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Abstract: The Surface Water and Ocean Topography (SWOT) mission, launched in December 2022,
aims to address the crucial environmental goal of water monitoring to support preparedness for
extreme events and facilitate adaptation to climate change on global and local scales. This mission
will provide a comprehensive inventory of worldwide water resources, lakes, reservoir storage, and
river dynamics. In this work, we carried out a preliminary assessment of SWOT’s Lake product
Level 2 version 1.1, also known as “L2_HR_LakeSP”. The analysis was performed across six diverse
lakes on three continents, revealing an average median bias of 0.08 m with respect to the considered
reference, after suitable outlier removal. An overall precision of 0.22 m was found, combined with
an average correlation of 68% between SWOT and reference time series. Moreover, the accuracy
varied in the considered six lakes, since biases up to some decimeters were found for some of them;
they could be due to residual inconsistencies between the vertical reference frame of SWOT and
that of the considered reference. In summary, the first analysis of the “L2_HR_LakeSP” product,
Version 1.1, demonstrated the promising potential of SWOT for monitoring seasonal variations
in water levels. Nevertheless, notable anomalies were found in the water masks, particularly in
higher latitudes, suggesting potential difficulties in accurately delineating water bodies in those
regions. Additionally, a discernible reduction in accuracy was observed towards the end of the
monitoring period. These preliminary findings indicate some issues that should be addressed in
future investigations about the quality and potential of SWOT’s lake products for advancing our
understanding of global water dynamics.

Keywords: SWOT; inland water level monitoring; real data; accuracy assessment; lakes

1. Introduction

Lakes are an integral component of the water cycle and play a vital role within Earth’s
ecosystems, influencing various facets of daily life on our planet [1]. The noticeable effects
of climate change on these essential water sources highlight the importance of addressing
and adapting to challenges related to variations in weather patterns, rising temperatures,
and shifts in precipitation that directly impact water availability and quality.

A continuous and large-scale monitoring of lakes and reservoirs is thus more necessary
than ever. In this regard, the availability of new Earth observation (EO) methodologies
and sensors offers valuable insights while concurrently reducing the monitoring costs
and mitigating the need for expensive gauge station installations and their continuous
maintenance, especially in remote locations [2]. Hence, EO technologies can contribute
to a more efficient and cost-effective safeguard of these crucial water resources in various
applications, including but not limited to, water level and extent [3,4].

In particular, many satellite altimetry missions have been used for inland water
level monitoring, including both LiDAR (light detection and ranging) and RADAR (radio
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detection and ranging) missions. ICESat-2 (Ice, Cloud, and land Elevation Satellite-2)
and GEDI (Global Ecosystem Dynamics Investigation) are LiDAR altimeters that have
demonstrated successful applications in monitoring inland water bodies, encompassing
lakes and wide rivers thanks to their small footprint size [5–7].

Sentinel-6 [8], Sentinel-3 [9], HY-2 [10], Jason-3 [11], and Saral [12] collectively con-
stitute a set of SAR (synthetic aperture radar) and RADAR missions developed for the
monitoring of inland water levels. These advanced EO satellites can provide precise mea-
surements of water surface levels and extent, aiding in assessing water level dynamics
in lakes, rivers, and other inland water bodies. Their data are frequently employed by
specialized services such as DAHITI [13] and Hydroweb [14], enhancing the capacity to
monitor and understand variations in water levels on both regional and global scales.

In December 2022, the Surface Water and Ocean Topography (SWOT) mission was
launched, with the primary objective to provide the first worldwide inventory of water
resources, including rivers, lakes, and reservoirs, to observe the fine details of the ocean
surface topography, and to measure how terrestrial surface water bodies change over
time [15–17]. The SWOT commissioning phase lasted several months, and only in December
2023 were real data collected in April 2023 during the calibration and validation (CalVal)
phase released, including reprocessed global high rate (HR) hydrology products [18].

Nevertheless, to the best of our knowledge, only preliminary studies have been carried
out on SWOT simulated data to understand the quality and potential results of the to-be-
expected (at the time of the studies) sensor for monitoring water bodies’ level and extent.

