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ABSTRACT
Modern blockchains support the execution of application-level code
in the form of smart contracts, allowing developers to devise com-
plex Distributed Applications (DApps). Smart contracts are typically
written in high-level languages, such as Solidity, and after deploy-
ment on the blockchain, their code is executed in a distributed way
in response to transactions or calls from other smart contracts. As
a common piece of software, smart contracts are susceptible to
vulnerabilities, posing security threats to DApps and their users.

The community has already made many different proposals in-
volving taxonomies related to smart contract vulnerabilities. In
this paper, we try to systematize such proposals, evaluating their
common traits and main discrepancies. A major limitation emerg-
ing from our analysis is the lack of a proper formalization of such
taxonomies, making hard their adoption within, e.g., tools and disfa-
voring their improvement over time as a community-driven effort.
We thus introduce a novel data model that clearly defines the key
entities and relationships relevant to smart contract vulnerabilities.
We then show how our data model and its preliminary instanti-
ation can effectively support several valuable use cases, such as
interactive exploration of the taxonomy, integration with security
frameworks for effective tool orchestration, and statistical analysis
for performing longitudinal studies.

CCS CONCEPTS
• General and reference → Surveys and overviews; • Security
and privacy→ Distributed systems security.
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1 INTRODUCTION
Distributed Ledger Technologies (DLTs) attracted a lot of attention
in the last decade due to the spreading of blockchains [9, 53] i.e.,
a particular class of DLTs where transactions are stored in blocks
replicated over a network of participating nodes and cryptographi-
cally linked together to capture and preserve causality relationships.
Each block contains a set of transactions, a timestamp, and a refer-
ence to (i.e., a hash of the content of) the previous block, offering a
consistent, secure and tamper-evident record of all transactions.

Modern blockchain technologies extended their functionalities
to the application layer by supporting the execution of Decentral-
ized Applications (DApps) currently adopted in many different do-
mains [94], ranging from finance to agriculture. DApps are imple-
mented through smart contracts, i.e., pieces of software written
in a high-level programming language (e.g., in Solidity [27]) en-
coding the rules behind the application logic and deployed on top
of the blockchain. When deployed on the blockchain, the smart
contract code is executed by a Virtual Machine (VM), replicated on
the blockchain nodes, enforcing the terms of the contract when
predefined conditions are met. This decentralization ensures that
the contract’s execution is transparent, secure, and resistant to
manipulation. While today there are several blockchain technolo-
gies offering support for smart contracts execution, the majority
of them are currently compatible with the Ethereum Virtual Ma-
chine (EVM)1 and support smart contracts written in Solidity letting
them become a de facto standard. Being a public and open tech-
nology, Ethereum requires its users to commit resources for the
maintenance of the overall system. In particular, to make Ethereum
sustainable, every operation on the network (and thus every action
in the smart contract) requires a certain amount of resources that
are measured in gas units. Users must pay such gas to incentivize
the execution of their smart contracts, limiting the probability of
denial-of-service attacks.

Being the means to develop distributed and decentralized ap-
plications, smart contracts have a vast potential but, as software
entities, they are not free from bugs and flaws exposing them to vul-
nerabilities potentially leading to highly impacting attacks. As an
1The EVM is the virtual machine originally introduced by Ethereum [9] making it
practically the first programmable blockchain.
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example, let us recall the infamous case of the DAO (Decentralized
Autonomous Organization) incident [5], where a vulnerability in a
smart contract led to the loss of millions of dollars worth of cryp-
tocurrency, highlighting the critical importance of robust security
verification and testing activities in smart contract development.
The potential presence of vulnerabilities in the smart contract code
gets even more relevant when considering that once deployed, a
smart contract is hard to patch (due to the immutability property
of the underlying blockchain).

Let us note that the first step toward the design and implementa-
tion of secure software is to consider security-by-design principles
in the development process and to support security testing. To this
aim, a key enabling factor is the knowledge of the potential secu-
rity vulnerabilities that need to be detected and resolved before the
software becomes operational.

When dealing with traditional software, there is a consolidated
process and well-established naming conventions to report, clas-
sify and document discovered vulnerabilities, contributing to an
increased level of awareness among developers and security testers.
This is currently enabled by (i) the definition of standardized for-
mats such as the Common Vulnerability and Exposure (CVE) [48]
and the CommonWeaknesses Enumeration (CWE) [49] to report and
classify vulnerabilities and weaknesses and (ii) the maintenance
of repositories and databases such as the NIST NVD [57] and the
CWE repository.

While smart contracts share similarities with traditional software
systems, the inherent structural distinctions between the two give
rise to unique issues requiring specialized attention. Challenges
such as reentrancy attacks [5] and gas limit vulnerabilities [47] are
rooted in blockchain’s unique features, including decentralized exe-
cution, andmay go beyond traditional coding flaws. These examples
suggest that the existing vulnerability classification schemes are not
enough to fully capture and represent issues affecting smart con-
tracts and leave space for ambiguity and/or multiple definitions of
the same issues. In addition, traditional software vulnerability and
weaknesses taxonomies may often fall short when it comes to smart
contracts [80], due to the structural and conceptual differences be-
tween traditional software and smart contracts. Indeed, they are
either too general or too specialized towards traditional platforms,
failing to adequately capture the nuances of the blockchains and
their distributed execution paradigm. Thus, not surprisingly, in the
last two decades, the research and industrial community has made a
large number of proposals [5, 18, 34, 40, 44, 46, 51, 65, 68, 81–83, 93]
aimed at classifying the vulnerabilities affecting smart contracts
from different perspectives. Despite all these efforts, there is no
yet a standard de facto and a shared naming convention to iden-
tify and classify issues discovered during the smart contract testing
phase and there still exists a gap between the precise and structured
side looking to traditional software and the chaotic one looking to
smart contracts, making it very hard in practice to reason on smart
contract vulnerabilities, e.g., to compare different vulnerability de-
tection tools or to carry out any study in the blockchain ecosystem.
Just to give an additional example highlighting this gap, let us note
the difference in the granularity of the taxonomies and classifica-
tions currently existing for traditional software and smart contracts.
Indeed, according to the NIST definition, a software vulnerability
[58] refers to a flaw within a system that malicious entities can

exploit to compromise its integrity, confidentiality, or availability.
In contrast, a weakness [59] represents a sub-optimal aspect in the
design or implementation of software, holding the potential to lead
to vulnerabilities. When looking at the smart contract world, the
distinction between these two concepts becomes subtle and the
terms vulnerability, weakness, issue and defect are often used as
synonyms2.

