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Abstract: Radiological imaging is currently employed as the most effective technique for screening,
diagnosis, and follow up of patients with breast cancer (BC), the most common type of tumor in
women worldwide. However, the introduction of the omics sciences such as metabolomics, pro-
teomics, and molecular genomics, have optimized the therapeutic path for patients and implementing
novel information parallel to the mutational asset targetable by specific clinical treatments. Parallel
to the “omics” clusters, radiological imaging has been gradually employed to generate a specific
omics cluster termed “radiomics”. Radiomics is a novel advanced approach to imaging, extracting
quantitative, and ideally, reproducible data from radiological images using sophisticated mathe-
matical analysis, including disease-specific patterns, that could not be detected by the human eye.
Along with radiomics, radiogenomics, defined as the integration of “radiology” and “genomics”, is
an emerging field exploring the relationship between specific features extracted from radiological
images and genetic or molecular traits of a particular disease to construct adequate predictive models.
Accordingly, radiological characteristics of the tissue are supposed to mimic a defined genotype and
phenotype and to better explore the heterogeneity and the dynamic evolution of the tumor over
the time. Despite such improvements, we are still far from achieving approved and standardized
protocols in clinical practice. Nevertheless, what can we learn by this emerging multidisciplinary
clinical approach? This minireview provides a focused overview on the significance of radiomics
integrated by RNA sequencing in BC. We will also discuss advances and future challenges of such
radiomics-based approach.

Keywords: breast cancer; genomics; radiomics; radiogenomics

1. Introduction

Breast cancer (BC) represents the most frequent neoplasia among women, with
2.1 million newly diagnosed every year. Thus, BC is the first common malignant can-
cer worldwide [1–3].

As strategies for cancer detection have largely improved [3] and, consequently, inci-
dence rates have increased over the years, radiological approaches are still the first primary
diagnostic work up in cancer with a key and essential role in diagnosis, staging, treatment
planning, and response evaluation after therapy.

Technological advancement of radiological imaging has led to radiomics, which pos-
tulates that images obtained using magnetic resonance imaging (MRI), ultrasound (US),
mammography, and digital breast tomosynthesis (DBT) contain more information that
is not visible to the human eye and therefore underestimated. This information can be
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extracted using specific advanced software that can provide information regarding the
texture of tissues of interest.

Thus, the deep and simultaneous characterization of breast lesions throughout these
techniques and advanced imaging analysis using artificial intelligence (AI) can be of utmost
importance in the era of personalized medicine.

Separately, high-throughput molecular methods such as next-generation sequencing
or RNA sequencing (RNAseq), are performed to deeply analyze the molecular features of
BC tissue and to design the best suitable treatment for the patient. In particular, RNAseq
has been useful to evaluate several aspects of BC, including biomarker selection, character-
ization of cancer heterogeneity, drug resistance, cancer immune microenvironment, and
response to immunotherapy [3–5].

Nevertheless, great attention is currently being given to novel tools of prediction,
where the abovementioned approaches (radiological imaging and molecular mutational
analysis, metabolomics, or proteomics of the targeted tissue), often considered diametrically
opposed, are combined [6].

This emerging strategy, defined as radiogenomics, assumes that extracted imaging
data are the product of mechanisms occurring at a genetic and molecular level linked to the
genotypic and phenotypic characteristics of the tissue. In other words, radiogenomics is
based on the idea that genetic changes in tumor biology control radiologic phenotypes [7,8].

Despite this, the development of predictive models of radiogenomics to be fully
employed at the clinical level, is still a challenge. These drawbacks will be cited later in
this review.

Among several molecular-based approaches to defining tumors and to be integrated
into radiogenomics, the RNA-seq-based strategy appears as the most versatile and useful
to describe the phenotype of highly heterogenous types of cancer such as BC. Thus, the
transcriptomic profile is considered a key feature enabling the characterization of the whole
tumor’s ecosystem including specific cell subpopulations, microenvironment, and T cell
profile [9] and with added clinical utility [10,11].

In this minireview, the most relevant biomarkers obtained from the prevalent RNAseq
technologies and advanced imaging analyses are summarized, and their applications in BC
and future challenges and opportunities are discussed.

2. Artificial Intelligence and Radiomics to Improve Detection of Breast Lesions and
Response to Treatment

Large-scale screening programs represent the best strategy to diagnose BC in the early
phase, leading to more therapeutical opportunities and favorable prognostic implications.
Currently, more than 42 million mammographic examinations are performed in the USA
and UK for this purpose.

The increasing number of clinical exams performed every year has led to develop-
ing several strategies to improve a faster and more effective approach to interpreting
radiological images. In this regard, a first attempt emerged in the 1990s, when the first
computer-aided-diagnosis (CAD) systems were developed [12–14], setting the basis for the
application of AI software into clinical practice.

Since then, continuous efforts in the AI field have succeeded in developing cutting-
edge AI systems as an interesting opportunity to screen patients more efficiently, improving
both the sensitivity and specificity of the exam, therefore, potentially increasing the rate of
early detection and reducing recalls and unnecessary second-level examinations.