In an early study conducted by Lee et al. [19] in 2010, SWOT observations were simu-
lated by integrating data from lake gauges, satellite radar altimeter, and satellite imagery
(Envisat 18 Hz data and TOPEX/Poseidon) across the Peace–Athabasca Delta (PAD) region
in Northern Alaska, and Western Siberia regions. The primary aim of the simulation was to
investigate the errors in the estimation of storage change from the variation in water surface
extent and level. The findings revealed that lakes larger than 1 km2 had relative errors typi-
cally below 5%, whereas lakes with a size of 1 hectare registered relative errors around 20%,
highlighting the influence of the lake size on the precision of storage change measurements.

Ten years later, Desrochers et al. [20] employed imagery captured by more recent EO
sensors (Sentinel 1, 2, and 3, Landsat 8, RCM, and Jason-3) to retrieve water level and extent
over the PAD region in Canada. These data were given as input to France’s Space Agency
(CNES) Large-Scale SWOT Simulator, only to evaluate the consistency and close coherence
between simulated data and the actual water surface level and area, confirming the results
of Lee et al. [19] with more updated EO instruments. The authors also noticed that the
seasonal growth of vegetation reduced the accuracy of retrieving water surface area in
the simulation.

Finally, Grippa et al. [21] utilized SWOT-like synthetic data generated by the SWOT
simulator from NASA-JPL, over Agoufou Lake in Mali, and retrieved water levels with an
accuracy close to 4 cm.

None of the aforementioned studies analyzed real SWOT measurements. In this paper,
we aim to carry out the first preliminary investigation on SWOT’s real data quality for
lake water level monitoring. Thus, our analysis focuses on the first public release of the
“SWOT Level 2 Lake Single-Pass Vector Data Product” (Section 2.1.1). Indeed, although
this first release of SWOT products has known limitations and the release of products
with improved quality is planned for January 2024 [18], it is crucial to start to understand
SWOT’s data accuracy and limitations and to familiarize ourselves with the sensor and its
performance in lake water level monitoring on a large scale.

2. Data
2.1. SWOT

The SWOT mission, led by NASA, in collaboration with CNES, employs the Ka-band
Radar Interferometer (KaRIn) as its principal instrument. SWOT is indeed the first mission
to adopt the wide-swath altimeter radar interferometry [22] with the aim to provide a
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highly accurate two-dimensional mapping of ocean surface topography and land surface
water elevation [23] in the form of water masks.

Specifically, SWOT generates water masks with the precision to resolve features as
narrow as 100 m in width for rivers and of 250 × 250 m for lakes and reservoirs [24]. Each
mask is associated with water level elevations characterized by an expected accuracy and
precision of 10 cm and an expected slope accuracy of 1.7 cm/1 km (when averaging over
water areas larger than 1 km2) [24–26].

SWOT’s orbit extends from 78° S to 78° N, covering at least 86% of the globe in its
three-year-long mission. SWOT revisits the same path all over the Earth every 21 days in
292 unique orbits. The water surface elevation (WSE) measured by SWOT is referenced to
the Earth Gravitational Model (EGM2008) [27] and corrected for media delays (wet and
dry troposphere, ionosphere) and tidal effects (solid tide, load tide, and pole tide) [23,28].

2.1.1. “L2_HR_LakeSP” Product

For this study, we used the “SWOT Level 2 Lake Single-Pass Vector Data Product,
Version 1.1”, released in December 2023 [18] and downloaded from NASA’s Earth Data
platform. The product, also known as “L2_HR_LakeSP”, is designed to provide lake-related
measurements obtained within each continental pass from the HR data stream of the SWOT
KaRIn instrument.

In particular, the L2_HR_LakeSP vector product is obtained from the KaRIn measured
height, geolocation, and classification data available in the “Level 2 KaRIn high rate water
mask pixel cloud product” (L2_HR_PIXC) [29]. The KaRIn instrument indeed employs
cross-track interferometry to map the Earth-surface topography in 3D, producing the so-
called “pixel cloud” (PIXC) [29]. PIXC represents the water mask for each considered water
body, and it is organized as an unstructured list of geolocated interferogram pixels (latitude,
longitude, and height), classified as water pixels (the majority) or land pixels (e.g., pixels in
the pruning mask representing inclusion zones) [30]. The shape (in the form of a polygon)
and the corresponding boundary of each water body, which constitute the L2_HR_LakeSP
product, are retrieved by applying the concave hull algorithm to the water edge pixels
of the PIXC, after the application of a height-constrained geolocation regularization [31].
Finally, several attributes, including average WSE, area, and derived storage change, are
computed considering all the water pixels of the PIXC within the considered lake boundary
and then associated with the corresponding polygon.

