convenient intermediate
matching variables. All the necessary conditions for optimality are
derived, including the multipoint necessary conditions at the junction
time between the two arcs. The latter relations are combined, to yield
the matching (jump) relation for the costate variables between the
two arcs, through a sequence of implicit costate transformations. All
the multipoint conditions are proven to admit a closed-form, unique
solution and are solvable sequentially. As a result, the parameter set
for an indirect algorithm retains the size of the typical set associated
with a single-arc optimization problem. Unlike previous studies that use
simplified models (such as the circular restricted three-body problem),
this research addresses the optimization of Earth–Moon orbit transfers
in a high-fidelity dynamical framework, with the use of planetary
ephemeris and the inclusion of the simultaneous gravitational action
of Sun, Earth, and Moon along the entire transfer path. It is worth
remarking that the general four-body model (Earth, Moon, Sun, and
spacecraft) captures the essence of the dynamics of the problem, but
simplifies the description of the motion of the perturbing bodies. Al-
though one expects to obtain similar results, such framework is suitable
in a preliminary mission analysis context, while the methodology pro-
posed in this study can be successfully adopted in a more advanced
design stage. With regard to the numerical solution, this work describes
and employs the indirect heuristic technique, based on the joint use
of all the necessary conditions for optimality, a heuristic algorithm
(i.e., differential evolution), and a layered fitness function, aimed at
facilitating convergence. Two challenging Earth–Moon low-thrust orbit
transfers, (a) with free final right ascension of the ascending node
and (b) with specified final right ascension of the ascending node, are
selected as illustrative examples. For case (b), backward propagation
is shown to be a very convenient option to expedite the convergence
of the numerical solution process. For both scenarios (a) and (b), the
multiple-arc formulation, in conjunction with the indirect heuristic
technique, successfully detects the minimum-time transfers, meeting
all the orbit injection constraints and the necessary conditions for
optimality, to a great accuracy.
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ppendix A

This appendix is concerned with the derivation of the implicit
ostate transformation and with the proof of its applicability to the in-
estigated mission scenario. Expanding the left-hand side of Eqs. (42)–
44) yields

𝜕𝛷
𝜕𝒙(𝑗+1)𝑖𝑛𝑖

= 𝝂𝑇𝑗
𝜕𝝌 𝑗
𝜕𝒙(𝑗+1)𝑖𝑛𝑖

+ 𝜉𝑗
𝜕𝜓𝑗
𝜕𝒙(𝑗+1)𝑖𝑛𝑖

(80)

𝜕𝛷
𝜕𝒙(𝑗)𝑓𝑖𝑛

= 𝝂𝑇𝑗
𝜕𝝌 𝑗
𝜕𝒙(𝑗)𝑓𝑖𝑛

+ 𝜉𝑗
𝜕𝜓𝑗
𝜕𝒙(𝑗)𝑓𝑖𝑛

(81)

𝜕𝛷
𝜕𝑡𝑗

= 𝝂𝑇𝑗
𝜕𝝌 𝑗
𝜕𝑡𝑗

+ 𝜉𝑗
𝜕𝜓𝑗
𝜕𝑡𝑗

(82)

where 𝜕𝝌𝑗∕𝜕𝒙(𝑗)𝑓𝑖𝑛 and 𝜕𝝌𝑗∕𝜕𝒙(𝑗+1)𝑖𝑛𝑖 are the 𝑛×𝑛 Jacobian matrices of the state
matching function with respect to 𝒙(𝑗)𝑓𝑖𝑛 and 𝒙(𝑗+1)𝑖𝑛𝑖 , respectively. These
matrices are nonsingular due to the isomorphic (bijective) nature of the
state transformation. The terms 𝜕𝜓𝑗∕𝜕𝒙(𝑗)𝑓𝑖𝑛 and 𝜕𝜓𝑗∕𝜕𝒙(𝑗+1)𝑖𝑛𝑖 are the (1 × 𝑛)-
ectors that collect the partial derivatives of the transition function
ith respect to 𝒙(𝑗)𝑓𝑖𝑛 and 𝒙(𝑗+1)𝑖𝑛𝑖 , respectively, 𝜕𝝌𝑗∕𝜕𝑡𝑗 is the (𝑛 × 1)-vector

hat contains the partial derivatives of the state matching function with
espect to 𝑡𝑗 , and 𝜕𝜓𝑗∕𝜕𝑡𝑗 is the scalar partial derivative of the transition
unction with respect to 𝑡𝑗 .