Several authors have already demonstrated the potential role of AI to foster the early
detection of BC. Rodriguez-Ruiz [12] and coworkers compared BC detection performance
of radiologists reading mammographic examinations compared to those supported by AI
systems, showing that diagnostic performance increased with AI-based technology, with
higher rates of sensitivity and specificity, and increased area under the curve (AUC) values.
This result was corroborated by a second study of the same group, where the AI system
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was compared to 101 breast radiologists to evaluate mammograms for BC identification:
the AI system achieved an AUC of 0.84, not inferior to the average of radiologists [12].

Moreover, McKinney and colleagues presented an AI deep learning model for iden-
tifying breast cancer in screening mammograms using two large datasets from the UK
and the US. The model outperformed radiologists in terms of assessment of individual
lesions and individual breasts, obtaining an AUC of 0.79 compared to that of 0.74 reached
by 104 radiologists [15].

Similar studies have also strengthened the role of AI in the analysis of DBT to provide
a three-dimensional (3D) model reconstruction system for breast tumors starting from a
small number of mammograms.

AI algorithms have also been employed to improve the potential of second-level
imaging techniques, such as MRI. Even though the latter has the highest sensitivity in BC
detection, its role is limited by its availability, cost, and long acquisition time [16,17].

To overcome these drawbacks, Dalmiş and colleagues developed a new AI-CAD
system for breast MRI using only the early phase of the acquisition with 3D sequences, able
to detect 60% more lesions compared to standard protocols, paving the way to apply “fast
MRI protocols” in BC screening [18].

The use of AI combined with radiomics may also be a further strategy to guide clinical
decision-making during the setting of treatment choice. Thanks to its quantitative approach,
radiomics enables the objective assessment of relevant intrinsic imaging features, such
as those showing tumor heterogeneity. Therefore, radiomics may help to improve the
objectivity and accuracy of treatment response, where the imaging features may be used
together with other forms of data in predictive modeling [19–21].

For example, Tahmassebi et al. [22] used a machine learning (ML) algorithm based
on multiparametric features obtained from an MRI of the breast to predict pathological
complete response to neoadjuvant chemotherapy and survival outcomes in BC patients.
The algorithm obtained allowed us to evaluate the histopathologic residual cancer burden
(AUC: 0.86) and recurrence-free survival rate (AUC: 0.83).

Similarly, convolutional neural networks (CNNs) have been recently developed to
predict response to treatment, such as the one studied by Ha et al. [23] in a retrospective
study to evaluate if CNN applied to pre-treatment breast MRI images could be used to
predict neoadjuvant chemotherapy response, achieving an overall accuracy of 88%.

Moreover, D’Angelo et al. [24] demonstrated that an automated breast volume scanner
may be a useful method to detect BC patients who are more prone to reach a complete
pathological response during neoadjuvant therapy: in a cohort of 21 patients, the authors
compared an automated breast volume scanner to manual hand-held US and contrast-
enhanced MRI, with the former being more reliable than manual US, and comparable
to MRI.

In clinical practice, many promising algorithms may not function as reported in the
literature. However, these studies advocate the potential of AI-based informatics tools on
treatment outcomes predictions, encouraging researchers to test and implement new and
existing algorithms in practice, with the aim of improving BC clinical management.

Traditionally, radiomics features provide information regarding grey-scale patterns,
inter-pixel relationships, shape, and spectral properties within regions of interest (ROIs) on
radiological images.

Radiomics analysis is an analytical framework applicable to various target sites,
mainly tumors, and imaging modalities, including US, computed tomography (CT), MRI,
and positron emission tomography (PET). In particular, radiomics has become a poten-
tial method for the non-invasive evaluation of the patient’s disease, enabling the tu-
mor’s spatial heterogeneity and its temporal alterations through investigation of the
tumoral microenvironment.

The first step is the acquisition of suitable images. In BC, MRI, US, mammography, and
DBT represent the main radiological tests. Due to the variability of different instrumenta-
tions, acquisition parameters, and operators across radiological laboratories, standardized
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imaging protocols are necessary and recommended to perform an accurate quantification
of imaging, in order to improve reproducibility and applicability of radiomics features [25].

