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Abstract

Deep learning and symbolic artificial intelligence remain the two main paradigms in Artificial
Intelligence (AI), each presenting their own strengths and weaknesses. Artificial agents should
integrate both of these aspects of AI in order to show general intelligence and solve complex
problems in real-world scenarios; similarly to how humans use both the analytical left side
and the intuitive right side of their brain in their lives. However, one of the main obstacles
hindering this integration is the Symbol Grounding Problem [146], which is the capacity to
map physical world observations to a set of symbols.

In this thesis, we combine symbolic reasoning and deep learning in order to better represent
and reason with abstract knowledge. In particular, we focus on solving non-symbolic-state
Reinforcement Learning environments using a symbolic logical domain. We consider differ-
ent configurations: (i) unknown knowledge of both the symbol grounding function and the
symbolic logical domain, (ii) unknown knowledge of the symbol grounding function and prior
knowledge of the domain, (iii) imperfect knowledge of the symbols grounding function and
unknown knowledge of the domain. We develop algorithms and neural network architectures
that are general enough to be applied to different kinds of environments, which we test on
both continuous-state control problems and image-based environments. Specifically, we de-
velop two kinds of architectures: one for Markovian RL tasks and one for non-Markovian RL
domains. The first is based on model-based RL and representation learning, and is inspired by
the substantial prior work in state abstraction for RL [116]. The second is mainly based on re-
current neural networks and continuous relaxations of temporal logic domains. In particular,
the first approach extracts a symbolic STRIPS-like abstraction for control problems. For the
second approach, we explore connections between recurrent neural networks and finite state
machines, and we define Visual Reward Machines, an extension to non-symbolic domains of
Reward Machines [27], which are a popular approach to non-Markovian RL tasks.

Keywords: Neurosymbolic AI, Deep Learning, Symbolic AI, Reinforcement Learning, Deep
Reinforcement Learning.





Contents

List of Figures vi

List of Tables x

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I Preliminaries 7

2 Background 8
2.1 Symbolic AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Propositional logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 First Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 How to define logic temporal properties . . . . . . . . . . . . . . . . . 9

2.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Markov Decision Processes and Reinforcement Learning . . . . . . . . 12
2.2.2 Abstractions for MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Neurosymbolic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Deep Learning stepping in the white side: discrete neural networks . . 19
2.3.2 Symbolic Logic stepping in the dark side: continuous logic . . . . . . . 20

3 State of the art 22
3.1 Discovering an abstract model for markovian tasks . . . . . . . . . . . . . . . 22

3.1.1 Finite partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Continuous encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Symbol grounding in Reinforcement learning . . . . . . . . . . . . . . 27
3.1.4 Symbol grounding in NeSy AI . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Discovering temporal logic knowledge from non-markovian tasks . . . . . . . . 32
3.2.1 LTL and non-markovian RL . . . . . . . . . . . . . . . . . . . . . . . . 32

II Discovering logical knowledge in markovian non-symbolic domains 35

4 STRIPS-Like Symbolic Abstractions for Control RL Problems 36
4.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 The Interaction with The Environment . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Learning the Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Symbol Grounder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iv



4.3.2 Symbolic Transition Model . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.3 Symbolic Value Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.4 Training Neural Networks with Symbolic or Discrete Layers . . . . . . 42
4.3.5 Value Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.6 Transition Model Training . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Action Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6.1 Environments Description . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6.3 Symbol-Set-Size Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6.4 Training Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6.5 Planning Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6.6 Transfer the Symbolic Domain to New Tasks . . . . . . . . . . . . . . 50
4.6.7 Representation Insights . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

III Discovering logical knowledge in non markovian non-symbolic do-
mains 58

5 Symbol Grounding Exploiting LTLf Knowledge 60
5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Definition and Examples of Groundability through a Temporal Property . . . 65
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.2 Results on MNIST Dataset . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.3 Discussion on ‘Groundability’ . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 DFA Induction with Neural Networks 78
6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.1 DeepDFA Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.1.2 Temperature Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.3 Model Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.1 Target DFAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.4 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.6 Ablation Study: the Effect of Changing the State Space Size . . . . . . 87

6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Visual Reward Machines 89
7.1 Non Markovian RL Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1.1 Minecraft Environment Example . . . . . . . . . . . . . . . . . . . . . 90
7.2 Framework Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



7.3 VRM as an Extension of DeepDFA . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3.1 From DeepDFA to DeepMooreMachine . . . . . . . . . . . . . . . . . . 91
7.3.2 Embedding Uncertainty over Symbols . . . . . . . . . . . . . . . . . . 92

7.4 Visual Reward Machine Definition . . . . . . . . . . . . . . . . . . . . . . . . 93
7.5 Visual Reward Machine Implementation with NN . . . . . . . . . . . . . . . . 93

7.5.1 Reasoning and Learning with VRM . . . . . . . . . . . . . . . . . . . . 94
7.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.6.1 Offline symbol grounding . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.6.2 Reinforcement Learning and online grounding . . . . . . . . . . . . . . 96
7.6.3 Comparisons with chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . 97
7.6.4 Learning the machine from imperfectly grounded symbols . . . . . . . 98
7.6.5 Learning All End-to-End . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

IV Conclusions 100

8 Conclusions 101
8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 104

A Appendix 119



List of Figures

2.1 Different formalisms for specifying a temporal behaviour: a) an example of
LTLf formula with the corresponding equivalent Deterministic Finite Automa-
ton, b) matrix representation of a Probabilistic Finite Automaton . . . . . . 10

2.2 example of the three categories: left) finite partitioning, center) continuous
encoding, right) symbol grounding . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 example of abstraction: ϕ is the abstraction and fϕ is the function induced by
the abstraction. Their composition fϕ(ϕ(·)) should be a similar as possible to
the target function f(·) to have a good representation performance. . . . . . 15

2.4 a) Architecture of a multilayer neural network. b) Multilayer NN prediction
scheme. c) Recurrent prediction scheme. d) A recurrent neural network unfolded. 18

2.5 Some techniques to discretize the output of a neural network in a safe way
a) Straight Through estimator c) A Gumbel-Softmax-activated variational au-
toencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 An example of Logic Tensor Network, taken from [16]. In this example two
variables (x and y), one function (f) and one predicate (p) are represented.
Variables x and y are grounded to the available data (the values v1, v2 and v3
for variable x and the values w1 and w2 for variable y). The rightmost tensor
in the image, G(p(x, f(x, y))), is the grounding for the binary predicate p when
interpreted over x and f(x, y). This is grounded by applying the continuous
module p to the grounding of x and the grounding of f(x, y); which is in turn
grounded applying the f module to the groundings of x and y. . . . . . . . . 20

3.1 Discovery of logical knowledge from raw domains . . . . . . . . . . . . . . . . 23
3.2 An example of state aggregation satisfying the bisimulation preperty. This

4-states deterministic ground MDP can be partitioned in 2 abstract states
without loosing the capability to predict the next reward and abstract state. . 24

3.3 Aligned versus misaligned abstractions: . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Training scheme of the discrete world model used in [88] . . . . . . . . . . . . 26
3.5 LatPlan framework from [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Some examples of graph representing the state space structure for different

domains. They represent the input of algorithm described in [22] . . . . . . . 28
3.7 An example of grounding for symbols Z, Z1, in a robot navigation problem,

from [102] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.8 Framework from [39] for grounding digits from high level labels and prior sym-

bolic knowledge through abduction . . . . . . . . . . . . . . . . . . . . . . . . 30
3.9 Categorization of NeSy approaches . . . . . . . . . . . . . . . . . . . . . . . . 31
3.10 A schematic view of Restraining Bolts [74] . . . . . . . . . . . . . . . . . . . . 32
3.11 Categorization of works on non-markovian RL . . . . . . . . . . . . . . . . . . 33

4.1 A global view on the framework . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Continuous codes of a random batch of states with increasing margin. On the

y axis: x1 values between 0 and 1; on the x axis: x0 values between 0 and 1 . 42

vii



4.3 a) the symbolic quality model (b) computation of the transition model loss . . 43
4.4 Performance with different sizes of the symbol set on the Acrobot environment. 47
4.5 Training performances on Cartpole (a), Acrobot (b), Lunar Lnader (c) and

NAO Soccer Player (d). On the y: axis mean training reward; on the x axis:
episodes. Solid lines represent mean values, shaded areas represent standard
deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Planner performances: Figures show rewards obtained with monitor replanning
using the planner acquired through experience with different planning horizons
respectively without and with uncertainty estimation, for the Acrobot environ-
ment, (a) and (b), for the Cartpole enviornment (c) and (d), and for the NAO
robot (e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Transfer learning to a new task in the Lunar Lander domain. . . . . . . . . . 50
4.8 a) Acrobot environment b)Distances from the final state during an episode of

Acrobot: distances are computed respectively in the original MDP state-space
(top) and in the abstract representation space (bottom). On the y axis: L1
distance from goal; on the x axis: timesteps. c) Soccer player NAO robot.
d) ball-distance from the NAO position computed in the orginal state-space
(left) and in the abstract-space (right), smaller values shown in brighter red
and bigger values shown in darker red. . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Comparison of symbol grounding in the Cartpole environment: (left) symbol
grounding obtained with our algorithm, (right) symbol grounding obtained if
we train only the symbolic encoder and the Q function, and we interact with
the environment without planning, namely choosing in each state the action
maximizing the Q function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.10 Cartpole symbolic representation: a) distances in the symbolic space from
the symbolic code associated with (0,0,0,0); b) different codes, any different
code is shown in a random shade of red; c) action to take according to the
optimal policy; d) truth value of each symbol in the state space. . . . . . . . . 53

4.11 Acrobot symbolic representation: a) distances in the symbolic space from
the symbolic code associated with (0,0,0,0,0,0); b) different codes, any different
code is shown in a random shade of red; c) action to take according to the
optimal policy; d) Heatmap of the weights assigned to each symbol by the
policy network, each column is a symbol, green represent a weight near to 0,
yellow an average weight and red an high weight . . . . . . . . . . . . . . . . 54

4.12 NAO symbolic representation: a) distances in the symbolic space from the
symbolic code associated with (0,0); b) different codes, any different code is
shown in a random shade of red; c) action to take according to the optimal
policy; d) truth value of each symbol in the state space. . . . . . . . . . . . . 54

5.1 When the LTLf symbols are not grounded in observation data the knowledge
of the formula is useless to the task . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 a) An example of LTLf formula with the corresponding equivalent automaton,
b) our framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Pyramid example. (a) Drawing of the pyramid. (b) DFA corresponding to
the instructions to build the pyramid. Bricks are not all groundable through
the pyramid instructions, in fact brick 1 and 2 can be confused each other.
Expected symbol grounding accuracy: 100% or 33% . . . . . . . . . . . . . . 65

5.4 Gate example. (a) Drawing of the gate. (b) DFA corresponding to the in-
structions to build the gate. Bricks are all not groundable through the gate
instructions, in fact brick 0 and 1 can be confused each other if bricks 2 and 3
are confused each other. Expected symbol grounding accuracy: 100% or 0% . 66



5.5 Experiments over 20 Declare formulas. In the first row: sequence classifi-
cation accuracy, in the second row: image classification accuracy. They
are obtained by training on three different datasets: (first columns) com-
plete dataset, (second column) restricted dataset, (third column) complete
dataset with non-mutually exclusive symbols. Solid lines represent mean
values, shaded areas represent standard deviations. . . . . . . . . . . . . . . . 68

5.6 Experiments over 20 Declare constraints training on the full dataset in mu-
tually exclusive symbols. On the y axis: sequence classification accuracy
; on the x axis: epochs of training. Solid lines represent mean values, shaded
areas represent standard deviations. . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Experiments over 20 Declare constraints training on a restricted dataset in
mutually exclusive symbols setting. On the y axis: sequence classifica-
tion accuracy ; on the x axis: epochs of training. Solid lines represent mean
values, shaded areas represent standard deviations. . . . . . . . . . . . . . . . 71

5.8 Experiments over 20 Declare constraints training on the full dataset in non
mutually exclusive symbols setting. On the y axis: image classification
accuracy ; on the x axis: epochs of training. Solid lines represent mean values,
shaded areas represent standard deviations. . . . . . . . . . . . . . . . . . . . 72

5.9 Experiments over 20 Declare constraints training on a restricted dataset in
mutually exclusive symbols setting. On the y axis: image classification
accuracy ; on the x axis: epochs of training. Solid lines represent mean values,
shaded areas represent standard deviations. . . . . . . . . . . . . . . . . . . . 73

5.10 Experiments over 20 Declare constraints training on the full dataset in non
mutually exclusive symbols setting. On the y axis: sequence classifica-
tion accuracy ; on the x axis: epochs of training. Solid lines represent mean
values, shaded areas represent standard deviations. . . . . . . . . . . . . . . . 74

5.11 Experiments over 20 Declare constraints training on the full dataset in non
mutually exclusive symbols setting. On the y axis: image classification
accuracy ; on the x axis: epochs of training. Solid lines represent mean values,
shaded areas represent standard deviations. . . . . . . . . . . . . . . . . . . . 75

6.1 a) An example of PFA with three states and two symbols: graph describing
the PFA, equivalent representation in matrix form, and produced states and
acceptance probabilities while processing the string "ab". b) An exmple of
DFA: graph describing the PFA, equivalent representation in matrix form, and
produced states and acceptance probabilities while processing the string "ab".
In particular, the DFA in (b) is obtained by the PFA in (a) approximing the
matrix representation to the closest one-hot vectors. . . . . . . . . . . . . . . 79

6.2 Results on Tomita 5 with different error rates in the training dataset. a) Num-
ber of states of predicted DFAs b) Test accuracy . . . . . . . . . . . . . . . . 83

6.3 Results obtained varying the hidden state size hyperparameter with Tomita5
(a-b) and with with a random DFA of size 20 and alphabet size 3 (c-d). For
each hidden state size we do 10 experiments. . . . . . . . . . . . . . . . . . . 86

7.1 a) Visual Minecraft environment. b) task specification as Reward Machine . . 90
7.2 Implementation of a visual reward machine for the Visual Minecraft environment 94
7.3 Results obtained by exploiting the reward machine structure to learn the sym-

bol grounding function offline for the Visual Minecraft environment. a) Visual
Reward Machine accuracy over sequences. b) Symbol grounding accuracy over
single images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



7.4 Results obtained by exploiting the reward machine structure to learn the sym-
bol grounding function for the Visual Minecraft environment. a) Training re-
wards Right) Symbol grounding accuracy over single images . . . . . . . . . . 97

7.5 Learning DFA from traces composed of imperfectly grounded symbols: results
on the 7 Tomita languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.1 List of Declare formulas as in [49]. We tested on all except last(a). Meaning of
modal operators symbols:⃝=X, ♢=F, □=G . . . . . . . . . . . . . . . . . . 120



List of Tables

4.1 Percentage of different symbolic states found in the analyzed environments . . 55

6.1 Comparison between DeepDFA, L* extraction and DFA-inductor on the Tomita
Languages. We report test accuracy, mean number of states |Q̂| and the number
of parameters used #W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Comparison between DeepDFA and a DFA-inductor when the training set con-
tains 1% of errors. Results on Tomita Languages. . . . . . . . . . . . . . . . . 84

6.3 Comparison between DeepDFA and a DFA-inductor when the training set con-
tains 1% of errors. Results on random DFAs. . . . . . . . . . . . . . . . . . . 84

6.4 Comparison between DeepDFA and L* extraction on randomly generated DFAs.
The train set does not contain errors. . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Comparison between DeepDFA and a SAT-based DFAinductor. The train set
does not contain errors. For each DFA we keep the experiment achieving best
dev accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xi



Chapter 1

Introduction

Deep learning [113] and symbolic AI [137] correspond to the two main paradigms in current
artificial intelligence (AI). Deep learning is based on the use of artificial neural networks (NN),
which are modeled and inspired by the human brain. It is generally employed to recognize
patterns in large datasets and to classify, predict, and process data. On the other hand,
Symbolic AI is based on the idea that knowledge can be represented as symbols, which can
then be manipulated and reasoned with to solve problems. It is used for tasks that require
logical reasoning and problem-solving, such as planning and discrete decision-making.

Despite the enormous progress made in these two areas, however, machines are still a long
way from general intelligence [33], which seems to be a heritage of only our species. The
human being, however, has not always been the same, and its intelligence has evolved over
millions of years. In particular, the modern human, Homo Sapiens, appeared ’only’ around
50’000 years ago during the Upper Paleolithic, which is considered the big bang of human
culture, exhibiting more innovation in thousands of years than in the previous six million years
of human evolution. Researchers in many different areas, such as psychology, anthropology,
archeology, and cognitive science, have so far investigated what led to the "explosion" of our
intelligence. Many agree that this time coincides with the birth of complex symbolic language
and reflects the onset of the capacity to internally represent complex, abstract, internally
coherent systems of meaning using symbols. Other theories suggest that homo sapiens was
the first capable of cognitive fluidity, namely the ability to shrink or expand the field of
attention to favor effortful logical thinking or fast and intuitive thinking depending on the
situation [65].

Regarding artificial intelligence, Deep Learning, particularly Deep Reinforcement Learning
(DRL) [151][124], deals with the first part of evolution. It allows artificial agents to develop
basic cognitive skills, perceive the environment, interact with it, and eventually, other agents.
But it is not concerned with constructing an abstract, composite and reusable representation
of the environment like the symbolic ones used for general planning. Since most of the
representations used for deep learning are vectorized, sparse, distributed, and don’t transfer
to different tasks or data. Classical symbolic AI, on the other hand, completely avoids the
problem of abstraction, and deals only with how to combine logical symbols respecting rules
in a handcrafted prior model, but not with how this model can be constructed or adapted
to the experienced world. As a result, DRL can solve mainly strategically simple problems
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on raw high-dimensional observations and low-level actions. On the other hand, symbolic
planning can solve strategically complex problems only once they have been deprived of all
their perceptual complexity. Neither can solve strategically complex tasks in a raw and
realistic environment.

Neurosymbolic artificial intelligence (in short NeSy AI) [20][43] is the area that mixes
machine learning, particularly deep learning, with classical symbolic reasoning. NeSy AI
is an attempt to reach that kind of fluid intelligence characterizing the human mind, where
induction, deduction, perception, and reasoning are all perfectly integrated into a single agent
brain. The most crucial problem for integrating symbolic reasoning and deep perception is
the so-called symbol grounding problem.

Symbol grounding is the process of connecting symbolic representations with the physical
world [146][145]. Ideally, an intelligent agent should be able to imagine new facts on a mental
plane (like reasoning on a knowledge base), grounding concepts and mental abstractions in the
perception of real objects in the physical plane, and use both these two levels of knowledge
to decide how to act in the physical world. However, this smooth interface between the
physical and the logical plane is very hard to implement in artificial agents. Although symbol
grounding has been of interest to AI researchers for many decades, it continues to be one of
the most important challenges in AI and Cognitive Science today.

In this thesis, we will focus on solving non-symbolic problems by extracting a symbolic
logical domain from it. In other words, we force the agent to create a symbolic abstraction
of its environment, and we test its capability to move and act in the physical environment
by ‘thinking’ only in this symbolic model. For this reason, we will concentrate mainly on
systems based on this conceptual division in: (i) symbolic world, (ii) subsymbolic world.
Although the agent performs the task in the continuous subsymbolic world, we assume there
is a latent symbolic representation that can describe the task in a significantly more compact
and functional way. Therefore we will review existing methods and describe new models and
algorithms, all based on this two-layered view.

This view of the world is more common in NeSy AI, which generally addresses logic
domains presenting non-symbolic observations, such as math operations on images [120] and
visual logic games such as sudoku [167][14]. However, we will apply this conceptual division
within Reinforcement Learning tasks, ranging from control problems to visual tasks in both
markovian and non-markovian settings. Although this is pretty unusual, we took inspiration
from the huge prior work on state abstraction and representation learning in the scope of
RL tasks [116]. The concept of abstraction is really close to that of symbol grounding. RL
algorithms have been shown to benefit highly from a wise and abstract representation of
the environment learned end-to-end [128] [2]. For this reason, we deem that (continuous or
symbolic) abstractions should be able to emerge from experience [140].

Based on this division, the task in the real world can be viewed as the combination of two
processes: a symbolic logical process that alters the symbolic configuration of the world, and
a rendering or emission function that produces the observation that we see in the world [58].
The emission function is the inverse of the symbol grounding function. To uncover the latent
logical process in the task, we must therefore identify two functions: (i) a symbol grounding
function that maps world observations to the truth values of a finite set of propositional

Elena Umili 2



1.1. Contributions

symbols, (ii) a logical domain that regulates the activity of the symbols.
Uncovering both of these two functions from end-to-end data is extremely challenging,

and very few works exist on the subject [12][41]. Most prior works learn only one function
by leveraging prior knowledge of the other. For example, some works learn the logical model
by already knowing the grounding function [9][153]. In particular, this can be accomplished
by directly leveraging labels on symbolic abstraction (which is the simplest case) or by using
unsupervised learning techniques, such as clustering, autoencoding, and factorization, which
may be adapted to extract discrete features [97]. Another approach is learning the grounding
function by leveraging the knowledge of the symbolic logical model. This is mainly used in
Nesy AI tasks [42] [54] [174] [16] [120] [176] [171] [39] [95] [154] and is very rarely applied to
RL tasks [104].

In this thesis, we present several works on this line. In particular, the thesis first addresses
Markovian RL problems and then moves on to non-Markovian problems. The markovian
property applies to all those environments where the next state environment outcome depends
on the current state and action only, and does not depend on past states and actions. Although
this formulation is general enough to model most decision-making problems, it has been
observed that many natural tasks are non-Markovian [117]. Solving non-markovian tasks is
much harder, since the agent has to consider the entire history of states and actions to make
decisions in the environment correctly.

In particular, research on non-Markovian Reinforcement Learning (RL) tends to be more
closely connected to symbolic logic. Since defining reward functions for non-Markovian tasks is
not straightforward, these tasks are generally defined using formalisms based on automata or
Linear Temporal Logic (LTL) [45][27]. Although this solves the problem for finite and discrete
domains, using this type of formal symbolic language in non-symbolic tasks requires grounding
symbolic abstractions in environment observations. The vast majority of works assume prior
knowledge of the grounding function, also known as the labeling function [45][27][67][175][135].
We will explore how this assumption can be removed through the use of neurosymbolic frame-
works.

1.1 Contributions

The main contributions presented in the thesis are summarized here.
The first contribution is defining a novel neural network framework to extract a sym-

bolic planning model from a continuous state-space Markov Decision Process. The approach
we propose naturally combines interaction, symbolic representation learning, and symbolic
online planning. Our system leverages experience-data gained from the environment to au-
tonomously learn a symbol grounding function and a symbolic planning model composed of:
(1) a symbolic transition model; (2) a quality function for symbolic states. This model is
used at training time to lead the interaction with the world. At each interaction step, we
perform fast symbolic online planning over a finite horizon to choose the action to execute
in the environment. Let us notice the success of this strategy in the environment implicitly
validates our automatically extracted symbolic model, since the system is able to effectively
solve the original continuous-state MDP by reasoning only in the finite and symbolic domain.
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We evaluate on several OpenAI gym environments and one robotic scenario, successfully ad-
dressing different types of control problems. Interestingly, the generated symbol grounding
function is very task-related and gives some precious insights. Furthermore, we use the symbol
grounding function to shape the reward so as to handle different tasks in the environment.

While this contribution handles the discovery of logical knowledge for markovian tasks,
the others focus o non-markovian tasks. In particular, we present three on this topic.

First, we concentrate on grounding the symbols of LTL specifications in image data by
exploiting prior knowledge of the formula and a set of image sequences labeled as accepted or
not accepted by the formula. The proposed approach consists in translating the formula in an
equivalent Finite Deterministic Automaton (DFA) and then interpreting the latter in fuzzy
logic, basically transforming it in a recurrent Logic Tensor Network (LTN) [16]. We use this
fuzzy model to train the weights of a Convolutional Neural Network (CNN) to maximize the
formula’s satisfaction when evaluated on the available data. Experiments show that using the
discovered symbol grounding function and the given LTLf formula to evaluate the sequences
at test time outperforms deep learning models trained only with the data. This demonstrates
that formula knowledge can speed up the classification of image sequences, even if we do
not know how to recognize the formula symbols in the images. Furthermore, we obtained a
very high image classification accuracy without exploiting any image label. This happens for
the majority of the formulas except for a few cases. The latter’s formulas are not specific
enough to impose the correct grounding. We formally define the concept of ‘groundability,’
specifying in which conditions supervision on the formula output is not supposed to bring
the symbol grounder to learn the correct grounding. The second contribution related to
temporally extended (or non-markovian) tasks concentrates instead on the induction of the
symbolic model from sequences of already grounded symbols. We define a novel recurrent
neural network architecture, DeepDFA, that we use to learn a DFA from a set of labeled
traces. Unlike usual Recurrent Neural Networks (RNN), this model is completely explicable
after training. We obtain this feature by defining the RNN as a Probabilistic Finite Automaton
where we can control how much the model is stochastic through a temperature parameter.
During training, we smoothly decrease the temperature to drive the model to become closer
and closer to a DFA. When the temperature is low enough, we extract from the neural model
activations a crispy DFA model and use it to classify test sequences. We compared this model
with a state-of-the-art algorithm to extract a DFA from a pre-trained RNN [169] and a state-
of-the-art logic induction method based on SAT solvers [177]. Results show that DeepDFA
is more accurate and faster than both, especially on big-size target DFAs. Furthermore, it is
robust to erroneous labels, maintaining top accuracy with up to 15% of errors in the training
dataset. At the same time, the SAT-based method completely fails to identify the correct
DFA even with 1% of errors.

Finally, the last contribution of the thesis is the definition of Visual Reward Machines,
a NeSy framework to embed both symbol grounding and DFA induction in a single system.
The framework is based on an extension of DeepDFA to embed probabilistic beliefs on symbol
truth values. Thanks to this extension, we integrate the previous model with a neural symbol
grounder in an end-to-end fully neural system composed of two trainable models: a CNN
performing symbols grounding and a specialized RNN performing DFA induction. We can
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initialize the system to represent a specific machine and/or grounding function if we know this
information. In this case, it will behave exactly as a deterministic machine. Although, in case
of missing information in the specifics, we can learn the unknown models from data through
back-propagation. Let us notice the system could, in principle, also learn both the symbol
grounding and the automaton simultaneously from only data. However, experiments on this
learning configuration are not promising. In most cases, the system overfits training data,
since it can oversimplify the grounding so to oversimplify the machine structure. However,
this is reasonable given the weak supervision given to the system. However, we successfully
tested other learning configurations. In particular, the system can ground quite a big set of
symbols when trained on long sequences exploiting the knowledge of the DFA. Furthermore, it
outperforms logic DFA induction methods when trained on symbols grounded by an imperfect
symbol grounder.