At the time of writing, the L2_HR_LakeSP product v.1.1 included just the lake polygons
retrieved from the SWOT data collected in April 2023 (Figure 1). These data were captured
during the one-day repeat cycle of the CalVal phase of SWOT [18,32], which occurred
from April to July 2023. Thus, the dataset is characterized by a high temporal resolution,
including at least one observation per day for each lake considered in this research.

The current L2_HR_LakeSP product release (v.1.1) comprises the water polygons in
the form of shapefiles for lakes identified in the “prior lake database”, as well as newly
detected features that were not present in the “prior river or lake databases” [23].

The data coverage extends across the entire swath, providing a comprehensive view
of individual continents for each half orbit.

2.1.2. Available Attributes

The L2_HR_LakeSP product consists of 37 attributes including the WSE with respect
to the geoid model EGM2008, calculated from an uncertainty-weighted average over all
the water pixels of the PIXC (Section 2.1.1) within the bounds of the considered water body
in the considered epoch.

It is important to note that for each considered water body, the lake boundary—and
thus the polygon representing the lake shape—changes across different epochs (Figure 2)
due to natural variations in the water body extension but also due to potential errors in
SWOT measurements or SWOT processing algorithms.
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Figure 1. Area covered by SWOT during the CalVal phase in April 2023 (black stripes) and the six
lakes considered in this study (red dots).

Figure 2. Lake Foss: different boundary extents in the 36 different acquisitions of SWOT—each color
represents a per epoch polygon (from 8 April 2023 to 26 April 2023).

In the L2_HR_LakeSP product, each fundamental observation (i.e., area, elevation) has
an associated uncertainty. These uncertainties include errors from corrections, references,
and random components. The product also includes the standard deviation of the WSE,
computed over all the water pixels of the PIXC within the lake polygon, and the total
estimated extension of the water surface and its uncertainties.

Other attributes are also available, including quality indicators (i.e., ice cover), geo-
physical references (i.e., geoid height and tides), geophysical range corrections (i.e., tropo-
spheric path delay corrections), and instrument corrections.
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2.2. Study Area, In Situ and Validation Data

Six different lakes with different characteristics were selected on three continents to
assess the quality of the SWOT L2_HR_LakeSP product (Figure 1 and Table 1). In particular,
for each lake, we compared the SWOT WSEs with the (as much as possible) contemporary
reference water levels, gathered from different sources (Table 1).

Table 1. Investigated lakes, area, source of data used for validation and number or type of avail-
able observation.

Name Center Area (km2) Reference

Ontario (North America) 43°51′N 77°57′W ≈19,000 Gauge measurements
Foss (North America) 35°33′N 99°13′W ≈35 Gauge measurements

Nasser (Egypt) 22°30′N 31°52′E ≈5250 Hydrospace
Balkash (Kazakhstan) 46°32′N 74° 52′E ≈17,000 Hydrospace
Hirakud dam (India) 21°32′N 83°52′E ≈740 DAHITI

Bayano (Panama) 9°09′N 78°46′W ≈350 DAHITI

For the lakes Ontario and Foss, we used the gauge measurements available from
the National Oceanic and Atmospheric Administration (NOAA) and “US Army Corps of
Engineers Tulsa District—Water Control Data System” networks as a reference.

For lakes Nasser and Balkhash, the reference data were obtained from the Hydroweb
service, while for the Hirakud dam and the Bayano Lake, the reference data were requested
from the DAHITI database, since Hydrospace data and the in situ measurements were
unavailable. Notably, due to the scarce data availability from both DAHITI and Hydrospace
services, a temporal linear interpolation was implemented to retrieve reference water
level measurements corresponding to SWOT epochs for the four lakes for which gauge
measurements were unavailable.

3. Method

Despite SWOT’s distinctive data-gathering procedure and complex processing algo-
rithms, a substantial presence of outliers within the L2_HR_LakeSP product was observed.
In this section, we describe the pre-processing steps and methodology implemented to
effectively remove the outliers and enhance the quality of the resulting dataset.