The second step is the definition of an ROI within the lesion from which radiomics
characteristics are computed. The third step is featuring extraction using mathematical
formulas and AI algorithms, broadly classified in four categories: morphological, histogram-
based, textural, and transform-based features. Hundreds of thousands of features are
computed, exhibiting varying degrees of complexity and expressing properties of the lesion
morphology and the voxel intensity histogram, as well as the spatial organization of the
intensity values at the voxel level (texture). During the selection process, only the features
related to specific clinical questions are considered. The concept underlying the process
is that radiological images contain qualitative and quantitative information, which may
reflect the underlying pathophysiology of a tissue. Artificial intelligence algorithms play
a role in this process, selecting the relevant features. Indeed, feature selection seeks to
identify which of these features are stable, non-redundant, and/or robust to any intrinsic
dependencies (e.g., shape, volume) [26]. Next, models are built employing the selected
features according to the clinical queries. Throughout this workflow (Figure 1), imaging
biomarkers can be extracted and used for diagnosis but also for predicting treatment
response and risk of recurrence.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 16 
 

 

The first step is the acquisition of suitable images. In BC, MRI, US, mammography, 

and DBT represent the main radiological tests. Due to the variability of different instru-

mentations, acquisition parameters, and operators across radiological laboratories, stand-

ardized imaging protocols are necessary and recommended to perform an accurate quan-

tification of imaging, in order to improve reproducibility and applicability of radiomics 

features [25]. 

The second step is the definition of an ROI within the lesion from which radiomics 

characteristics are computed. The third step is featuring extraction using mathematical 

formulas and AI algorithms, broadly classified in four categories: morphological, histo-

gram-based, textural, and transform-based features. Hundreds of thousands of features 

are computed, exhibiting varying degrees of complexity and expressing properties of the 

lesion morphology and the voxel intensity histogram, as well as the spatial organization 

of the intensity values at the voxel level (texture). During the selection process, only the 

features related to specific clinical questions are considered. The concept underlying the 

process is that radiological images contain qualitative and quantitative information, 

which may reflect the underlying pathophysiology of a tissue. Artificial intelligence algo-

rithms play a role in this process, selecting the relevant features. Indeed, feature selection 

seeks to identify which of these features are stable, non-redundant, and/or robust to any 

intrinsic dependencies (e.g., shape, volume) [26]. Next, models are built employing the 

selected features according to the clinical queries. Throughout this workflow (Figure 1), 

imaging biomarkers can be extracted and used for diagnosis but also for predicting treat-

ment response and risk of recurrence. 

 

Figure 1. Workflow of the radiomics features extraction and analysis process. Lesions detected by 

imaging (mammography and magnetic resonance imaging) are contoured in red.  

3. RNA Sequencing in Breast Cancer 

The RNAseq technologies have a crucial application in oncology for the discovery of 

key genes and signaling pathways, which can be employed as biomarkers signatures for 

cancer diagnosis, prognosis, prediction, and as therapeutic targets [27]. The prevalent 

RNAseq technologies suitable in breast oncology are bulk RNAseq, laser capture micro-

dissected RNAseq (LCM), single cell RNAseq (scRNAseq), GeoMX digital spatial profil-

ing (DSP), and spatial transcriptomic (ST). 

Among all BC, the triple negative breast cancer (TNBC), the most aggressive and ma-

lignant tumor due to its high heterogeneity in distinct molecular subtypes [3,28,29], offers 

Figure 1. Workflow of the radiomics features extraction and analysis process. Lesions detected by
imaging (mammography and magnetic resonance imaging) are contoured in red.

3. RNA Sequencing in Breast Cancer

The RNAseq technologies have a crucial application in oncology for the discovery
of key genes and signaling pathways, which can be employed as biomarkers signatures
for cancer diagnosis, prognosis, prediction, and as therapeutic targets [27]. The prevalent
RNAseq technologies suitable in breast oncology are bulk RNAseq, laser capture micro-
dissected RNAseq (LCM), single cell RNAseq (scRNAseq), GeoMX digital spatial profiling
(DSP), and spatial transcriptomic (ST).

Among all BC, the triple negative breast cancer (TNBC), the most aggressive and
malignant tumor due to its high heterogeneity in distinct molecular subtypes [3,28,29],
offers the best example where the majority of studies regarding the integration of spe-
cific transcriptomic and radiomics is directing compared to other BC types. The TNBC
is characterized by a poorer prognosis, high rate of relapse, and metastasis leading to
tumor recurrence [3,30]. RNAseq-based technology has been developed to provide an
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average of aberrantly expressed mRNAs in samples. This approach has made possible the
classification of TNBC into four different subtypes: basal-like immune-activated (BLIA),
basal-like immune-suppressed (BLIS), mesenchymal (MES), and luminal androgen recep-
tor (LAR) [31]. The discovery and implementation of new drugs targeting biomarkers
is essential to highlight the mechanisms of resistance that result in poorer prognosis for
TNBC patients. The TNBC stratification allows us to identify subtype-specific prognosis
signatures, improving the development of personalized therapy. The infiltration of immune
cells into tumors varies in TNBC subtypes, leading to different responses to chemother-
apy [32]. For example, Filho et al. discovered that the addition of carboplatin to standard
neoadjuvant chemotherapy has beneficial effects against tumors with higher inferred CD8+
T-cell infiltration [33].