The transition function determines the switching time from the first
o the subsequent arc. For the problem at hand, the transition condition
s assumed to be verified when the distance between spacecraft and
oon drops below a certain arbitrary threshold. The physical interpre-

ation of this condition corresponds to the spacecraft entering a SOI
f given radius centered at the Moon. The general expression for the
ransition function is such that the function is greater than zero if the
pacecraft is outside the Moon SOI, equal to zero if the spacecraft lies
xactly at the contour of the SOI and less than zero if the spacecraft is
nside the SOI,

1 = 𝑑2 (𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡,$) − 𝜌2𝑀

⎧

⎪

⎨

⎪

⎩

< 0 inside SOI
= 0 at SOI bound
> 0 outside SOI

(83)

here 𝑑 (𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡,$) indicates the distance between the spacecraft
nd the Moon, whereas 𝜌𝑀 is the radius of the Moon SOI.

The transition function only concerns the position of the spacecraft.
his is the case for many multiple-arc space trajectory optimization
roblems, for which the condition for transitioning from one arc to
he next is only a function of the spacecraft position [33]. Anyway,
onsidering both the position vector from the Earth to the spacecraft
nd that from the Moon to the spacecraft, two possible formulations
xist for 𝜓1:

• transition function depending on the position vector of the space-
craft with respect to the Earth, 𝒓𝐸 , and on the switching time
𝑡1 (because the position vector from the Earth to the Moon is
provided by the ephemeris model),

( )

|

( )

|

2 2
𝜓1𝐸 𝒓𝐸 , 𝑡1 = |

|

𝒓𝐸 − 𝒓$𝐸
𝑡1 |

|

− 𝜌𝑀 (84)
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• transition function depending only on the position vector of the
spacecraft with respect to the Moon, 𝒓𝑀 ,

𝜓1𝑀

(

𝒓𝑀
)

= |

|

𝒓𝑀 |

|

2 − 𝜌2𝑀 = 𝑟2𝑀 − 𝜌2𝑀 . (85)

It is apparent that the second formulation is convenient, but, for the
sake of completeness, both expressions are presented.

It is rather reasonable to argue that the switching function can be
set up arbitrarily, with a randomly chosen distance from the Moon as
the triggering threshold for the transition from the first to the second
arc. This can be proven via reductio ad absurdum by assuming that
an optimal distance from the Moon for the transition to occur does
exist. Thus, this distance can be regarded as a component of the time-
independent parameter vector 𝒑 introduced in the formulation of the
multiple-arc optimal control problem. Considering either one of the two
formulations for 𝜓1 and the quantity 𝜌𝑀 as a time-independent opti-
mization parameter, the necessary condition on the parameter vector
presented in Eq. (49) yields

𝜕𝛷
𝜕𝜌𝑀

=
𝜕𝜓1
𝜕𝜌𝑀

= −2 𝜉1 𝜌𝑀 = 0. (86)

ecause 𝜌𝑀 = 0 is clearly unfeasible (zero distance from the center of
he Moon), Eq. (86) entails that the time-independent adjoint conjugate
o the switching function is identically zero (i.e., 𝜉1 = 0), or equivalently
hat the transition function 𝜓1 can be removed from the problem
ormulation. This demonstrates unequivocally that the distance from
he Moon at which the transition occurs is arbitrary, and ultimately
epresents an additional degree of freedom for the design of the solution
trategy.

Using Eqs. (42) and (43), together with 𝜉1 = 0, Eqs. (80) and (81)
an be rewritten as

𝝀(𝑗+1)
𝑇

𝑖𝑛𝑖 = 𝝂𝑇𝑗
𝜕𝝌 𝑗
𝜕𝒙(𝑗+1)𝑖𝑛𝑖

(87)

𝝀(𝑗)
𝑇

𝑓𝑖𝑛 = 𝝂𝑇𝑗
𝜕𝝌 𝑗
𝜕𝒙(𝑗)𝑓𝑖𝑛

. (88)

astly, transposition and combination of Eqs. (87) and (88) yields the
mplicit costate transformation presented in Eq. (61).

ppendix B

This appendix presents the analytical approximation that was
dopted to obtain a reliable estimate of the transfer time for the low-
hrust orbit transfer of interest. The following analytical approach,
eveloped for two-dimensional, circle-to-circle low-thrust orbit trans-
ers (with a single-attracting-body) can be used. The analytical solution
elies on two further approximations:

• the thrust is directed along the velocity vector at all times (𝑻
⃖⃖⃗
∥ 𝒗
⃖⃗
);

• the small nonzero eccentricity values reached during the transfer
due to low thrust are neglected, and 𝑒 is set to 0 for the entire
transfer duration.

oreover, hence forward, the final orbit radius 𝑟𝑓 is assumed to be
reater than the initial orbit radius 𝑟0. The rate of the specific energy
is

̇ =
𝑻
⃖⃖⃗
𝑚

⋅ 𝒗
⃖⃗
= 𝑎𝑇 𝑣 (89)

here 𝑎𝑇 = 𝑇∕𝑚. The following relation holds for the specific orbital
nergy:

= −
𝜇
2 𝑎

(90)

where 𝜇 denotes the gravitational parameter of the attracting body,
whereas 𝑎 is the osculating semimajor axis of the transfer path. Dif-
ferentiating the previous equation with respect to time one gets