1.2 Thesis Organization

The remainder of the thesis is organized as follows.

• Part I: Preliminaries

– in Chapter 2, we provide the background knowledge necessary to understand the
rest of the thesis. In particular, we give some preliminary concepts related to
Symbolic AI, Deep Learning and Deep Reinforcement Learning, and Neurosymbolic
AI.

– In Chapter 3, we review the existing literature on the discovery of logical domains
from nonsymbolic environments; specifically, we will explore works related to sym-
bol grounding in Reinforcement Learning abstraction, NeSy AI, and non-markovian
RL.

• Part II: Discovering logical knowledge in markovian nonsymbolic domains

– In Chapter 4, we describe in detail the first contribution of this thesis, which
regards the learning of a symbolic planning domain from control RL environments.

• Part III: Discovering logical knowledge in non-markovian nonsymbolic domains

– In Chapter 5, we discuss how we defined a learning framework to exploit LTLf
specifications in a visual sequential classification task, representing our second con-
tribution.

– in Chapter 6, we explain in detail The definition and results of DeepDFA, our novel
recurrent neural model for DFA induction.

– In Chapter 7, we define Visual Reward Machines, and we apply it to a non-
markovian RL task specification with missing information.

• Part IV: Conclusions

– In Chapter 8, we conclude the thesis with final discussions and directions for future
research
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1.3 Publications

The contributions reported in Chapters 4, 5 and 7 of the thesis produced the following pub-
lications respectively

• Elena Umili, Emanuele Antonioni, Francesco Riccio, Roberto Capobianco, Daniele
Nardi, Giuseppe De Giacomo. Learning a Symbolic Planning Domain through the In-
teraction with Continuous Environments. Workshop on Bridging the Gap Between AI
Planning and Reinforcement Learning (PRL). 2021.

• Elena Umili, Roberto Capobianco, Giuseppe De Giacomo. Grounding LTLf Specifica-
tions in Images. In Proceedings of the 16th International Workshop on Neural-Symbolic
Learning and Reasoning as part of the 2nd International Joint Conference on Learning
& Reasoning (IJCLR). 2022.

• Elena Umili, Francesco Argenziano, Aymeric Barbin, Roberto Capobianco. Visual Re-
ward Machines. In Proceedings of the 17th International Workshop on Neural-Symbolic
Learning and Reasoning. 2023.

Some results of Chapter 5 and results of Chapter 6 of the thesis are in papers currently under
review

• Elena Umili, Roberto Capobianco, Giuseppe De Giacomo. Grounding LTLf Specifica-
tions in Image sequences. (Submitted to international conference). 2023.

• Elena Umili, Roberto Capobianco. DeepDFA: a transparent neural network design for
DFA induction. (Submitted to international conference). 2023.

Other publications

• Elena Umili, Marco Tognon, Dario Sanalitro, Giuseppe Oriolo, Antonio Franchi. Communication-
based and Communication-less approaches for Robust Cooperative Planning in Construc-
tion with a Team of UAVs. In Proceedings of the 2020 International Conference on
Unmanned Aircraft Systems (ICUAS). 2020.
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Chapter 2

Background

In this chapter, I introduce the background knowledge necessary to understand the rest of the
thesis. In particular, I first present some elements of symbolic AI, with a particular focus on
Linear Temporal Logic and its interpretation over finite traces and links with Deterministic
Finite Automaton (DFA). Then, I review the key elements and concepts of Reinforcement
Learning (RL), abstraction in reinforcement learning, and Deep Learning (DL). Finally, I
conclude by giving an overview of neurosymbolic (NeSy) AI, focusing primarily on the symbol
grounding problem and describing in detail the NeSy frameworks most closely related to the
work described in this thesis.

2.1 Symbolic AI

2.1.1 Propositional logic

Propositional logic (PL) is the simplest form of logic where all the statements are made
by propositions. A proposition is a declarative statement which is either true or false. In
propositional logic, we use symbolic variables to represent the logic, and we can use any
symbol for representing a proposition. The syntax of propositional logic defines the allowable
sentences for the knowledge representation. There are two types of Propositions: (i) atomic
propositions, (ii) compound propositions. The former consist of a single proposition symbol.
The latter are constructed by combining simpler or atomic propositions, using parenthesis and
logical connectives. There are five connectives (¬, ∧, ∨, →, ↔), that are called respectively:
negation, conjunction, disjunction, implication and biconditional.

2.1.2 First Order Logic

In propositional logic, we can only represent the facts, which are either true or false, therefore
PL is not sufficient to represent complex sentences or natural language statements. For this
motivation First Order Logic (FOL) was born. FOL is an extention of PL, that develops
information about the objects in a more easy way and can also express the relationship
between those objects. First Order Logic assumes the following things in the world

• Objects: they denote things we want to speak about, such as people, numbers, colors,
squares, pits, locations, etc.
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• Relations on objects: these can be either unary relations that specify a property of an
object, such as is_red, is_round, is_on_table, or n-any relations specifying a property
that correlates n objects, such as sister_of, father_of, has_color, etc; relations can be
either true or false, as example father_of(Jhon, Mary) = true describes the fact that
"Jhon is the father of Mary".

• Functions: a function takes as input a certain number n of objects as arguments and
returns one object as output, like for example father_of(Mary) = Jhon describes the
fact that "Jhon is the father of Mary", but in a procedural way.

The basic syntactic elements of FOL are the following types of symbols: constants (to refer
to constant objects), variables, predicates (to denote relations between objects), functions,
connectives (¬, ∧, ∨, →, ↔), equality (==) and quantifiers (∀,∃).

2.1.3 How to define logic temporal properties

Linear Temporal Logic

Linear Temporal Logic (LTL) [133] is a language which extends traditional propositional logic
with modal operators. With the latter we can specify rules that must hold through time. Given
a set P of propositions, the syntax for constructing an LTL formula ϕ is given by

ϕ ::= ⊤ | ⊥ | p | ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2 (2.1)

where p ∈ P . We use ⊤ and ⊥ to denote true and false respectively. X (Next) and U (Until)
are temporal operators. Other temporal operators are: N (Weak Next) and R (Release)
respectively, defined as Nϕ ≡ ¬X¬ϕ and ϕ1Rϕ2 ≡ ¬(¬ϕ1U¬ϕ2); G (globally) Gϕ ≡ ⊥Rϕ and
F (eventually) Fϕ ≡ ⊤Uϕ. A trace ρ = ρ[0], ρ[1], .. is a sequence of propositional assignments,
where ρ[x] ∈ 2P (x ≥ 0) is the x-th point of ρ. Intuitively, ρ[x] is the set of propositions that
are true at instant x. Additionally, |ρ| represents the length of ρ. In this thesis, we will
focus mainly on LTL interpreted over finite traces (LTLf) [46]. Such interpretation allows
the executions of arbitrarily long traces, but not infinite, and is adequate for finite-horizon
planning problems.

Given a finite trace ρ, |ρ| < ∞, and an LTLf formula ϕ, we inductively define when ϕ is
true for ρ at point x (0 ≤ x < |ρ|), written ρ, x ⊨ ϕ, as follows [133]:

ρ, x ⊨ ⊤ and ρ, x ⊭ ⊥;

ρ, x ⊨ p iff p ∈ ρ[x];

ρ, x ⊨ ¬ϕ iff ρ, x ⊭ ϕ;

ρ, x ⊨ ϕ1 ∧ ϕ2, iff ρ, x ⊨ ϕ1 and ρ, x ⊨ ϕ2;

ρ, x ⊨ Xϕ, iff x+ 1 < |ρ| and ρ, x+ 1 ⊨ ϕ;

ρ, x ⊨ ϕ1Uϕ2, iff there exists y such that x ≤ y < |ρ| and ρ, y ⊨ ϕ2, and for all z, x ≤ z < y,

we have ρ, z ⊨ ϕ1.

(2.2)
An LTLf formula ϕ is true in ρ, denoted by ρ ⊨ ϕ, when ρ, 0 ⊨ ϕ.

Any LTLf formula ϕ can be translated in an equivalent Deterministic Finite Automaton
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(a) (b)

Figure 2.1: Different formalisms for specifying a temporal behaviour: a) an example of LTLf formula
with the corresponding equivalent Deterministic Finite Automaton, b) matrix representation of a
Probabilistic Finite Automaton

(DFA) Aϕ = (2P , Q, q0, δt, F ), where 2P is the automaton alphabet, Q is the set of states,
q0 ∈ Q is the initial state, δt : Q× 2P → Q is the transition function and F ⊆ Q is the set of
final states. Let be L(Aϕ) the language composed by all the strings accepted by the Aϕ we
have

ρ ⊨ ϕ iff ρ ∈ L(Aϕ) (2.3)

Despite the size of Aϕ is double-exponential in ϕ in the worst-case [46], Aϕ is often quite small
in practice, and scalable techniques are available for computing it from ϕ [180] [18] [73].

LTLf formulas are widely used in Business Process Management (BPM). In particular,
the BPM community has selected 21 types of formulas that are particularly significant for
describing complex processes declaratively [131]. The latter are at the base of the system
Declare [130] and they generate DFAs that are polynomial in the original formula [170]. In
the rest of this section I will formally define deterministic and probabilistic finite automata,
because of their correlations with LTLf formulas.

Deterministic Finite Automata

A Deterministic Finite Automaton (DFA) A is a tuple (P,Q, q0, δt, F ), where P is the alpha-
bet, Q is the set of states, q0 ∈ Q is the initial state, δt : Q×P → Q is the transition function,
and F ⊆ Q is the set of final states. Let be P ∗ the set of all finite strings over P , and ϵ the
empty string. The transition functions over strings δ∗t : Q× P ∗ → Q is

δ∗t (q, ϵ) = q

δ∗t (q, ax) = δ∗t (δt(q, a), x)
(2.4)

Where a ∈ P is a symbol and x ∈ P ∗ is a string, and ax is the concatenation of a and
x. A accepts the string x, and we say that x is in the language of A, L(A), if and only if
δ∗t (q0, x) ∈ F . Let be x = x[0]x[1]...x[l − 1] the input string, where x[i] is the ith character
in the string, we denote as q = q[0]q[1]...q[l] the sequence of states visited by the automaton
while processing the string, namely q[0] = q0 and q[i] = δ(q[i− 1], x[i− 1]) for all i > 0.
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Moore Machines

A Moore Machine is an extension of DFA that models a finite output function. More formally,
a Moore Machine is a tuple (P,Q,O, q0, δt, δo), where P is the input alphabet, Q is the set
of states, O is the output alphabet q0 ∈ Q is the initial state, δt : P → Q is the transition
function, and δo : Q → O is the output function. Moore machines belong to the family of
transducers. A transducer T receives in input a string x = x[0]x[1]...x[l − 1] composed with
symbols in the input alphabet P and returns an output string y = y[1]...y[l] of symbols in the
output alphabet O. In particular, in Moore Machines, the output at time t, y[t] only depends
on the state at time t, q[t]. More formally

y[t] = δo(q[t]) (2.5)

We can consider DFAs as Moore Machines with a binary output alphabet O = {Acc,Rej}.

Probabilistic Finite Automata

A Probabilistic Finite Automaton (PFA) Ap is a tuple (P,Q, ip, δtp, fp), where P is the alpha-
bet, Q is the finite set of states, ip : Q → [0, 1] is the probability for a state to be an initial
state, δtp : Q × P × Q → [0, 1] is the transition probability function, and fp : Q → [0, 1] is
the probability of a state to be final. We have therefore

∑
q′∈Q

δtp(q, p, q
′) = 1, and

∑
q∈Q

i(q) = 1

∀q ∈ Q, ∀a ∈ P .
We can also represent the PFA in matrix form as a transition matrix Mt, an input vector

vi and an output vector vo. Matrix Mt ∈ R|P |×|Q|×|Q| contains at index (p, q, q′) the value of
δtp(q, p, q

′). We denote as Mt[p] ∈ R|Q|×|Q| the 2D transition matrix for symbol p.
The input vector vi ∈ R1×|Q| contains at index k the probability of state qk to be an initial

state, while the output vector vo ∈ R|Q|×1 has in position k the probability of state qk to be
accepting. This matrix representation is shown in Figure 2.1(b).

Given a string x = x[0]x[1]...x[l− 1], we denote as qp,0, qp,1...qp,l the sequence of probabil-
ities to visit a certain state, where qp,t ∈ R1×|Q| is a row vector containing at position k the
probability to stay in state k at time t.

qp,0 = vi

qp,t = qp,t−1 ×Mt[x[t]] ∀t > 0
(2.6)

The probability of being in a final state at time t is the inner product qp,t × vo.
Therefore the probability of a string to be accepted is the probability to be in a final state

in the last computed state qp,l, and it is calculated as follows

vi ×Mt[x[0]]×Mt[x[1]]× ...×Mt[x[l − 1]]× vo (2.7)
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2.2 Deep Reinforcement Learning

2.2.1 Markov Decision Processes and Reinforcement Learning

Reinforcement learning (RL) [151] is the area of machine learning related to learning from
experience. An agent is supposed to learn how to optimally act in an environment to tackle
a task by iterating a process of trial end error. The agent and environment interaction is
formally modeled as a Markov Decision Process (MDP). An MDP is a tuple (S,A, t, r, γ). S

is the set of environment states; A is the set of agent’s actions; t is the transition function, it
specifies how the agent actions affect the environment; r : S ×A → R is the reward function,
it specifies an utility value for performing a specific action a in a given state s; and γ ∈ [0, 1] is
the discount factor, it expresses a preference for immediate over future reward. The state and
action spaces can be either finite or infinite, discrete or continuous. The transition function
can be either deterministic (t : S ×A → S) or stochastic (t = P (s′|s, a) : S ×A× S → [0, 1]).

In this setting, transitions and rewards are assumed to be Markovian – i.e., they are
functions of the current state only. The agent decisions in the environment are represented
through a policy π : S → A, that defines the behavior of an agent by mapping states to
actions. By executing a policy, an agent interacts with its environment in discrete timesteps
and defines a sequence, or a trajectory, of state-action pairs (st, at), with t = 0, ..., T , and

an associated cumulative discounted reward R =
T∑
t=0

γtr(st, at). The goal of RL algorithms is

to find the optimal agent policy π∗, that is the policy maximizing the expected cumulative
reward. To this end, we define the state-value function of a policy π

V π(s) = r(s, π(s)) + γ
∑
s′

t(s, π(s), s′)V π(s′) (2.8)

an the action-value function of a policy π

Qπ(s, a) = r(s, a) + γ
∑
s′

t(s, a, s′)V π(s′) (2.9)

Intuitively, the state-value function corresponds to the value of the expected return when
starting in state s and following policy π from there, while the action-value function represents
the value of the expected return when taking action a in state s and then following policy
π. Denoting as V ∗ and Q∗ respectively the state and action value function of the optimal
policy π∗, we have the optimal policy can be greedily determined with one look-ahead in the
following way

π∗(s) = argmax
a

(r(s, a) + γ
∑
s′

t(s, a, s′)V ∗(s′)) (2.10)

π∗(s) = argmax
a

(Q∗(s, a)) (2.11)

The goal of RL algorithms becomes therefore to correctly estimate the optimal Q or V function
by interacting with the environment [151].
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Non-Markovian decision process

Markovian Decision Processes assume the markovian property over all the functions, namely,
the transition and the reward function. The next state and the next reward can therefore
be evaluated from the current state and the chosen action only. Although this formulation is
general enough to model most decision problems, It has been observed that many natural tasks
are non-Markovian [117]. A decision process can be non-markovian because markovianity does
not hold on the reward function r : (S×A)∗ → R, or the transition function t : (S×A)∗ → S,
or both. Most of the work, however, focuses on non-markovian reward problems [15]. Learning
an optimal policy in such settings is hard, since the current environment outcome depends
on the entire history of state-actions pairs the agent has explored from the beginning of the
episode; therefore, regular RL algorithms are not applicable. Rather than developing new
algorithms to tackle non-markovian Decision Processes (NMDP), research has focused mainly
on discovering how to augment the state to make it markovian, in order to apply known RL
algorithms to the augmented-state MDP.

Reward Machines Reward machines (RM) are an automata-based representation of non-
Markovian reward functions [27]. RMs provide a normal-form representation for reward spec-
ification in a diversity of formal languages. Given a finite set of propositions P representing
abstract properties or events observable in the environment, RMs specify temporally extended
rewards over these propositions while exposing the compositional reward structure to the
learning agent. Formally, a simple Reward Machine [27] is a tuple RM = (2P , Q, δt, q0, δr),
where 2P is the automaton alphabet, Q is the set of states, δt : Q× 2P → Q is the transition
function and δr : Q × 2P → R is the reward function. Let us notice the RM alphabet is 2P ,
namely it is composed of each possible configuration of the symbols in P , contrary to DFAs
that considers at each time step only one symbol in P is True and others are False.

2.2.2 Abstractions for MDP

We adopt the definition of abstractions given in [77], for which abstraction consists of mapping
from one problem representation to another while preserving some properties. Regarding
MDPs, we call ground MDP the original problem model and abstract MDP the one obtained
through abstraction. The abstraction mechanism allows us to focus only on relevant pieces
of information, discarding the rest. Finding adequate problem abstraction can enormously
favor the decision-making process. The problem of creating the right abstractions becomes
crucial, especially for complex problems [144], and it should be considered an essential part
of solving a task [101]. It is possible to abstract MDPs in different ways [138], which are here
summarized.

• State abstractions. Abstracting, or aggregating, the state consists in finding a new
representation for the states that is more convenient for decision making. The ground
state space often contains much information that is not useful to the agent to solve the
task and only distracts it from solving it [179]. For this reason, state abstraction is
usually a compression mechanism.
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Figure 2.2: example of the three categories: left) finite partitioning, center) continuous encoding,
right) symbol grounding

• Action abstractions. Abstracting the actions means abstracting in the temporal
dimension, by generalizing one-step primitive actions to temporally extended actions
called macro-actions or options [150] [148], decomposing in this way the original complex
task in a hierarchy of sub-tasks [53]. Action abstractions are very convenient for long-
horizon tasks that are hard to solve by considering only primitive actions.

• State-action abstractions. Some approaches propose to abstract in both the space
and action dimensions, by changing representation for both the state and the action
space [44] [163][102]. Usually, one kind of abstraction drives the discovery of the other
one.

. In this paper, we focus mainly on state abstractions. We will see that for some kinds of tasks,
such as control problems, state abstractions are not very useful if not accompanied by action
abstractions, and for this reason, we also review some state-action abstraction methods.

Nature of the ground-abstract state space combination

The ground state space S can be a finite set of states S = {s1, s2, .., sN}, where N = |S|, or
a collection of continuous variables S = RN . The abstract space S̄ must be as compact and
small as possible while preserving the essential information we want to abstract. In the case
of RL agents, this information should allow at least the agent to make reactive decisions in
the environment. The abstract state space can be finite or infinite as well. We have different
settings depending on whether the two state spaces are infinite and continuous or finite and
discrete.

In our formulation, we assume the abstraction is a function ϕ : S → S̄, however, it is
possible to express it also as a conditional probability distribution of the abstract state given
the ground state, i.e., Pr(s̄| s), but for the sake of simplicity we don’t cover this case in this
chapter.

• Finite partitioning: when both the ground and the abstract spaces are discrete and
finite, and we want to find an abstraction function ϕ that associates each different state
in S = {s1, s2, ..., sn} to one abstract state in S̄ = {s̄1, s̄2, ..., s̄k}, with k < n, in this
way partitioning S in k chunks or blocks of states.

• Continuous encoding: when the mapping is from a continuous feature space S =

Rn to a smaller continuous space S̄ = Rd with d < n, usually called latent space.
This practice is also known as representation learning and it is most common way of
abstracting the states.
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Figure 2.3: example of abstraction: ϕ is the abstraction and fϕ is the function induced by the
abstraction. Their composition fϕ(ϕ(·)) should be a similar as possible to the target function f(·) to
have a good representation performance.

• Symbol grounding: when the ground state space S is continuous and the abstract
space S̄ is finite and discrete. This consists in classifying the states in S in a finite
number k of classes or symbols in S̄ = {s̄1, s̄2, ..., s̄k}. Despite there are fewer works
in this category, the research community has started increasing interest in this kind of
approaches more related to neurosymbolic AI (NeSy).

Type of environment

RL owes its fame to its enormous versatility and applicability. Countless environments can
be modeled as MDPs, and the purpose of this section is not to classify them all, but rather to
point out that some are more abstract than others and need different techniques. We divide
environments into two categories: logic problems and control problems. The first category
refers to strategically complex problems that are simpler from the point of view of perception
and actuation. On the contrary, the second refers to strategically simpler problems made
complex by the rawness of observations and actions.

Finite partitioning methods

This section reviews methods for abstracting the state space when finite and discrete. The
works focusing on finite abstraction are primarily theoretical and examined in the Lihong et
al. survey [116]. Here we briefly resume some definitions and theorems from [116] because
they serve as a basis for introducing other concepts later.

Abstraction metrics

When we consider an abstraction function ϕ : S → S̄ we can evaluate it respecting coarseness
and representation performance.

Coarseness answers the question "how much wide or abstract is the abstraction?". The
formal definition of coarseness is given in [116] for finite ground and abstract space.

Coarseness definition: given two abstraction functions ϕ1 and ϕ2. We say ϕ1 is finer
than ϕ2 (or ϕ2 is coarser than ϕ1), denoted ϕ1 ⪰ ϕ2 (ϕ2 ⪯ ϕ1), iff for any states s1, s2 ∈ S,
ϕ1(s1) = ϕ1(s2) implies ϕ2(s1) = ϕ2(s2). If, in addition, ϕ1 ̸= ϕ2, then ϕ1 is strictly finer
than ϕ2 (ϕ2 is strictly coarser than ϕ1), denoted ϕ1 ≻ ϕ2 (ϕ2 ≺ ϕ1).
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Representation performance responds to the question, "how much does the abstraction
preserve a certain information of interest?". To answer this question, we usually measure the
representation error for a certain target function of the state f : S → C we want to preserve.

e(s) = |f(s)− fϕ(s̄)| (2.12)

where s̄ = ϕ(s), and fϕ : S̄ → C is the function induced by the abstraction, see figure 2.3.
The composition of ϕ and fϕ must be as similar as possible to the target function f . In

case fϕ(ϕ(·))) and f(·) coincide, the performance error is 0. The error generally depends on
how we choose the functions ϕ and fϕ. In the next section, we formally define ϕ and fϕ to
have 0 performance error in case we know the target function f .

The combination of performance and coarseness makes a good abstraction. Measuring only
one of these is not effective, since the coarsest abstraction is the one mapping all the ground
states to the same abstract state ϕ(s) = s̄, and the most performative abstraction is the one
not abstracting at all, namely the one mapping each ground state in a different abstract state.
We are interested, instead, in the coarsest abstraction having bounded abstraction error over
the whole state space.

∀s ∈ S |f(s)− fϕ(ϕ(s))| < ϵ (2.13)

Exact and approximate abstractions

An abstraction is said exact if it has zero representation error. For finite partitioning, we can
achieve zero representation error if we choose ϕ so to aggregate each state having the same
f-value [116][50], therefore we have.

∀s ∈ S ϕ(s1) = ϕ(s2) ↔ f(s1) = f(s2) (2.14)

∀s ∈ ϕ−1(s̄) fϕ(s̄) = f(s) (2.15)

In RL, we want to represent in the abstract state space the functions estimated by RL
algorithms to make decisions: optimal value V, Q function, optimal policy function π, transi-
tion function t, and reward function r. Depending on the algorithm and the application, we
could be more interested in one function or another.

[116] defines five exact state abstraction based on the functions of interest of RL:

• model-irrelevance abstraction ϕmodel preserves the next step reward and abstract state

• Qπ-irrelevance abstraction ϕQπ preserves the Q-value of any arbitrary policy π

• Q∗-irrelevance abstraction ϕQ∗ preserves the Q-value of the optimal policy

• a∗-irrelevance abstraction ϕa∗ preserves the optimal action and its value

• π∗-irrelevance abstraction ϕπ∗ preserves the optimal action

[116] also proves these exact abstractions form a chain under coarseness.
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Coarseness chain theorem: for any MDP ϕmodel ⪰ ϕQπ ⪰ ϕQ∗ ⪰ ϕa∗ ⪰ ϕπ∗

As a consequence of this theorem, any one of the five abstractions is an instance of the
coarser abstractions. For example, ϕQ∗ , that preserves the value of Q∗, also preserves a∗ and
π∗, but it does not necessarily preserve the Q-value of an arbitrary policy Qπ or the one-step
model.

2.2.3 Neural networks

Traditional RL algorithms cannot solve problems with continuous or extensive state space,
this is also known as the "curse of dimensionality". Deep RL (DRL) [124] [123] tackle the
problem by using function approximator such as neural networks (NN) in combinations with
dynamic programming. In DRL, we train NNs to approximate any function of interest, such as
the optimal policy, the optimal value, etc. Here we give some preliminary concepts on neural
networks, specificly on Feed-Forward Neural Networks and Recurrent Neural Networks. The
former is most used for Markovian tasks, while the latter is most commonly used for non-
Markovian problems.

Multilayer Neural Networks

A multilayer neural network is a parametrized function with a layered structure, like the one
in Figure 2.4. Each layer at depth i of a neural networks takes as input the output from the
layer at depth i− 1, process it, and return to the layer i+ 1. Each layer is composed of a set
of neurons. Each neuron is a matematical procedures extending the older Perceptron model
[136]. We denote as f(x; θ) the neural network f taking as input the tensor x and having
trainable parameters θ. The network weights are updated so to minimize a loss function
through a gradient descent procedure. In supervised learning we can exploit a dataset made
of ground truth input-output couples (x, y), acquired from the target function f̂ we want to
approximate. In this setting the loss function L(x, y, θ) is the distance between the network
prediction and the desired output y

L(x, y, θ) = |f(x; θ)− y| (2.16)

and the trainable parameters θ are updated at each iteration of training in the following way

θt+1 = θt + α∇θL (2.17)

where we denote as θt the parameter values at iteration t and α, 0 ≤ α ≤ 1, is the learning
rate.

Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a parameterized function ht(ht−1, xt; θh), having train-
able parameters θh, that takes as input a state-vector at time t−1, ht−1 ∈ Rdh , and the input
vector at time t, xt ∈ Rdi , and returns the current state-vector at time t,ht+1 ∈ Rds. An
RNN can be applied to a sequence x[0], ..., x[n] by recursive application of the function h to
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(a) (b) (c) (d)

Figure 2.4: a) Architecture of a multilayer neural network. b) Multilayer NN prediction scheme. c)
Recurrent prediction scheme. d) A recurrent neural network unfolded.

the vectors x[i]. An example of RNNs are the Elman and Jordan networks [59], also known
as Simple Recurrent Networks.

ht = σh(Whxt + Uhht−1 + bh)

yt = σy(Wyht + by)
(2.18)

Where x is the network input, h is the hidden state, y is the network output, Wh, Uh,Wy and
bh are the network parameters, and σh and σy are activation functions.

Although the input must be continuous, we can use a set of discrete symbols as an input
alphabet by mapping each symbol to an input vector using either a one-hot encoding or
an embedding matrix. RNNs are employed in a variety of tasks on sequential data. In
particular, they can be used to classify sequences. A binary RNN-acceptor, is pair of functions
h, y, where y : Rdh → {Acc,Rej} is the classification module that classifies the RNN’s
state vectors. An RNN-acceptor is conceptually equal to DFA, except that it processes a
sequence by applying continuous state-transitions and output evalutions, that are usually
hard to inspect and explain.

2.3 Neurosymbolic integration

Neurosymbolic artificial intelligence (in short NeSy AI) [20] is an emerging field of Artificial
Intelligence (AI) combining both neural networks and symbolic reasoning methods to facilitate
the development of AI systems that can learn from data and generalize to solve complex tasks.
NeSy frameworks are mostly based on a two-layer architecture: we have perception deep
learning modules that live in the subsymbolic domain, where representations are continuous;
and we have a symbolic part where reasoning happens through boolean symbols manipulation.
The subsymbolic modules are responsible for processing the raw data from outside and passing
it to the symbolic module, so that the latter is grounded in reality and not disconnected from
that. The very crucial part of this design is to implement the subsymbolic-symbolic interface.

This can be implemented in many ways. From a representation point of view, what
prevents the integration is the very different means deep learning and symbolic AI use to
store and manipulate pieces of information. On one side, neural networks are intrinsically
continuous, since continuity ensures they can be optimized using gradient-based algorithms
like backpropagation. On the other hand, symbolic AI uses boolean and discrete symbols,
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(a) (b)

Figure 2.5: Some techniques to discretize the output of a neural network in a safe way a) Straight
Through estimator c) A Gumbel-Softmax-activated variational autoencoder

which could seem impossible to learn with a neural system. However, the integration is
possible if one of the two (or both) makes a step towards the other side. Here we review the
main methods that aim for smooth neuro-symbolic integration.

2.3.1 Deep Learning stepping in the white side: discrete neural networks

In this section, I briefly review the main techniques used in the literature to predict discrete-
valued variables using neural networks. This is a very convenient feature for neurosymbolic
integration, since a symbolic reasoning system can use the discrete output of a neural network
directly as propositional symbols without needing further operations on the latent space, such
as discretization, clustering, or approximation to a finite set of values.

Straight-through estimator

We can obtain discrete values from each neural network layer by simply thresholding the
tensor values. However, since the derivative of threshold functions is zero, this poses a problem
during back-propagation. The straight-through estimator[19][36] estimates the gradients of a
function ignoring the derivative of the threshold function and passing on the incoming gradient
as if the threshold function was an identity function. In this way, we use the discrete tensor
in the forward step and the continuous tensor in the backward step during back-propagation,
as Figure 2.6 (a) shows.

Increasing the activation steepness

Another simple technique used in literature [97] [164] [107] is to increase the steepness of acti-
vation functions during training smoothly. We can obtain this effect by dividing the activation
argument for a temperature value τ , with 0 < τ < 1, starting with a warm temperature and
decreasing it smoothly. As the temperature approaches 0, the activation values become closer
and closer to discrete values. Except for ReLu-like functions, this technique can be used over
all the most popular activation functions, such as Sigmoid, Softmax, Tanh, etc.

Gumbel Softmax activation

Jang et al. propose a stochastic activation function to predict categorical latent variables [97].
The latter are rarely used due to the inability to backpropagate through samples drawn from
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Figure 2.6: An example of Logic Tensor Network, taken from [16]. In this example two variables
(x and y), one function (f) and one predicate (p) are represented. Variables x and y are grounded
to the available data (the values v1, v2 and v3 for variable x and the values w1 and w2 for variable
y). The rightmost tensor in the image, G(p(x, f(x, y))), is the grounding for the binary predicate p
when interpreted over x and f(x, y). This is grounded by applying the continuous module p to the
grounding of x and the grounding of f(x, y); which is in turn grounded applying the f module to the
groundings of x and y.

the categorical distribution. The Gumbel-Softmax activation is a continuous and differentiable
version of the Gumbel-Max trick [83] [119] to draw samples from a categorical distribution.
The activation function generates a k-dimensional continuous sample vector y. The magnitude
of approximation is controlled by a temperature parameter τ , which is decreased by a schedule
during training. As the temperature drops, samples from the Gumbel-Softmax distribution
become one-hot, and the Gumbel-Softmax distribution becomes identical to the categorical
distribution. Figure 2.6 (b) shows an example of a Variational Autoencoder (VAE) using this
activation function. The code extracted by the VAE is a N×k matrix, where N is the number
of categorical variables and k is the number of possible categories for each variable. Each row
of the matrix is a one-hot encoded vector; therefore, the number of possible codes is KN .

2.3.2 Symbolic Logic stepping in the dark side: continuous logic

Some works take a diametrically opposite direction, and base the integration on the use of
real-valued logic such as fuzzy logic [89] or probabilistic logic. In particular, fuzzy Logic
is a multi-valued generalization of classical logic, where truth values are reals in the range
[0, 1], and the logic operators are replaced by continuous functions having both inputs and
outputs in the continuous range [0, 1]. Fuzzy logic has shown to be suitable in several real-
world applications where a statement can be only partially true or exceptions can be present.
Notably, fuzzy interpretations are based on continuous and differentiable functions, so neural
networks can co-exist with the logical knowledge and actually implement some elements of the
logic knowledge base. The use of continuous logic has seen many successes in neurosymboilc
AI [161], and many framework are based on it, such as Logic Tensor Networks (LTN) [16] and
Lyrics [121].

Logic Tensor Networks

Logic Tensor Networks (LTN) [16] are a neurosymbolic framework that can reason and learn by
exploiting both structured symbolic knowledge and raw data. It implements a logic called Real
Logic, which contains constants, function and predicate symbols, as First Order Logic (FOL).
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LTN also implements connectives (¬, ∧, ∨, →, ↔) and quantifiers (universal, existential,
diagonal universal, and guarded universal and existential). Any logic formula in Real Logic is
interpreted using fuzzy logic semantics, namely, it is assigned with a continuous truth-value
between 0 and 1. Every element of Real Logic is grounded in real tensor, so that it can be an
assignment to available data, the output of a neural network, or a satisfaction level of a logic
formula between 0 and 1.

LTN can be used for querying, reasoning and learning: here we focus on learning. LTN
can learn from both data and symbolic knowledge by imposing the knowledge available, and
searching for the groundings that maximize the satisfiability of that knowledge. This is
done by defining a loss objective that is inverse to the given formula’s satisfaction level and
optimizing the system’s trainable weights by back-propagation. This is also known as learning
by best satisfiability, and it is implemented by constructing the neural computational graph
with the logical operators present in our logic knowledge base.
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Chapter 3

State of the art

In this chapter, I review existing methods in the literature to discover logical knowledge from
a non-symbolic domain. Recall that this problem can be schematized as shown in Figure 3.1
as the composition of two subproblems

1. the discovery of an abstract representation, possibly symbolic, as compact as possible,
that can be used in place of raw observation data

2. the discovery of a model, as structured and simple as possible, capable of describing the
functioning of the observed system by exploiting the abstractions found in the previous
point

In particular, I divide this chapter into two main sections, following the division line of the
entire thesis. In the first part, I focus on the so-called Markovian problems, in which each
observation can be considered separate from the previous ones. In the second part, I review
learning approaches for non-markovian problems, i.e., domains whose observations come in
temporal sequences that must be considered in their entirety since they cannot be split thanks
to Markovianity.

3.1 Discovering an abstract model for markovian tasks

In this section, I will focus on finding an abstract model for Markovian tasks. I start by re-
viewing the literature in the area of Reinforcement learning abstraction, which was introduced
in the background chapter. Abstraction is very related to symbol grounding; in this thesis, I
consider symbol grounding as a particular case of state abstraction. In particular, I will follow
the categorization of state abstractions given in Section 2.2.2, and I will review in the order:
finite partitioning, continuous encoding, and symbol grounding methods for abstracting an
MDP. Then I will review how the NeSy AI literature tackles the symbol grounding problem.
In the latter, the tasks considered are not necessarily modeled as MDPs, and generally do not
include the concept of actions. However, they are of interest to the thesis as they foresee a
part of perception and a part of logic. Even for these works, I will focus in this section on
those focusing on intrinsically "Markovian" problems, borrowing the definition from the RL
literature.
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Figure 3.1: Discovery of logical knowledge from raw domains

3.1.1 Finite partitioning

In this section I review finite state-abstraction of finite-state MDPs. In this setting abstrac-
tion consists in partioning the ground state space in a certain number of partitions and in
considering the partition index as the new state representation in the abstract MDP. Random
partitions are not supposed to bring any benefit to the RL algorithm, on the contrary, they
can destroy any ability of the agent to make reasonable decisions in the abstract environment.
The goal of this kind of abstractions is therefore to partitionate the ground state-space in a
number of sets as small as possible, while preserving the capability to estimate one or more
of the RL functions of interest, such as the optimal policy, π∗, the optimal Q function Q∗

and so on. Based on which function we want to preserve we obtain an abstraction of one
of the five classes defined by [116]. Of particular interest are the abstractions belonging to
the class ϕmodel, since this is the finest class of abstractions. An example of ϕmodel is the
stochastic bisimulation [50] [78], which aggregates states that are bisimilar, defining as bisim-
ilar two states if they have the same expected reward and equivalent distributions over the
next bisimilar states. [50] proposes an iterative algorithm for aggregating bisimilar states in
polynomial time given a finite state-space MDP.

Some approaches relax the requirement of having 0 representation error by defining ap-
proximate abstractions. In this case, two ground states are aggregated if they have a repre-
sentation error smaller than a positive constant ϵ.

[1] proposes approximate abstractions based on the model, the optimal q-value Q∗, and
multinomial and Boltzmann distributions over Q∗. It proves the optimal policy found in the
abstract MDP is near optimal in the ground space. Namely, the representation error of the
optimal value is bounded, and the bound depends on ϵ.

The works mentioned so far aim to define abstractions for theoretical purposes, and not to
make reinforcement learning algorithms better, e.g., more efficient or robust. Both exact and
approximate state aggregations can be defined only once we know the function of interest.
However, knowing this function is not an assumption of RL; quite the opposite. To say it
more clearly, with these methods, we infer s1 and s2 must be associated to similar (the same)
abstract states because we know they have a similar (the same) f -value. In learning setting,
where we are trying to estimate function f , we would like to infer that f(s1) and f(s2) are
similar (or the same), speeding up the learning of f , because we know that s1 and s2 are
associated to similar (the same) abstract state. So looking at the theory mentioned in this
section, from the RL perspective, it could seem that RL agents will not gain anything from
abstracting the state and will only lose in a bounded way. It is true for problems with little
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Figure 3.2: An example of state aggregation satisfying the bisimulation preperty. This 4-states
deterministic ground MDP can be partitioned in 2 abstract states without loosing the capability to
predict the next reward and abstract state.

state-spaces, where states are in practice already abstract [101], and performances pay a cost
for cutting off some states. However, it is not true in realistic problems with huge state
spaces, where very different observations have the same meaning and must be mapped in the
same abstract state. In the next section, we review methods for abstracting the state in such
environments where neural networks are employed to manage the high dimensionality of the
state space.

3.1.2 Continuous encoding

This section considers abstractions that are continuous functions taking continuous inputs.
Furthermore, in this section and the subsequent (symbol grounding), we focus on learning
abstractions instead of their definition and properties. However, the theory introduced in the
previous section guides us in categorizing the works.

Traditional tabular RL algorithms cannot solve problems with continuous or extensive
state space, this is also known as the "curse of dimensionality". Deep RL (DRL) [124] tackle
the problem by using function approximator such as neural networks (NN) in combinations
with dynamic programming. In DRL, we can train NNs to approximate any function of
interest, such as the optimal policy, the optimal value, etc. In particular, it has shown
that encoding the high-dimensional observations in compressed latent representation can be
beneficial for DRL algorithms [128] [2]. Considering this latent space as a continuous abstract
state space S̄, we call ϕ the parametric function that maps the environment observation to
the abstract state; and fϕ the parametric function, that maps the abstract state to the value
of interest. In this way, we divide the network into two parts: one learning the abstraction
and the other learning the function of interest in the abstract space. We obtain different
abstractions depending on how we train these two parts and which learning objective we use
for training. Some of them are more aligned with the abstraction theory than others.

Misaligned deep abstractions

One way to train ϕ and fϕ is through staged training. It consists of two explicit training
stages with two different learning objectives: (1) first, we train the abstraction ϕ minimizing
an auxiliary loss; (2) then, keeping the abstraction function fixed, we train the outer function
fϕ. The most classical auxiliary loss used is the reconstruction error [110] [111] [85] erec =

|s − d(ϕ(s))| where d : S̄ → S is a decoder, mapping the abstract state back to the ground
state. A more modern approach is to use a contrastive loss as the auxiliary objective to train
the encoder [31] [160] [112]. Although staged training is stable and easier to implement, it
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Figure 3.3: Aligned versus misaligned abstractions:

has some throwbacks. (1) Since we do not know the value or the Q function during the first
training, the only data we can use for training the encoder is the one coming from random
exploration in the environment. This data should be sufficiently similar to those we will
observe under improved policies to have a good encoder, and this is not a suitable assumption
for many environments. 2) Training with an auxiliary loss that does not depend on the
task makes the encoder capture all the predictable features in the observation. This differs
from what we want in terms of abstraction, so these representations are misaligned with the
abstraction theory.

Aligned deep abstractions

A different way to train ϕ and fϕ is through end-to-end training. It consists in training
the composition of the two functions directly in one stage of training by minimizing the
representation error |f(s)− fϕ(ϕ(s))|. This training modality is aligned with the abstraction
theory since it automatically reduces the representation error. Furthermore, the continuity
of the abstract space and the use of function approximators ensure we have an abstraction
even for unseen ground states, speeding up the abstraction learning. Depending on which
function the network approximates, we obtain abstractions of the five kinds defined by [116]
and described before. For example, Deep Q Network (DQN) [124] can solve tasks in rich
observation spaces, like video games, through a convolutional encoder followed by a multi-layer
perceptron trained end-to-end. Since the Q network aims to estimate the optimal Q-function,
the convolutional encoder can be considered a Q∗-irrelevance abstraction. Model-irrelevance
abstraction can be obtained through model-based reinforcement learning on a latent space
[58]. It consists in learning an abstraction function that maps observations to a compressed
latent space, ϕ : S → S̄, and the next state and reward functions as functions of the abstract
space rϕ : S̄ → R, δϕ : S̄ → S̄. The reward function in the latent space can be trained with
supervised learning by minimizing the representation error

Lr = |r(s, a)− rϕ(ϕ(s), a)| (3.1)

By contrast, using the representation error to train transitions in the latent space can be
unpractical.

Lt = |ϕ(t(s, a))− tϕ(ϕ(s), a)| (3.2)
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Figure 3.4: Training scheme of the discrete world model used in [88]

This loss is also called model coherence. Let us notice that the transition derived by the
abstraction also has the output in the abstract space; therefore, a neural architecture directly
minimizing this error can lead to representation collapsing, since the model prediction and
target both depend on ϕ. This issue can be mitigated by ‘bootstrapping the encoder’ [81]
[128], by adding an explicit regularizing loss [64] or adding other learning objectives that
influence the abstraction, like for example learning the inverse dynamics model [129] [2]. The
latter takes the feature encoding ϕ(st), ϕ(st+1) of two consequent states as input and predicts
the action at taken by the agent to move from state st to st+1. Unlike reconstruction error,
adding this objective does not misalign the encoder from the abstraction purpose, because
it does not encode any further information in the latent space except the capability to not
collapse. Model-irrelevant abstraction has proven to be beneficial for transfer policies between
environments with different observations that only differ regarding task-irrelevant information
[179]. Furthermore, learning the model in a compressed latent representation that does not
contain any useless information for the task allows planning in the latent space, speeding
up the agent’s imagination components and improving sample efficiency [64] [86]. Last but
not least, model-irrelevant abstractions are also used to assess the novelty of observations
and implement curiosity-driven exploration strategies using the model prediction error as
curiosity signal [129] [128]. In this section, for the sake of simplicity, we call model-irrelevant
abstractions the feature spaces designed to encode information about the next reward and the
next abstract (or latent) state, discarding all the other information we consider nonrelevant for
the task. They are therefore aligned to the theory conceptually, even if they do not formally
provide any guarantees to find an exact model-irrelevant abstraction. Some works are more
attuned to the formal theory of MDP abstraction, and they are based on the definition of a
bisimulation metric [60] [61] [29]. The latter softens the concept of state partitions introduced
in [50] for finite state MDPs. They instead define a pseudometric space (S, d), where a distance
function d : SxS → R≥0 measures the “behavioral similarity” between two states. This
relaxation allows applying general concepts from the finite abstraction theory to continuous
state MDPs. In particular, [179] trains an encoder using bisimulation metric as target distance
in the latent space. The paper demonstrates that the policy on ϵ-discretized representation
is near optimal. In other words, the optimal value representation error |V ∗ (s)− V ∗ (ϕ(s))|
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Figure 3.5: LatPlan framework from [7]

is bounded, and the bound depends on epsilon. This means that states can be clustered
according to the bisimulation metrics without losing too much performance.

3.1.3 Symbol grounding in Reinforcement learning

In this last section on abstraction for reinforcement learning, we focus on finite and discrete
abstractions of a continuous ground-state MDP. All the training objectives and neural network
architectures introduced in the previous section for continuous encoding can be combined
with discrete outputs neural networks, e.g., the ones described in section 2.3.1, so to obtain
a discrete, and therefore symbolic [70], RL model. In this sense, the encoder with discrete
activation is used as an automatic symbol grounder, and the symbols are nothing else than
boolean latent variables. Depending on the loss objective used for training, we can obtain
symbolic interpretations more or less aligned with the abstraction purpose. Many works
[105][88] show that discrete world models can accurately predict the agent action outcome in
a non-symbolic environment. These models can be used to plan towards a specific goal [105]
or to simulate the agent-env interactions and learn a policy entirely from simulations [88].

This kind of work is the most similar to classical DRL. Some others aim to build a tighter
connection with classical symbolic planning domains [7][10][5][12][55]. From a certain point of
view, latent symbols extracted by a neural network have the same strengths and weaknesses
as continuous latent representations: they can be easily learned without supervision, but they
are usually hard to inspect and connect with a meaningful set of concepts from outside.

However, a significant difference that distinguishes them from continuous representations
is that they are compatible with the learning of discrete logical domains, for which several
off-the-shelf solvers are applicable.

Therefore, once we have learned the symbol grounding method and the domain over these
symbols, we can apply the usual tools designed to solve that kind of domain. Indeed, seman-
tics only matter to humans. Tools efficiently manipulate symbols regardless of their meaning
or how they are grounded, and this is one of the main assumptions of classical symbolic AI.
An example of this is LatPlan [7][10][5][12], which is a framework able to learn a symbolic
STRIPS [62] first-order logic domain in the latent space. The framework is trained with a
set of transitions in the form (imaget, imaget+1), without the information about the action
performed to pass from imagei to imaget+1, and its objective is to learn a symbolic represen-
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Figure 3.6: Some examples of graph representing the state space structure for different domains.
They represent the input of algorithm described in [22]

tation for images and a set of action-schemas describing the actions preconditions and effects.
They are both grounded by a Gumbel-softmax function. Once the training is complete, it
uses the learned strips domain for planning. The framework obtains encouraging results in
visual, logical tasks like solving puzzles and constructing Hanoi towers. The first LatPlan
version [7] trains the models in a staged fashion. First, the images are grounded into symbols
with a Gumbel variational autoencoder. Then the system learns the action schema by using
another autoencoder-like neural architecture that takes as input no longer the pixels of images
but only their associated symbolic codes. In its last version [12] LatPlan changes the network
architecture and the mode of training: symbols for the images and actions over these symbols
are grounded at the same time with end-to-end training. Similarly, [55] trains a discrete VAE
to learn relevant features in Atari games given images as training data. Then it uses the
discrete features for planning with RolloutIW [17], achieving impressive results. This prior
work proves that discrete representations can be effectively used not only for RL but also for
general planning.

Differently from the previous works, in [22] [134], authors address the problem of deter-
mining the first-order representation from the state-space structure, rather than observations.
They learn the planning model without using deep learning. They extract it from a labeled di-
rected graph modeling transitions, by encoding the search problem as a satisfiability problem
and solving it with a SAT solver.

All the works mentioned so far for symbolic planning address environments with a dis-
crete, even if sometimes complex, setting, e.g., videogames and puzzles, that I classified as
logic problems in Section 2.2.2. More rare are applications of unsupervised symbol grounding
and planning domain discovery to fully continuous and dynamic problems with multiple con-
tinual variables, i.e., control problems [102][143][142]. In the logic problems considered, the
environment produces high-dimensional rich states in the form of images. However, transi-
tions are almost already abstract, in the sense that one elementary action in the environment
produces a substantially different new state that we can associate easily with another sym-
bolic representation. In a robot-control scenario, instead, both states and actions are very low
level. Therefore, we cannot expect a meaningful change in the state space by executing only
one elementary action, and macro actions extended in time are needed. One way to represent
macro actions is through options [150]. An option is a tuple < πo, Io, βo >, where πo : S → A

is the option policy, specifying which low-level action must be taken in the low-level states
when option o is activated; Io ⊆ S is the initiation set, namely the set of low-level states
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Figure 3.7: An example of grounding for symbols Z, Z1, in a robot navigation problem, from [102]

from which we can execute the option; βo : S → [0, 1] is the termination condition, specifying
the probability that an option terminates in a specific low-level state. In particular, in [102],
authors assume to know robot controllers as options, transforming them into FOL action
schemas. This work particularly focuses on subgoal options, that terminate in a compact set
of states and do not depend on where the option started. This kind of option is particularly of
interest in robot controlling since usually motor controllers of a robot are designed to reach a
specific, generally small, set of goal states. This definition of subgoal skills is also extended to
options that match a particular set of conditions in a subset of the state variables, letting the
other unchanged. In this prior work, Konidaris demonstrates these skills lead to an abstract
high-level symbolic representation of the problem, and off-the-shell probabilistic planners can
use that to solve different robotic tasks in that domain. The symbolic representation is ob-
tained by naming the different sets with symbolic names and eventually performing feature
selection without using machine learning. Finally, in [108] the authors tackles continuous
planning problems by the use of an initial draft of an abstract PDDL domain. The purpose
of this work is to learn how to map continuous observations into the abstract states and
how to adjust or complete the prior PDDL domain by interacting with the environment in a
plan-act-learn interleaved schedule.

3.1.4 Symbol grounding in NeSy AI

In this section, I review the topic of symbol grounding from the point of view closer to the
NeSy literature. NeSy AI generally addresses logic domains made more challenging by using
non-symbolic observations. The latter requires the introduction of a perception system which
is generally implemented with neural networks. Examples of these tasks are math operations
on images [120] and visual logic games such as sudoku [167][14].

In this setting, symbol grounding implements the perception function, while logic induction
with [139] or without [38] neural networks discover the logic model from symbolic data.

Symbol grounding through self-supervision or supervised learning

As for the abstraction function in Deep RL, the symbol grounding function can be learned
with objectives unrelated to the logic task in a separate learning stage. Many works use
reconstruction error, which can be used as the unique objective [9], or in combination with a
logic loss [153]. Many other works exploit labels directly on observation data and implement
symbol grounding with a neural classifier trained with supervised learning. Although this
is not always applicable since direct labels are not always available, supervised classification
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Figure 3.8: Framework from [39] for grounding digits from high level labels and prior symbolic
knowledge through abduction

is the easiest and more stable way to implement symbol grounding. Connecting symbols
predicted by a neural network with a logic induction algorithm is not always straightforward
[38], since some of them are not resilient to errors in the training data or cannot exploit
probabilistic beliefs on symbols.

Example: in a domain with two symbols, A and B, which are predicted by a softmax-
activated network, a (boolean) logic induction system might be completely confused by a
symbol prediction like [0.49, 0.51]. The latter is treated precisely as a configuration [0, 1] (A
=false, B =true) when it is closer to the prediction [0.5,0.5], semantically corresponding to
(A=’do not know’, B=’do not know’).

For this reason, the research on NeSy problems has moved mostly on probabilistic [23]
[120] [171], or fuzzy [16] [54] [121] reasoning systems.

Symbol grounding by exploiting prior logical knowledge

The majority of works approach the symbol grounding problem by assuming perfect knowledge
of the symbolic model [42] [54] [174] [16] [120] [176] [171] [39] [95] [154]. These works infer the
most probable grounding of a certain set of symbols P given prior logical knowledge expressed
on the alphabet P and high-level labels on the whole NeSy process. This practice is known
as semi-supervised symbol-grounding.

Example: A benchmark for semisupervised symbol grounding is the digit addition prob-
lem. The system takes as input two images of handwritten digits between 0 and 9, and it has
to predict their sum. The system can be trained to recognize the symbols 0, 1, ..., 9 in the
single images without single-image-labels, by exploiting rules on how addition works (0+0=0,
0+3=3, etc.) and a dataset supervising the addition process, made of associations (couple of
images, sum of the two digits represented in the images).

Symbol grounding exploiting the logical knowledge is tackled mainly with two families of
methods.

The first approach [42] [54] [174] [16] [120] [176] [171] consists in encoding the prior logical
knowledge as a differentiable module lm() taking the output of the classifier sg() as input.
The two functions are combined as two layers of a NN, and their composition lm(sg(·)) is
trained to maximize the given symbolic knowledge on the high-level label available.

The second approach [39] [95] [154] instead maintains a crisp boolean representation of
the logical knowledge and uses a process of logic abduction. Even in this approach, a neural
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Figure 3.9: Categorization of NeSy approaches

classifier implements the symbol grounding function. The classifier outputs its current belief
on the symbol’s truth value, and an abduction module corrects its predictions to make them
more consistent with the prior symbolic knowledge. After that, the classifier is retrained with
the corrected symbols in a supervised fashion. This two-step training process has been shown
to make the classifier converge to the target symbol grounding.