When the RNAseq analysis of TNBC is compared to that exhibited by normal tissues,
nine steroid hormone-related genes (FSIP1, ADCY5, FSD1, HMSD, CMTM5, AFF3, CYP2A7,
ATP1A2, and C11orf86) can be identified and significantly associated with the prognosis.
The abovementioned markers can be regarded as putative prognostic markers, confirming
the role of hormones in TNBC tumorigenesis [34]. In 2019, Jiang and colleagues analyzed
eight clinical specimens of BC and paracancerous breast tissues through transcriptomic
sequencing and found that six differential expressed genes are upregulated (CST2, DRP2,
CLEC5A, SCD, KIAA1211, DTL), whereas a different set of six genes were found down-
regulated (STAC2, BTNL9, CA4, CD300LG, GPIHBP1, and PIGR) although differences for
RFS and OS were not highlighted. Data obtained from RNA-seq underline the difference
between TNBC tissues with or without distant metastasis. Khaled et al. founded a group
of differentially expressed genes involved in the regulation of cell–cell adhesion, immune-
modulation, and Wnt/β-catenin pathways [35]. Specifically, the researchers discovered
that overexpression of SHISA3 controls the epithelial-mesenchymal transition in TNBC,
inhibiting cell proliferation and invasion. The results suggest that SHISA3 could represent
a novel tumor suppressor gene and a possible therapeutic target for TNBC treatment [35].

When the computational analysis of the RNA transcripts in BC is performed by
employing databases such as the KEGG database, (which highlights specific signaling
pathways and molecular effects on targeted proteins), an enrichment of pathways related
to the extracellular matrix-receptor (ECM-receptor) interaction, including genes of the
tetraspanin family, collagen, and fibronectin can be found [36]. Tetraspanins are transmem-
brane transport proteins except for TSPAN15, which is connected to the NOTCH signaling
system [37,38]. Specifically, the expression of TSPAN1 has been found to be higher in BC
tissue and associated to positivity to the estrogen receptor (ER) and the human epidermal
growth factor receptor 2 (HER2) [39].

Additional differential expressed genes in TNBC have been identified by Zhang and
colleagues through the integration of several bioinformatics research methods [40]. In
this study, out of 1060 genes screened in both breast and healthy samples, 544 genes were
up-regulated and 516 were down-regulated in the cancer tissue. In particular, the authors
have narrowed the field, focusing on 23 genes as potential diagnostic markers. These genes
are involved in many cancer-related biological processes and pathways, such as chemical
carcinogenesis, drug metabolism, xenobiotic metabolic process, metabolic pathways, and
oxygen binding. Some of these 23 genes have been confirmed to be related to BC in
literature, including ADH1A, ADH1C, AKR1C4, ALDH3A1, CYP1A2, CYP2B6, CYP2C18,
CYP2C19, CYP3A4, CYP3A7, GSTA1, and the RXRG gene [40,41].

The analysis of the transcriptomic profile cannot be limited to the sole cancer tis-
sue. The TNBC is acknowledged as one of the most heterogeneous types of tumor with
markedly biological and different microenvironments generated within the tissue [3,42].
This heterogeneous biological “cancer ecosystem” is mainly characterized by a plethora
of cell components such as epithelial cells, invasive, or in situ tumor cells, surrounding
stroma, infiltrating immune cells, blood vessels, and capillaries, which constitute the tumor
microenvironment (TME) [3,43]. Therefore, the analysis of the RNAseq, restricted to a
single cell population rather than the whole TME, could misrepresent the driver molecular
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target/mutation and be responsible for drug resistance, if not properly identified. Indeed,
stromal tumor-infiltrating lymphocytes (TIL) are associated with good prognosis in patients
with TNBC, being able to predict chemotherapy response [44].

One of the technical approaches that may overcome the limitation of bulk RNAseq, is
the laser capture microdissection (LCM), by which each cell’s population, in formalin-fixed
paraffin-embedded breast cancer samples, are collected separately based on their different
morphology. The integration of spatial distribution of immune cells with the laser capture
microdissection and the gene expression profiles of tumor stroma and epithelium com-
partments, has resulted in an improved stratification of tumor immune microenvironment
(TIME) [45], providing tools for the optimization of immunotherapy and identification of
new biomarkers. TIME subtypes have distinct immune landscapes and potential escape
strategies that involve different patterns of immune checkpoint proteins (PDL-1 and B7-H4),
immune modulators (IDO1), immunomodulatory cell type infiltration (macrophages, Tregs,
neutrophils, and IL-17-producing cells), and HLA-I loss [46].