Contributions. Given the vast amount of attempts and pro-
posals available in the literature to classify and categorize smart
contracts issues, this paper aims to critically review the state of the
art on smart contract vulnerability taxonomies to identify their sim-
ilarities and differences, to quantify their relative level of coverage
and to highlight the relevant features that should be included in
every vulnerability classification scheme. A key result of our review
is that existing proposals lack a proper formalization, making them
impractical for several use cases and hard to maintain even for a
motivated community. Hence, we propose a novel data model that
can capture the nuances of smart contract vulnerabilities, possibly
supporting the community in different use cases. In particular:

• We review a large number of earlier studies aimed at smart
contract vulnerability taxonomies, pinpointing their main
characteristics and limitations;

• We perform a systematic comparison of such taxonomies,
identifying overlapping terminologies and common traits;

• We propose a novel data model whose aim is to provide a
more structured view of smart contract vulnerabilities by
clearly defining the key entities and relationships relevant
to the blockchain ecosystem;

• We show that our data model can naturally fit existing pro-
posals and then provide a preliminary instantiation able to
organically put together different taxonomies;

• We demonstrate that a taxonomy built on a well-structured
data model can effectively support several relevant use cases,
possibly helping the blockchain community to make smart
contracts safer.

Release of our proposal. The data model and its current in-
stantiation are available in the companion project [70]. Our plat-
form [71] allows users to interactively explore our data model
instance, dump the underlying raw data, and update it via push
requests.

Structure of the paper. The paper is structured as follows. Sec-
tion 2 presents the existing smart contract taxonomies, comparing
them and identifying their limitations. Section 3 describes our data
model and puts it in perspective with existing works. Section 4
explains how our data model can support different use cases. Fi-
nally, Section 5 provides the final remarks, highlighting possible
improvements to our proposal.

2 COMPARATIVE ANALYSIS OF EXISTING
SMART CONTRACT VULNERABILITIES
TAXONOMIES

This section reports the results of our literature review focused
on the identification, comparison and analysis of the existing tax-
onomies used to report and classify smart contract vulnerabilities.

2We will analyse this aspect in depth in Section 2.
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The review considered a substantial volume of literature dealing
with smart contract vulnerabilities from different perspectives, in-
cluding even studies related to vulnerability detection tools. Our
analysis has been driven by the following research questions:

• RQ1:Which are the existing taxonomies of smart contract
weaknesses or vulnerabilities and how do they classify the
flaws?

• RQ2: Are these taxonomies complete and comparable in
terms of categorization criteria and adopted nomenclature?

• RQ3: Is there any taxonomy that is seen as the standard de
facto by the community? If not, what are the main reasons
that may prevent the adoption of existing proposals?

Answering these questions would give us a clear picture of the
level of standardization and interoperability of existing smart con-
tract vulnerability taxonomies and would shed light on the gap
existing between traditional software vulnerability classification
approaches and those currently in place when dealing with smart
contracts, pointing out future research directions.

Review Methodology. We identified the final set of papers
considered in the review by following a selection process aimed
at collecting, filtering and finally grouping papers relevant to our
research objectives. Initially, we searched for studies on the main
digital libraries such as Google Scholar, IEEE Xplore and ACM
Digital Library using a predefined meta-query to filter articles. Our
meta-query combined the keywords smart contract, weaknesses,
vulnerabilities, languages, tools, and taxonomies as follows:

smart contract AND (weaknesses OR vulnerabilities
OR languages OR tools OR taxonomy)

This preliminary search focused on papers related to the macro
areas of smart contracts languages, taxonomies and tools. It was
aimed to investigate the existence of exhaustive taxonomies and any
mappings of detection tools, the presence of comparative analyses
of the efficacy of different tools, and to account for weaknesses and
vulnerabilities defined for different smart contract languages and
blockchains. The process led to an initial list of 88 papers and open-
source projects available in Table 3 of our technical report [74].

In the second stage, it became apparent to us that the vast major-
ity of works focused on Ethereum and its programming language
Solidity. Hence, to avoid considering too heterogeneous proposals
and exotic technologies, we restricted our review to these two main
technologies. Also, we noticed that most of the studies presenting
tools frequently list the detected vulnerabilities but a proper taxon-
omy is often omitted. Based on these aspects, we defined a set of
exclusion/inclusion criteria to filter the initial list of works:
Inclusion criteria:

- X: Papers containing an extensive, comprehensive taxonomy
and possibly an efficacy analysis of tools;

- Y: Papers with detailed vulnerabilities or weaknesses de-
scriptions, either enabling clear distinctions among different
variations of the same issue or providing additional insights
about attacks and defences;

- Z: Papers adhering to criteria X or Y should be either recent,
e.g., published after 2020, or highly cited by smart contracts
systematic literature reviews (SLRs) or other articles dis-
cussing relevant taxonomies;

- V: Papers mapping smart contracts weaknesses or vulnera-
bilities to well-known reference schemes, such as DASP [34],
SWC [81], or CWE [49];

- W: Papers that considerably vary in the type of issues ad-
dressed to maximize vulnerability and weakness coverage,
as well as in the criteria used for categorization (e.g. root
causes, layers, security properties violations, severity, CWE
classes, defect consequences, etc.).

Exclusion criteria:

- J: Papers not tackling the Ethereum blockchain or Solidity
programming language;

- K: Papers on tools not providing exhaustive descriptions of
vulnerabilities or mappings of the covered vulnerabilities.

Comparing works against the defined criteria, we narrowed down
the initial list to 57 publications. Subsequently, we further refined
it by including a wide range of open-source project repositories,
which were not necessarily associated with scientific publications,
provided they were presenting taxonomies and were highly cited
or used as references by other works, in compliance with criterion
Z. The resulting list of 77 elements was then evaluated by two of
the authors to prune away non-relevant contributions, obtaining a
final selection of 63 works, available in Table 2 from our technical
report [74].

RQ1: Discussion of the Existing Taxonomies. The analy-
sis of selected works reveals that there have been several prior
efforts aiming at producing a unified taxonomy for smart contract
weaknesses and vulnerabilities. The rationale behind this is that
the availability of a common reference for smart contract defects
may provide valuable support for detection tools by enabling the
mapping of vulnerable code on well-defined bugs and flaws, and in
parallel assist developers in the writing phase by increasing their
overall level of understanding and awareness.

A first interesting observation looking at the vocabulary used
in the analysed proposals is that the blockchain community seems
to interchangeably use the terms vulnerability and weakness, with-
out making a strong distinction between the two and favouring
overall the term vulnerability. Hence, any weakness is often consid-
ered a vulnerability, even when no security implications have been
proved3. As underscored by several works [1, 4, 5, 17, 32, 45, 84, 96],
this likely stems from the immutable nature of the blockchain,
which makes it hard to upgrade a deployed smart contract, and
the critical domains where smart contracts are playing a role, e.g.,
Decentralized Finance, justifying a conservative evaluation against
any weakness. This naming convention is currently in contrast with
the vocabulary used to identify issues in traditional software where
NIST provided clear definitions for the concepts of vulnerability,
weakness, bug etc. However, to remain consistent and comparable
with the existing nomenclature used in smart contracts, from now
on we only use the term vulnerability even if the identified issue is
closer to a weakness.