Learning symbol grounding and logical knowledge at the same time

Let me notice that in the previous section 3.1.3, I considered all works aiming at discovering
both the symbol grounding and the symbolic model at the same time (with some exceptions
where the grounding is solely determined by reconstruction). In contrast, I mostly review
works that address one problem at a time in this section. Indeed, Nesy’s approaches to tackling
both of these problems simultaneously are actually few [12][41]. An approach designed initially
for this is SATNet [167]. It consists in encoding MAXSAT in a semi-definite programming
based continuous relaxation, and integrating it into a larger deep learning system. However,
it has been shown that it can only learn the symbolic model when supervision on symbol
grounding is given [30]. A follow-up work [153] extends SATNet to learn also the symbol
grounding. However, this extension relies on a pre-processing pipeline that uses InfoGAN [32]
based latent space clustering, which does not rely on the symbolic model. This makes this
approach fall into the class of methods that use an auxiliary objective to determine symbol
grounding. In [41], the authors propose Deep Symbolic Learning (DSL), a method for making
discrete symbolic choices within an end-to-end differentiable architecture. It uses a policy
function that, given confidence values on an arbitrarily large set of symbols, can discretely
choose one of them. DSL achieves competitive results with NeSy frameworks that assume
prior knowledge of the symbolic model on visual, mathematical operations on MNIST digits
[120]. However, it suffers scalability problems when the number of symbols is big, which
prevents its application to large domains.

The literature shows that research in the discovery of logical knowledge from non-symbolic
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Figure 3.10: A schematic view of Restraining Bolts [74]

data is at the very beginning. In particular, there is currently no formal criterion (such as
the bisimilarity for abstraction in RL) to define how the perception task and the logical
induction task should influence each other, and whether they should influence each other or
not. Moreover, the discovery of logical knowledge from non-symbolic domains is only one of
the goals of NeSy AI, which most commonly aims to improve the efficiency, explainability, or
reliability of frameworks based on neural networks [21] [68] [76].

3.2 Discovering temporal logic knowledge from non-markovian
tasks

This section will focus on discovering logical symbolic knowledge describing a non-symbolic
non-markovian domain. I consider, therefore, tasks that are extended in time that a formula
can capture in Linear Temporal Logic (LTL). In particular, I will focus on LTL over finite
traces and DFAs, since we can assume without loss of generality that the task has a finite
duration in time. The main interest is still to investigate the integration between symbolic
data, such as those processed by the LTLf formula, and non-symbolic data, such as those
coming from directly observing the domain.

3.2.1 LTL and non-markovian RL

Non-markovian RL tasks are extremely hard to solve because intelligent agents must consider
the entire history of state-action pairs to act rationally in the environment. However, the idea
behind the current line of research in this area consists in bypassing the non-markovianity
augmenting the state space with a set of features that encode the environment history and
solving the augmented-state MDP with known RL algorithms.

The main point remains, therefore, how to construct these features. In the case of non-
symbolic-state-MDPs, the most popular approach is to combine RL algorithms with the use
of Recurrent Neural Networks [91][84][100] that automatically extract features from data
sequences. In case of problems with a discrete and finite state space, most works use LTL
or LTLf to specify the temporally-extended task. This specification is then compiled into an
automaton, and the automaton state is combined with the environment state to make the
decision process markovian. Examples of this approach are the so-called Reward Machines [27]
and the Restraining Bolts [45]. Both simplify and automate the creation of reward functions
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Figure 3.11: Categorization of works on non-markovian RL

for non-Markovian decision processes exposing the structure of the reward function to the
agent.

Some other works focus on learning the temporal specification of the task from observa-
tion and rewards received by the environment by using known methods for DFA induction
[67][175][135]. Another work tackles "advice-guided" non-markovian problems, where the re-
ward machine is partially known in the form of a set of advice, and the agent refines it using
rewards from the environment [126].

All these works use symbolic data and do not consider the problem of discovering latent
symbols in the data. For this reason, they are applicable only in discrete-state environments
or continuous problems for which a mapping between the continuous state and a symbolic
interpretation is known, also known as labeled MDP [166]. This mapping is also called labeling
function.

Many works do a preliminary step towards integration with non-symbolic domains by
considering imperfect labeling functions [25][162][115]. Namely, functions that sometimes
make mistakes in predicting symbols from states, or that predict a set of beliefs over the
symbol set instead of just one perfect value. These functions closely resemble the output of
deep symbol grounder, so considering them is important for integration with deep learning.

A notable work [104] uses LTLf specification of the task without assuming any knowledge
of the grounding of symbols of the formula into the environment states. This work employs
a neural network architecture that is shaped as the LTL formula. The formula is considered
a tree of operators and propositional symbols. Each operator or propositional symbol is
implemented as a neural network module, and the modules are connected as in the formula
tree, and reused among different formulas. The output of the tree root is used as state
representation by an Actor-Critic (A2C) agent [123]. The whole system is trained end-to-
end with agent actions and outcomes from the environment, as in the A2C algorithm. The
authors exploit the framework compositionality by training on a sizable amount of different
formulas (corresponding to various tasks in the same domain). Doing so, the neural modules

Elena Umili 33



are supposed to learn through the interaction with environment the grounding for symbols and
operators of the formula. Therefore they can be reused in other formulas without retraining
on that particular task on new data, with zero-shot transfer.
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Chapter 4

STRIPS-Like Symbolic Abstractions
for Control RL Problems

As we have seen in the previous chapter, the ability to make decisions autonomously is a key
feature of artificial intelligence agents. When the agent has to perform a task in a dynamic and
complex environment, its decision-making capabilities are strictly influenced by what the agent
knows about its environment and how well it can predict its evolution. Automated planning
is centered on finding a correct plan to solve a specific task, reasoning on the knowledge of
the scenario, often expressed in a symbolic form. Just as humans manipulate ideas in their
heads in order to plan their future actions, so do planners with propositional symbols. In this
way, they can easily perform long-term projections in the future and plan actions accordingly.
For example a human, or a symbolic planner, can plan the actions to turn on a car, knowing
that: ˝when I turn the key my car is turned on" - where ‘turn the key’ is an action modifying
the truth value of the symbol ‘turned on’- avoiding modeling irrelevant details such as the car
color, the weather, and so on. Although this approach can be very performant on symbolic
domains [72], formalizing continuous and dynamic environments in such symbolic form is
extremely hard and it is usually manually carried out by a human expert. On the other hand,
there has recently been an increasing interest in Deep Reinforcement Learning (DRL) [4].
DRL techniques automatically extract from data an effective policy to achieve the task in the
environment, interacting with it through a trial-and-error process, and they do not require
any models of the environment’s states and transitions. However, by using DRL, the policy
and the learned model are a black box, given the lack of explicability of the final result at the
end of the training.

In this chapter I propose an algorithm inspired by both symbolic planning and Reinforce-
ment Learning to automatically extract a symbolic planning domain for complex dynamic
environments, this allows to exploit the advantages of planning techniques in this particular
domains without the need of expert modeling. We develop an interactive learning algorithm
that maps the environment state to an arbitrary size finite set of propositional symbols, tack-
ling the symbol grounding problem [145], and jointly learns the environment dynamics over
this symbolic space. The system interacts with the environment formalized as a Markov
Decision Process (MDP) over continuous variables. The experience data gained from the in-
teraction are exploited to learn the following function approximators: a function for grounding
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the propositional symbols from the continuous observations; a value function approximator for
evaluating symbolic states; a transition function approximator over the symbolic state space
to predict the next symbolic states from the previous one and the corresponding action. This
automatically learned planning domain is used to lead the interaction with the environment.
At each interaction step, we perform online planning [72] over a finite horizon, and we select
the first action of the computed plan as the action to take in the environment.

We evaluate the approach on several OpenAI gym environments with continuous state,
including control problems and games, and in a RoboCup scenario with a real robot. We also
perform experiments setting different sizes for the finite symbols-set modelling the environ-
ment. Experiments show that, with a sufficiently large symbols-set, it is actually possible to
plan the continuous environment’s actions, reasoning only in the symbolic domain extracted
from data. Furthermore, we show that we can use the learned planning domain to achieve
different tasks in the same environment, through a reward shaping based on the learned sym-
bolic representation. Experiments confirm that the symbolic representation-based reward and
the transition model efficiently guides the agent towards different goals in the environment.
The contents of this chapter have been published in [156]. I organize this chapter as follows:
first, I define our problem setting and the goal we want to achieve in section 4.1; then, I
illustrate the schedule used by the agent to interact with the environment in section 4.2; in
section 4.3, I describe the models composing our framework and how they are learned from
interaction data; in section 4.4 I describe the planning module, in section 4.5 I present how
the framework models can be transferred to new tasks in the same domain, in section 4.6 I
report experiments on different domains; related work is reported in section 4.7, finally, in
section 4.8 I report my final considerations on the results and directions for future research
in this area.

4.1 Problem Setting

We consider an agent interacting with an unknown environment. The environment is modeled
as an infinite horizon Markov Decision Process MDP = {S,A, tg, r, γ}. Where S ⊆ Rn is a
continuous state space, A = {a0, a1, .., am} is a discrete action space, tg : S × A → S is the
environment transition function, r : S × A → R is the reward function and γ is the discount
factor. The agent knows the current environment state st, it can take an action at ∈ A and
observe the action-outcome, namely the new state st+1 ∈ S and a reward rt+1 ∈ R received
by the environment.

We want to learn a planning-based symbolic representation model of the reference envi-
ronment interacting with the MDP. The idea of learning the environment model of MDPs,
alongside the optimal action policy, is not new in Reinforcement Learning and is known also
as model-based Reinforcement Learning (RL) [125]. Model-based RL algorithms usually learn
the transition function and the reward function from the experience data gained through the
interaction with the environment and use them to increase sample efficiency and temporal
efficiency.

Our purpose in this work is not to increase the efficiency of the learning process, but to
learn another, alternative, intrinsically different, representation of the same world, as similar
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as possible in its essence to a symbolic planning domain. Furthermore, we want use this model
to effectively select actions to take in the MDP, so to achieve the desired task, as expressed
by the MDP reward function. More formally, let’s call ap(s) the action chosen by the planner
when the environment is in state s, we want to maximize the expected cumulative discounted
reward obtained by choosing actions according to the planner.

∞∑
t=1

[
γtr(st, ap(st))

]
st=tg(st−1,ap(st−1))

(4.1)

Let us consider a symbolic state-space X composed of dX propositional symbols.

X = {0, 1}dX (4.2)

At each time instant t, we can think of the observation st as the realization of a certain
situation xt identified by a specific truth value of the symbols in X. We define a situation
as a boolean dX -dimensional vector x ∈ X, and we can think of it as the latent symbolic
representation of s. Since actions in A modify the observation that arises from the situation,
we expect them to modify in some cases the underlying situation as well, and we want to
model how this happens. In other words, we want to find a transition model ts for the
situation-space.

ts : X ×A → X (4.3)

This model is conceptually similar to the effects of a PDDL-like [71] actions schema: given
an action a and a situation x we want to learn which symbols to delete and add to x in order
to have the next situation x′.

Furthermore, we want to know a measure of how much being in a particular situation is
decisive for achieving the task in the environment. This is equivalent to know a numeric value
function vs over the symbolic space.

vs : X → R (4.4)

Last but not least, we want learn a grounding method for the symbols, namely a model e
able to return the truth values of the symbols in every observed state s ∈ S.

e : S → X (4.5)

The symbolic planner learned with the interaction can be seen therefore as a tuple of three
functions.

P = {e, ts, vs} (4.6)

Once we have learned P from experience we can use it to perform online planning during
the agent-environment interaction in the abstract symbolic space. In other words, we may say
that the agent is able to abstractly imagine the future, as it is shown in Figure 4.1. Abstract
imagination is a fundamental part of our human intelligence: as humans we naturally make
projections of our future reality by manipulating abstract ideas in our heads and we base
our actions in the real world on those projections. In the same way the agent, starting from
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Figure 4.1: A global view on the framework

its current state s, can abstract the situation x = e(s), imagine many possible finite-horizon-
evolutions of the episode in its own idea-space, and choose the action leading to the best ‘story
in its head’, which corresponds to the simulated path achieving the best value according to
the estimated value vs (see section 4.4 for further details on the planning process).

4.2 The Interaction with The Environment

Here I describe the interactive learning method from an high level point of view, as it is
illustrated in Algorithm 1.

The agent interacts with the environment by following a classic RL scheme. At each
step it chooses an action a ∈ A and executes it in the environment env with the function
env.execute(a). This function returns the next state s′, that is resulting by applying a in the
current environment state s, and the obtained reward r. The function env.episode_terminated()

return True if the current episode is finished and False otherwise. The tuple (s, a, s′, r) is the
experience acquired through the step and it is stored in the experience buffer. Then, we train
the models of P with a batch of data extracted randomly from the experience buffer. In
particular, each model is implemented as a feed-forward neural network and is trained online
- namely only with the data obtained through experience - no offline training is required. The
action to execute is chosen with a classic epsilon-greedy exploration strategy: the agent per-
forms random action choice with probability ϵ and abstract online planning with probability
1−ϵ. ϵ is initialized to a large value and it is decreased over time. In this way, the agent relies
more on the planner policy when the networks output becomes more consistent and robust.
This loop plan-interact-learn is executed until the agent is able to achieve in the environment
a satisfying cumulative reward value, (while episode_reward ≤ desired_episode_reward),
and desired_episode_reward is a desired cumulative reward value defined by the environ-
ment. In order to select the action, the planner takes as input the current state st and the
desired finite planning horizon T . It plans future trajectories in the abstract space starting
from the current situation xt = e(st), using the model ts to expand abstract states for T steps.
The symbolic-state trajectories are evaluated using the value function vs, and finally the first
action a1∗ of the computed plan (a1∗, a2∗, ..., aT ∗) is selected for execution. The planning
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Algorithm 1: Interactive learning algorithm
Input: env, desired_episode_reward
Output: P = (e, ts, vs)

P = initialize_models_randomly();
experience_buffer = empty_buffer();
ϵ = initialize_epsilon();
episode_reward = 0 ;
while episode_reward ≤ desired_episode_reward do

s = env.initial_state();
episode_reward = 0 ;
while not env.episode_terminated() do

mode = epsilon_greedy(ϵ);
if mode == explore then

a = random_action();
else

T = set_planning_horizon();
a = plan_action(P, s, T);

s’, r = env.execute(a);
experience_buffer.append(s, a, s’, r);
episode_reward += r;
s = s’;
batch = experience_buffer.sample();
P = train_models(P, batch);

ϵ = decrease_epsilon();

Elena Umili 40



4.3. Learning the Models

horizon is also adapted during training, starting from small length horizon when expansion
and evaluation of plans are more prone to commit errors, and it is increased as the agent
gains experience by the function set_planning_horizon().

The interaction stops when the agent achieves the task in the environment by choosing at
each step the action returned by the symbolic planner, namely when the sum of the rewards
obtained in the last episode reaches a certain desired cumulative reward value that depends
on the task.

4.3 Learning the Models

In this section we give details about each function of P = {e, ts, vs} and how they are learned
from data.

4.3.1 Symbol Grounder

The mapping between the environment state-space to the symbolic space is implemented
using an encoder neural network e(·; θ) : S → [0, 1]dX with a sigmoid activation function on
the last layer, with the code length dX equal to the number of symbols we want to predict.
The boolean output is obtained by discretizing the encoder output in 0/1 values by using
discretization with the straight trough estimator [19] [36]. Therefore, the encoder output
space is composed of only 2dX possible different codes, and every single code is a possible
interpretation over dX propositional symbols.

e(s) = Discretize{0,1}(e(s; θ)) (4.7)

4.3.2 Symbolic Transition Model

For the transition function in the symbolic space we trained a neural network model t∆(·; θ) :
X × A → [−1, 1]dX , that learns the effects of actions on symbols in a PPDL-like formalism.
tnet∆ takes as input the symbolic state x and the action a, and it predicts which symbols the
action modifies in the state. In particular, the output is discretized in three possible values:
−1 for the symbols to delete from the state, 0 for the symbols that remain unchanged, 1 for
the symbols to add to the state. The next symbolic state x′ is therefore

ts(x, a) = x+ Discretize{−1,0,1}t∆(x, a; θ) (4.8)

Where we use the following activation function in the last layer of the t∆ neural network.

ϕ(x) = 1.5tanh(x) + 0.5tanh(−3x) (4.9)

This activation suggested by [132] assume values between −1 and 1 as the hyperbolic tangent
(tanh(x)), but, differently from tanh, it has three flat points with values −1, 0 and 1, hence
it supports 3-valued discretization.
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Figure 4.2: Continuous codes of a random batch of states with increasing margin. On the y axis:
x1 values between 0 and 1; on the x axis: x0 values between 0 and 1

4.3.3 Symbolic Value Model

To express the value of a symbolic state we analyzed two possible strategies:(1) learning the
reward function r over the symbolic space, (2) learning the state-action pair quality function
Q over the symbolic space.

The function Qπ(s, a) is defined as the expected discounted cumulative reward of taking
action a in the state s and then following the policy π. It is commonly used in model-free
reinforcement learning algorithms like Q-learning [96]. Although learning a Q function is
much harder than learning a reward function, Q describes how much current actions influence
future rewards, bringing much more information than the simple current reward function. For
this reason we implemented the second choice, even if option one may still be a valid choice.

We define a Q-network taking as input the state in its symbolic form and returning an m-
dimensional continuous vector Q(·; θ) : X → Rm, where m is the number of possible actions,
and the i-th component of the output, Q(x; θ)i, is the expected cumulative discounted reward
for taking action ai ∈ A from the symbolic state x ∈ X. To eliminate the dependency on a

we define the value of a symbolic state as

vs(x) = max
i

Q(x; θ)i (4.10)

Our system trains therefore three neural network models: e(s, θ), t∆(x, a; θ) and Q(x; θ),
that are shown in Figure 4.3.

4.3.4 Training Neural Networks with Symbolic or Discrete Layers

Symbolic representations are compatible with symbolic planners, and they are often more
interpretable and more computationally efficient than their continuous analogs. However,
their discrete nature makes it difficult to be learned with neural networks.

Since discretization is a non-differentiable operation, in order to use backpropagation we
cannot embed discretization as a layer in the network. On the other hand, since the discrete
output is used as input by other models, we cannot discretize the layer outside the network.
In fact, if we train the other models with almost discrete inputs, they will not predict the
expected output when they are fed with perfectly discrete inputs.

Regarding our approach, we need both discrete and continuous outputs to be predicted by
our system. For these reasons, discrete-output layers are trained using a the Straight-Through
Estimator [19][36]: both the discretized output tensor t and the continuous one t̃ are main-
tained in the computational graph; the former is used during forward propagation, while the
latter is used in the backward step of backpropagation. This technique, that was introduced
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(a) (b)

Figure 4.3: a) the symbolic quality model (b) computation of the transition model loss

in section 2.3.1, solves both the issues mentioned above, because we use the continuous tensor
for calculating the gradients necessary for updating the weights and we use the discrete tensor
to feed the next layer of the model.

Furthermore, in order to decrease as much as possible the discretization error, namely
the difference between the continuous tensor t̃ and its discrete t, we use the following loss
function.

Ldisc = 1/m1 ∗ ReLU(m1 − ||t̃− Y ||2) (4.11)

Where Y is a constant value and m1 is a margin. The effect of minimizing this loss is to
move t̃ to have a distance from Y of at least equal to the margin m1. This loss is applied to
t̃ = e(s; θ) with Y = 0.5, to push the codes to stay close to 0/1 values, and to t̃ = t∆(x, a; θ)

with Y equal to −0.5 and 0.5 so to cluster the output of tnet∆ around the values of −1, 0, and
1. The effect of increasing the margin m1 on the continuous tensor representing the symbolic
state before discretization is shown in Figure 4.2. For visualization purposes the figure shows
only the first two tensor components. Notice that setting the margin large enough push the
codes really close to the 4 possible configurations of 2 boolean variables: (0,0), (0,1), (1,1)
and (1,0).

Another possibility is to use the Gumbel-Softmax [98] as the activation function of the
discrete layers. We tried to use it and we observed that the agent is able to increase the
cumulative episode reward for a while, but finally fails to reach the desired episode reward
value, even with very large size codings.

4.3.5 Value Model Training

Here we describe how we use the tuple (s, ai, s
′, r) taken by the experience replay to update

the value model, shown in figure 4.1. For sake of clarity, we use the notation Q(x, ai; θ) to
indicate Q(x; θ)i.

We use two Q networks as in Double Deep Q-Network (DDQN) [124] to enhance the
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Q network stability. We call the two models prediction and target network and we denote
respectively with Q(x; θ) and Q̄(x; θ). We train only the prediction network, the target
network is a copy of the prediction network, which is updated every tsynch steps. We jointly
train the encoder e(s; θ) and the symbolic q-network model Q(x; θ) by minimizing the following
loss function.

Lq(s, ai, s
′, r) = ||Q(e(s; θ), ai; θ)− V (s′, r)||2 (4.12)

Where V (s′, r) is the expected cumulative reward according to the target Q-network model
and it is calculated with the Bellman equation.

V (s′, r) = r + γmax
ai∈A

Q̄(e(s′; θ), ai; θ)) (4.13)

4.3.6 Transition Model Training

Everything in the tuple except the reward is used to update the transition model. Given (s, a,
s’), we jointly train e(s; θ) and t∆(x, a; θ) minimizing the transition prediction squared error
in the symbolic space X, LtX . Figure 4.3 shows how this error is calculated. Let us denote as
x′p the next symbolic state, as predicted by the transition model.

x′p(s, a) = e(s; θ) + t∆(e(s; θ), a; θ) (4.14)

We want to minimize the distance in the abstract space X between x′p and the symbolic
interpretation of s′: x′ = e(s′; θ).

LtX(s, a, s′) = ||x′p(s, a)− e(s′; θ)||2 (4.15)

Let us notice that according to loss LtX only, the optimal e and t∆ are the constant
functions e(s; θ) = x̄ and t∆(x, a; θ) = 0, since this configuration of the models always leads
to 0 error in predicting the next symbolic state. We prevent this degenerate solution by using
the following regularization loss.

Ldist(s, s
′) = 1/m2 ∗ ReLU(m2 − ||e(s; θ)− e(s′; θ)||2) (4.16)

Akin Equation 4.11, Ldist is used to forces the distance between the encoding of s and s′ to
be at least equal to the margin m2.

4.4 Action Selection

Here I describe how the models are used for online planning. We assume to know the planner
functions e, ts and vs, since they are approximated by the neural networks trained with
samples of the experience replay. The planner takes the current continuous state st, and a
desired planning horizon T and it selects the action plan showing the best expected total
value over the next T future steps.

First the current continuous state st is encoded in its symbolic version x0, then x0 is
expanded using the transition schema ts to simulate every possible action a ∈ A for T con-
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secutive steps. In this way a full-breadth limited-depth planning tree is built.

x0 = e(st), xi = ts(x
i−1, ai) (4.17)

We denote with ai the action simulated at step i, with pi = (a1, a2, .., ai) the sequence of
action simulated in the first i steps, and with xi the symbolic state at the end of simulation
pi. Hence a complete simulation pT corresponds to a path from the root x0 to one leaf of
the tree. We evaluate each complete simulation using the symbolic value model vs and an
approximation of the transition epistemic uncertainty. In particular the total value V of a
simulation is

V (pT ) =

i=T∑
i=1

vs(xi)c(p
i) (4.18)

Where c(pi) is the confidence we have in the transitions simulated up to step i. Planning over
a learned model shows different risks in terms of stability. But, estimating and propagating
the model uncertainty allows to robustly plan over long horizons [51][66][34]. In our case we
found that approximating the epistemic uncertainty of a transition with the discretization
error is quite effective to find better plans. In fact, at each simulation step, we first calculate
a continuous next state x̃′ = x+t∆(x, a; θ). Then, we discretize x̃′ to its closest boolean vector
x′ = Discretize{0,1}(x̃′), and we consequently compute the discretization error as ed(x, a) =

|x̃′ − x′|. which is considered as the uncertainty of the transition (x, a). The confidence we
have in the final state of a simulation long i transition steps, denoted as c(pi), is therefore
recursively calculated as

c(pi) = c(pi−1)(1− ed(x
i−1, ai)), with c(p0) = 1 (4.19)

Where (1− ed(xi−1, ai)) is our confidence in the last simulation step (based on disrcetization
error), and c(pi−1) is the confidence we had in the simulation before performing the last step.

Finally the best plan p∗ is calculated as the complete simulation maximising the total
value V .

p∗ = argmax
pT=(a1,a2,...,aT ) with ai∈A

V (pT ) (4.20)

and the first action of p∗ is selected as the optimal action to take in the environment and it
is executed by the agent.

4.5 Transfer Learning

A benefit of using planning systems is that they can be re-used infinite times, in order to cal-
culate a plan for every possible couple (initial state, final state) in the domain. In RL instead,
since the goal is expressed as a reward function, changing the goal is not so straightforward,
and it consists of solving another MDP with a different reward function. Some techniques exist
in transfer learning for RL [181], such as reward-shaping [127], that allow re-using part of the
knowledge acquired solving an MDP 1 = (S,A, t, rG1 , γ) to solve an MDP 2 = (S,A, t, rG2 , γ),
where rG1 is the reward shaped to guide the agent to the goal G1, and rG2 is another reward
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function defined to lead the agent to the goal G2. Regarding our approach, we would like to
investigate if, once we have learned our symbolic planner P 1 = (e1, t1s, v

1
s) solving MDP 1, we

can use it to guide the agent’s actions towards a different goal G2; or, in other words, if we
can use P 1 to solve MDP 2.

In principle, we should be able to re-use the grounding method, e1, and the transition
function t1s, but we cannot re-use for sure the quality function v1s , since it depends on rG1 .

Since the symbolic representation tends to map closer states that were subsequent during
execution, we examined the use of Jaccard distance between symbolic states, according the
symbolic representation learned for goal G1, to guide the agent toward goal G2. We call this
distance function Jde1,G2

.

Jde1,G2
(s) = 1/dX

i=dX∑
i=1

|e1i (s)− e1i (G2)| (4.21)

It is the distance between a generic state s, in its symbolic form according to e1, and the goal
G2, also converted in the same representation through e1.