The next generation of scRNA-seq technology has made it possible to improve the
understanding of the molecular processes that underlie the biological behavior of BC. The
heterogeneity, dynamic growth, and differentiation process of single cells are shown by
scRNA-seq analysis of cell phenotypes and transcriptome variations. This approach has led
to the identification of three different epithelial cell populations: basal (KRT14+), secretory
luminal1 (KRT18+/SLPI+), and hormone-reactive luminal2 (KRT18+/ANKRD30A+) cell
types, which can be linked to several breast tumor subtypes [47]. Moreover, high expression
levels of genes related to cancer stem cells (CSC) are found in patients with high risk of
recurrence, suggesting that they can be used as putative BC biomarkers [48]. Different cell
subpopulations of cancer-associated fibroblasts (CAFs) located in the microenvironment
have been identified through the scRNA-seq in a mouse model of BC (MMTV-PyMT).
The authors divided CAFs according to the marker genes of their histological localization:
vascular CAFs (vCAFs), matrix CAFs (mCAFs), cycling CAFs (cCAFs), and developmental
CAFs (dCAFs). Each subtype has a specific function; for instance, vCAFs or mCAFs
are indicators of a tumor’s propensity to metastasize [49]. The development of scRNA-
seq technology offers greater opportunities for a deep investigation of drug resistance
mechanisms and a more precise interpretation of transcriptome data. A comprehensive
transcriptional atlas of the cellular architecture of BC has been published in 2021 [50]. In
this work, the authors identified recurrent neoplastic cell heterogeneity of BC, developing a
single cell method of intrinsic subtype classification (scSubtype). The Cellular Indexing of
Transcriptomes and Epitopes by Sequencing (CITE-Seq) enabled the identification of a new
PD-L1/PD-L2+ macrophage groups linked to clinical outcome. CITE-Seq is a sequencing-
based method that simultaneously quantifies cell surface protein and transcriptomic data
within a single cell readout. Among thousands of primary BC cases, nine ecotypes were
identified. Interestingly, nine-ecotype clustering is driven by cells from all three major
lineages (epithelial, immune, and stromal).

Furthermore, single-cell transcriptional analysis of 32 breast cell lines demonstrated
that this approach is helpful to discover clinically important clinical markers. HER2
expression in the MDA-MB-361 cell line showed a dynamic plasticity that could affect drug
response. This phenomenon was also observed in circulating tumor cells of BC [51].

The GeoMx Digital Spatial Profiler (DSP) enable researchers and doctors to the dis-
covery of spatial molecular signatures through the identification of proteins and RNA
transcripts in the distinct regions of the tumor and surrounding tissues that are associated
with disease progression, immune evasion, metastasis, and drug resistance [52]. Carter and
colleagues, using GeoMx, evaluated the immune response to BC and find potential treat-
ment targets in a cohort of untreated PDL-1+ and PD-L1 TNBC [53]. The spatial transcrip-
tomics (ST) of eight HER2-positive BC [54], revealed the presence of tertiary lymphoid-like
structures and a Type I interferon response that overlapped with areas of colocalization of
macrophage and T-cell subsets [55]. The ST technology has a better throughput than digital
spatial profiling techniques and does not require specialist equipment or prior knowledge
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of gene sequences. These latest technologies will certainly improve the precision oncol-
ogy. A summary of the strengths and limitations of the abovementioned RNAseq-based
approaches is listed in Table 1.

Table 1. RNAseq-based approaches: strengths and weaknesses.

Technique Description Strenghts Weaknesses References

Bulk RNAseq Global gene expression
profile of tumor sample

Identification of
putative

prognostic markers

Less sensitivity, loss of
tumor heterogeneity

evaluation
[34,36,37,40,41,56]

Laser Capture
Micro-Dissected
RNAseq (LCM)

Transcriptomic profiling of
single tumor cell populations

Focus on the cellular
heterogeneity of

the tumor

Limited
quality/quantity

of RNA
[28,29]

Single Cell
RNAseq (scRNAseq)

Investigation of RNA
transcripts within

individual cells
Highly sensitive

High cost, absence of
analysis of the spatial

tumor complexity
[47–51]

GeoMX Digital Spatial
Profiling (DSP)

Spatial gene expression
profile of formalin-fixed

paraffin-embedded tissues

Characterization
of tumor

microenvironment

Limited to small
number of genes [52,53]

Spatial
Transcriptomic (ST)

Spatial
sequencing analysis

Characterization tumor
microenvironment,

supported by
sequencing data

Limitations in
microarray spot size
and spacing; lack of
single cell resolution

[54,55]

4. Matching Molecular and Radiological Features to Enhance Characterization of
Breast Lesions

Breast lesions can be characterized by imaging techniques according to their typical
radiological features. The application of radiogenomics in BC, revealing its potential as
a promising tool to improve diagnosis and to develop new therapeutic strategies for BC
treatment although it has to be validated in larger cohorts of patients for a full clinical
application [55]. Patterns of breast calcifications visible on mammograms may be useful to
differentiate benign and malignant lesions. In 2012 Yamamoto and colleagues were the first
authors to identify 21 MRI features, correlated with 71% of gene expression profiles [57].
In a different study, the same researchers discovered that the increasing rim fraction score
was related to the expression of long non-coding RNA linked to metastasis-free survival in
70 patients with BC [58]. Radiological features of the breasts have been already used by
Cai et al. [59] to create a deep learning (DL)-based CNN capable of discriminating among
benign and malignant microcalcifications.