3A statistical analysis of the terminology adopted to refer to the concept of weakness
in smart contracts found that the term ’vulnerability’, to denote potential security
threats, is employed by almost 70% of the literature, while a minority uses ’bug’,
’issue’, ’weakness’, or ’defect’. The analysis was conducted on the complete set of works
available in our technical report [74].
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A second point is that commonly adopted vulnerability classi-
fication schemes include the Decentralized Application Security
Project (or DASP) Top10 [34], the multi-level taxonomy presented
by Atzei et al. [5] and the SWC registry [81], which represents
a first attempt to standardize defects IDs, aligned also with the
Common Weaknesses Enumeration (CWE). However, the CWE
[49] looks more suitable for traditional software than for the smart
contracts context due to its higher level of abstraction. For example,
while CWE might categorize a vulnerability as CWE 710 - Improper
Adherence to Coding Standards, schemes like SWC offer more pre-
cise classifications tailored to smart contract vulnerabilities. For
instance, SWC-100 specifically addresses issues like improperly set
function visibility in Solidity, providing developers with more ac-
tionable guidance. Unfortunately, SWC and DASP Top10, are largely
incomplete and unmaintained as they have not been updated for
the last 3 years.

More recent works have proposed extensive vulnerability tax-
onomies [11, 44, 52, 68, 84, 93]. Vidal et al. [93] present an extended
hierarchical taxonomy grouping defects in categories and subcate-
gories. They ascribe specific names to issues and define mappings
to SWC, CWE and correspondent names in other references, how-
ever, their nomenclature often does not align with that adopted
by other studies. The work from Rameder [68] organizes vulnera-
bilities in 10 classes, synthesizing and mapping information from
the taxonomies proposed by DASP, SWC, and 17 earlier surveys.
Kushwaha et al. [44] categorize issues based on their root and sub-
causes, and define a nomenclature accordingly. Additionally, they
map issues to attack instances, preventive methods and detection
tools. The subdivision into levels (Solidity, EVM and Blockchain) is
adopted by several works [5, 16, 23, 67, 97]. Chen et al. [11] define
an extensive list of vulnerabilities at four main architectural layers
(Application, Data, Consensus, and Network, respectively) providing
detailed descriptions of issues and real-world attacks and insights
into causes, attacks consequences and defences.

In Munir and Taha [52] safety and liveness properties are used to
group vulnerabilities but their approach lacks naming standardiza-
tion, while Grishchenko et al. [33] defines issues in terms of security
properties violations. Dingman et al. [25] leverage the NIST Bugs
Framework [56] to classify bugs, adopting the same arrangement
in security, functional, developmental and operational categories
identified by the previous work from Tikhomirov et al. [88].

In a recent study, Zhang et al.[96] analyzed 516 exploitable bugs
found in 167 real-world contracts reported or exploited in 2021-
2022, sourced from Code4rena contests and real-world exploit re-
ports. The authors classify functional bugs in the two main cate-
gories of Machine Auditable Bugs(MABs) and Machine Unauditable
Bugs(MUBs), defining further subcategories for each. A recent work
from Chaliasos et al. [10] considers vulnerabilities at the Smart
Contract and DeFi Protocol layers, while Kalra et al. [42] distinguish
among correctness, fairness and mining-derived issues.

All the foregoing works primarily focus on classifying defects
and encompass the concept of vulnerability categories, distinguish-
ing among different spheres or domains. Nevertheless, none of them
offers a fully exhaustive coverage in terms of defects descriptions,
examples, defences and mappings to attacks, detection tools, or
previous works and classifications all at once. Furthermore, they do

not often examine possible relationships among defects. The con-
cept of vulnerability propagation and relations is faced by Staderini
et al. [84], who define subset and implication relationships and vul-
nerabilities intersections, mapping issues to CWE weaknesses. The
studies conducted by Praitheeshan et al. [64] and Qian et al. [67]
link Solidity vulnerabilities to real-world attack instances and rele-
vant security issues. Only a handful of studies [51, 84, 85, 93, 97]
attempt to correlate defects with CWE classes.

Other significant contributions to smart contracts vulnerability
classifications come from several community-oriented projects [20,
29, 38, 40, 40, 51, 54, 65, 77–79, 82], or tools repositories [83]. A
further drawback of existing classification schemes is that they
often do not accurately reflect the current state of practice, as
pointed out by Vidal et al. [93]. Among the aforementioned projects,
only the EthTrust Security Levels specification from the Enterprise
EthereumAlliance [54] and the Smart Contract Security Field Guide
for Hackers [51] are actively maintained.

Short answer to RQ1. There exists a large body of works
proposing smart contract vulnerability taxonomies. These pro-
posals classify the flaws according to different dimensions,
such as levels, categories, layers, root causes, and traditional se-
curity properties. This extremely fragmented scenario makes it
unclear what is the relationship and compatibility among such
taxonomies and whether there is a natural evolution among
them.

RQ2: Comparative Analysis of Existing Taxonomies. To
evaluate how related and compatible are the existing taxonomies,
we have performed a fine-grained comparative study. The under-
taken analysis primarily focused on evaluating the overlap among
taxonomies, their degree of exhaustiveness, the extent to which cat-
egorization criteria differ, the usage of a standard nomenclature and
the correspondences established on common reference schemes.

Apart from the overlapping and nomenclature aspects, a subset
of studies has been considered to analyze the other dimensions.
Studies are picked by taking into account the completeness of pro-
vided taxonomies in terms of some predefined quality attributes,
including the number of addressed vulnerabilities, presence of clear
descriptions for bugs and flaws enhanced with explanatory ex-
amples, and possible categorization according to levels or other
criteria. Furthermore, we assessed the existence of mappings be-
tween vulnerabilities and real-world exploits, tools suitable for their
detection, potential countermeasures and other works handling the
issue. Another aspect examined is the presence of mappings to IDs
in the SWC Registry [81] and CWE [49].

Table 1 summarizes the findings, presenting a subset of the ana-
lyzed attributes for each of the studies. For the sake of space, Table 1
only lists the 36 works that, directly or indirectly, propose a relevant
taxonomy. As seen in the column Classification criteria, the major-
ity of the works define categories of diversified nature to group
similar issues. However, as reported by column Level, a subset of
them at least share the concept of level. In general, we can observe
that many studies tend to have a coarse-grained granularity, with
few exceptions [11, 15, 25, 93, 96]; this may not fully meet the re-
quirements of detection tools, which require higher level of detail
and whose progress state is often more advanced. Despite that,
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Table 1: Relevant works presenting smart contract vulnerabilities taxonomies.