3.1. Pre-Processing

The pre-processing of the L2_HR_LakeSP product involved the injection of this exten-
sive dataset, available as ESRI shapefiles and exceeding 40 gigabytes, into a PostgreSQL
database using PostGIS version 16.2 [33]. This migration was carried out to facilitate sub-
sequent processing and enabled the implementation of spatial queries for the selection of
the desired lakes, and the export of the selected data as analysis-ready tables. Moreover,
the use of PostGIS allowed for an easy visualization of the data within QGIS.

3.2. Spatial Outlier Removal and Data Aggregation

The L2_HR_LakeSP product is organized in features: each lake can be represented as a
continuous single feature, i.e., a polygon. However, in the case of larger lakes, it is common
for a single lake to be represented by multiple features within one orbit, all sharing the
same “Lake name” (Figure 3).

In other words, in the used release of the product, deriving from the one-day repeat
cycle of the CalVal phase, for each lake, there was just one orbit, i.e., a passage of SWOT,
per day, except for lakes located at the intersection of two orbits, like in the case of the Foss
Lake (Figures 1 and 4). In particular, for each SWOT passage over a lake, we can have
several features in different temporally close epochs—a few seconds, or also in the very
same epoch—with different shapes and extensions (Table 2), probably due to limitations in
the current version of the water masking algorithm.
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Figure 3. Lake Ontario (North America): structure of multiple features over the same water body
over a single orbit—each color represents a different feature.

Figure 4. Lake Foss: extreme variations through the day and night with the correspondent gauge
measurement.

Hence, for each lake, we decided to temporally aggregate the data on the basis of the
area covered by the features. Firstly, for every orbit belonging to each lake, we removed
the measurements with an area lower than the 90th percentile of the total area of the
measurements in the considered orbit. This step was applied to ensure that small polygons
with different elevations did not affect the value of the temporally aggregated WSE.

Secondly, a daily weighted mean (wMean) based on the area was calculated to repre-
sent the WSE over the water body for each cycle of each pass. This step was necessary as
larger features ensured lower random and systematic uncertainties, while smaller features
included an extremely higher uncertainty and deviation from the average WSE, if com-
pared to the reference (from gauge, DAHITI, or Hydroweb), highlighting a high number of
outliers in SWOT data (Table 2).
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Table 2. Water surface elevation and its uncertainties of all measurements of the same orbit of SWOT
over the same water body (same as Figure 3)—Lake Ontario. * PassID represents the recurring pass
(orbit) and cycleID represents the number of cycles over the same pass. † Remaining measurements
after the use of the 90th percentile (Section 3.2). ‡ Statistics including area-weighted mean, mean,
and median for the remaining features after the outlier removal (Section 3.2).

time_str cycleID_passID * wse wse_u wse_r_u wse_std area_total
(UTC) (m) (m) (m) (m) (km2)

24 April 2023 12:04:06 500_022 76.917 0.380 0.050 0.224 0.042573
24 April 2023 12:04:06 500_022 76.738 0.045 0.044 0.213 0.074521
24 April 2023 12:04:07 500_022 87.635 0.003 0.002 0.153 16.72101
24 April 2023 12:04:07 500_022 57.688 0.046 0.045 0.230 0.117021
24 April 2023 12:04:07 500_022 76.948 0.025 0.022 0.162 0.190093
24 April 2023 12:04:07 500_022 89.247 0.077 0.083 0.281 0.033036
24 April 2023 12:04:07 500_022 72.528 0.053 0.052 0.275 0.077082
24 April 2023 12:04:07 500_022 73.159 0.034 0.027 0.228 0.096808
24 April 2023 12:04:08 500_022 90.784 0.019 0.011 0.135 0.330947
24 April 2023 12:04:08 500_022 73.975 0.049 0.041 0.180 0.066079
24 April 2023 12:04:08 500_022 92.117 0.045 0.045 0.107 0.049441
24 April 2023 12:04:09 500_022 55.703 0.061 0.040 0.289 0.089956

† 24 April 2023 12:04:10 500_022 73.826 0.001 0.000 0.495 723.1566
24 April 2023 12:04:11 500_022 77.038 0.004 0.003 0.264 11.26923
24 April 2023 12:04:12 500_022 83.056 0.051 0.029 0.099 0.067581
24 April 2023 12:04:12 500_022 79.763 0.059 0.061 0.222 0.049831

† 24 April 2023 12:04:13 500_022 75.952 0.001 0.000 0.605 1985.917
† 24 April 2023 12:04:19 500_022 76.088 0.001 0.000 0.535 1883.691
24 April 2023 12:04:21 500_022 85.217 0.258 0.039 0.480 0.036153
24 April 2023 12:04:22 500_022 93.767 0.238 0.024 0.276 0.488478
24 April 2023 12:04:24 500_022 76.930 0.095 0.083 0.299 0.029528

‡ Weighted mean 75.67
‡ Mean 75.29

‡ Median 75.95

Even though there was up to 2.5 m of difference between the remaining measurements
in the same area (Table 2—the WSE of the features are marked with †), the daily area-
weighted mean showed more resilience to the remaining outliers compared to the daily
mean and daily median, as larger areas responded to a more accurate measurement (Table 2
and Figure 5).