Similarly, breast lesions feature visible on MRI such as shape, margins, calcification
morphology, mammographic breast density, and enhancement patterns are considered
in Descriptive Breast Imaging Reporting and Data System (BI-RADS) to characterize BC.
These features have the potential to act as imaging biomarkers of BC recurrence risk and
may provide guidance for specific treatment approaches [60]. Zhou et al. [61] developed a
CNN model based on T1-weighted MRI images to generate a 3D mask of the breast area,
achieving the highest sensitivity for BI-RADS 5 (92.5%), and a low value for BI-RADS 3
(33.3%), indicating that BI-RADS 3 represents an uncertain category not only for radiologists,
but also for DL approaches. However, their results showed that the model could serve as
an assisting tool in the report system to help raise specificity in cancer screening.

To date, the characterization of BC lesions is not limited to the radiological assessment,
but imaging is more frequently associated with molecular investigations of the genomic
profile of the patient. It is acknowledged that the tumor genomic profile plays a crucial
role in the characterization of BC both for implications related to the somatic mutations
of the lesion or to the expression of an unstable or pathogenic genotype with hereditable
characteristics [3].
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Matching imaging and molecular mutational analysis exhibited by the subject, defined
as radiogenomics, is still a challenge. Nevertheless, several studies regarding the beneficial
effects of such strategy, are emerging.

The growing field of radiogenomics, with its potential to interrogate data from imag-
ing appears to be promising in outlining diagnostic information when accompanied to
molecular features of BC. Several studies have been published on this topic. Novel com-
puter extracted mammographic texture features (AVE, MinCDF, Energy, MaxF (COOC))
have been elaborated to distinguish BRCA1/2 mutation carriers from non-carriers. Specifi-
cally, the Energy and MaxF (COOC) characteristics indicate the spatial distribution pattern
for tissue homogeneity, whereas AVE and MinCDF provide information about the tissue
density. Patients with BRCA1/2 mutation are characterized by retro-areolar parenchymal
patterns whit coarse texture [62]. The identification of BRCA gene mutations, predicts
which women have a high risk in developing BC [63]. MRI-based parameters could also
identify BC with over-expression of the human epidermal growth factor receptor 2 (HER-2).
To date, its detection mainly depends on invasive tissue biopsy. Zhou et. al. [61] developed
interesting radiomics models to predict HER-2 gene status (which relates to a more aggres-
sive subtype of BC), therefore providing a novel tool to support clinical decision-making,
and attempting to overcome some limitations of the fluorescence in situ hybridization and
immunohistochemistry of HER-2, especially those regarding the representativeness of the
bioptic sample when withdrawn by the patient.

Performance of these models was tested with attractive results: they obtained an AUC
of 0.85 in the training set, and an AUC of 0.79 in the testing set, suggesting that radiomic
features extracted from mammograms may be a non-invasive method for pre-operative
evaluation of HER-2 status in BC.

Zhang et al. [64] demonstrated the potential role of a radiomic features derived from
apparent diffusion coefficient (ADC) maps of breast MRI in patients with invasive ductal
BC that may be used as a pre-operative predictor of Ki-67 index, since it resulted in the
ability to differentiate the low and high Ki-67 index with high performance (AUC: 0.75).
Li and colleagues elaborated a functional parametric map of DCE-MRI, to classify the
HER2 and Ki67 expression in BC, through the characterization of both intratumoral and
peritumoral regions [65].

Radiogenomics also allows the classification of BC molecular subtypes namely Lu-
minal A, luminal B, HER-2 enriched, and basal-like, through the combination of specific
miRNAs with imaging features of each BC subtype [66], generating specific radiomiRNomic
maps. The tumor progression and the heterogeneity of the blood vessel system are regu-
lated by miRNAs [67]. An encouraging correlation has emerged between BC with spherical
and less irregular characteristics, obtained from Dynamic Contrast Enhanced Magnetic
Resonance (DCE-MRI), and an increase of the apoptosis genes expression [68]. The size
and morphologic radiomics features such as texture, diameter, and perimeter, derived from
DCE-MRI have been demonstrated to provide information about the metastatic capacity
of BC and the composition of the microenvironment, in particular neutrophils, fibroblasts,
and endothelial cells in a small cohort of patients [69]. The DCE-MRI is a high-performance
modality to individuate genomic biomarkers, including cell cycle check points, genes such
as Myc, PI3K, RTK/RAS, P53, and ER + /ER−, PR + /PR−, HER2 + /HER2, and triple-negative
indicators [70]. Bismeijer and colleagues established that the tumor size changes in con-
comitant with the proliferative rate of the mass [71]. The authors were able to recognize
seven MRI factors: tumor size, shape, initial enhancement, late enhancement, smoothness
of enhancement, sharpness, and sharpness variation. They discovered that the expression
of ribosomal proteins required for ribogenesis and regulated by the mammalian target of
rapamycin or mTOR pathway, is linked to low initial enhancement, increased smoothness,
and low sharpness. In the field of medical oncology, anticancer drugs which target the
mTOR pathway are currently being developed. Given these findings, it is possible that
in the future, patient candidates for therapy targeting mTOR will be identified based on
MRI features of BC, enhancing kinetics and tumor boundaries. Moreover, the expression of
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genes related to extracellular matrix and collagen synthesis are associated with an irregular
shape of the tumor, highlighting the central role of fibroblasts in BC development [71].