We tested the use of 1− Jde1,G2
as reward function to lead the agent toward G2, with a

generic model-free RL algorithm and with our learning algorithm.
In the second case, this is equivalent to define a new planning domain P 2 = {e2, t2s, v2s},

initialize the models of P 2 as

e2 = e1, t2s = t1s, v2s = RandomInitialization() (4.22)

and re-train the models running Algorithm 1 (by relying on everything as before, but the
value function) in the MDP 2 = (S,A, t, fe1,G2

, γ). This second training adjusts the models
e2, d2 and t2s and learns a new value function v2s from zero, that is specific for the new goal.

Experiments show that model-free RL algorithms are able to converge to the new goal
using the reward 1 − Jde1,G2

that is based on the encoder learned by our algorithm for the
old goal G1. Furthermore, if we use our algorithm instead, the convergence is faster, since the
planner can re-use also the transition model learned for the old task.

4.6 Experiments

In this section we propose a set of three experimental setup. The problems faced are: (1)
under-actuated robot control problems from the OpenAI gym suite,such as CartPole and
Acrobot, (2) continuous OpenAI gym problems subject to scattered rewards, such as Lunar
Lander, and (3) a decision making task in the contest of robotic soccer.

4.6.1 Environments Description

Cartpole

The CartPole environment requires the agent to balance a pole connected to a motorized car.
The goal is to keep the pole at an angle between +15° and -15° using the cart’s movement.
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(a) (b)

Figure 4.4: Performance with different sizes of the symbol set on the Acrobot environment.

The state definition of the environment is: [p, ṗ, θ, θ̇], where p is the cart position and θ is
the pole angle with respect to the cart.

Acrobot

In the Acrobot environment, the agent can act only on the intermediate joint of a two revolute
joints planar arms. The two links are initially hanging downwards, the goal is to reach a certain
height with the end of the second link. The state definition of the Acrobot is so composed:
[cos(θ1), sin(θ1), cos(θ2), sin(θ2), θ̇1, θ̇2], where θ1 is the first joint angle and θ2 is the second
one.

Lunar Lander

The Lunar Lander environment models the classic rocket trajectory optimization problem.
The agent maneuvers a spaceship, and the goal is safely land the spacecraft on the ground.
To do so, the agent disposes of four actions: do nothing, fire the left orientation engine, fire
the main engine, and fire the right orientation engine. The state is an 8-dimensional vector
[x, y, ẋ, ẏ, θ, θ̇, b1, b2]: the coordinates of the lander in x and y, its linear velocities in x and
y, its angle, its angular velocity, and two booleans representing whether each leg is in contact
with the ground or not. A small negative reward is given to the agent each time it fires an
engine. The agent receives positive rewards only when it reaches the ground at the end of the
episode. This makes the reward function quite sparse and complicates the credit assignment
problem.

NAO Soccer Player

The platform considered is the NAO robot produced by SoftBank robotics. The chosen task
concerns the robotic soccer scenario inspired by the RoboCup competition 1, more specifically,
the ability to walk with the ball, keeping it in the internal space of the robot’s feet. The robot
can perform three different actions: (1) Walk forward; (2) Adjust its position by moving to the
right; (3) Adjust its position by moving to the left. The state is composed of two continuous

1https://2023.robocup.org/
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(a) (b)

(c) (d)

Figure 4.5: Training performances on Cartpole (a), Acrobot (b), Lunar Lnader (c) and NAO Soccer
Player (d). On the y: axis mean training reward; on the x axis: episodes. Solid lines represent mean
values, shaded areas represent standard deviations.

variables: [px, py] with px and py being the relative position of the ball with respect to the
robot on the x and y-axis. The robot receives a positive reward proportional to the distance
it can move, keeping the ball close to it. The episode terminates when the ball reaches a
maximum distance from the robot.

4.6.2 Setup

The chosen setting for the DDQN is lr = 0.001, γ = 0.99, the number of hidden layers is 4,
and the number of units for each hidden layer is between 100 and 450 units, depending on
the experiment. The experiments have been conducted ten times with ten different seeds for
each environment and approach.4.6.7.

4.6.3 Symbol-Set-Size Tuning

To show the relationship between the symbol-set size and the system performance, we evaluate
our approach results with different sizes of the symbolic code. Figure 4.4 shows the mean
rewards obtained during training in the Acrobot and the Lunar Lander environment using
different code sizes for the symbol grounder. The graph clearly shows that properly setting the
symbol-set size is critical, and affects the system capability to converge quickly to a solution.
In the Acrobot domain, the system almost cannot converge to the desired cumulative reward
value by using 150 symbols. Still, it can converge even quicker than DDQN on the continuous
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space with a number of symbols greater or equal to 250. In the Lunar Lander, convergence to
the desired final reward of 100 is achieved only with code sizes greater or equal to 100. Also
experiments in this domain show how the training sample efficiency increases by increasing
the number of symbols. This is completely coherent with the abstraction theory. Increasing
the number of symbols, we create a finer abstraction that can potentially better represent
the continuous domain we are abstracting. Let us recall that the system needs to encode the
information about the next symbolic state and the next rewards in the symbolic representation
since it is trained end-to-end to minimize the representation error on the next state and Q
value. This classifies the system in the model-irrelevant abstractions. In order to balance
coarseness and representation performance, we decide to keep the number of symbols as small
as possible to achieve convergence in a reasonable number of episodes. We consider reasonable
a sample efficiency similar to that obtained by DDQN in the same domain without abstraction.
For this reason, we set the symbol set size to 200 for all the domains in the experiments that
will follow. Keeping the number of symbols quite small also allows us to investigate the
representation more easily, as we will see in Section

4.6.4 Training Performance

We analyze the system performance on OpenAI simulated control problems and a robotic
task. To demonstrate that we achieve competitive results, in terms of cumulative reward and
sample efficiency, whilst exploiting a symbolic and discrete state representation we compare
our system against DDQN a state-of-the-art deep RL baseline released within the OpenAI
Baselines framework [52]. The results obtained by the system on the test environments
demonstrate its ability to solve different types of continuous and dynamic environments as
control problems of underactuated systems: Acrobot, and CartPole; systems with sparse
rewards as Lunar Lander; and robotic tasks. Figures 4.5 (a)(b) and (c) show the mean rewards
achieved by our algorithm during training in gym environments (a-b-c) and in the task with
the NAO robot (d). Regarding experiments with the robot, the models were previously
trained using a simulator, then brought back to the real robot after a retraining phase. In
all the experiments the symbol set size is set to 200. It is important to remark that our
model-based approach – in order to successfully extract the planning domain – has to learn
in a more constrained state-space, while the model-free DDQN acts in the original continuous
state-space. Nevertheless, our solution reaches a competitive average reward in a number of
episodes which is smaller o comparable with the baseline.

4.6.5 Planning Performance

Figures from 4.6 show the results obtained in the different environments using the models
obtained from training for planning with increasing planning horizons. We used the planner
with and without uncertainty estimation and propagation for the gym environments and only
with the uncertainty estimation in the NAO Soccer Player environment. Results show how
uncertainty estimation positively affects the overall results, achieving better performances in
all the environments. In particular, we found that on the CartPole environment performances
using uncertainty estimation almost double those obtained without uncertainty. Furthermore,
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(a) (b) (c)

(d) (e)

Figure 4.6: Planner performances: Figures show rewards obtained with monitor replanning using
the planner acquired through experience with different planning horizons respectively without and
with uncertainty estimation, for the Acrobot environment, (a) and (b), for the Cartpole enviornment
(c) and (d), and for the NAO robot (e).

(a)

Figure 4.7: Transfer learning to a new task in the Lunar Lander domain.

in CartPole and NAO environments, we always have a significant improvement in performance
increasing the planning horizon. That confirms the importance of reasoning about future
actions’ outcomes in dynamic scenarios and underlines the robustness of the prediction system
proposed in this paper.

4.6.6 Transfer the Symbolic Domain to New Tasks

In order to access the capability of the extracted symbolic domain to represent the Continuous
MDP, we also conduct some transfer learning experiments. In particular, we focus on using the
planning domain acquired in one MDP to perform a different task in the same environment.
The new task is a reaching task. Therefore, we choose one continuous state of the MDP as
the new goal G2 and test the agent’s capability to exploit the symbolic domain previously
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(a) (b) (c) (d)

Figure 4.8: a) Acrobot environment b)Distances from the final state during an episode of Acrobot:
distances are computed respectively in the original MDP state-space (top) and in the abstract repre-
sentation space (bottom). On the y axis: L1 distance from goal; on the x axis: timesteps. c) Soccer
player NAO robot. d) ball-distance from the NAO position computed in the orginal state-space (left)
and in the abstract-space (right), smaller values shown in brighter red and bigger values shown in
darker red.

acquired to reach G2. To do this, we shape the reward for the new task based on the symbol
grounder, as explained in Section 4.7. Here we report one experiment in the Lunar Lander
environment, shown in Figure ??. First, we train a planning domain over 200 symbols solving
the original task expressed by the Lunar Lander reward, namely safely landing the spacecraft
on the landing pad. Then we re-train the planning models with the reward based on the
encoder previously trained, whit the new goal equal to (0,1,0,0,0,0,0,0); hence, we want the
spacecraft to stay straight in the center of the screen with zero angular and linear velocity.
Figure 4.7 shows the comparative results of the planner and a Vanilla DDQN trained on the
new reward. Let us notice that both DDQN and our algorithm have to learn a Q model from
scratch, since the value model depends on the old reward function and cannot be reused.
The state representation they use differs from the two approaches: DDQN simply uses the
ground state, while the Q of our system uses the symbolic state. The experiment shows that
the trained encoding speeds up the learning of our system compared to a Vanilla DDQN.
This supports the idea that the symbolic representation is sufficiently generic to allow the
execution of multiple tasks in the same environment.

4.6.7 Representation Insights

Finally, we investigate the abstract representation learned by our system with training in the
different environments. Although the representation is not interpretable from a human point
of view, we notice that the abstract space enjoys an interesting property. The transition loss
LtX drives the learning to a configuration of the encoder that maps close together the discrete
representation of states that are temporally related at training time. Hence, we observed that
the distance between two abstract states x and x′ is proportional to the temporal distance
between the associated continuous states s and s′, namely the number of steps needed to reach
s from s’ or viceversa. This property is also at the base of our transfer learning experiment,
described in the previous section. Figure 4.8(a) shows the Acrobot in its environment trying
to solve a balancing task. Accordingly, Figure 4.8(b) reports the evolution of the distance
between the current and the goal state both in the original MPD state-space (top), and the
abstract encoded state-space (bottom). The former is computed as ||st − sG||2, while the
latter is computed as ||e(st) − e(sg)||2, where st and sg are respectively the states at time t

and at the end of the episode. The two distance profiles show that, as we get closer to the
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goal state, in the abstract representation, the distance profile decreases almost monotonically,
while in the original state-space, it keeps oscillating until the very end (intuitively, this is due
to the inherent nature of a balancing task). Hence, we can easily observe that the distance
computed in the abstract state space provides a more robust cost metrics to reach the goal.
Similarly, Figure 4.8(c) shows the NAO robot performing a kicking task. The state space
used for the task is the ball position in the robot reference frame. Figure 4.8(d) shows for
each state point its distance from the state (0,0) (corresponding to the robot position) in the
original MPD state-space (left), and the abstract state-space (right). Distances are computed
as mentioned before, points closer to the origin are colored in a brighter red. Let us notice the
distance metric has consistently changed in the abstract space: the figure shows that points
with the same angle with respect to the robot sagittal direction are mapped so as to have the
same distance from the robot in the abstract space. It seems the system has learned that the
most important state feature to represent, to perform the task, is the ball angle with respect
to the robot sagittal direction, and this is perfectly coherent with the task.

Investigating the learned ground-abstract state space mapping, we also individuated an-
other interesting property: the abstraction tends to partition the ground state space more
finely around decision thresholds and in a much coarser way away from that. This is shown in
Figures 4.10(b), 4.11(b) and 4.12. In figure 4.10 (a), we show distances in the abstract space,
as explained before, for the Cartpole environment. In Figure 4.10(b), we show instead how
the ground state space is partitioned in the finite abstract state representation, by plotting
points in the ground state space in different shades of red when they are mapped to different
symbolic states. Let us notice that there are more symbolic configurations than shades of red
(255); therefore, colors are reused randomly for different codes. However, it is clear from the
figure that the vast majority of symbolic configurations are all concentrated around a particu-
lar line. In Figure 4.10 (c), we show the action policy on the ground state space, by encoding
in different colors the two different actions of Cartpole. Figure c shows that the line around
there is the major concentration of symbolic states, and the action threshold line correspond
to each other. In figure 4.10 (d), we show the truth value of each symbol in the symbol set
encoded in black (false) and white (true) on the ground state space. In figure 4.9 we compare
the symbol grounding for Cartpole when we train and use all the models of our framework
(left) and when we train only the encoder and the Q module, and we choose actions without
planning as in Q-learning (right). The figure shows clearly that symbols tends to concentrate
on the decision threshold because of the training of the transition function. In fact, when
the symbol grounding is influenced only by the Q loss, symbols are very more homogeneous
in the ground space. Figures 4.11 and 4.12 show the same kind of analysis for AcroBot and
NAO Soccer Player, respectively.

In particular, we plot the ground state partition in the different symbolic configurations
by sampling ground states on a grid with a given small step and calculating the symbolic
code on that ground state. In table 4.1, we report the number of ground states sampled
and the number of different symbolic states found processing the ground states with the
symbol grounder. We found that even if the possible number of symbolic configurations is
2dX , where dX is the symbol set size, the number of symbolic configurations actually used to
encode the state space is much smaller. We also found that the three environments analyzed
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Figure 4.9: Comparison of symbol grounding in the Cartpole environment: (left) symbol grounding
obtained with our algorithm, (right) symbol grounding obtained if we train only the symbolic encoder
and the Q function, and we interact with the environment without planning, namely choosing in each
state the action maximizing the Q function

a) b) c)

d)

Figure 4.10: Cartpole symbolic representation: a) distances in the symbolic space from the
symbolic code associated with (0,0,0,0); b) different codes, any different code is shown in a random
shade of red; c) action to take according to the optimal policy; d) truth value of each symbol in the
state space.
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a) b) c)

Figure 4.11: Acrobot symbolic representation: a) distances in the symbolic space from the
symbolic code associated with (0,0,0,0,0,0); b) different codes, any different code is shown in a random
shade of red; c) action to take according to the optimal policy; d) Heatmap of the weights assigned
to each symbol by the policy network, each column is a symbol, green represent a weight near to 0,
yellow an average weight and red an high weight

a) c) d)

e)

Figure 4.12: NAO symbolic representation: a) distances in the symbolic space from the symbolic
code associated with (0,0); b) different codes, any different code is shown in a random shade of red;
c) action to take according to the optimal policy; d) truth value of each symbol in the state space.
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Env #ground states # symbolic states % symbolic states over ground states

Cartpole 201000 17000 8%
AcroBot 200000 145000 72%

NAO 175000 3000 1.7%

Table 4.1: Percentage of different symbolic states found in the analyzed environments

use very different amounts of symbolic states. For example, in AcroBot, 72% of the ground
states sampled are assigned to unique symbolic configurations. To solve this environment, we
need the state to be continuous; therefore, the ground state space is discretized very finely
everywhere, pushing the symbol grounder capacity to the max. To solve Cartpole, instead,
we only need to be very precise around the equilibrium point (corresponding to the action
decision threshold); therefore, the grounding is very fine around that and coarse elsewhere.
As a result, the symbolic states used are only 8% of the sampled ground states. In the NAO
environment, we found the smallest percentage of symbolic states: only the 1.7% of sampled
ground states. We hypothesize that it is because the NAO’s actions are more high-level than
those of the other environments, which encourages a coarser abstraction.

In conclusion, examining the symbolic abstraction, we found that

• distances in the abstract space tend to be proportional to the temporal distance between
the associated ground states.

• As expected, the symbolic representation is task-based. In particular, it is not uniform,
and we have a very bigger number of codes around the decision threshold. This is very
easy to visualize in the Cartpole and Nao environments, where decision thresholds have
simple shapes. In Acrobot, instead, changing the state of even just a little changes the
optimal action to take; it follows that decision thresholds are entangled, and the number
of discrete codes is very bigger.

• The method to obtain the symbolic representation is very elastic, giving no prior to
the discretizer, the system is able to reduce the number of states consistently with the
complexity of the task (e.g. Acrobot recquires very much more states than Cartpole
and Nao).

4.7 Related Work

The use of learning approaches for determining compressed and interpretable representations
of the agent environment has been a very active research topic in the last years. Following
this idea in [70], authors propose an end to end reinforcement learning architecture based
on a neural network back-end and a symbolic front-end for addressing tabular game environ-
ments. In this work, a neural network is used to perform a symbolic representation of the
agent state-space, then the symbolic state is used to obtain an effective action policy. The
idea of determining a symbolic state to learn a propositional planning domain is introduced
in [6, 8, 11, 13], the learned planner is then used to solve a puzzle task. The system is
based on the use of two different autoencoders: 1) a State Autoencoder for the propositional
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representation of the image, 2) an Action Autoencoder for obtaining the action transition
definition on the domain. The works by Asai and collegues address the theme of the stability
of symbols, that is, the system’s ability to maintain the representation unchanged for small
perturbations; this goal is obtained by using a State Autoencoder. Authors have extended
the planner learning algorithm introducing First-Order State Autoencoder, unsupervised ar-
chitecture for grounding the first-order logic predicates and facts. In this architecture, each
predicate models a relationship between objects by taking the interpretable arguments and
returning a propositional value. A similar task has been faced in [149] using an unsupervised
learning approach. Differently from the previous works, in [22], authors address the problem
of determining the first-order representation from a non-symbolic input. The model is not
learned with deep learning approaches, but it is extracted from the state-space structure. The
required input is a labeled directed graph. All the works mentioned so far address environ-
ments with a discrete, even if sometimes complex, setting. Our system is meant to address
also fully continuous and dynamic problems with multiple continual variables; this allows to
address more problems closer to the real world environment. Different kinds of scenarios are
addressed in [55]. In this case, a variational autoencoder is used to learn relevant features in
Atari games given images as training data. The planning is done with RolloutIW using the
features learned by the VAE. The algorithm proves that VAEs can learn meaningful represen-
tations that can be effectively used for planning with RolloutIW. Similarly, in [35], an external
variational autoencoder is used to obtain a propositional representation of the environment’s
state space. The propositional state is then given as input for a tabular reinforcement learning
system and a neural network approach for learning state transitions. The combined archi-
tecture is exploited to learn with improved sample efficiency plans for solving the proposed
tasks. Both these works involve the use of external VAE’s for the states’ propositional encod-
ing. In our work, the code is directly learned through the Q-network and transition network,
creating a symbolic representation encoded following the task specification. This allows to
have state task-based state representation, useful for representing both the environment and
the task associated to it. The idea of determining a model for a dynamic environment is
addressed in [106]. In this paper, authors present infoGAN, a system based on Generative
Adversarial Networks [37] to learn a plannable representation of dynamic problems. This
approach identifies intermediate observation points in the agent task execution and the for-
malization of them in several kinds of symbolic representation. However, this approach does
not reason about the action plan, but about intermediate state formalization for trajectory
path planning problems. In [87] the authors propose Dreamer, a model based RL algorithm
that learns behaviours by using latent imagination. In a follow up work [88], they propose
Dreamer v2, which use a categorical representation for the latent space, that appear to be
very beneficial when applied to Atari games. Both Dreamer v1 and Dreamer v2 do not learn
an abstract representation of the environment, because the representation highly depends on
the reconstruction error, while we learn the abstract state-space encoding and transition and
values over abstract states at the same time in a end-to-end fashion. In particular, Dreamer
v2 use discrete representation only in visual games, like Atari games, and does not test it
on continuous control problems. Furthermore it use a categorical code of size 32× 32, which
correspond to a huge discrete state space made of 3232 possible different symbolic configura-
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tion, very much larger than the one used in our work. Finally, in [63], authors present CRAR
(Combined Reinforcement via Abstract Representations), a hybrid architecture composed of
a model-based and a model-free component that jointly infer a sufficient abstract represen-
tation of the environment. This is achieved by explicitly training both the model-based and
the model-free components, including the joint abstract representation. The CRAR agent
creates a low-dimensional representation that captures task-specific dynamics, even without
any reward. This last work introduces an architecture for obtaining a restricted meaningful
abstract representation of the state-space but still relies on a continuous encoded space; Our
work instead relies on a fully propositional symbolic representation of the environment.

4.8 Discussion

In conclusion, this chapter proposes an interactive learning algorithm inspired by both plan-
ning and reinforcement learning, for automatically learning a symbolic planning domain from
a continuous-state MDP. The data gained by experience in the MDP are used to train online
three neural network models: a discrete encoder which extract symbols from ground states, a
STRIPS-like transition network and a Q-network over the symbolic state. These models allow
for fast symbolic online planning over a finite horizon at each interaction step. The planner
can reason only with the automatically grounded symbolic representation, without the need
for complex trajectory propagation and evaluation in the original continuous state space. We
have shown that reasoning in the symbolic space is enough to effectively guide the agent’s
action in the original continuous environment, and that increasing the planning horizon the
agents can improve the performance of the previously trained models.

We started analyzing the use of the learned symbolic domain as a complete domain,
namely a domain that can be used to plan a sequence of actions for any possible couple initial
state-final state in the original state space. We have shown that the planning domain can
be retrained so to achieve different goals in the same environment through a reward shaping
based on the found symbolic representation. As a future direction, we aim at focusing on
the domain re-usability trying to speed-up or even eliminate the second training necessary for
achieving a new goal.

Furthermore, we observed that incorporating our uncertainty approximation based on the
discretization error is high beneficial for planning, especially for larger planning horizons.

We remark that our system autonomously learns how to ground the symbols from the
environment observation, even for very complex continuous environments. Therefore, this
mapping could not be perfectly understandable by a human. However, this does not affect
the validity of the symbolic space. If the training successfully ends, this implicitly guarantees
the learned symbolic space is enough variegate and informative to express the environment
dynamics. In particular, since we are forcing the system to use a very much smaller represen-
tation than the original continuous one, possibly cutting out a lot of information, we found
that the system learns to capture only very task-specific characteristics of the state with the
symbols, leaving out the rest.
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Part III

Discovering logical knowledge in non
markovian non-symbolic domains
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In this part of the thesis, I focus on discovering logical knowledge in non-symbolic and
intrinsically non-Markovian tasks. It means the task generates time sequences that must be
analyzed entirely; in other words, we cannot consider each step separate from the others.
Many tasks can be modeled as non-Markovian, especially in the field of Natural Language
Processing (NLP), Business Process Management (BPM) [75], and robotics [90]. In particular,
we focus on non-Markovian tasks that generate non-symbolic observations. So, also in this
case, we consider the entire model that underlies the task as the composition of two modules:
1) a perception module, which deals with extrapolating the truth values of a symbolic repre-
sentation from the observations, 2) a wholly logical and symbolic module, that describes the
task from a formal point of view, without any link to the non-symbolic data that it generates.
Different from the approach we followed in the last part, in this part, we focus on one module
at a time. In particular, Chapter 5 focuses on exploiting the knowledge of the symbolic model
to learn the perceptual model. Chapter 6 focuses on how to learn the symbolic temporal
model in the presence of uncertain symbolic observations and in a way that can be integrated
with a perception model. Finally, chapter 7 explores possible integrations of the two modules
previously illustrated in a single neurosymbolic framework.
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Chapter 5

Symbol Grounding Exploiting LTLf
Knowledge

A crucial problem in neurosymbolic integration is handling the symbol grounding problem
without direct supervision. We refer to symbol grounding [146] as the process of mapping
raw data into an interpretation over a finite boolean symbolic alphabet, where each sym-
bol expresses a meaningful high-level concept. In particular, we focus on grounding symbols
in raw data sequences using some prior symbolic knowledge expressed in Linear Temporal
Logic interpreted on finite traces (LTLf) [46]. LTLf is used in a big variety of domains, from
robotics [90] to Business Process Management (BPM) [75], for specifying temporal relation-
ships, dynamic constraints and performing automated reasoning. It is unambiguous compared
to natural language, yet easy to use and understand. Evaluating if a symbolic sequence is
compliant with a given LTLf formula is straightforward. In several real-world applications,
however, such sequences are not symbolic but appear ‘rendered’, or grounded in raw data
such as images, videos, words, audio, etc. In some application domains, such for example
in BPM [103], we could know a high-level specification of the process expressed in terms of
symbols, yet exploiting this knowledge is impossible unless it is grounded in the data. There-
fore, symbol grounding represents the first preliminary step to be made to perform any logical
reasoning, included evaluation.

Deep neural networks perform extraordinary well in perception tasks on raw data [79].
Supervised classification can be seen as grounding a set of classes in the dataset, by train-
ing directly on a set of (data, class) examples. Despite the success of deep learning in this
area, the main drawback remains the acquisition of the labeled data necessary for training.
State-of-the-art self-supervised approaches have seen enormous progress lately; they can com-
press high-dimensional data and cluster it in a meaningful way [82] [28] without using any
label. In particular, some approaches can also extract a discrete representation of the in-
put data [99], which can be considered an interpretation over a symbolic alphabet [9] [56]
[156], as we have seen in the last chapter. However, we do not know the meaning of these
automatically-extracted symbols, and inspecting them or connecting them to some human-
designed knowledge remains very hard.

In this work, we take a step in the direction of grounding a known meaningful set of
symbols in perceptual data, with as little supervision as possible, by exploiting some prior
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5.1. Problem Formulation

Figure 5.1: When the LTLf symbols are not grounded in observation data the knowledge of the
formula is useless to the task

knowledge about expected sequencing expressed as an LTLf fomula in the same symbolic
alphabet. Our framework is based on translating the LTLf symbolic knowledge into an equiv-
alent deterministic finite automaton (DFA) and encoding the latter using fuzzy logic. The use
of fuzzy logic has seen many successes in neurosymboilc AI [161], and many framework are
based on it, such as Logic Tensor Networks (LTN) [16] and Lyrics [121]. Unlike prior work,
we focus on grounding knowledge into time-extended data sequences. Our work is similar
to LTN, but extends it to temporal logic and time-extended data. LTN extends First Order
Logic (FOL) to make it compatible with machine-learning tasks. For example introducing
the concept of a dataset containing more data samples, and the concept of feature. However,
the concept of time is still missing, in the sense that encoding knowledge on a set of examples
(batch dimension), each represented by a sequence of data (time dimension), eventually mul-
tidimensional (feature dimension), is not straightforward. In our work, we manage the time
dimension by applying recursion over different time steps, in the same way recurrent neural
networks do.