Reference Classification criteria Levels # of vulnerabilities CWE mapping SWC mapping

Kushwaha et al. 2022 [44] Root/Sub causes ✓(Root causes) 23 ✗ ✗
Vidal et al. 2023 [93] Categories/Subcategories ✗ 76 ✓ ✓
Rameder 2021 [68] Classes ✗ 54 ✗ ✓
Chen et al. 2020 [11] Ethereum Architectural Layers, Causes ✗ 40 ✗ ✗
Dingman et al. 2019 [25] NIST Bugs Framework, Categories (Issue types) ✗ 49 ✗ ✗
Staderini et al. 2020 [84] CWE classes ✗ 28 ✓ ✗
Staderini et al. 2022 [85] CWE classes ✗ 33 ✓ ✗
Munir and Taha 2023 [52] Safety/Liveness Properties ✗ 61 ✗ ✗
Atzei et al. 2017 [5] Levels ✓(Levels) 12 ✗ ✗
Huang et al. 2019 [37] Causes, Weaknesses ✗ 10 ✗ ✗
Zhou et al. 2022 [97] Levels ✓(Levels) 13 ✓ ✗
Praitheeshan et al. 2020 [64] Software Security Issues ✗ 16 ✗ ✗
Chen et al. 2022b [14] Categories (Consequences) ✗ 20 ✗ ✗
Chaliasos et al. 2023 [10] Layers ✗ 28 ✗ ✗
Kalra et al. 2018 [42] Correctness/Fairness Issues ✗ 10 ✗ ✗
Chen et al. 2017 [15] Categories (Gas-costly patterns) ✗ 7 ✗ ✗
Grishchenko et al. 2018b [32] Security Properties Violations ✗ 8 ✗ ✗
Tsankov et al. 2018 [91] - ✗ 11 ✗ ✗
Tikhomirov et al. 2018 [88] Issue Types ✗ 21 ✗ ✗
Qian et al. 2022 [67] Levels, Security Issues ✓(Levels) 15 ✗ ✗
Hu et al. 2023 [36] Defect Types ✗ 20 ✗ ✗
Chu et al. 2023 [16] Threat Levels ✓(Threat Levels) 12 ✗ ✗
Amiet 2021 [3] Blockchain Ecosystem Components ✗ 12 ✗ ✗
Consensys Diligence Consensys [18] 8 ✗ - ✗ ✓
di Angelo and Salzer 2019 [23] Categories ✓(Categories) 16 ✗ ✗
SC Security Field Guide for Hackers 2023 [51] Categories ✗ 27 ✓ ✗
SigmaPrime SIGP Prime [65] - ✗ 16 ✗ ✗
DASP Top10 Group [34] - ✗ 10 ✗ ✗
Securify 2.0 SRI Lab [83] Severity ✗ 37 ✗ ✓
SMARTDEC Classification SmartDec [82] Classes/Groups ✗ 33 ✗ ✓
Trail of Bits (Not So) Smart ContractsCrytic [20] - ✗ 11 ✗ ✗
Luu et al. 2016 [46] - ✗ 4 ✗ ✗
Brent et al. 2018 [8] - ✗ 5 ✗ ✗
Grech et al. 2018 [31] - ✗ 3 ✗ ✗
Bose et al. 2021 [6] - ✗ 2 ✗ ✗
Zhang et al. 2023 [96] Categories (Machine Auditable/Unauditable) ✗ 39 ✗ ✗

studies that focus on tools tend to narrow their scope to issues iden-
tified by the specific tool being presented. Although some works
offer comprehensive defect lists (see column # of vulnerabilities)
and succeed in providing most of the identified quality attributes,
none of the references can be considered complete in all respects.
Additionally, to the best of our understanding none of the studies
considers vulnerabilities interdependencies, exception made for
Staderini et al.. We can also observe that most of the references fail
to provide associations to established schemes like CWE or SWC.
Additionally, major references and open-source taxonomies either
lack maintenance or receive limited community participation in
updating online repositories, as highlighted by Vidal et al. [93].

To further examine the overlap between different taxonomies
and quantify their level of overlap and/or complementarity, a vul-
nerability mapping process has been conducted across 57 out of
the 63 works4 to group defects with similar semantics under uni-
fied names, assessing their analogies and common traits based on
the specified description. The mapping process was hindered by
the heterogeneity of nomenclatures and classification criteria and
required to accurately compare descriptions to avoid ambiguity.
This sets the stage for a subsequent examination of the semantic
and syntactic similarities among works. Specifically, the former
involves investigating the number of common vulnerabilities (i.e.,
issues semantically equivalent but identified with different names)
while the latter delves into the exact syntactic correspondence of
the employed nomenclatures (i.e., same issues named in the same

4We excluded from the analysis community projects without a taxonomy freely avail-
able in a repository.

Figure 1: Heatmap showing the syntactic (bottom left) and
semantic (top right) similarity across taxonomies. The works
are considered on the two axes in the same order as in Table 1.

way across different proposals), thereby verifying to which extent
the schemes adhere to standard naming conventions. The semantic
and syntactic similarities among a pair of works can be computed
using the Jaccard [95] coefficient, which can measure the ratio of
the intersection and union of their vulnerability sets.

The results of our similarity analysis for the works in Table 1
are visually summarized by the heatmap in Figure 1, while the full
set of values can be retrieved from the table of similarities in our
repository [70]. The bottom left side of the heatmap represents the
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syntactic similarity across taxonomies, which have been consid-
ered in the same order as in Table 1, while the top right side shows
instead the semantic similarity. As expected, the maximum correla-
tion (dark blue) on the diagonal results from the perfect correlation
of each work with itself. The presence of very low values (light
blue) for syntactic similarities highlights a significant heterogene-
ity between vulnerability names, which suggests the absence of a
uniform naming convention. Even when considering the semantic
similarity, the situation does not improve significantly, as shown
by the values which struggle to exceed 0.5, indicating a weak over-
lap among taxonomies. This can be influenced by multiple factors,
including the type of defects considered, their granularity and the
range of vulnerabilities covered. Higher semantic similarity values
only occur in cases involving works by the same authors, references
presenting a tool and its repository, or studies declaring to explicitly
reference a taxonomy from another study. Even in these instances,
similarity in nomenclature remains low.