The combination of OncotypeDX and PAM50 gene panels (which provide a prediction
score of temporal recurrence in subjects with estrogen-receptor-positive, HER2- BC) [72] and
imaging phenotype trough radiomics has been demonstrated to strengthen the prediction
significance of the above-mentioned molecular profiles [73,74].

Radiomics is a non-invasive approach which can also identify and characterize the
different TNBC molecular subtypes, analyzing the spatial domain features and sequential
feature obtained by Contrast-Enhanced Magnetic Resonance Imaging (CE-MRI) [56]. There-
fore, radiogenomics, in predicting gene mutations, plays a crucial role in the early detection
of various BC subtypes, preventing patients from undergoing invasive procedures.

Moreover, radiogenomics, in the radiotherapy field, aims to find indicators which can
predict the sensitivity of tumor and healthy tissues to radiation in order to develop a more
personalized therapy [70]. PET imaging of 18F-fluorodeoxygucose (FDG) is frequently used
to mark tumors in order to determine its diffusion in the body and assess the response to a
treatment, although the FDG uptake is still not fully understood [75]. Recently, Ralli and
colleagues have identified enriched pathways significantly associated with the uptake of
FDG in BC, such us glycolysis/gluconeogenesis (GLYC-GLUC) and many immune-related
pathways [76].

To date, there are different hardware or scanning techniques and the standardization
of images and normalization is crucial for the radiogenomics of the future [8].

Recently, cancer research has focused on investigating the peritumoral area surround-
ing the cancer mass. The peritumoral region gives biological key information about angio-
genesis, lymphangiogenic activity, metastatic invasion of lymphatics and blood vessels, as
well as immune response within peripheral BC, such as stromal response and lymphocytic
infiltration. All these features are putative biomarkers [65]. Liu et al. [61] validated an AI
model based on radiomic features extracted from BC on contrast-enhanced MRI images
to predict sentinel lymph node metastasis, with a sensitivity in detecting positive sentinel
lymph node of 71%, and an AUC of 0.83.

In conclusion, BC parameters obtained from MRI, can predict the underlying genes
expression emerged by the RNAseq. Systemic reviews and multiple studies on small
cohort of patients are suggesting that the integration of molecular, anatomical, and func-
tional approaches in radiogenomics, might allow us to classify significant features of
tumor tissue, that could become potential biomarkers for the development of personalized
medicine. Specifically, radiogenomics and/or radiomics could assist in the early detection
and classification of cancers, differential diagnosis, mapping BC before surgery, correlation
between imaging features and tumor molecular biomarkers, prediction of metastasis, and
chemotherapy benefit prediction [33,70,77–80].

Mentioned biomarkers and their functions are summarized in Table 2.

Table 2. Putative biomarkers and relative functions.

Biomarkers Method Functions References

Texture features: tissue
density and homogeneity.

• DCE-MRI

• BRAC1/2 patients’ classification;
• Early detection of BC subtypes: Luminal A,

luminal B, HER-2 enriched and basal-like);
• Correlation with aberrantly expressed miRNA

to generate radiomiRNomic maps;
• Personalized treatment planning.

[63,65,67,73,74]

Calcification morphology. • DCE-MRI • Discrimination between benign and
malignant lesions. [59]
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Table 2. Cont.

Biomarkers Method Functions References

Tumor size, shape,
smoothness, sharpness

variation; late enhancement.

• DCE-MRI • Identification of specific altered pathways
(e.g., mTOR; EMT, collagen synthesis). [70,71]

Peritumoral area
characterization.

• CE-MRI • Assessment of metastatic invasion;
• Lymphocytic infiltration size. [65]

FDG uptake. • PET • Determination of tumor diffusion in the body;
• Evaluation of treatment response. [75,76]

5. Conclusions

Radiogenomics in BC has the potential to integrate the clinicopathological data trough
imaging biomarkers and prognostic gene panels. This strategy will help to improve the
understanding of the tumor heterogeneity, to predict the potential evolution of the tissue
and to enhance the stratification of patients, helping to design tailored clinical treatment in
the era of personalized medicine.

So far, the application of the proposed radiogenomics approaches in real clinical
practice is still hampered by the several concerns, therefore limiting the role of the radio-
genomics to research purposes by mostly reconstructing predictive models with a potential
use to develop individualized treatments to ultimately affect patients’ prognosis [81,82].
In BC, the radiological imaging and the plethora of “omics” science would represent a
significant improvement for patients if combined with genomic data, which have been
already strictly correlated with the prognosis [83]. To date, a mix of semiautomatic and fully
automatic software to quantify imaging coexists [84,85], providing potential different inter-
pretation among laboratories and a range of non-standardized and unvalidated protocols.
Specific criteria of acquisition have not been homogenously identified and acknowledged
as well as guidelines which may help to harmonize and convert algorithms and omics in
precise clinical scores.