In summary, the main contribution of this chapter is a framework able to encode tempo-
rally extended specifications and ground them on sequences of images of any length, through
a recursive structure. Experiments show that our method effectively classifies both sequences
and single images. In particular, it is faster, requires less data, and is more robust to overfitting
than a classical end-to-end classical neural approach that cannot use high-level knowledge.

I organize this chapter as follows: first I formulate the problem we want to solve in Section
5.1; in Section 5.2, I illustrate in detail the developed framework used to solve it; I report the
experiments evaluating our approach in section 5.3; in Section 5.4, I discuss the limitations of
our method and in particular the problem of ‘groundability’; I review related work in section
5.5; and finally I conclude and discuss directions for future work in section 5.6.

The content of this chapter was published in [159].

5.1 Problem Formulation

We consider the problem of classifying a sequence of images I = i0, i1, ..il−1 as compliant or not
with a certain specification expressed as an LTLf formula ϕ. Each image is the ‘rendering’ of a
symbolic interpretation over the formula alphabet P . This means that there exists a function
c : I → 2P , where I is the space of images, that maps each image into the truth values of
symbols in P . If we map each image in the symbolic space with this function we obtain a
trace p = p[1], p[2], ..., p[l − 1], where l is the sequence length and p[t] = c(it) ∀0 ≤ t ≤ l. We
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5.2. Framework

(a) (b)

Figure 5.2: a) An example of LTLf formula with the corresponding equivalent automaton, b) our
framework

denote with Aϕ = (2P , Q, q0, δt, F ) the DFA corresponding to the formula ϕ, where 2P is the
automaton alphabet, Q is the set of states, q0 is the initial state, δt is the transition function
and F is the set of final states. If we run the trace in the DFA we obtain a sequence of l + 1

automaton states q = q[0], q[1], ...q[l], where q[0] = q0 is the initial state and the last state
q[l] ∈ F if the sequence of images is accepted or s[l] ∈ (S − F ) otherwise.

We are interested in the classifying function c. We assume that we can discover it in a
weakly supervised way, namely without using any single-image label in the form of associations
(i[t], p[t]). In particular, we assume to know the following information: (i) the formula ϕ, from
which we can build the DFA Aϕ, (ii) a set of training data D = {< I1, ȳ1 >,< I2, ȳ2 >, ..., <

In, ȳn >} where Ik is an image sequence i0, i1, ..il−1 and ȳk ∈ {0, 1} is the ground truth label
denoting whether the sequence is accepted or not. We will show this information is enough
to learn the mapping from images to symbols, without exploiting any single image labels.

5.2 Framework

We consider our framework as a neural network composed of two parts:(i) a perception part,
represented by a trainable convolutional neural network CNN(i; θ) that classifies symbols
from images, having parameters θ and approximating the function c we want to discover; (ii)
a logic part, represented by a non-trainable recurrent structure, that is a fuzzy correspondent
of the automaton Aϕ. Figure 5.2 shows an example of the functioning of our framework.

The sequence of images I = i0, i1, ..., il−1 is passed one by one to the classifier, producing
l continuous vectors of dimension |P | where P is the set of propositions used by the formula.

We define a fuzzy predicate Class(ck, t) denoting whether the t-th image in the sequence
belongs to class k. The classifier implements the grounding of Class. In fact the component
k of the CNN prediction for the image it in the sequence is the truth value of Class(ck, t).

Class(ck, t) = CNN(it; θ)k (5.1)

Where we denote with CNN(·; θ)k component k of the CNN output. We denote as xt =

[Class(c0, t), Class(c1, t), ..Class(c|P |, t)] the fuzzy interpretation over propositions in P at
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time t, corresponding to the complete output vector of the CNN. This fuzzy interpretation
can be used to proceed on the automaton. Let us notice xt is a fuzzy relaxation of the t-th
point in the trace ρ[t], referring to the background section 2.1.3.

In particular, at any time t we are in a state qk of the automaton, we encode this in-
formation with another fuzzy predicate State, where State(qk, t) is true if we are in state
qk at time t. Again, we define as ht the interpretation at time t over the state symbols
ht = [State(q0, t), State(q1, t), ..., State(q|Q|, t)], with |Q| equal to the number of states in the
DFA. Let us notice ht is a fuzzy relaxation of the state at time t denoted for (bolean) DFAs
q[t], see section 2.1.3.

We denote the input and the state at time t of the fuzzy DFA xt and ht, respectively, to
stress the connection with recurrent neural networks.

We start at the initial state q0 of the automaton, and we have therefore

State(q0, 0) = ⊤ ∧ (State(qi, 0) = ⊥ ∀1 ≤ i ≤ |Q|) (5.2)

Then we simulate a run of the automaton using the fuzzy symbolic interpretations x0, x1, xl−1

the classifier has predicted classifying the images.
We recall that for (boolean) DFAs, if at time t we are in a state qi and we receive a

certain interpretation ρ[t] over the set of symbols, at time t + 1 we transit to the state qj

linked to qi by the edge ei,j that is made true by the interpretation of symbols in ρ[t]. For
example, if we are in state 1 of the DFA in Figure 5.2(a),and we receive the interpretation
[′three′ = False,′ two′ = False] we move to state 2 because the interpretation satisfies the
formula ¬three∧¬two on the arc e1,2. More formally State(sj , t+1) = (State(si, t)∧ei,j(ρ[t])),
where we denote as ei,j(ρ[t]) the truth value of the formula on arc ei,j when evaluated on the
interpretation ρ[t].

We apply the same transition rule in fuzzy logic. In particular:

State(qj , t+ 1) =
⋃

i:(i,j) is an edge of Aϕ

State(qi, t) ∧ ei,j(xt) (5.3)

Finally we evaluate the state in the last step hl and we impose this must be either: one
state in F if the sequence is accepted; or one state not in F if the sequence is negative. For
this purpose we define the predicate Accepted(I) that is ⊤ if the label ȳ associated with I in
the dataset is 1, and ⊥ if the label is 0. We know that:

Accepted(I) ↔
⋃

qk∈F
State(qk, l) (5.4)

Let us notice that we use
⋃

to denote logical disjunction in the previous two equations. We
optimize the network so as to maximize the satisfiability of this last formula. In fact the truth
value of formula 5.4 depends on the truth value of the last state, that in turn depends on
the previous state and the previous classes and so on. Let s(Ii, ȳi; θ) be the truth value of
Equation 5.4 for one particular sample (Ii, ȳi) in the dataset. The loss associated with that
sample is 1−s(Ii, ȳi; θ) that is aggregated over all data in the dataset, since the formula must
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be true ∀x.

L =

i=n∑
i=0

(1− s(xi, yi; θ)) (5.5)

The loss L is backpropagated through the network and the classifier weights θ are updated
with classical gradient descent. In particular, the loss depends on the last state prediction,
which depends on symbol grounding in the last image and the second-last state, which in
turn depends on the second-last image and third-last state, and so on and so forth. Therefore
the loss minimization applies backpropagation through time as in classical recurrent neural
networks. Let us notice the fuzzy automaton works as a recurrent neural network, encoding in
its state the memory of the part of the sequence seen so far. For this reason, the classifier can
process only one image at a time without needing to remember any latent dependency between
the current symbol and the previous symbols, because these dependencies are encoded in the
fuzzy automaton.

In summary, our knowledge base is composed of three logical axioms: (i) the initializa-
tion condition (Equation 5.2), (ii) the transition rule (Equation 5.3), (iii) the final condition
(Equation 5.4). In particular, the initial condition only specifies the initial state and does
not depend on the classifier predictions. The transition rule calculates the next state given
the current automaton state and the symbol prediction over the current image. This rule is
applied recursively as many times as many images compose the sequence. Finally, the final
condition applies supervision over the last state exploiting the sequence labels present in the
dataset.

We ground the truth value of each logical axiom by using the following fuzzy operators: the
product t-norm TP for conjunction, its dual t-conorm SP for disjunction, standard negation
NS , and the Reichenbach implication IR.

¬ : NS(a) = 1− a

∧ : TP (a, b) = a ∗ b
∨ : SP (a, b) = a+ b− a ∗ b
→: IR(a, b) = 1− a+ a ∗ b

Figure 5.2(b) shows the network behavior in case of perfect grounding. In this case, the
classifier predicts all one-hot encodings, this represents an ideal situation where no uncertainty
is present, and symbols are all perfectly true or perfectly false. Consequently, the output from
the fuzzy transitions is also perfectly boolean, and the fuzzy automaton behaves exactly as
the original DFA. The benefit of having a fuzzy automaton is that it can predict the sequence
of states even with some uncertainty in the symbol grounding layer, while the original DFA
cannot handle any uncertainty. Furthermore, transitions are differentiable, and we can back-
propagate error through the model.

Intuitively, at the beginning of training, the classifier does not know how to map images
into symbols; therefore, this grounding will initially be random and potentially incorrect, so
the automaton states produced by taking this grounding as inputs. Although we do not know
the ground truth sequence of states, the fuzzy automaton produces a sequence of probabilities
over these states that are adjusted to be coherent with the sequence label, which in turn
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(a) (b)

Figure 5.3: Pyramid example. (a) Drawing of the pyramid. (b) DFA corresponding to the instruc-
tions to build the pyramid. Bricks are not all groundable through the pyramid instructions, in fact
brick 1 and 2 can be confused each other. Expected symbol grounding accuracy: 100% or 33%

adjusts the predicted labels over images. For example, if we know that the DFA accepts the
sequence, the last state must be a final state. Therefore, the second-last must be linked to
one final state; the third-last must be linked to the second-last, and so forth. All of this is
automatically optimized through gradient descent.

5.3 Definition and Examples of Groundability through a Tem-
poral Property

In this section, we formalize the concept of groundability of symbols through an LTLf formula.
We say a symbol p ∈ P is groundable through an LTLf formula ϕ, where P is the formula

alphabet, if p is distinguishable from all the other symbols in the formula alphabet.
Undistinguishability of two symbols: We define two propositional symbols p1, p2 ∈ P

indistinguishable from each other through the LTLf formula ϕ, defined over symbols in P , if
and only if, given a generic finite trace ρ, and the trace ρ̃ obtained by ρ replacing truth values
of p1 with those of p2 and truth values of p2 with those of p1, ρ ⊨ ϕ ⇐⇒ ρ̃ ⊨ ϕ, ∀ρ ∈ (2P )∗.

Let us consider a generic ‘rendering’ function r that transforms the trace ρ in a sequence
of non-symbolic observations r(ρ). We denote the symbol grounding function as r−1. Suppose
we want to discover r−1 supervising non-symbolic traces r(ρ) with the formula acceptance.
Suppose p1 and p2 are indistinguishable. In that case, the symbol grounder will never receive
an error different from 0 for grounding renderings of p1 with p2 and vice versa, and this does
not depend on the rendering function or the grounding function, but only on the structure of
the formula.

Let me further explain the concept with some examples in the Brick World domain. Con-
sider an assembly process for which certain precedence constraints apply to the assembly of
the various parts. A simple example of this is building a brick wall. We must impose that if a
brick b0 rests on other bricks (b1, b2, ..., bk), these must be placed on the wall before the brick
b0. During the construction process, we indicate with the propositional variable bi whether
the brick i is placed on the wall. Considering the wall in the figure 5.3(a), made up of 3 bricks,
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(a) (b)

Figure 5.4: Gate example. (a) Drawing of the gate. (b) DFA corresponding to the instructions
to build the gate. Bricks are all not groundable through the gate instructions, in fact brick 0 and 1
can be confused each other if bricks 2 and 3 are confused each other. Expected symbol grounding
accuracy: 100% or 0%

the precedence constraint corresponds o the following LTLf formula.

ϕpyramid = □(b0 ⇒ (b1 ∧ b2)) (5.6)

Let us suppose we want to ground the symbols bi in observations of the wall, while it
is under construction, supervising the grounding with compliance with the given assembly
instruction ϕpyramid. Since the formula accepts both the sequences in which bricks are placed
in order b2-b1-b0 and in order b1-b2-b0, only symbol b0 is ‘groundable’ through the formula,
while b1 and b2 are not distinguishable from each other. We can infer this also by looking at
the formula ϕpyramid or the DFA Apyramid shown in Figure 5.3(b). If we replace symbol b1
with symbol b2 and vice versa, the formula does not change. Equivalently, if we exchange the
two symbols on all the arcs of the DFA, the automaton is not modified.

The given definition of indistinguishability is not strong enough to cover all the cases
where symbols are ungroundable. Let me clarify why with another example in the Brick
World domain. Consider the ‘gate’ example, shown in Figure 5.4, described by the formula

ϕgate = (□(b0 ⇒ b2)) ∧ (□(b1 ⇒ b3)) (5.7)

According to the previous definition, the bricks are all groundable in this example because
there does not exist a couple of symbols satisfying the definition of indistinguishability of
two symbols. However, in this example, none of the bricks is really groundable. Because
bricks 0 and 1 can be confused by each other if bricks 2 and 3 are confused with each other.
Therefore a symbol grounder is supposed to achieve either 100% or 0% accuracy, no matter
the rendering function.

For this reason, we extend the definition to a set of symbols as follows.
Ungroundability of a set of symbols:

Given n couples of symbols (p1,1, p2,1), (p1,2, p2,2), ..., (p1,n, p2,n), with p1,1, p2,1, ..., p1,n, p2,n ∈
P , and p1,1 ̸= p2,1 ̸= ... ̸= p1,n ̸= p2,np (all considered symbols are different each other). We
say the set of symbols {p1,1, p2,1, ..., p1,n, p2,n} is ungroundable if and only if ∀ρ ∈ (2P )∗, let ρ̃
be the trace constructed by replacing truth values of p1,i with those of p2;i fora all 1 ≤ i ≤ n,
ρ ⊨ ϕ ⇐⇒ ρ̃ ⊨ ϕ.

Consequently, we define a symbol as goundable when it does not exist any set of substi-
tutions that makes it indistinguishable from another symbol.
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The reader can verify on the gate formula or DFA, in Figure 5.4(b), that the specification
remains the same if symbols b0 and b1 replace each other and symbols b2 and b3 replace each
other, while it changes if we perform only one substitution of the two.

5.4 Experiments

In this section we report the experiments supporting our method. The implementation code is
available online at https://github.com/whitemech/grounding_LTLf_in_image_sequences.

Since LTL can be used to specify innumerable constraints, we test our framework on a
subset of formulas that is as complete as possible and, at the same time, useful for practical
applications. We choose, therefore, to test it on the Declare constraints. Declare [130] is one
of the prime languages of the declarative process modeling paradigm, and is composed of 20
types of activity constraints expressed as LTLf formulas. See Figure A.1 in the Appendix
for the complete list of Declare formulas. Declare formulas assume that one and only one
propositional symbol is true at each instant of time and the other are false, that is symbols are
mutually exclusive. In our experiments, we also consider the opposite configuration: textitnon-
mutually exclusive symbols, i.e., when in one image more than one class is predicted (multiple
symbols set to true in a given instant of time) or no class is predicted (all symbols are false).
For each Declare formula, we perform an LTLf evaluation experiment in three settings: (1)
training on the complete dataset; (2) training on a restricted dataset; (3) training on the
complete dataset by dropping the Declare assumption on mutually exclusive symbols (see the
following section for more details about the dataset creation process).

We report the sequence classification accuracy, that is the ratio of correctly evaluated
sequences, and the image classification accuracy, namely the ratio of correctly predicted sym-
bolic interpretation in single images.

5.4.1 Dataset

The dataset is created by rendering symbolic configurations using images of zeros and ones
from the MNIST dataset [114]. In these experiments, therefore, we used an alphabet composed
of only two symbols. However, we can apply the framework to an alphabet of any size by
changing the classifier output layer. For each formula, all the possible symbolic traces with
length between 1 and 4 are created. The latter are randomly split in train traces and test
traces, we denote as ptraces,train the percentage of traces used for training. In the same way,
images in the MNIST dataset are randomly divided in train and test images, we denote as
pimages,train the percentage of images used for training.

We construct the training dataset by rendering train traces with train images and the
test dataset by rendering test traces with test images. In this way, the test contains symbolic
traces never observed in the training, in which each symbolic interpretation is rendered with
an image never observed during training.

We test our approach on three dataset: (i) complete, (ii) restricted, (iii) complete with
non mutually exclusive symbols. The complete dataset is built as described above with
parameters ptraces,train = 50% and pimages,train =85%. The restricted dataset is constructed
by using parameters ptraces,train=40% and pimages,train = 15%. Achieving good perception
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Figure 5.5: Experiments over 20 Declare formulas. In the first row: sequence classification
accuracy, in the second row: image classification accuracy. They are obtained by training on
three different datasets: (first columns) complete dataset, (second column) restricted dataset,
(third column) complete dataset with non-mutually exclusive symbols. Solid lines represent mean
values, shaded areas represent standard deviations.

performances on the restricted dataset is therefore more difficult, since a big percentage of
possible renderings are not observed during training.

Images from MNIST dataset render only one digit at time (mutually exclusive symbols),
however our framework can be tested also for multilabel classification, as needed when symbols
are not mutually exclusive. For this purpose, we create also a dataset rendering interpretations
non in MNIST: when all symbols are set to false (rendered as a black image), and when both
symbols set to true (rendered as a ‘zero’ image and a ‘one’ image superimposed on each
other). We create a dataset for multilabel classification by modifying MNIST images as
described above and using the same parameters values used for the complete dataset, namely
ptraces,train = 50% and pimages,train =85%.

5.4.2 Results on MNIST Dataset

We compare our neurosymbolic approach (NS) with a classical supervised deep learning ap-
proach (DL). We implement the latter with a convolutional neural network (the same used by
NS) followed by an LSTM. For each approach, each formula, and each dataset, we perform
10 experiments with different seeds, and we keep the best 8 ones. Figure 5.5 show the mean
results over the 20 different Declare formulas. In all the plots solid line is the mean, and
the shaded area represents the standard deviation. In the sequence classification task, Figure
5.5 (first row), our approach outperforms the deep learning approach in all three datasets,
even in the non-mutually exclusive symbol case, although Declare formulas are not designed
for this kind of interpretation. This confirms our intuition that the LTLf knowledge can be
exploited to simplify the learning process. The lstm-based approach struggles to reach the
top accuracy on the test set, and this is even more evident in the experiment on the restricted
image dataset. It also happens because in some formulas the lstm tends to overfit the training
data, which is visible in the results on the single formulas.

In the image classification task, Figure 5.5 (second row), our approach reaches high ac-
curacy on both the test and training sets without exploiting any image label. Following, we
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report the results obtained on each single formula by training on the complete dataset, Fig-
ures 5.6 and 5.8; the restricted dataset, Figures 5.7 and 5.9; and the non-mutually exclusive
symbols dataset, Figure 5.10 and 5.11.

5.4.3 Discussion on ‘Groundability’

Our system does not need any single-data label to ground the symbols of a given formula into
data, however, correctly grounding single data using only sequence labels and the formula
is not always possible for any arbitrary formula as we have explained in Section 5.3. In
particular, if there exists a redenomination of the symbols in the alphabet that maintains all
the accepted traces still accepted and all the unaccepted traces still not accepted, multiple
groundings are possible. When trained on these formulas, our system can still distinguish
one class from the other, but can choose the wrong names for symbols. For example, in our
experiment on MNIST digits, the classifier may assign all images of zeros the label 1 and all
the images of ones the label 0. In this case, we observe that the accuracy on single image
classification approaches 0% while the sequence classification accuracy still approaches 100%.
In order to aggregate results from these formulas, which can do either 100% or 0%, we do not
plot the value x of image classification accuracy, but the distance from 50%, that is (50 + |x -
50|)% in Figure 5.5 (second row) and in all plots showing image classification accuracy. This
value goes to 100%, which means the system correctly clusters all images of zeros together
and all images of ones together.

This happens for all the formulas except one: choice(c0,c1), that is Fc0 ∨ Fc1 LTL, as it
can be observed in the results obtained in the single formulas (Figures 5.7-5.11). This formula
accepts any trace of mutually exclusive symbols, it is therefore not specific enough, even to
cluster images in the correct way. In fact, this formula achieves the highest sequence classifica-
tion accuracy and the lowest image classification accuracy in the two datasets with mutually
exclusive symbols. We would obtain the same results with a tautology or an unsatisfiable
formula.

We remark that this problem is only related to the formula and not to our implementation
or the particular image classification task we chose. However, our system is compatible with
the use of single image labels, which can be employed to ensure the assignment of the correct
class names to the clusters in case the LTLf specification is not informative enough to infer
them.

5.5 Related works

Integrating Logical Knowledge and Neural Networks Integrating logical knowledge
and deep learning is still an open problem, and many different approaches have been proposed.
Some works propose embedding logical knowledge and symbolic data in the same feature space
and inferring connections between the two using the distance in the feature space as a metric
[173] [172]. In this case, the representation quality depends on the training, and obtaining
the same exact behavior of the logical knowledge can be hard. Some other approaches use
real-valued logic [16] [120], such as fuzzy logic or probabilistic logic, to integrate sub-symbolic
perception and symbolic reasoning. The use of real-valued logic is compatible with gradient
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Figure 5.6: Experiments over 20 Declare constraints training on the full dataset in mutually
exclusive symbols. On the y axis: sequence classification accuracy ; on the x axis: epochs of
training. Solid lines represent mean values, shaded areas represent standard deviations.
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Figure 5.7: Experiments over 20 Declare constraints training on a restricted dataset in mutually
exclusive symbols setting. On the y axis: sequence classification accuracy ; on the x axis: epochs
of training. Solid lines represent mean values, shaded areas represent standard deviations.
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Figure 5.8: Experiments over 20 Declare constraints training on the full dataset in non mutually
exclusive symbols setting. On the y axis: image classification accuracy ; on the x axis: epochs
of training. Solid lines represent mean values, shaded areas represent standard deviations.
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Figure 5.9: Experiments over 20 Declare constraints training on a restricted dataset in mutually
exclusive symbols setting. On the y axis: image classification accuracy ; on the x axis: epochs
of training. Solid lines represent mean values, shaded areas represent standard deviations.
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Figure 5.10: Experiments over 20 Declare constraints training on the full dataset in non mutually
exclusive symbols setting. On the y axis: sequence classification accuracy ; on the x axis: epochs
of training. Solid lines represent mean values, shaded areas represent standard deviations.
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Figure 5.11: Experiments over 20 Declare constraints training on the full dataset in non mutually
exclusive symbols setting. On the y axis: image classification accuracy ; on the x axis: epochs
of training. Solid lines represent mean values, shaded areas represent standard deviations.
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descent optimization that is at the base of neural network training. In this work, we use this
second approach and in particular we focus on the use of LTLf knowledge.

Machine Learning and LTL Many works exploit the synergies between machine learning
and LTL in a beneficial way. In reinforcement learning, LTL-based reward machines are used
to simplify and automate the creation of reward functions for Markovian and non-Markovian
decision processes [27][45]. However, they are applicable only in discrete-state environments
or continuous problems for which a mapping between the continuous state and a symbolic
interpretation is known, also known as labeled MDP [166]. Some works use neural networks to
solve problems related to LTL, generally approached with combinatorial algorithms. Camacho
and McIlraith [26] use deep learning to guide research in program synthesis and improve
scalability. Walke et al. [165] use recurrent neural networks to learn LTLf formulas from a
set of traces. However, these works use symbolic data and do not consider the problem of
discovering latent symbols in the data, which is the problem we face in our work.

Exploiting High-Level Knowledge for Vision Tasks Previous works have shown that
vision tasks can benefit from background knowledge. Stewart and Ermon [147] perform detect-
ing and tracking objects, without any labels, by exploiting known laws of physics. Donadello
et al. [57] exploit logical knowledge to increase robustness to noisy datasets with incorrect
labels in semantic image interpretation tasks. In particular, our work focuses on classifying
images using logical symbolic knowledge instead of image-class labels in a semi-supervised
fashion.

Semisupervised Symbol Grounding A benchmark for semisupervised symbol grounding
is the digit addition problem, where a system must learn to classify MNIST digits images by
knowing only the result of their sum and how addition works. LTN [16] and DeepProbLog
[120] show how their systems can benefit from knowing addition rules. However, they handle
the problem only in two settings: single-digit and double-digit addition. Dai et al. [40] use
logic abduction to correct the prediction of a CNN, by using a derivative-free optimization.
They tested their framework on binary sums of digits, where the two binary numbers can have
various lengths. We propose a similar experiment on MNIST digits, that does not concern
addition and where we do not know in advance the input sequence length. In particular, we
evaluate an LTLf formula over sequences of arbitrary lengths of digits by using a recurrent
specification in the form of a fuzzy DFA. We use the same approach of LTN, by adapting it
to LTLf formulas. To the best of our knowledge, it’s the first time LTN has been used to
incorporate temporal logic knowledge into neural networks.

5.6 Discussion

In conclusion, we propose a framework for exploiting high-level logical knowledge in the form
of LTLf formulas in classification over sequences with neural networks. In particular, we use
this knowledge to map images into a set of symbols with a known meaning without any image
label. We have shown that discovering this mapping is possible using only sequence-level
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labels and the logical knowledge. Furthermore, our approach outperforms the end-to-end
approach based on recurrent neural networks in sequence classification: it is more general
and can maintain high performances using fewer labels. These results confirm our intuition
that the LTLf knowledge can be exploited to simplify tasks comprising classification over
sequences, even if the knowledge is expressed in a set of symbols that is not grounded in the
type of data composing the sequences.

We have also explained the possible drawbacks of this approach. The main limitation
is that the LTLf formula has to be informative enough to supervise the symbol grounding
process. Formulas that tend to be trivially positive or trivially negative are not supposed
to give enough supervision. Tautologies and contradictions represent an extreme example of
this. We also defined when two or more symbols are not distinguishable from each other
because of the formula structure. In particular, we remark that, even if our experiments did
not use any single data label, our framework could be combined with a supervised loss on
symbol grounding, in case the formula alone does not provide enough supervision.

Furthermore, In this chapter, we only conducted experiments on formulas with a binary
alphabet. Although experiments with recurrent neural networks showing the end-to-end ap-
proach struggle to solve these relatively simple tasks, more complicated settings can be inves-
tigated. In this regard, in Chapter 7, we will test symbol grounding through LTLf formulas
in more challenging configurations related to non-markovian RL. In particular, we will test
longer formulas defined on a bigger alphabet and limit the image sequences to be feasible
trajectories observed in the environment. We anticipate that, to tackle this more challenging
setting, we will have to supervise the output at each time step (instead of only the last step)
and change the formula output to be less sparse, passing from DFAs to more general Moore
Machines.