Short answer to RQ2. Our comparative analysis reveals that
taxonomies generally lack coherence, with no standard nomen-
clature being commonly adopted. They vary significantly in
expressive power, coverage, class types, and categorization
criteria. Consequently, the comparison process is complex and
direct translation between taxonomies is not straightforward.
Furthermore, they rarely provide mappings to IDs of common
reference schemes and cannot be regarded as entirely exhaus-
tive in providing descriptions, examples, related concepts such
as attacks, mitigations, tools and ultimately, coverage and gran-
ularity.

RQ3: Adoption of Taxonomies from the Community. Even
if there is a large number of taxonomies and they appear to be quite
incompatible with each other, one natural question is whether the
blockchain community is gradually moving towards one specific
vulnerability taxonomy, hence, solving in practice the fragmented
scenario depicted by the previous sections. We have thus analyzed
how the existing taxonomies are used in the wild by the community,
especially when considering the state-of-the-art analysis techniques
for smart contracts [7, 8, 19, 21, 28, 30, 31, 42, 43, 46, 50, 55, 62, 66, 76,
88–90, 92] and parallel studies on real-world attacks [5, 11, 24, 65].
Unfortunately, we observed that no taxonomy can be seen as the
standard de facto. More interestingly, we attempted to evaluate the
reasons why existing taxonomies are not widely adopted by the
community. A predominant motivation is the lack of coverage. Un-
fortunately, no easy solution can be likely offered to tackle such a
problem due to the ever-evolving nature of smart contract vulnera-
bilities. However, we noticed that, e.g., works presenting tools rarely
decide to extend existing taxonomies but rather often propose novel
vulnerabilities under incompatible classification schemes. Addition-
ally, the majority of tools tend to produce outputs that do not refer
to existing taxonomies, even when such tools consider vulnerabili-
ties that are already well-known by the community. Nonetheless,
we believe that this is not surprising. Indeed, existing taxonomies
are not designed for practical use within tools due to their lack
of formal structure beyond basic descriptions. The key concepts
around vulnerabilities and their relationships have not been prop-
erly formalized. Finally, the existing schemes are quite rigid and

can hardly be updated. For instance, Vidal et al. [93] have recently
proposed OpenSCV, an open hierarchical taxonomy for smart con-
tract vulnerabilities. However, their scheme groups vulnerabilities
in a tree structure, without offering the functionality to define the
subset and implication relationships proposed by Staderini et al. [84].
Additionally, the associated GitHub project does not provide the
taxonomy in a well-structured format, which may hinder its usage
within tools and make it impractical to maintain over time.

Short answer to RQ3. None of the existing taxonomies can be
considered as the standard the facto. Besides coverage issues,
a major aspect that seems to limit the adoption of existing
taxonomies is the lack of a formal structure beyond basic de-
scriptions, which makes them hard to use, e.g., within smart
contracts analysis tools, and quite hard to improve over time.

In the rest of this article, we attempt to propose a novel data
model that can capture the relationships among smart contract
vulnerabilities and other entities, meeting the needs highlighted by
prior works proposing taxonomies. However, differently from such
works, our data model can support the construction of a new taxon-
omy that is properly structured, can be effectively stored in different
formats, favouring, e.g., adoption by smart contract analysis tools,
and possibly easily updated over time by the community.

3 DATA MODEL FOR SMART CONTRACT
VULNERABILITY TAXONOMIES

In this section, we present our data model for smart contract vul-
nerabilities. We first explain what the data model is expected to
provide, then we present the key aspects behind it, considering also
a preliminary instantiation of the model, and, finally, we discuss
how it can be compatible with most existing taxonomies.

3.1 Design Principles
After reviewing a large number of smart contract vulnerabilities tax-
onomies, we identified the lack of formalization as a common and
crucial limitation. However, this limitation actually brings several
implications that inherently may harm the adoption of a taxonomy
in the community. To take into account this limitation and its im-
plications, we have designed our data model and then worked on
its preliminary instantiation, driven by a few key principles:

• Structured. The data model should clearly define which are
the key entities and their relationships in the context of smart
contract vulnerabilities. While such formalization could be
performed through different formal schemes, we believe
that an entity-relationship (ER) model is the most natural
solution as it is likely the most popular modelling approach
in computer science.

• Expressive. The data model should meet the needs of the com-
munity by integrating the key concepts and main relations
that emerged in previous existing taxonomies. Nonetheless,
it should critically combine such proposals to avoid uncon-
trolled complexity and excessive specialization. Hence, our
data model should try to be compatible with the literature
and relate to well-known reference schemes.
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• Usable. The data model should be defined considering dif-
ferent kinds of users. First, as done by existing taxonomies,
the model should be intuitive for human users, such as devel-
opers, security auditors, and researchers. This implies that
it should contain several attributes that can offer, e.g., intu-
itive descriptions of specific concepts tracked by the model.
Second, the model should be practical for exploitation by au-
tomatic tools, e.g., vulnerability detection tools. This implies
that, e.g., some relationships should be defined to facilitate
the parsing and evaluation within automatic frameworks.
Moreover, the data model instantiation should be available
in easy-to-process data formats, e.g., JSON files.

• Extensible. The data model and its instantiation should be
perceived as a moving target requiring a continuous im-
provement cycle given the ever-evolving blockchain sce-
nario. Hence, any concrete output associated with the model
should be made available to the community in a way that
favours its update over time, while requiring minimal effort.
This implies that the data model should be envisioned within
a collaborative project open to the community.

In the next sections, we describe how our model and its instan-
tiation pursue these principles. Moreover, Section 4 discusses and
partially demonstrates several use cases enabled by our proposal.

3.2 Data Model Entities and Relationships

Figure 2: ER data model for smart contract vulnerabilities,
represented according to the Bachman notation.

The proposal for a data model able to describe smart contract vul-
nerabilities is visually represented at a high level in Figure 2. While
the proposal has been formally defined as an entity-relationship
(ER) model, for the sake of the discussion, we informally present
it in this section. To determine relevant attributes, entities and
relationships we started by identifying the key attributes used in
existing taxonomies. We upgraded them to entities whether a more
detailed specification was needed, specifying corresponding rela-
tionships with paired vulnerabilities. In the centre of Figure 2 we
can find the entity Vulnerability, which, as expected, is the core
of the entire model. Such entity is then surrounded by nine other
entities (Level, Category, CWE, SWC, Tool, Attack, Mitigation, Patch,
and Reference), possibly linked together through different relation-
ships. Each entity and relationship is now described and motivated
in detail.

A vulnerability is a defect which may affect a smart contract and
bring security consequences. Consistently with prior works [1, 4, 5,
17, 32, 45, 84, 96], such term is abused to cover any weakness that
may have a security implication. Differently, the term attack will
be used to refer to a DApp-specific vulnerability instance.