Notably, all omics-based data represent a precise photograph of a defined phase of
the cancer disease. Thus, the development of standardized protocols should consider that
the match with radiological imaging should be performed in parallel or consecutively
in a time window. In the light of this, the huge amount of clinical imaging data that
can be derived from the single patient in a fixed interval of time (normally ranging from
diagnosis to follow ups), will necessarily require future automated programs which may
even reconstruct the whole radiological scenario, highlighting significant changes of the
tissue over the time. Accordingly, among all tissue characteristics highlighted by radiomics,
the dynamic features (from tissue texture to uptake of tumors) are likely to be the most
promising criteria, as they can be better associated to molecular data and to those obtained
from specific regions of interest such as lymph nodes or area of metastasis, where different
genomic alterations frequently occur.

In addition, there could be some potential for AI-supported clinical management.
However, the algorithm developing process is still in progress, and there is a need to
connect multi-center projects. Indeed, radiogenomics is still the main research domain,
with thousands of mostly retrospective single-center studies. Both long term and large scale
clinical radiogenomics data are missing, and the results obtained from the omics profiles
have not been yet associated with radiomics. Accordingly, a larger amount of data and
prospective clinical trials that validate radiogenomics signatures on external datasets, are
needed to improve the clinical workflow and demonstrate a real benefit for patients.

Moreover, an interdisciplinary-based approach, which could combine the knowl-
edge and insight of radiologists, pathologists, oncologists, data scientists, and patients
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themselves is urgently required, to accelerate radiogenomics as a clinical diagnostic and
predictive tool.

Cost-benefit ratio is still a real concern and further research is still needed to make this
new approach feasible [86]. Notably, additional economic drawbacks derive from a high
level and specific training for the personnel and high-throughput technologies imputed
into all hospitals. Accordingly, to assess AI’s genuine value and capability to produce
desired results, healthcare facilities must be meticulous in their cost-benefit analyses,
as with any emerging technology. Although AI might offer advantages in improving
workflow efficiency and clinical results in the future, its employment should be constantly
tested against the current standard of care to ensure an additional advantage in terms of
savings costs.

To date, improvements of a radiogenomics-based approach are exploiting alternative
basic biological hallmarks of tumors, such as angiogenesis. Intriguingly, RNA-sequencing
of a small cohort of BC has been associated to morphological and vascular imaging, re-
vealing that a group of differentially expressed genes relating to dysfunctional alterations
of the microvasculature, are also linked to poor histological grade and invasiveness [11],
suggesting novel therapeutic molecular targets.

Additional data derived from radiogenomics, are being employed to evaluate the
predictive efficacy of the neoadjuvant chemo or radiotherapy, which cannot be assumed as
a homogenous treatment for all patients with BC, as it is well acknowledged that women
can respond differently, even with the same histological grade and molecular profile.

Some protocols related to radiogenomics such as GEENEPI (genetic pathways for the
European Society of Radiotherapy and Oncology) [87] represent a significant example to
discriminate the effect of radiotherapy among cancer and peritumoral tissue. However, we
are still far from quantifying a clinical index of response to therapy based on radiogenomics.

Other important questions remain open and still unexplored: is it feasible to apply
radiogenomics to liquid biopsy as both are considered less invasive techniques? Besides, it
would be also useful to match molecular techniques to radiomics according to the timing of
the analysis: for instance, at diagnosis radiomics might be matched to the genomic profile
of the primary BC, whereas metastatic areas should be separately analyzed and quantified
acquiring new radiological imaging parallel to a further molecular profile of the metastatic
tissue involved.

Finally, what else can radiogenomics predict? Other radiological criteria and models
are not necessarily linked to mechanic characteristics or stiffness of the BC tissue and
could add novel information at diagnosis or even during the screening, leading clinicians
towards a better personalized medicine by, for instance, developing novel predictive
algorithms and mainly by improving the very low number of experimental clinical trials.
Accordingly, only two clinical trials have been specifically designed in BC and currently
recruiting to evaluate DNA polymorphisms for Predicting the Effects of Radiotherapy
(RAPPER) and a second study which investigates how radiogenomics can predict the
pathologic response of pre- and post-menopausal women with BC in presence of genetic
alterations (www.clinicaltrials.gov, accessed on 5 April 2023). A further improvement could
be represented by the stratification of patients which can be potentially better achieved by
the integration of radiogenomics with the current clinical practice. In fact, key biological
differences among subjects, including resistance to therapy, could be better identified and
discriminated among patients who can really benefit in the presence of equal treatments.
According to this premis, it could be possible to construct high-fidelity models over the
time that are likely to improve the mimicking of cancer biology rather than a model based
only on genomic biomarkers or single radiological imaging.
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