In the future, we want to apply this framework to a more realistic scenario in the area of
BPM or natural language processing, and we want to investigate how it can perform in the
case of nonperfect or partial symbolic knowledge.
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Chapter 6

DFA Induction with Neural Networks

In this chapter we focus on learning the symbolic temporal property from symbolic data, in
particular, we will focus on DFA induction. The results reported in this chapter are in the
article under review for being published in an international conference [158].

The problem of identifying a deterministic finite state automaton (DFA) from labeled
traces is one of the best-studied problems in grammatical inference. The latter sees appli-
cations in various areas, including machine learning, formal language theory, syntactic and
structural pattern recognition, computational linguistics, computational biology, and speech
recognition [47]. Both passive [92] and active [3] exact methods were proposed for DFA iden-
tification. These methods are guaranteed to succeed in theory. However, in practice, they
require a notable amount of computation, and they are unable to handle errors in the training
dataset, making them of limited applicability, especially to real applications and large DFAs.
Unlike exact approaches, Recurrent Neural Networks (RNN) can tolerate errors in the train-
ing data, and they have proven highly effective at learning classifiers for sequential data [48].
DFAs and RNNs can both be used to match the language recognition task, which is essentially
binary classification over strings. Many works highlight the similarities between RNNs and
finite-state machines [141] [69]. The two differ in the transition representation: RNNs learn
a parametrized transition function in a continuous hidden state space, while DFAs have a
finite state space and completely transparent transitions. Furthermore, designing an RNN
requires many choices: deciding the number of layers, the number of features of each hidden
layer, and all the activation functions. Each of these decisions can affect the final performance
and must be taken carefully. By contrast, DFA induction methods do not require nearly any
hyperparameter fine-tuning. Many approaches have been proposed to extract a DFA from a
pre-trained RNN [122] [168] [169], generally adapting techniques from the grammar induction
literature and suggesting ways to discretize or cluster the continuous RNN hidden states in
a finite structure. The purpose of these works is not DFA induction but rather to enhance
the explainability of black-box sequence classifiers. However, they open the door to DFA
induction through neural networks, and join two fields that are classicly kept separated.
In order to take the benefits from both worlds, grammar induction on one side and recurrent
neural networks on the other side, we present in this chapter DeepDFA: a transparent neural
network design specialized in learning DFAs from traces with gradient-based optimization.
The model resembles a recurrent neural network, but, differently from RNNs, it is completely
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(a) (b)

Figure 6.1: a) An example of PFA with three states and two symbols: graph describing the PFA,
equivalent representation in matrix form, and produced states and acceptance probabilities while
processing the string "ab". b) An exmple of DFA: graph describing the PFA, equivalent representation
in matrix form, and produced states and acceptance probabilities while processing the string "ab". In
particular, the DFA in (b) is obtained by the PFA in (a) approximing the matrix representation to
the closest one-hot vectors.

transparent after training, as much as a DFA. Furthermore, when the number of symbols is
smaller than 4, it uses fewer weights than the most commonly used recurrent architectures,
such as LSTM and GRU, resulting in faster training and less memory consumption. Another
benefit is that it only has one hyperparameter, significantly reducing the hyperparameter
search. At the same time, since it is trained with back-propagation, it is able to learn DFAs
in a significantly shorter time than grammar induction methods, even for large automatons;
and it can tolerate errors in the training data. Our method is based on defining a neural net-
work that behaves as a probabilistic finite automaton. We control how much the probabilities
are close to categorical one-hot distribution through a temperature value. During training,
we smoothly drive the network activations to be close to discrete 0/1 values by changing the
temperature. When the gap between the discrete and actual activations is small enough, the
network behaves precisely as a DFA.
We evaluate our method on the popular Tomita languages benchmark [152] and random DFAs
of different sizes and different sets of symbols. Results show that DeepDFA is fast and ac-
curate. It outperforms an exact SAT-based method [177] when the target DFAs is bigger
than 20 states, or the training dataset is erroneous, and it reaches competitive results in the
other cases. We also compared DeepDFA to DFA extraction from a pre-trained RNN [169],
finding it reaches better accuracy and predicts DFA of size closer to the target DFA size. The
remainder of this chapter is organized as follows: in section 6.1 we formulate the problem, we
define the DeepDFA neural network model and the training procedure used; we report the
experiments evaluating our approach in section 6.2; in section 6.3 we report related works;
and finally we conclude and discuss directions for future work in section 6.4.
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6.1 Method

We consider the problem of inferring a DFA from a training set of labeled strings D =

{(x1, ȳ1), (x2, ȳ2), ..., (xn, ȳn)}, where xi is a string of length l of symbols x[0], x[1], ..., x[l− 1],
in the automaton alphabet P , x[t] ∈ P with 0 ≤ t < l, and ȳi ∈ {0, 1} is the associated label,
denoting whether the string is accepted or not by the target automaton. Let us notice we
denote the t-th symbol in the string as x[t] to underlined it is the integer index of a symbol
and not a continuous vector.

To infer the automaton, we define a recurrent neural network model that mimics the
behavior of a PFA in a state space Q̂ and action space P , where P is the target automaton
alphabet. In contrast, Q̂ is our hypothesis on the state space, which will generally differ from
the true Q. For this reason, the size of Q̂ is a hyperparameter of our model.

We cannot use gradient-based optimization to learn the DFA directly because of its non-
differentiable transitions and output vector. The intuition behind our work is that PFAs are
closely related to recurrent neural networks, since they calculate the next state and output
using multiplications between continuous vectors and matrices, in the same way as RNNs do.
However, DFAs can also be represented in matrix form, with the difference that their matrix
representation is composed of only one-hot row vectors, as shown in Figure 6.1. The latter
shows a PFA on the left and a DFA on the right. In particular, the DFA is obtained from the
PFA approximating all the PFA matrix representation row vectors to the closest one-hot. It
describes, therefore, only the most probable behavior of the same system deterministically.

6.1.1 DeepDFA Definition

Following this idea, we define DeepDFA as a parametric PFA in which we can drive the
representation to be close to one-hot during training. We obtain this effect using an activation
function that smoothly approximates discrete output. Many works in literature [97] [164] [107]
use this technique, especially in neurosymbolic AI [20], to learn symbolic logic structures by
using differentiable models such as neural networks. In particular, we use a modified version
of the classical softmax and sigmoid activation functions, which we call softmax_with_temp

and sigmoid_with_temp. Given a function f(x) we define f_with_temp(x, τ) = f(x/τ),
with tau being a positive temperature value.

Our RNN comprises two trainable modules: a transition function and an output function.
The transition function ht(ht−1, x[t−1]; θh) has parameters θh, takes as input the probabilities
over the previous state, ht−1 ∈ [0, 1]|Q̂|, and the prevuous symbol, x[t− 1] ∈ P , and predicts
the current state ht. The output function y(ht; θy) implements the classification module:
given the current state estimation, ht, predicts the probability of the current state to be an
accepting state using its parameters θy. In particular, fixed a temperature value τ

h0 = [1, 0, ..., 0]

ht = ht−1 ×Mt[x[t− 1]]

yt = ht × vo

Mt = softmax_with_temp(θh, τ)

vo = sigmoid_with_temp(θy, τ)

(6.1)
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Where Mt is the PFA transition matrix, Mt[x[t]] is the transition matrix for symbol x[t], and
vo is the output vector, as defined in the background section 2.1.3. They are obtained by
applying discrete activation functions on parameters θh ∈ R|P |×|Q̂|×|Q̂| and θy ∈ R|Q|×1. In
particular, the softmax activation applied to the third dimension of the matrix θh ensures∑

q′ δt(q, a, q
′) = 1, and the sigmoid activation ensures values of vo stay in [0, 1].

In the forward pass, we calculate the probability of a string x in the dataset to be ac-
cepted by the RNN by applying Equation 6.1 recursively to the input sequence of symbols
x[0], x[1], ..., x[l − 1]. The final output yl is compared with the ground truth label ȳ. We
update the model weights with back-propagation by minimizing the binary cross-entropy be-
tween model predictions and the ground truth labels.

6.1.2 Temperature Annealing

Cold temperatures force the PFA to behave as a DFA, since the activation values become
closer to boolean values as the temperature decreases. When the temperature is low enough,
the model transforms into a DFA. Let us notice that using the classical activation functions
and discretizing the model at the end is not guaranteed to work. Because, in that case, the
discretized model differs from the trained one, and the two can have different performances.
However, using a cold temperature from the start of training can prevent the system from
learning the model properly. For this reason, we initialize τ to 1. In this way, the system
starts the training using the normal softmax and activation functions. After that, we align
the temperature to 0 by multiplying it for a positive constant λ < 1 at each epoch.

6.1.3 Model Minimization

Once the training is concluded, we read the DFA from the activations evaluated with the
minimum temperature, and we use the Hopcroft algorithm [94] to minimize the number of
states. We emphasize that automata minimization is a well-known problem for which many
algorithms are available, as opposed to neural network compression, also known as knowledge
distillation [93], which is still an open research problem. This represents another feature in
which DeepDFA can take ‘the best of both worlds.’ We observe that, even if we set the state
space size |Q̂| very big, the number of states after minimization tends to be close to the target
DFA number of states, which suggests the model is robust to overfitting.

6.2 Experimental Evaluation

6.2.1 Target DFAs

We test our approach on two different sets of DFAs. The first experiment is on the Tomita
languages[152], which are a standard benchmark for grammar induction and DFA extraction
from RNNs [169] [168]. The benchmark comprises seven formal languages of increasing diffi-
culty defined on the binary alphabet P = {a, b}. Despite Tomita languages being a popular
benchmark, they are represented by small DFAs with state size smaller than six. In order to
test our approach on bigger DFAs, we conduct a second experiment on randomly generated
DFAs with state size |Q| between 10 and 30, and alphabet size |P | between 2 and 3. For
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each setting, we generate 5 random DFAs as described in [178]. |Q| states are generated and
enumerated between 1 and |Q|, we set 1 as the initial state, and each state is equiprobable to
be accepting. We connect each state i with a random state in [i+1, Q] with a random-labeled
transition. In this way, we partially build an automaton where all states are reachable from
the initial state. Finally, we complete the DFA with random transitions.

6.2.2 Dataset

For each target DFA, we create a train, a dev, and a test dataset by sampling strings of
various lengths and labeling them with the target DFA. The training dataset contains strings
with a length between 1 and lentrain, the dev set is composed of strings of length lendev,
and the test set by sequences of length lentest. In order to test the model’s capability to
generalize to longer unseen sequences, for each dataset, we set lentrain < lendev < lentest.
To prevent the models from learning degenerate solutions, all datasets are almost exactly
balanced. We set lentrain = 30, lendev=60, and lentest=90 for all the Tomita datasets and
the random DFAs datasets with |Q| < 30. For the random DFAs with state size of 30, we set
lentrain=50, lendev=100, and lentest=150. To test the resiliency of different methods to errors
in the training data, we also create a corrupted version of each training dataset by flipping
1% of the labels.

6.2.3 Baselines

Our approach is a hybrid between a recurrent neural network and a DFA. These two types
of sequence acceptors are trained with very different methods and present different strengths
and weaknesses. In order to better understand the benefits of having a hybrid method, we
compare it with one state-of-the-art from the literature on grammar induction [177] and one
state-of-the-art method to extract DFAs from recurrent neural networks [169]. The former
is DFA-inductor, a SAT-based approach for exact DFA identification. In particular, we use
the shared implementation code at 1, and we test with breadth-first search (BFS) symmetry
breaking, shown to be the most effective in the paper. The other approach abstracts a finite
state automaton from a pretrained RNN, starting from a predefined discretization of the
hidden state space and applying the L* algorithm and abstraction refinement when required.
To test this method, we first train a one-layer LSTM of hidden state size set to the same as
our method. Then we extract the DFA from the trained network by using the code in the
public repository 2 with 10 as the initial split depth, and the starting examples set composed
of the shortest positive string and the shortest negative string in the train set, as suggested
in the paper. We refer the reader to [177] and [169] for further details on the two comparison
methods. For each approach, we report the accuracy obtained by querying the final DFA on
the test set, the number of states of the predicted DFA |Q̂|, and the execution time.

1https://github.com/ctlab/DFA-Inductor-py
2https://github.com/tech-srl/lstar_extraction
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(a) (b)

Figure 6.2: Results on Tomita 5 with different error rates in the training dataset. a) Number of
states of predicted DFAs b) Test accuracy

Table 6.1: Comparison between DeepDFA, L* extraction and DFA-inductor on the Tomita Lan-
guages. We report test accuracy, mean number of states |Q̂| and the number of parameters used
#W

DeepDFA L* extraction DFA-inductor
Lang test accu-

racy
|Q̂| #W test accu-

racy
|Q̂| #W test accu-

racy
|Q̂| |Q|

T1 100 ± 0 2 ± 0.0 820 100.0 ± 0.0 2.0 ± 0.0 1880 100.0 ± 0.0 2 2
T2 100 ± 0 3 ± 0.0 820 100.0 ± 0.0 3 ± 0 1880 100.0 ± 0.0 3 3
T3 100.0 ± 0 5 ± 0 820 100.0 ± 0.0 5 ± 0 1880 100.0 ± 0.0 5 5
T4 100.0 ±

0.0
4.0 ±
0.0

820 100 ± 0 4 ± 0 1880 100.0 ± 0.0 4 4

T5 100 ± 0 4.0 ±
0.0

1830 67.77 ±
27.90

454.3 ± 384.2 4020 100.0 ± 0.0 4 4

T6 100.0 ±
0.0

3.0 ±
0.0

820 50.44 ± 2.67 524.0 ± 183.0 1880 100.0 ± 0.0 3 3

T7 100.0 ±
0.0

5.0 ± 0.0 820 100.0 ± 0.0 5.0 ± 0.0 1880 100.0 ± 0.0 5 5

6.2.4 Training Details

We set the hidden state size as 20 for all the Tomita languages experiments except Tomita5,
for which we used a hidden state size of 30. Regarding the experiments on the random DFAs,
we set the hidden state size to 100 for learning the DFAs with state size < 30, and 200 for
the random DFAs of size 30. As we discuss in section 6.2.6, the hidden state size seems to be
at least three times the target DFA size to make the training accuracy able to increase. This
motivates the choice of this hyperparameter for the various experiments. All the networks were
trained on an Nvidia GPU, with a learning rate of 0.01, until training loss convergence, for a
maximum of 200 epochs. In all the experiments we use λ = 0.999 and minimum temperature
= 10−5. All the experiments of DFA-inductor was performed on a Intel Core i7-10750H CPU,
without any other process running at the same time.
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Table 6.2: Comparison between DeepDFA and a
DFA-inductor when the training set contains 1% of
errors. Results on Tomita Languages.

DeepDFA DFA-ind
Lan test accu-

racy
|Q̂| test

ac-
cu-
racy

|Q̂| |Q|

T1 100 ± 0.0 2.0 ±
0.0

95 12 2

T2 100 ± 0.0 3.0 ±
0.0

94 10 3

T3 100.0 ±
0.0

5.0 ± 0 0 32 5

T4 100.0 ±
0.0

4.0 ±
0.0

0 23 4

T5 100.0 ±
0.0

4.0 ±
0.0

0 27 4

T6 100.0 ±
0.0

3.0 ±
0.0

0 25 3

T7 100.0 ±
0.0

5.0 ±
0.0

0 41 5

Table 6.3: Comparison between DeepDFA and a
DFA-inductor when the training set contains 1% of
errors. Results on random DFAs.

DeepDFA DFA-ind
|Q| |P | test ac-

curacy
|Q̂| test

accu-
racy

|Q̂|

10 2 98.38 ±
3.66

8.68 ±
2.10

0 ±
0.0

-

10 3 98.95 ±
2.74

10.92 ±
1.99

0 ±
0.0

-

20 2 95.80 ±
9.04

13.86 ±
1.97

0 ±
0.0

-

20 3 98.31 ±
3.16

20.14 ±
3.39

0 ±
0.0

-

30 2 98.56 ±
2.98

22.62 ±
1.56

0 ±
0.0

-

30 3 96.43 ±
11.48

42.02 ±
34.42

±
0.00

-

6.2.5 Results

Results on Tomita Languages

For each Tomita language, we run 5 experiments with different seeds for DeepDFA and L*
extraction and one for DFA-inductor since the latter has a deterministic behavior. We set
the hidden state size to 20 for both DeepDFA and L extraction. This number is big enough
to learn Tomita languages since each language is a DFA of at most 5 states. We found
unoptimal solutions for Tomita5 with this setting, as described in section 6.2.6, so we used
a bigger hidden state size of 30 only for it. We report the effect of changing the hidden
state dimension on the Tomita5 performances in Figure 6.3. Table 6.1 shows the results.Our
approach and DFA-inductor reach 100% test accuracy for all the languages, even for the more
complex ones. Our approach outperforms L* extraction from the lstm, especially for Tomita
5 and 6. For these languages L* extracts extremely oversized DFAs of 400/500 states, while
our approach correctly estimates DFAs of sizes 4 and 3. However the SAT-based method
reaches top performances on a perfect dataset, we show that it is completely unable to handle
errors in the training data. We tested our approach and DFA-inductor on the same training
datasets after having flipped 1% of the labels; results are shown in table 6.2. With only
1% of errors, DFA-inductor is unable to provide a solution because the process is killed for
exceeding the CPU capacity before finding a DFA consistent with training examples. In
case of exceeding CPU, we put 0% as test accuracy, and we report in the |Q̂| column the
DFA state size DFA-inductor was checking as a hypothesis at the process death time. The
method crashes in all the Tomita languages except the first two, for which it loses around
5% of accuracy and overestimates the state space. By contrast, our method is completely
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Table 6.4: Comparison between DeepDFA and L* extraction on randomly generated DFAs. The
train set does not contain errors.

DeepDFA L* extraction
|Q| |P | test

accuracy
|Q̂| execution

time
#W test

accuracy
|Q̂| execution

time
#W

10 2 98.31 ±
3.51

8.72 ±
2.23

52.51 ±
13.79

20100 96.64 ±
11.13

7.7 ±
0.88

124.13 ±
21.28

41400

10 3 99.42
+±
1.69

11.56 ±
3.68

43.26 ±
15.68

30100 98.56 ±
6.82

132.06 ±
165.04

208.89 ±
42.68

41800

20 2 94.6 ±
9.75

13.94 ±
2.86

49.23 ±
14.00

20100 99.63 ±
2.26

39.26 ±
111.31

167.95 ±
37.72

41400

20 3 96.80 ±
5.09

21.24 ±
4.19

55.65 ±
12.69

30100 67.79 ±
4.11

314.04
+-
142.27

334.71 ±
52.36

41800

30 2 97.21 ±
4.47

22.54 ±
1.60

988.46
±
525.06

80200 99.78 ±
1.06

42.52 ±
88.03

1216.29
± 122.60

162800

30 3 98.08 ±
8.28

42.06 ±
29.41

866.28
±
447.92

120200 67.33 ±
17.16

314.2 ±
142.30

2424.41
± 684.99

163600

Table 6.5: Comparison between DeepDFA and a SAT-based DFAinductor. The train set does not
contain errors. For each DFA we keep the experiment achieving best dev accuracy.

DeepDFA DFA-inductor
|Q| |P | test accu-

racy
|Q̂| test accu-

racy
|Q̂| execution time

10 2 100.0 ±
0.0

8.0 ± 0.0 100.0 ± 0.0 7.8 ± 0.44 42.75 ± 5.31

10 3 100.0 ± 0.0 10.6 ± 0.54 100.0 ±
0.0

10.0 ± 0.0 129.43 ± 2.34

20 2 100.0 ±
0.0

14.2 ±
1.92

100.0 ± 0.0 14.0 ± 2.0 245.59 ±
117.62

20 3 99.4 ± 1.01 21.6 ± 3.57 100.0 ±
0.0

18.4 ±
1.14

857.58 ±
238.99

30 2 100.0 ±
0.0

22.6 ±
1.51

0 ± 0.0 - -

30 3 99.93 ±
0.14

29.0 ±
1.87

0 ± 0.0 - -

unaffected by little errors in the training dataset and maintains the same top performances
achieved on the perfect dataset. Figure 6.2 shows the results obtained on Tomita 5 with error
rate between 0 and 50%. For each configuration we do 5 experiments with the hidden-state
size set to 200 and we plot the mean and the standard deviation. The figure shows that our
model can tolerate error rates smaller or equal to 15%.
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(a) (b)

(c) (d)

Figure 6.3: Results obtained varying the hidden state size hyperparameter with Tomita5 (a-b) and
with with a random DFA of size 20 and alphabet size 3 (c-d). For each hidden state size we do 10
experiments.

Results on Randomly Generated DFAs

We generate random DFAs with different sizes and different alphabets using the method
described in section 6.2.2. For each random DFA, we performed 10 tests for each stochastic
method (DeepDFA and L* extraction) and one test with DFA-inductor. Table 6.4 reports
comparing our approach with L* extraction. DeepDFA is more accurate and faster than L
extraction. As in the Tomita experiments, the two methods especially differ in the number of
states of the predicted DFA. L* extraction tends to greatly overestimate the number of states,
while DeepDFA predicts DFAs with a number of states comparable to the ground truth size.
Furthermore our model uses a significantly smaller number of weights #W and it is faster
than L* extraction. Table 6.5 shows the results obtained with DFA-inductor. The method is
able to reach top test accuracy when it does not crash for exceeding CPU capacity; this again
happens for the biggest-size DFAs of size 30. Our method is competitive with DFA-inductor,
especially if we consider the best run over each DFA instead of mean performances, shown in
table 6.5. We repeat the experiments on a corrupted version of the training dataset, where
% 1 of labels are erroneous. Results are shown in table 6.3. We found that DFA-inductor
is unable to provide a solution even for the smallest size DFAs, while our method maintains
nearly the same performances.
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6.2.6 Ablation Study: the Effect of Changing the State Space Size

Recurrent neural networks have many hyperparameters and design choices that can affect
performance: the model type, the number of layers, the number of features for each layer,
and others. By contrast, our recurrent neural model is a simplified structure with only one
hyperparameter: the hidden state size. In this section, we discuss this hyperparameter choice.
Figure 6.3 shows the effect on the test accuracy and the predicted number of states of tuning
this hyperparameter. We tested on Tomita5 language, with the hidden state size varying
between 10 and 100; and we tested on a random DFA of size 20 and number of symbols equal
to 3 with the hidden state size between 10 and 120. Results show that the model struggles to
converge to the top test accuracy with a hidden state size equal to the ground truth number
of states. This size has to be greater than the real number of states. Tomita5 starts to have
nearly 100% test accuracy around 20 states, which is five times its real number of states.
The random DFA reaches the top test accuracy at the state size of 70, which is 3.5 times its
real number of states. However, the model maintains robust performances even if we highly
overestimate the state size. In fact even with the largest state size the test accuracy remains
high, and the number of states remains close to the ground truth. In other words, the model
does not overfit; even if it is sized to represent many more states, it uses only a subset of
them.

6.3 Related Work

Combinatorial Methods for Grammar Induction Many approaches were proposed to
identify a target DFA from a set of positive and negative traces. The L∗ algorithm [3], is an
exact active learning algorithm to learn a DFA from a minimally adequate teacher through
membership and equivalence queries. Another approach is to apply the evidence-driven state-
merging algorithm [109] [24], which is a greedy algorithm that is not guaranteed to converge
to the global optimum. A more modern approach is to leverage highly-optimized SAT solvers
by encoding the problem in SAT [92]. This approach is guaranteed to find the minimal DFA
consistent with all the training examples, but suffers from scalability problems. In this regard,
several symmetry-breaking predicates are proposed for the SAT encoding to reduce the search
space [178] [177].

DFA Extraction from Recurrent Neural Networks Prior works focus on extracting a
DFA from a pre-trained RNN, to explain the network behavior. Weiss et al. [169] adapt the L∗

algorithm From Angluin [3] to work with an RNN oracle. Other work uses k-means clustering
on the RNN hidden states to extract a graph of states [168]. Merril et al. [122] extract a
DFA from an RNN by first building a prefix tree and then merging states with close state
representation in the RNN hidden space. These approaches train an RNN with the labeled
strings and then extract an equivalent DFA from the trained model. Our approach differs
from these since we directly train an RNN equivalent to a Probabilistic Finite Automaton
(PFA), and we force the probabilities to become close to one-hot categorical distributions
during training. In this way, our model becomes a DFA. In other words, there is no difference
between the trained neural model and the automaton, and there is no risk that the abstraction
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does not represent the network, as for previous works. For example, Wang et al. [168]
cluster the RNN states, so the automaton depends on the clustering algorithm performances.
Performances from [122] instead rely on a similarity threshold and, as the paper shows, also
on the number of epochs the RNN is trained after convergence. Our work in this sense is
more similar to [169], since it computes the abstraction automatically. The difference is in
how the abstraction is computed: we use gradient descent optimization while [169] starts with
a hand-crafted discretization that is automatically refined during automata learning with L*.

Learning Crispy Logical Models through Gradient Descent Classically, the induc-
tion of logic models, including DFAs, is not approached with gradient-descent optimization
methods (es, deep learning methods) since their finite and ‘crispy’ nature prevents the gradient
computation. However, recent works in neurosymbolic AI [68] propose techniques to reduce
the gap between the induction of crispy models and that of continuous ones. Walke et al.
[164] proposes a recurrent neural model with specialized filters to learn Linear Temporal Logic
formulas from labeled traces. Kusters et al. [107] discovers logical rules describing patterns
in sequential data using a differentiable model. Grachev et al. [80] proposes a neural network
model similar to ours to learn DFA from traces. However, this model suffers the vanishing
gradient problem for automatons larger than 6 states, while our method can effectively learn
target automatons with up to 30 states.

6.4 Discussion

In conclusion, we propose DeepDFA: a hybrid between a DFA and a recurrent neural network,
which can be trained from samples with backpropagation as usual deep learning models, but
that is completely interpretable, as a DFA, after training. Our approach takes the best from
the two worlds: grammar induction on one side and recurrent neural networks on the other
side. It uses fewer weights and only requires setting one hyperparameter compared to recurrent
neural nets. At the same time, it can tolerate errors in the training set and can be applied to
large target DFAs, differently from exact methods.
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Chapter 7

Visual Reward Machines

In the previous two chapters, we mainly concentrated on the following:

• symbol grounding exploiting prior LTLf specification, in chapter 5;

• temporal specification induction from labeled traces of symbols, in chapter 6.

As we underlined during the thesis, these two problems correspond to the two steps necessary
to discover symbolic logical knowledge from non-symbolic domains. The frameworks described
in Chapters 5 and 6 tackle these two problems separately. Here we describe some extensions
that allow the integration of grounding and DFA induction in a single model. In particular, we
will concentrate on the application to non-markovian RL environments with (non-symbolic)
image states. For this kind of problems, we define Visual Reward Machines (VRM), an
extension of classical Reward Machines to non-symbolic domains.