A vulnerability is characterized by four key attributes5: a unique
identifier, a name, a description, and a sample code. The latter should
exemplify the essence of the problem, helping to understand what
the description is informally asserting. As described in Section 2,
the community often uses different names for the same vulnerabil-
ity. Moreover, a vulnerability may have been discussed in detail by
different sources. To cope with these observations, the entity refer-
ence representing bibliographic resources is introduced and linked
to vulnerability. Such a relationship has the optional attribute alias
to report the specific name proposed by each reference.

A vulnerability can be categorized according to different and or-
thogonal dimensions. On one side, the vulnerability may arise from
a specific conceptual level related to a smart contract. For instance,
consistently with prior works [5, 24, 39, 67, 87, 97], at least three
major conceptual levels can be identified: the Solidity Language,
which includes issues resulting from the nuances of the high-level
language used to write the smart contract; the EVM, which encom-
passes any issue resulting from the low-level execution of the smart
contract in a single node; and the Ethereum Blockchain, which
comprises problems due to the distributed execution paradigm ex-
ploited by a smart contract. On the other side, vulnerabilities can
be grouped according to one or more categories, where a category
represents a broad flaw class under which different vulnerabilities
with a similar nature can be grouped. For instance, integer overflow
and improper rounding can both fall under the arithmetic category.
As pointed out in previous works, categories can be mapped to
a hierarchical view, where higher-level categories are parent, i.e.,
more general than lower-level categories. Moreover, the same vul-
nerability can be included in different categories, e.g., a flaw can
both be an arithmetic issue and a business logic problem.

Vulnerabilities can often be related to each other. Three rela-
tionships may be defined: child_of, which links a vulnerability to a
more generic one; enabled_by, which depicts whether a vulnerabil-
ity may be caused by another one; impacted_by, which asserts that
a vulnerability may be dangerous when co-existing with others6.

The data model is quite flexible when aiming at organizing vul-
nerabilities in a hierarchical structure. As seen in previous works,
some taxonomies prefer to define several categories and then de-
vise a hierarchy among them (exploiting the child_of relationship
among categories), while other taxonomies define the hierarchy
directly over the vulnerabilities (exploiting the child_of relationship
among vulnerabilities). Since both approaches are reasonable, both
of them are supported in our model.

Vulnerabilities affecting smart contracts may be related to well-
known flaws in the context of traditional software. In particular,
CWE is an effective weakness classification framework that con-
tains instances relevant also in the smart contract’s ecosystem.

5For the sake of space, attributes are hidden in Figure 2 but a concrete example is
provided in Figure 3.
6The community often labels some weaknesses as vulnerabilities. The impacted_by
link thus exemplifies that a vulnerability is dangerous when other conditions are met.
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Figure 3: Example: instantiation of the vulnerability Integer
Overflow according to our data model.

Hence, an entity CWE representing existing CWE instances is de-
fined and a relationship between CWE and vulnerability is estab-
lished. Similarly, when considering existing classification schemes
tailored to the blockchain ecosystem, SWC is considered. This
is a taxonomy often mentioned in the literature [2, 12, 12, 26,
36, 68, 69, 84, 85, 93], and exploited by several existing detection
tools [19, 83, 90]. Unfortunately, SWC is nowadays unmaintained
and incomplete. Nonetheless, given its historical relevance, an en-
tity SWC is included and linked with vulnerability. Finally, SWC
may be conceptually mapped to CWE, thus we optionally link them.

A vulnerability may be detectable by some tools, so the entity tool
is defined and linked to one or more vulnerability. A tool can have
different key attributes, such as a name, a type, a unique identifier,
and the year when it was published. Each tool may be available
on a specific website and may have been presented in one or more
papers, hence tool may link one or more references.

A vulnerability may have been exploited in DApp-specific at-
tacks. While most attacks in the blockchain ecosystem are not yet
properly tracked and documented in public repositories, such as
CVE, the most interesting ones are often the subject of extensive
studies and used as motivations in several works. Our data model
hence devises an entity attack, that is mainly intended to represent
well-known attacks linked to one or more vulnerability. Each attack
has several attributes, such as a name, a unique identifier, and the
year of exploitation. The attack may have been discussed in detail in
several bibliographic references, hence a relationship among these
two entities exists. Finally, an attack may have been fixed with a

DApp-specific patch. The patchmay have been developed according
to some mitigation best practices, hence the entity mitigation is
introduced and linked to one or more patches. Internally, the patch
contains an attribute pointing to the code fixes applied by the DApp
developers. Since a mitigation is often suggested based on the vul-
nerability it addresses, a link between mitigation and vulnerability
is established. This relationship reflects the best practices to handle
(or avoid) a vulnerability.

3.3 Instantiating the Data Model
The proposed data model is an interesting conceptual framework
that, however, has limited practical value for the end users. For
this reason, we have decided to start instantiating it with the goal
of devising a new smart contract vulnerability taxonomy. In this
section, we first present a sample of such instance, since this may
help to clear out the role of each entity in the data model. Then,
we explain how we plan to turn this first preliminary instantiation
into a richer taxonomy through a community-driven effort.

Example. Figure 3 considers the vulnerability integer overflow.
This flaw is well-known even in the context of traditional software
and usually emerges when an integer value, due to, e.g., an arith-
metic addition,wraps around, i.e., turns from a large value into a low
value. Interestingly, this issue can arise even in smart contracts and
it is regarded by the community as a critical flaw possibly having
strong security implications. Our taxonomy provides a description
of the problem and a piece of code to exemplify its essence.

Integer overflows in smart contract may be often caused, i.e.,
enabled, by more high-level vulnerabilities, such as Integer Division
or Unsafe Type Inference, as shown by Figure 3.

Users may naturally expect to find the vulnerability integer over-
flow under the category incorrect arithmetic operations, thus a cate-
gory for this purpose was defined. However, at the same time, some
tools that can detect integer overflow categorize it using the term
arithmetic issue. To favour mapping between tools’ output and the
taxonomy, the higher-level vulnerability arithmetic issue, parent of
integer overflow, was also defined. Prior works also categorized the
vulnerability integer overflow under the broad group named Code
Flaws / Errors, hence, a link between these two was defined.

Prior works seem to agree that the vulnerability integer overflow
in Ethereum arises due to the nuances of the Solidity programming
language [90]. Indeed, while it is expected that the underlying EVM
can only deal with fixed-size data types, it may at the same time be
pretended as a viable strategy from the higher-level programming
language to avoid or deal with integer overflows. This is similar
to the traditional software scenario where it is well-known that
the underlying platform, e.g., Intel x86, only works with fixed-size
numbers, but taking benefit from arbitrary-precision integers when
using high-level programming languages is expected. Hence, since
Solidity does not come with arbitrary-precision integers, a link
between Solidity Language and integer overflow was defined.