̇ =
𝜇

�̇� = 𝑎 𝑣. (91)
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2 𝑎2 𝑇
ecause the eccentricity is set to zero, the transfer trajectory is instan-
aneously approximated as circular. Consequently, 𝑎 corresponds to the
adius of the circular orbit and the velocity has the typical expression
olding for circular orbits,

≃
√

𝜇
𝑎
. (92)

By substituting Eq. (92) in the rightmost term presented in Eq. (91) one
obtains

̇ =
2 𝑎𝑇
√

𝜇
𝑎

3
2 . (93)

Separation of variables yields

∫

𝑟𝑓

𝑟0

1

2 𝑎
3
2

d𝑎 = ∫

𝑡𝑎𝑓

𝑡𝑎0

𝑎𝑇
√

𝜇
d𝑡. (94)

Using the notable result 𝑢𝑇 = 𝑢(𝑚𝑎𝑥)𝑇 in (50) and the analytical
expressions for the mass ratio (51), the following analytical expression
for 𝑎𝑇 can be obtained:

𝑎𝑇 (𝑡) =
𝑐 𝑢(𝑚𝑎𝑥)𝑇

𝑐 − 𝑢(𝑚𝑎𝑥)𝑇
(

𝑡 − 𝑡0
)

. (95)

Then, it is possible to integrate separately both sides of Eq. (94),

1
√

𝑟0
− 1

√

𝑟𝑓
= 𝑐

√

𝜇
ln
𝑐 − 𝑢(𝑚𝑎𝑥)𝑇

(

𝑡𝑎0 − 𝑡0
)

𝑐 − 𝑢(𝑚𝑎𝑥)𝑇

(

𝑡𝑎𝑓 − 𝑡0
) (96)

here 𝑡𝑎0 and 𝑡𝑎𝑓 indicate the initial and final time of the analytical
pproximation of the orbit transfer, respectively. Developing further
he previous equation one gets

𝑎
𝑓 = 𝑡𝑎0 +

1
𝑢(𝑚𝑎𝑥)𝑇

⎧

⎪

⎨

⎪

⎩

𝑐 −
[

𝑐 − 𝑢(𝑚𝑎𝑥)𝑇
(

𝑡𝑎0 − 𝑡0
)

]

e
−

√

𝜇
𝑐

(

1
√

𝑟0
− 1

√𝑟𝑓

)

⎫

⎪

⎬

⎪

⎭

. (97)

Eq. (97) can be employed to obtain a first-order estimate of the time
of flight. For the sake of the application of this approximate solution,
it is necessary to divide the trajectory in two arcs, with the Earth
considered as the single attracting body in the first arc and the Moon
considered as the single attracting body in the second arc. For the
geocentric arc, the initial circular orbit radius is set to 𝑟𝐸,0 = 𝑝𝐸,0,
while the final circular orbit radius is set to 𝑟𝐸,𝑓 = 𝜌𝐸𝐿1 , where 𝜌𝐸𝐿1
is the distance of the interior libration point 𝐿1 from the Earth center
of mass. The initial time 𝑡𝑎𝐸,0 is set to 𝑡0 and application of Eq. (97)
ields 𝑡𝑎𝐸,𝑓 . For the selenocentric arc, in order to coherently apply
he analytical approximation, it is necessary to consider the reversed
rajectory (i.e., starting from the arrival orbit). The initial circular orbit
adius is set to 𝑟𝑀,0 = 𝑝𝑀,𝑓 , while the final circular orbit radius is set to
𝑀,𝑓 = 𝜌𝑀𝐿1

, where 𝜌𝑀𝐿1
is the distance of the interior libration point

1 from the Moon center of mass. The initial time 𝑡𝑎𝑀,0 is set to 𝑡𝑎𝐸,𝑓 , and
pplication of Eq. (97) yields 𝑡𝑎𝑀,𝑓 . The overall transfer time estimate
s obtained by summing up the two independent contributions,

𝑡 = 𝑡𝑓 = 𝑡𝑎𝐸𝑓 − 𝑡𝑎𝐸0
+ 𝑡𝑎𝑀𝑓

− 𝑡𝑎𝑀0
= 𝑡𝑎𝑀𝑓

− 𝑡𝑎𝐸0

= 81 d, 18 h, 16 m, 44 s.
(98)

The presented analytical method only considers a single attracting
ody in each arc (neglecting the third-body perturbation), and it is
ather reasonable to expect that the transfer time is underestimated by
his approach. The reason for this lies in the fact that the analytical
pproximation neglects the three-dimensionality of the orbit transfer,
ecause the orbital plane changes required for the transfer orbit to
each the desired destination are not taken into account. Thus, the
ptimal transfer time 𝑡(𝑜𝑝𝑡) can be conjectured to be greater than 𝑡 .
𝑓 𝑓
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