Figure 5. Lake Balkhash: mean, area-weighted mean, and median SWOT WSE in comparison to
Hydrospace (interpolated) reference data and the resilience of the area-weighted mean (wMean) to
the high variation.
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3.3. Datum Transformation

The WGS84-EGM2008 height reference frame, the one employed by SWOT (Section 2.1),
was chosen as the vertical height reference frame where to carry out the water level
comparison and to which the reference water levels were transformed.

For the North American lakes, the vertical datum transformation to EGM2008 (from
NGVD 29 for Lake Foss and IGLD 1985 for Lake Ontario [34]) was carried out using the
“online vertical datum transformation” [35] service of NOAA.

While for the elevation of the lakes acquired from Hydroweb—referenced to
GGMO2C [36]—and DAHITI—referenced to Eigen 6c4 [37]—the vertical datum trans-
formation to EGM2008 was performed through the service provided by the Interna-
tional Centre for Global Earth Models (ICGEM) [38].

4. Results

To evaluate the accuracy of SWOT’s L2_HR_LakeSP data after the outlier removal, we
conducted a comparative analysis for every considered lake by calculating the per-date
differences between SWOT area-weighted mean WSEs and the corresponding reference
measurements (Equation (1)), as well as standard statistics such as Pearson’s correla-
tion coefficient:

∆Hi = Hi − hi (1)

where ∆Hi is the difference for the date i between the SWOT area-weighted mean WSE
after the outlier removal (Section 3.2), denoted by Hi, and the temporally closest reference
water level measurement hi.

For each lake, the distribution of the differences across all the daily epochs was
characterized through robust (median, NMAD and MAE) and nonrobust (mean difference,
standard deviation and RMSE) statistics (Table 3).

Given the absence of reference data for all the daily SWOT epochs, we computed two
overall statistics over all the lakes: the average and the reference-weighted average (the last
two rows in Table 3). In the last case, the weights assigned to each lake were determined
by the number of available reference observations. This method ensured a balanced and
representative average, accounting for variations in the availability of reference information
across different observation periods.

Table 3. Standard statistics (mean difference (MD), median, standard deviation (SD), normalized
median absolute deviation (NMAD), root-mean-square error (RMSE), mean absolute error (MAE),
Pearson’s correlation coefficient) of the differences between the most synchronized water levels as
derived from SWOT and reference data (for DAHITI and Hydrospace after the interpolation), the
number of orbits and features within the dataset, and a reference-weighted statistics based on the
number of actual reference data available, given as weights.

Lake
MD Median SD NMAD RMSE MAE Correlation Orbits Total

Features Weights

(m) (m) (m) (m) (m) (m) (-) (-) (-) (-)

Ontario 0.40 0.36 0.33 0.29 0.52 0.40 0.89 18 365 18
Foss −0.13 −0.01 0.32 0.28 0.34 0.26 0.71 36 36 18

Balkhash 0.01 0.01 0.06 0.05 0.06 0.04 0.44 18 1735 10
Hirakud −0.12 −0.02 0.37 0.17 0.38 0.21 0.71 18 233 2
Nasser −0.27 −0.23 0.15 0.09 0.31 0.27 0.35 18 115 7
Bayano 0.33 0.34 0.39 0.40 0.50 0.37 0.78 19 122 2

Average 0.04 0.08 0.27 0.21 0.35 0.26 0.65 - 434 -
wAverage 0.06 0.10 0.26 0.22 0.35 0.27 0.68 - - -

The results show that SWOT achieved the most accurate assessments of lake surface
level variations in terms of the correlation coefficient (values equal to 0.89 and 0.71, re-
spectively) for Lake Ontario and Lake Foss (Table 3), where actual gauge measurements
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were available as a reference. The lower SWOT performance in understanding variations
in the remaining lakes may be attributed to potential biases in Hydrospace and DAHITI
measurements, as well as limited reference data availability for some lakes (Table 3). Ad-
ditionally, the temporal interpolation (Section 2.2) of reference data might miss capturing
the actual variations in the water level, contributing to the observed underperformance in
the lakes for which gauge measurements were unavailable. Moreover, the accuracy was
variable, since biases up to some decimeters were evident for some lakes; they could be
due to residual inconsistencies between the vertical reference frame of SWOT and that of
the considered reference.