Visual Reward Machines consider the symbol grounding function a part of the system,
instead of an external function, as most works in non-markovian RL do [45] [27] [67] [175]
[135] [126]. Furthermore, the VRM formulation has a natural implementation in a neural
network framework composed of convolutional and recurrent NNs. As a consequence, we can
use it for both reasoning and learning. In particular, we can initialize the neural models
implementing the VRM with a given task specification, and use it for computing markovian
states and non markovian rewards for the task, as classical RMs. But we can also learn
different system parts of the VRM from data, in case of missing or imperfect knowledge on
some parts of the VRM specification.

We define VRM as a versatile framework for visual temporally-extended tasks, opening
the door to many possible reasoning-learning combinations. In particular, we tested three
different learning procedures: (i) Learning the symbol grounding exploiting prior knowledge of
the symbolic machine, (ii)learning the machine structure using prior knowledge of a imperfect
symbol grounding function, (iii) learning both the symbol grounding function and the machine
structure from data. Results are very promising in the first two experiments, while further
investigation are needed to overcome the third learning configuration.

The remainder of this chapter is organized as follows: we describe non-markovian RL
tasks, and we illustrate the Visual Minecraft environment in Section 7.1; we give specifics
on the desired structure and accepted input and outputs of VRMs in Section 7.2; In section
7.3, we describe how we extend DeepDFA to integrate it in the framework; In section 7.4 we
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(a) (b)

Figure 7.1: a) Visual Minecraft environment. b) task specification as Reward Machine

give our definition of Visual Reward Machines; in Section 7.5, we describe the VRM imple-
mentation with neural networks and how to use the framework for learning and reasoning;
we report experiments of different learning conditions in Section 7.6; we conclude with final
considerations on results and directions for future work in Section 7.7. Results presented in
this chapter produced the following publication [157]

7.1 Non Markovian RL Tasks

As described in Section 2.2.1, many tasks cannot be represented as MDP because the environ-
ment presents a non-markovian reward. In these cases, we can represent the reward function
through a Reward Machine (RM) [27]. We formally define RMs in Section 2.2.1. An RM is
basically a transducer converting sequences of states into sequences of rewards. The input
alphabet of the machine is a set of symbols that must be observable in the environment states.
In other words, we have to be able to recognize when these symbols are True or False dur-
ing the interaction with the environment. This mapping is implemented by a prior labeling
function. The RM monitors the symbols’ truth values during time, and assigns rewards to
the agent depending on the level of satisfaction of the temporal specification.

7.1.1 Minecraft Environment Example

In this section, we introduce the Visual Minecraft environment, which is an example of non-
markovian task with non-symbolic states. A robotic agent can navigate a grid world environ-
ment through 4 movement actions {left, right, up, down}. Each cell of the grid can be empty
or contain one of the following items: pickaxe, gem, lava, door

The task consists in collecting a pickaxe and a gem (it does not matter in which order the
two items are collected) and then going to the door, while always avoiding the lava. The task
specification corresponds to the DFA in figure 7.1. The specification is expressed in terms of
5 symbols

P = {pickaxe, gem, lava, door, empty} (7.1)
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One symbol for each item, that is True when the agent is in a cell containing that item, plus
the symbol ‘empty’ that is True when no items are in the agent cell. We transform the DFA
into an RM by defining a reward function on its states that is maximum on the final states.
Many choices are possible here. In particular, we define the reward on state qi as the opposite
of the distance to the closest final state, when this distance is smaller than ∞, and equal to
a negative constant C for states disconnected from the final states.

r(qi) = max{min
f∈F

dist(qi, f), C} (7.2)

In this way way we obtain a quite dense reward function. Reward values are shown in red
on the automaton in Figure 7.1(b). Figure 7.1(a) shows an example of image state from the
environment.

7.2 Framework Specifics

Given a visual non-markovian environment, like the example described in 7.1.1, we want to
define a neurosymbolic model that can capture the task in the image state space, where the
environment is defined, while exposing the task structure in a finite symbolic space. This
framework takes as input a sequence of images I = i0, i1, ..., il−1, where l is the sequence
length, and returns as output a sequence of l probabilistic beliefs over a finite set of states
and a finite set of rewards, we denote respectively as h1, h2, ..., hl and r1, r2, ..., rl. We call
the model Visual Reward Machine, since it works exactly as a Reward Machine, with the
difference it can process non-symbolic sequences as input.

7.3 VRM as an Extension of DeepDFA

This section describes how the framework illustrated in Chapter 6, DeepDFA, can be extended
to meet the VRM specifics.

7.3.1 From DeepDFA to DeepMooreMachine

First of all, DeepDFA can be easily modified to represent Moore Machines. We recall that
Moore Machines, defined in Section 2.1.3, are DFAs augmented with an output function
δo : Q → O, where O is a finite set alphabet of output symbols. A DFA is a Moore Machine
with a binary output alphabet O = {Acc,Rej} and output function.

δo =

Acc if q ∈ F

Rej if q /∈ F
(7.3)

Given a Moore Machine (P,Q,O, q0, δt, δo), we define its representation in matrix form as
composed of:

Elena Umili 91



7.3. VRM as an Extension of DeepDFA

• a transition matrix Mt ∈ [0, 1]|P |×|Q|×|Q|, where

Mt[p, q, q
′] =

1 if δt(q, p) = q′

0 otherwise
(7.4)

• an input vector vi ∈ [0, 1]1×|Q|, where

vi[q] =

1 if q = q0

0 otherwise
(7.5)

• an output matrix Mo ∈ [0, 1]|Q|×|O|, where

Mo[q, o] =

1 if δo(q) = o

0 otherwise
(7.6)

Let us notice the representation is equal to that of PFA, with the only difference being
that the output function is represented by a matrix MO instead of a vector vo. The rules for
PFAs continue to hold; in particular, we can calculate states and output from input sequences
as described in section 2.1.3, with the difference that the machine outputs the probability of
having in output a particular symbol in the output alphabet, instead of probability of the
sequence to be accepted.

Consequently, we define DeepMooreMachine similarly to DeepDFA

h0 = [1, 0, ..., 0]

ht = ht−1 ×Mt[x[t]]

yt = ht ×Mo

Mt = softmax_with_temp(θh, τ)

Mo = softmax_with_temp(θy, τ)

(7.7)

Where Mt is the PFA transition matrix, Mt[x[t]] is the transition matrix for symbol x[t], and
Mo is the output matrix, as defined above. An the network parameters are: θh ∈ R|P |×|Q̂|×|Q̂|

and θy ∈ R|Q|×|O|. Let us notice θy as an increased size respect to DeepDFA.

7.3.2 Embedding Uncertainty over Symbols

DeepDFA (and DeepMooreMachine) allows us to represent uncertainty over both the transi-
tion and the output function, because it is based on representing the model as a probabilistic
machine. However, let us notice the current symbol x[i] is used to index the transition matrix
in Equations 6.1 and 7.7. As a consequence, symbols must be integers. This contrasts with
symbol grounding techniques based on neural networks, which usually predict a probabilistic
belief on symbol truth values. For this reason, we extend the framework to be fully proba-
bilistic, and consider probability values over symbols in the calculations. Given a sequence of
inputs x1, x2, ..., xl, where xi is a probability vector over |P | classes, we define the next state
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and output of the network as follows

h0 = [1, 0, ..., 0]

ht =
p=|P |∑
p=0

xt−1,p(ht−1 × Tp)

yt = ht ×Mo

Mt = softmax_with_temp(θh, τ)

Mo = softamx_with_temp(θy, τ)

(7.8)

where we denote as xt,p the probability that xt is symbol p ∈ P .

7.4 Visual Reward Machine Definition

We define a Visual Reward Machine as a tuple V RM = (X,P,Q,R, q0, δtp, δrp, sg), where

• X is the set of input data, possibly infinite and continuous, the machine can process;

• P is the finite machine alphabet;

• Q is the finite set of states;

• R is a finite set of rewards;

• q0 is the initial state;

• δtp : Q× P ×Q → [0, 1] is the transition probability function;

• δrp : Q×R → [0, 1] is the reward probability function;

• sg : X × P → [0, 1] is the symbol grounding probability function.

Similarly to an RM, a VRM produces a reward sequence by processing a data sequence.
Unlike RM, however, these data do not need to be symbolic but can be of any type. The
symbol grounding function maintains the link with the symbolic representation, assigning to
a data instance x ∈ X a probability value for each symbol in the alphabet P .

Given a sequence of states s0, s1, ..., sl−1, where l is the sequence length, the VRM pro-
duces l state probabilities and reward probabilities, which depend on how much certain is the
grounding of symbols and how much certain is the transition and reward function.

7.5 Visual Reward Machine Implementation with NN

Let us notice each VRM defined as above has a natural implementation with neural networks.
The specification in the definition can be translated in matrix form using Equations 7.4,
7.5, 7.6 and then transformed in the recurrent neural network described by Equation 7.8.
This network takes as input vectors xi of probabilities. Each vector xi corresponds to the
probabilistic grounding sg of symbols into data si that can be implemented with a CNN,
in case of image data, or another type of neural network, in case of different types of data.
Figure 7.2 shows an example of implementation.
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Figure 7.2: Implementation of a visual reward machine for the Visual Minecraft environment

7.5.1 Reasoning and Learning with VRM

In this section we investigate how we can exploit the framework for reasoning and learning
in nonmarkovian RL tasks. In case, for a certain task, all the elements defining a VRM are
perfectly known, the definition can be translated in a neural network and the latter can be
used for reasoning in the same way as RM. In particular, it can be used to define a reward
function and extract a Markov state from the specification. It is completely equivalent to
an RM in the case of a deterministic task defined over a set of perfectly grounded symbols.
However, VRMs allow us to represent also probabilistic task specifications and /or probabilistic
labeling functions. This extends the range of specifiable problems significantly.

Furthermore, since the framework is all based on neural networks, in case of missing
information in the VRM specifics, we can use the network implementation to learn the missing
pieces from data, using backpropagation. In particular, we explored three different learning
procedures:

• learning the DFA structure from sequences of imperfectly grounded symbols and output
labels over these sequences

• learning the symbol grounding function by exploiting the Moore Machine structure and
sequences of states-rewards

• learning both the grounding function and the temporal specification from sequences of
visual states and rewards

In the next section, we report the preliminary results of these investigations.

7.6 Experiments

In this section we report some preliminary experiments validating the proposed framework.
The implementation code can be found at https://github.com/whitemech/VisualRewardMachine.
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(a) (b)

Figure 7.3: Results obtained by exploiting the reward machine structure to learn the symbol ground-
ing function offline for the Visual Minecraft environment. a) Visual Reward Machine accuracy over
sequences. b) Symbol grounding accuracy over single images

In particular, we explore many different learning procedures. In the first experiment we
test offline symbol grounding, namely the capability to learn the symbol grounding function by
exploiting the Moore Machine structure and sequences of states-rewards of an hand-crafted
dataset. For this test, we initialize the Moore Machines parameters θMT

and θMO
with the

given task specification and we train only the CNN weights by minimizing the crossentropy
between the network predictions and the reward labels. In the second experiment we test
a combination of RL and online symbol grounding. In this test, we ground the symbols of
the task specifics on the fly, namely with sequences of image states and rewards collected by
the agent while it is learning to perform the task. We use the learned symbol grounding to
proceed on the automaton at each step and estimate the current automaton state. The latter
is combined with the environment visual state to form a markovian state representation that
is used by the RL algorithm to estimate the optimal policy.

In our experiments we mainly focus on learning the grounding function. However, many
other learning-reasoning combinations are possible since the framework is very versatile. In
particular, we test learning the DFA structure from traces of imperfectly grounded symbols,
i.e., symbols for which we have only a probabilistic prediction instead of a strictly boolean in-
terpretation. Although many techniques for DFA induction exist in the literature [3][92][109],
and few extensions can handle noise in the output label [118] [155], to the best of our knowl-
edge, there are no extensions to handle noise in the input symbols. In our experiments, we
simulate the use of an imperfect pretrained classifier for symbol grounding by corrupting the
input symbols with Gaussian noise, and we train the recurrent part of the VRM on this noisy
dataset. We conduct our preliminary experiments in this direction on Tomita Languages,
which are a popular benchmark for DFA induction. We let the integration of DFA induction
with RL in non-markovian environments for future research.

7.6.1 Offline symbol grounding

Dataset For the application of offline symbol grounding to the Minecraft environment, we
create a dataset simulating 40 episodes in the environment and collecting the images rendered
by the environment. Each episode lasts 30 steps; therefore, it produces a sequence of 30
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images corresponding to the environment states and a sequence of 30 reward values, that are
used to label the image sequence at each step. Episodes are balanced between positive and
negative examples. In 20 episodes, the agent correctly collects all the items and goes to the
door avoiding the lava; in the other 20, it fails. We split the dataset in 80% for training and
20% for testing.

Results Figure 7.3 shows train and test sequence classification accuracy, figure (a), and
symbol grounding accuracy on single images, figure (b). Let us notice the task specification
has two ungroundable symbols: gem and pickaxe. Since the agent can collect these two items
in any order, the framework does not receive enough supervision to distinguish between the
two. Therefore image classification does not achieve 100% accuracy. However, sequence clas-
sification can still achieve top accuracy even if the symbol grounder confuses the gem for the
pickaxe and vice-versa. We compare our approach with a pure deep-learning-based approach
that learns to classify sequences end-to-end using a CNN and an LSTM. This approach per-
forms very poorly in the task, obtaining only 40% of sequence accuracy. Investigating the
reason for these poor performances, we found that it almost never predicts rewards of -1 and
-2, corresponding to the scarcest reward labels in the dataset. In fact, even if we balanced the
dataset between positive (reward = 0 in the last step) and negative (reward < 0 in the last
step) episodes, the reward labels are not balanced within the episodes. Learning classification
tasks from highly biased data with neural networks can be very hard, as it is shown in this
experiment. However, our approach is unaffected by the label imbalance. Let us also notice
that the environment highly biases the distribution of symbols and reward labels in sequences.
For example, the ‘empty’ symbol is much more frequent than the others, and most possible
symbolic traces are unfeasible in the environment and, therefore, never observed. This can
complicate the image classification task in case this would be approached with supervised
learning.

7.6.2 Reinforcement Learning and online grounding

In this second experiment, we perform symbol grounding online, and we exploit it to estimate
the machine state. This information is used to speed up the learning of a policy. In particular,
unlike the previous experiments, the dataset is not supposed to be balanced, because it is
collected by the agent while exploring the environment. We construct a Markow state by
concatenating features extracted by the image with a CNN with the estimated automaton
state. We use Advantage Actor-Critic (A2C) [? ] to learn a policy on this state representation.
We compare this approach which exploits the ungrounded DFA specification with A2C using
the state of an LSTM trained end-to-end as state representation.

Training settings We run three experiments with three random seeds for each approach
and report the mean and standard deviation. We let each approach train for 1000 episodes
before stopping the training. We use a learning rate of 0.0007 and an entropy coefficient
of 0.0001 as hyperparameters for A2C. The symbol grounder is trained in the same fashion
described in the previous section, with the newly acquired data, every 40 episodes. The
baseline method uses a one-layer LSTM of hidden size 256. We tested with different hidden
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(a) (b) (c)

Figure 7.4: Results obtained by exploiting the reward machine structure to learn the symbol ground-
ing function for the Visual Minecraft environment. a) Training rewards Right) Symbol grounding
accuracy over single images

sizes for the LSTM (50 and 256) and two layers instead of one, finding that was the best
configuration.

Results Figure 7.4 shows the results obtained in the experiment. Figure 7.4(a) shows
training rewards for our method (A2C+grounding) and the baseline (A2C+RNN). The figure
shows that our method outperforms the baseline. Figure 7.4(b) and (c) show the sequence
classification and the symbol grounding classification accuracy of the Visual Reward Machine
obtained during the training of the RL agent. The sequence classification accuracy tends to be
quite high from the beginning of training, while the symbol grounding classification accuracy
achieves top results only after 800 episodes. That is reasonable, since the VRM needs to
observe some positive episodes to correctly ground all the symbols (e.g. the symbol door

can be grounded only from a trajectory completing the task), and at the same time, positive
episodes are observable only when the RL module has learned a good policy. Training rewards
increase coherently with the increase in performance of the VRM. Despite these being only
preliminary experiments, results are encouraging. In particular, they confirm our intuition
that symbolic temporal specifications can also be exploited in visual tasks for which we do
not know the symbol grounding function.

7.6.3 Comparisons with chapter 5

The task is similar to that of MNIST classification through Declare formulas described in
Chapter 5, with some important differences. The first difference is that we have a sequence
of labels for each sequence of images, represented by the rewards, instead of just one label on
the last step. This gives more supervision to the framework. Apart from that, the Minecraft
task is more challenging for the following reasons:

• the number of symbols to recognize is bigger, it is 5 in the Minecraft task versus 2 in
the MNIST task;

• considered sequences are longer, we consider traces of length 20 in the Minecraft task
and of length 4 in the MNISTtask;

Elena Umili 97



7.6. Experiments

(a) Tomita1 (b) Tomita2 (c) Tomita3 (d) Tomita4

(e) Tomita5 (f) Tomita6 (g) Tomita7

Figure 7.5: Learning DFA from traces composed of imperfectly grounded symbols: results on the 7
Tomita languages

• but most of all, the distribution of symbols in sequences is highly biased by the envi-
ronment. For example, the ‘empty’ symbol is much more frequent than the others, and
most possible symbolic traces are unfeasible in the environment and, therefore, never
observed. For example, the agent cannot jump from one item to the other, but it has
to walk and see many empty cells in between.

7.6.4 Learning the machine from imperfectly grounded symbols

In this experiment, we test the capability of our framework to learn DFA specifications from
sequences of imperfectly grounded symbols. In particular, we trained only the recurrent
module with traces of symbols and accepted-rejected labels generated by the Tomita languages
[152]. We corrupt the one-hot representation of symbols in the train traces by adding Gaussian
noise with zero mean and variable variance. Figure 7.5 compares our approach (Deep) and
the SAT-based DFA-inductor (SAT) [177]. Since boolean logic induction methods like DFA-
inductor cannot handle probabilistic truth values, we discretize the corrupted inputs to the
closest one-hot vector before passing them to DFA-inductor. The figures show how the two
methods test accuracy (on y-axis) is affected by different values of noise variance (x-axis).
In particular, we observe that our method’s test accuracy degrades less with increasing the
noise variance and it is therefore more robust to noise in the symbol grounding with respect
to DFA-inductor.

7.6.5 Learning All End-to-End

Since our framework is completely neural, in principle, we could use it to learn all the elements
of the VRM from input-output examples in an end-to-end fashion. However, we tested on
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both the Minecraft task and a visual Tomita induction task constructed with MNIST images,
and the tests were unsuccessful.

In fact, If both the symbol grounding function and the Moore Machine are unknown
and learnable, the system can oversimplify the grounding to oversimplify the machine. As a
result, it is very prone to overfit training data. However, this is reasonable, given the very
weak supervision imposed on the framework; and we need to define (similarly to how we do for
groundability in Section 5.3) which conditions the task and the dataset must meet to ensure
the correct (or incorrect) learning of the models.

7.7 Discussion

In conclusion, in this chapter we defined Visual Reward Machines: a neurosymbolic framework
that produces non-markovian rewards for visual tasks. The framework can be used for both
reasoning and learning. It is based on an extension of DeepDFA to MooreMachines and
probabilistic input symbols. This second extension allows connecting DeepDFA with a neural
module for symbol grounding and to define a fully neural but interpretable system. We
tested learning from data different system parts. Results show that we can learn the machine
from imperfectly grounded symbols and exploit the machine’s prior knowledge to learn the
grounding function. However, the system is defined to be very versatile, and many other
reasoning-learning and transfer-learning settings can be explored, which are not considered in
this thesis. Here we list different uses-cases that we let for future research.

• transfer learning between different tasks in the same environment: we remark that once
we learned the grounding of a set of symbols in a certain environment, this is transferable
to all possible task specifications defined on the same symbol set and executed in the
same environment. Therefore, future experiments could exploit this property to transfer
learning to different tasks.

• symbol grounding correction: another possibility consists in using prior knowledge on
the machine and reward labels to fix an imperfect grounding function (instead of learning
it from scratch as we have done in the experiments)

• machine transition and/or output correction: the same can be applied to the machine
in case we know a perfect grounding but an imperfect Moore Machine.

• Machine induction with advice: in case we can access partial knowledge of the machine,
as in [126], we could encode it in the recurrent network and then proceed to learn the
rest of the machine from the data. In this case, however, we need to define how to train
the machine to avoid catastrophic forgetting of the prior knowledge. This can be done,
for example, by dividing the RNN weights into learnable and fixed weights, where the
latter contain the prior knowledge while the former allow the adaptation to new data.

99



Part IV

Conclusions

100



Chapter 8

Conclusions

In this last chapter, we summarize the contributions described in this thesis and underline
possible directions for future research.

8.1 Summary of Contributions

In summary, we have exploited different techniques to extract symbolic logical knowledge
from nonsymbolic domains of various types.

Part II focused on extracting logical knowledge from markovian control domains. These
problems are extremely complicated to convert in discrete logical domains, because the states
are continuous feature vectors, and actions tend to be very low level. However, we were able
to describe the environment dynamics and the action quality function in a finite planning
model based on a symbolic latent representation of the state, and guide the agent interaction
by using only planning with this model. We have observed that we can exploit the symbolic
state representation for shaping rewards to reach different goals in the same environment, and
that the symbolic representation gives some precious insights on the task. In particular, we
observed that the symbol grounder trained to represent a symbolic model-invariant abstraction
is far from having a homogeneous number of symbolic configurations in the ground state space.
Symbols concentrate mostly on particular areas correlated with the action decision threshold.
Resulting in a partition of the ground state space that would be very complicated to be
encoded manually by human designers.

In Part III, I focused on different types of domains, namely non-markovian environments
having visual observations. This type of problem presents other challenges with respect to
those tackled in Part II. In particular, non-Markovianity causes observations to be processed
in sequences. The tasks are more strategically complex, in the sense that only some specific,
and potentially long, sequences of actions satisfy the specified task. These tasks are usually
solved in symbolic environments, or continuous domains for which a mapping from states to
symbols is already known, completely bypassing perception, which we consider a key skill in
artificially intelligent systems instead. Therefore, the works described in Part III were mainly
focused on removing this limiting assumption and bringing back perception and deep learning
in the game.

We started by exploiting prior logical knowledge expressed in LTLf to classify sequences

101



of images in Chapter 5. We cast the problem as the learning of a symbol grounding function
that classifies symbolic interpretations from images, that must maximize the satisfiability of
the LTLf formula over a set of labeled training sequences. The LTLf formula satisfiability is
calculated in fuzzy logic to allow integration with a neural classifier implementing the symbol
grounder. Therefore, this work’s main contribution was to encode the formula in fuzzy logic
by first converting it into a Deterministic Finite Automaton and then translating the DFA
into an equivalent recurrent Logic Tensor Network. We show that using the learned symbol
grounder combined with the known LTLf specifications outperforms a classical end-to-end
approach based on deep learning that cannot exploit the logic specification.

A second work on this line was DeepDFA, described in Chapter 6. The main contribution
of this work is the definition of a recurrent neural network equivalent to a Probabilistic Finite
Automaton that can be driven to approximate a DFA through temperature annealing. The
latter is another technique used to discretize neural networks, particularly by increasing the
steepness of classical activation functions. This architecture is very effective for automata
induction from data. It benefits from tolerating a small percentage of errors in the training
labels and being faster and more successful on big-size target automata than logic induction
methods. However, it cannot handle probabilistic beliefs on symbols but only symbols rep-
resented as integers, and this complicates the connection with a symbol grounding function
implemented with a neural network.

For this reason, in the last work, described in Chapter 7, we focus on extending DeepDFA
to treat probabilistic symbols. Thanks to this extension, we can embed perception and tempo-
ral reasoning in a single model that we call Visual Reward Machine. The model is very similar
to that described in Chapter 5, with the important difference that the temporal property is
encoded in a parametric model that can be not only set from outside but also learned from
data. We tested both learning the machine by exploiting a known but imperfect grounding,
and learning the grounding function by using an available machine, and both tests were suc-
cessful. In particular, we show that training our model on probabilistic symbols outperforms
logic induction methods trained with the most probable boolean symbols.

This final framework is the one that best marries the philosophy behind neurosymbolic
AI, and we now explain why. First, it embeds perception, which we stated is a fundamen-
tal feature for making reasoning grounded and applicable to realistic nonsymbolic problems.
Second, but not less important, despite the logical symbolic model being implemented with a
NN, it is finite and compact. We remind in particular that, even if big state sizes facilitate the
training of DeepDFA, after training, we can minimize the DFA with classical DFA minimiza-
tion techniques that tend to cut off most of the states and make the model even more compact
than at training time. Third, the logical part can process probabilistic symbols, making it
most robust to imperfect grounding. Finally, one of the best features of this framework is its
modularity.

8.2 Future Research

Let us underline another crucial difference between the work described in Part II and those
described in Part III: the environments tackled. Let us notice they are very different, not only
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8.2. Future Research

for the markovian property. The main difference is that environments tackled in Part II, such
as Cartpole, Acrobot, and NAO, are not constructed for symbolic logical knowledge discov-
ery. They are popular benchmark environments for RL without any connection with NeSy.
While in Part III, we conduct experiments on environments constructed as a combination
of a rendering function and a symbolic logical model; therefore, we know our target symbol
grounding function and our target logical model. For this reason, we can consider Part II as
an example of discovering logical knowledge ‘in the wild’, and Part III as testing the system’s
capacity to discover a latent logical structure that we encoded in the environment. Although
the second scenario favors understanding results, I think it is crucial to move towards ‘wild’
scenarios. But it is essential to define metrics to really assess the capability of abstraction
of NeSy systems in such scenarios. For our experiments, we considered satisfying the system
was able to solve the environments planning in their abstractions, as it considered in other
work [9]. Furthermore, we designed the network architecture to favor abstraction. However,
this is a limited use of abstractions, and in the future, we would like to be able to success-
fully test on different but related environments. We think future research should focus on
defining and designing environments that can be solved only by increasing the modularity of
the representation, so as to move towards wild scenarios but always in a ‘safe’ and controlled
way.
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Chapter A. Appendix

Figure A.1: List of Declare formulas as in [49]. We tested on all except last(a). Meaning of modal
operators symbols:⃝=X, ♢=F, □=G
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