The vulnerability integer overflow has been discussed in detail
by several references [2–4, 10–14, 16, 18, 20, 23–26, 34, 35, 37, 40–
42, 44, 52, 63–65, 67, 68, 75, 81, 82, 84–86, 88, 93, 97], which were
thus linked to integer overflow. Similarly, several analysis tools
[21, 46, 55, 88–90, 92] are able to potentially detect this vulnerability
and thus were linked in the taxonomy, as shown in Figure 3.
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Since integer overflow is a well-known flaw even in traditional
software, it can be easily linked to CWE-682: Incorrect Calculation.
Moreover, SWC also recognizes this flaw as a common issue even in
the blockchain ecosystem, assigning it to the identification number
SWC-101: Integer Overflow and Underflow. Links from SWC-101 to
integer overflow and from SWC-101 to CWE-682 were thus created.

Integer overflow has been at the core of at least three attacks
known as Batch Transfer Overflow (publicly tracked by CVE-2018-
10299), POWH Coin 2018, and BEC Tokens (Beautychain). These
attacks have been patched in different ways, including through the
usage of OpenZeppelin’s SafeMath [60, 61], a common mitigation
best practice for integer overflow in Ethereum.

For the sake of simplicity, Figure 3 mainly shows relationships
associated with integer overflow and does not fully demonstrate
the value of multi-level hierarchical relationships. Figure 4 is thus
more adequate for such goal and considers the vulnerability Bal-
ance Equality. Such flaw is quite dangerous when other vulnerable
conditions are verified, including Ether Transfer with Selfdestruct,
Ether Transfer with Mining, and Pre-sent Ether. Interestingly, Ether
Transfer with Selfdestruct in turn can be caused by Unprotected Self-
destruct. Finally, Balance Equality can be seen as a specialization,
e.g., child, of Requirement Violation, which in turn is child of Assert
/ Require / Revert Violation.

Collaborative project. The instantiation of the data model
is not yet fully accurate and complete. Unfortunately, reaching
such a state is extremely ambitious and quite impractical for a
limited set of contributors given the large number of ever-evolving
vulnerabilities, tools, mitigations, and attacks. Hence, while on the
one hand, we decided to invest a significant amount of effort to
bootstrap the taxonomy, on the other hand, we have chosen to
also design a collaborative platform where the community could
cooperate to reach such an ambitious goal, possibly allowing the
taxonomy to outlive its original creators and initial release.

In more detail, improving our taxonomy merely requires making
push requests on a GitHub project. Indeed, to make trivial the
update of the taxonomy, it is stored as a JSON file. Users can then
follow a straightforward 3-step workflow:

(1) fork the project on GitHub;
(2) edit the JSON file via a local editor or the GitHub editor;
(3) generate a pull request to the upstream repository.

Upon acceptance of a pull request, a GitHub action verifies the
integrity of the JSON database, reverting the update if it doesn’t
comply with the defined schema7. Otherwise, a separate action
regenerates any derived representation of the data model instance
and re-deploys the interactive web platform (see Section 4). Finally,
GitHub issues could be used to report inconsistencies and start a
discussion about major structural improvements.

3.4 Retrofitting Existing Taxonomies
In this section, we show that our data model is well-suited to cap-
ture a significant portion of the existing taxonomies. To this end,
we consider several relevant taxonomies, selected from recent or
highly cited sources, favouring the ones including various levels of
structuring and exposing diversified layering densities.

7The JSON schema can be found at [72].

Figure 4: Example: sample of the relationships related to the
vulnerability Balance Equality.

A prime illustration is the taxonomy presented by Kushwaha
et al. [44], cited by several recent works [16, 52, 97]. Here the root
causes can be straightforwardly regarded as the levels and the sub-
causes as categorieswith 1:1 associations. Alternatively, to explicitly
denote the association between sub and root causes, both can be
modelled as categories, specifying their hierarchical relationship
through child_of relations. It is even feasible to represent detection
tools, attacks, and prevention mechanisms as entities within the
data model: as a result, a vulnerability will be linked to a category,
a list of tools, an attack, e.g., example of real-world exploit, and an
associated mitigation best practice, which may encompass more
than one patch action. We can apply the same approach to other
more recent works: in Munir and Taha [52] properties, platform,
languages, and studies may be aligned respectively to levels, parent
and child categories and references; while in Vidal et al. [93], aside
from evident categories and subcategories, defect types and quali-
fiers can be specified either as level entities or within the description
attribute, each associated 1:1 to vulnerabilities. Similarly, it is possi-
ble to map taxonomies with less structured categories but provide
further information, as the one proposed by Rameder [68]. Along-
side classes definable as categories, brief descriptions and works
addressing a specific vulnerability can be respectively modelled us-
ing the description attribute and the reference entity. With additional
effort, alternative names for a vulnerability can be also included in
each connected reference by leveraging the alias attribute.

Even taxonomies that exhibit specific associations with IDs in the
CWE scheme can be successfully mapped by linking vulnerability
entities with CWE entities. Examples of such cases include the
study by Staderini et al. [84] and the taxonomy proposed by Zhou
et al. [97], where the concepts of level, CWE, and real-world attack
are captured by the respective entities in the data model. Intuitively,
taxonomies with a low or absent degree of categorization, such as
the one highly cited in literature proposed by Atzei et al. [5], can
be even more easily mapped at the discretion of the user.

Unfortunately, some taxonomies with a highly specialized struc-
ture may be harder to map into our data model, as is the case of
the scheme from Chen et al. [11]. In this case, their vulnerability
locations could be interpreted as levels, with sub-causes and causes
directly modelled as categories with child_of relationships. The at-
tack entity can be employed to model attack instances linked to
vulnerabilities, thereby retaining their association with the location
of the vulnerability they exploit. However, it remains unclear how
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to adequately represent attack consequences, and themitigation en-
tity alone does not currently support the high level of hierarchical
organization of their defences. This taxonomy appears highly spe-
cialized towards the aspect of mitigations, which, however, is often
insufficiently documented when zooming out within the context of
vulnerability detection within the blockchain community. Never-
theless, acknowledging this limitation, we are currently revising
our data model to enhance its degree of hierarchical structuring for
countermeasures and best practices.

Overall, we have shown that taxonomies with categorization
criteria grounded in common aspects and a moderate level of orga-
nization can be instantiated into our data model.

4 USE CASES
In this section, we discuss how our data model can permit several
use cases that could be relevant for the research community and,
more in general, for the blockchain ecosystem. The presented use
cases are split into two groups: supported, which align with sce-
narios where we already have some proof of concepts (PoCs), and
enabled, which show potential but need additional efforts from the
community before seeing any concrete implementation.