4.1. Accuracy Dependency on Time

Lake Foss, uniquely situated in Colorado at a point of intersection between two orbits
(Figure 1), registered two measurements per day in the considered period, one at ≈4 a.m.
(22:00 local time) and one at ≈4 p.m. (10:00 local time) (UTC). These measurements showed
an intriguing pattern with variations up to 2 m between day and night, potentially linked to
surface reflectance—which is impacted by factors such as sunlight angle and atmospheric
conditions—and its effects on the sensor, overall resulting in a higher accuracy during the
night time (Figure 4).

For Lake Balkhash, which recorded the lowest NMAD of 0.05 m and the highest
accuracy with an RMSE of 0.06 m (Table 3), all the SWOT measurements were collected
during the night time. Moreover, SWOT water level measurements for this lake were
characterized by minimal variations overall, as shown by the weighted mean of the WSE in
Figure 5 (a 0.01 m variation in the period under investigation).

4.2. Changes in Accuracy

One week after the start of the measurements, SWOT’s accuracy, here estimated as
the difference between the SWOT area-weighted average WSE and the reference water
levels, started to decrease. On the 21st and 22nd of April, an anomalous increase in the
disagreement between the SWOT WSE and the reference water levels, up to 0.6 m in some
cases, was also observable: this phenomenon might be due to the CalVal phase ongoing
in the considered period or changes in the altitude of the platform hosting the KaRIn
instrument (Figure 6).

Figure 6. The difference between the area-weighted average WSE and the corresponding reference
for each cycle, anomalous increase in error on the 21st and 22nd of April, and the noticeable loss of
accuracy after one week through all investigated lakes.

4.3. Lake Polygons Distortions

Given the lack of previous studies about the L2_HR_LakeSP product, direct compar-
isons are impossible. Nevertheless, during the visual screening of the data, it came to our
attention that SWOT lake polygons presented some distortions, particularly noticeable
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and more frequent at low and high latitudes (Figure 7). These anomalies may indicate
challenges in accurately delineating water bodies in regions closer to the poles.

Figure 7. Drags and distortion of features in Sweden: each color represents a different feature (lake).

In consideration of the fact that one of SWOT’s mission objectives, in addition to
water surface elevation monitoring, is the generation of area and volume change reports,
the identified distortions in the data could potentially impact the accurate determination of
water body area and volumes.

5. Conclusions

A preliminary accuracy and precision assessment of the SWOT Level 2 Lake Single-
Pass Vector Data Product, Version 1.1, was carried out. After the removal of outliers,
an average median difference of 0.08 m with respect to reference data was found over six
different lakes on three continents. The overall precision of the data regarding the reference
was equal to 0.22 m, with an overall correlation of 68%. Moreover, the accuracy was variable
in the considered six lakes, since biases up to some decimeters were evident in some of
them; they could be due to residual inconsistencies between the vertical reference frame
of SWOT and that of the considered reference. Finally, understanding and addressing
the drags in the lake polygons, and thus in the water masks, is crucial for ensuring the
reliability and precision of SWOT measurements.

In summary, the first analysis of the SWOT Level 2 Lake Single-Pass Vector Data
Product, Version 1.1, has demonstrated the promising potential of the KaRIn instrument for
monitoring seasonal variations in water levels. Nevertheless, these preliminary findings
indicate some issues that should be addressed in future investigations on the quality and
potential of SWOT’s lake products for advancing our understanding of global inland
water dynamics. Notably, as this investigation concerned the analysis of data collected
during the CalVal phase, SWOT products are expected to achieve even higher precision in
subsequent releases. As future developments, a more robust outlier removal procedure
will be implemented, also analyzing the updated version of the lake products, in addition
to understanding the effect of seiche, drags, gaps, and biases on the data quality over
more lakes.
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