4.1 Supported Use Cases
Interactive Exploration of a Taxonomy. Our data model allows
the community to express several interesting relationships across
entities. However, such powerful expressiveness can easily lead to
an overwhelming complexity for a human. Hence, we believe that
our model should be seen as a graph, whose exploration may be sup-
ported by interactive visualization tools. Indeed, the ever-evolving
nature of smart contract vulnerabilities can no longer be described
through rigid and tabular listings. Hence, an interactive visualiza-
tion, exploiting the well-defined structure of our data model, may
help users dominate the large amount of information coming from
a comprehensive taxonomy, possibly helping them to realize what
are the deep interplays among vulnerabilities, identify which tools
can detect them, what are the suggested mitigations and quickly ob-
tain the most valuable bibliographic references to gather additional
details. To demonstrate the feasibility of this use case, we imple-
mented a first preliminary interactive visualization platform [71]
where users can navigate our initial instantiation of the data model
by traversing the relationships between vulnerabilities.8
Statistical Analysis. Our data model allows the development of
several statistical analyses aimed at identifying interesting trends
and patterns. For instance, the data model can support a study
aimed at understanding how different vulnerabilities were exploited
over time in different real-world attacks. Similarly, relationships
between attacks, patches and mitigations can help uncover that
mitigation approaches may vary depending on the nature of the
attack, enabling a comparison between theoretical best practices
and real-world mitigation strategies employed in response to ac-
tual threats. Moreover, by linking tools with vulnerabilities, the
model may reveal how the community is reacting to known vulner-
abilities with respect to tools development; this relationship could
also help developers to realize what tools can possibly offer better

8The visualization platform assists users in analyzing the vast amount of heterogeneous
data integrated within the data model.

vulnerability coverage. To showcase such analyses, we augmented
our preliminary interactive visualization platform [71] with a time-
based visualization of the references, tools, and attacks related to a
vulnerability.
Taxonomy-driven Security Frameworks. Our data model is
designed to help automatic tools exploit taxonomies. For instance, a
taxonomy could drive the orchestration of different detection tools.
Indeed, tools come with different trade-offs in terms of coverage,
accuracy, and scalability, thus choosing the rightmix of tools may be
an essential strategic decision when having a limited computational
budget during a security audit. One possible strategy could be:

(1) Given one instantiation of our data model, the orchestrator
ranks the tools, choosing the ones with the highest number
of linked vulnerabilities;

(2) The orchestrator executes the first tool from the ranking,
aiming at maximizing the chances of finding a flaw;

(3) Whenever a vulnerability is detected, the orchestrator eval-
uates the associated enabled_by and impacted_by relation-
ships, deciding whether it could be convenient to run one
specific tool targeted on one adjacent vulnerability;

(4) The ranking is then updated, removing any tool executed
during step (2) and step (3), and then step (2) is repeated
until the time budget is exhausted.

Additionally, the orchestrator could raise an alarm whenever
an adjacent vulnerability does not have any tool able to detect it,
pinpointing a blind spot that may require manual investigation.
Furthermore, tools’ outputs could be refined to explicitly refer to
the taxonomy, helping users understand the meaning of the results
while also favouring comparison across tools’ results. Finally, tools
may suggest the most relevant mitigations for the detected flaws.

We implemented a proof-of-concept of our orchestration strat-
egy [73] into SmartBugs [22], a framework integrating several detec-
tion tools. For instance, when considering the SimpleDAO contract
shipped with SmartBugs, our preliminary taxonomy instantiation,
our PoC ranks the tools, selecting Slither as the best candidate. Af-
ter executing it, several vulnerabilities are detected, including Low
Level Calls, which in turn could enable, e.g., Mishandled Exception.
Hence, the orchestrator considers from the ranking the three tools
able to detect Mishandled Exception, selecting sfuzz as the next tool
for execution. This tool is indeed able to confirm the presence of
such vulnerability. The orchestration then continues following the
rest of our strategy. Additional details are available at [73].

4.2 Enabled Use Cases
Efficacy-based Tool Orchestration. The relationship between a
tool and a vulnerability may be enhanced with an efficacy score, rep-
resenting the efficacy of a tool in finding a vulnerability. Devising
such scores requires likely to evaluate tools on large smart contract
datasets, commonly recognized by the community as representa-
tive of the real-world DApps. Unfortunately, at this time, such a
benchmark platform is not yet available. Nonetheless, we believe
such scores may help to significantly improve the orchestration
strategy proposed in the previous section.
Severity-based Prioritization. Traditional classification schemes
often associate a severity scorewith each vulnerability. Consistently,
our data model may devise an attribute representing the severity to
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support different prioritization processes. For instance, such score
may help refine tool orchestration, aiming at focusing analysis time
towards the most critical flaws. Moreover, scores from different
vulnerabilities could be combined in presence of specific interplays
suggested by our relationships. Finally, mitigation efforts could
be strategically allocated taking into account the flaw severity.
Unfortunately, there is not yet an established methodology for
defining such severity scores in the blockchain ecosystem.

Overcome Taxonomies Syntactic Inconsistencies. In the
case the community continues, at least in the short term, to define
different and independent vulnerability taxonomies, we nonetheless
believe there could be several advantages when such taxonomies
decide to adopt our data model. Indeed, by performing a struc-
tural comparative analysis across the graphs representing the tax-
onomies, it should be likely possible to identify semantic equiva-
lences of concepts despite inconsistent nomenclatures.

5 CONCLUSIONS
In this paper, we analyzed existing taxonomies on smart contract
vulnerabilities. Our review revealed that such taxonomies generally
lack coherence, with no standard nomenclature being commonly
adopted. They lack a formal structure beyond basic descriptions,
making them hard to integrate within automatic tools and hard
to improve over time. Thus, we proposed a data model able to
capture the key entities and associated relationships relevant to
smart contract vulnerabilities. Our data model can support the
construction of a well-structured taxonomy, opening the door to
several relevant use cases. To demonstrate such value, we provided a
preliminary instantiation, which can be updated by the community
through a collaborative project [70]. Finally, we have implemented
several PoCs to show the potential behind the presented use cases.

As future directions, we believe that our data model could be
improved in several ways. First, we plan to revise it based on direct
feedback from different blockchain security experts. A current limi-
tation that we plan to fix is the support for better hierarchical views
of the mitigations. Next, we may consider a transition from the
current data model to a knowledge graph or to adopt an SQL-based
schema, to enable specific queries and to ensure data integrity. Also,
we would further work on integrating the taxonomy with auto-
matic tools. Finally, the taxonomy would likely benefit from the
definition of a severity scoring methodology, similar to what CWSS
does for traditional software. This would enable to apply methods
for vulnerability ranking, risk analysis and mitigation strategies rec-
ommendation by leveraging the taxonomy structure, which already
facilitates a series of considerations regarding derived impacts and
environmental factors.
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