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Abstract: Artificial intelligence (AI) represents a growing and promising branch of computer science 
that is expanding the horizon of prediction, screening, and disease monitoring. The use of multi-
modal imaging in retinal diseases is particularly advantageous to valorize the integration of ma-
chine learning and deep learning for early diagnosis, prediction, and management of retinal disor-
ders. In age-related macular degeneration (AMD) beyond its diagnosis and characterization, the 
prediction of AMD high-risk phenotypes evolving into late forms remains a critical point. The main 
multimodal imaging modalities adopted included color fundus photography, fundus autofluores-
cence, and optical coherence tomography (OCT), which represents undoubtful advantages over 
other methods. OCT features identified as predictors of late AMD include the morphometric eval-
uation of retinal layers, drusen volume and topographic distribution, reticular pseudodrusen, and 
hyperreflective foci quantification. The present narrative review proposes to analyze the current 
evidence on AI models and biomarkers identified to predict disease progression with particular 
attention to OCT-based features and to highlight potential perspectives for future research. 

Keywords: artificial intelligence; age-related macular degeneration; deep learning; multimodal 
imaging 
 

1. Introduction 
Artificial Intelligence (AI) is a new branch of computer science that has significantly 

revolutionized the field of medicine [1–3]. The development of AI has allowed 
applications in several fields of ophthalmology, particularly in retinal disorders. The most 
significant advances were performed in age-related macular degeneration (AMD), 
covering different clinical aspects including screening, diagnosis, prediction, and 
monitoring [4]. The most critical element in managing AMD is still represented by the 
identification of predictive models allowing prompt identification of patients at risk on a 
large scale. It can be advantageous to refer individuals who deserve further testing, 
treatment, and more strict follow-up examinations [5]. The early detection of high-risk 
AMD phenotypes is particularly useful to predict future exudation that may benefit from 
timely management with anti-vascular endothelial growth factor (anti-VEGF), leading to 
better clinical outcomes [6]. Although no current treatment is available for GA, promising 
therapies are on the horizon, highlighting the need to refine disease activity and the 
prognostic implications and potential clinical endpoints to be incorporated in future 
clinical trials [7–13]. 

Despite the extensive literature available on screening and diagnosis with high 
performance in detecting AMD at any stage [14–18], one of the main challenges remains 
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the assessment of the risk of conversion and disease progression [19]. Thus, the need to 
expand the knowledge on potential predictors and models that can help predict AMD 
phenotypes evolving into late stages. Regarding imaging biomarkers, the use of optical 
coherence tomography (OCT)-based features seems to present several technical and 
practical advantages. Beyond its use on a large scale in routine clinical practice for the 
diagnosis and management of AMD and in trials [20], the high resolution of both spectral-
domain and swept-source technologies offers the opportunity to identify preceding 
alterations and early stages of the disease before the lesions appear clinically evident. 
Therefore, recently, OCT-defined classification of atrophy and neovascular features in the 
setting of AMD has been precisely defined by a consensus group of leading experts [21–
23]. Furthermore, several OCT qualitative features have been identified, enabling the 
evaluation of disease progression and treatment response and corroborating the 
importance of OCT biomarker identification to achieve optimal AMD management [24]. 

AI based on deep learning (DL) offered tremendous advantages in ophthalmology, 
providing the opportunity to be applied to medical imaging analysis. DL techniques 
found the best application in retinal pathologies, where ocular imaging is routinely used 
for diagnosis and management, including fundus photographs, fundus autofluorescence, 
and OCT [14,25–28]. Understanding the existing DL models and biomarkers explored so 
far may further expand the development of more accurate predictive models in AMD.  

This narrative review proposes to analyze the strengths and weaknesses of the 
existing AI predictive models. Imaging technologies, biomarkers, and AI models are 
analyzed and discussed to improve the understanding of the key elements considered in 
the models. These aspects would help delineate future research on biomarker 
identification, imaging modalities, and refining predictive AI models.  

2. Historical Background and Principles of Artificial Intelligence in Ophthalmology 
The term AI was first coined by John McCarthy in 1956 and referred to “hardware or 

software that exhibits behavior which appears intelligent”, capable of resembling human 
intelligence in useful tasks such as learning, identifying images, and problem solving [29]. 
AI has proved to be particularly suitable to imaging-centric specialties, and thus 
exceptionally useful in ophthalmology, showing efficacy comparable to that of the 
specialist mainly in identifying diseases with a high incidence, such as glaucoma, 
retinopathy of prematurity, diabetic retinopathy, and AMD [30–33]. 

More specifically, the integration of AI machine learning (ML) and DL in ophthalmic 
settings for the early diagnosis, prediction, and timely treatment of the most common 
sight-threatening eye diseases is an urgent need given the lifespan extension and, 
consequently, a large amount of medical data. Within this framework, AI technologies 
have the promising potential to revolutionize ophthalmic health care services creating a 
significative clinical impact and minimizing doctor burden [34,35]. ML is a subfield of AI 
technology that was introduced in the 1980s and includes DL and conventional machine 
learning (CML). ML allows the computer system to learn and improve how to complete a 
task on its own without being explicitly programmed [36]. Among CML algorithms used 
in AI, random forests (RF) [37] and support vector machines (SVM) [38] are the most 
commonly used in the field of ophthalmology. 

DL was introduced in the 2000s as a subset of ML that learns features in data using 
an artificial neural network (ANN) structure inspired by the human brain structure and 
function. DL is composed of multiple stimulus inputs into the so-called hidden layers of 
neurons, each of which can learn different features from the offered stimuli. This allows 
this machine model to complete complex tasks resulting in the output being recognized 
[39].  

Among the various DL methods, deep convolutional neural network (DCNN) has 
proved to be particularly suitable for medical image recognition [29]. DCNNs have 
evolved from traditional artificial neural networks, using a three-dimensional neural 
pattern and employing a special mathematical filtering operation called convolution [40]. 
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Full training of DCNN implies a large amount of training data already labeled from 
medical experts, extensive computational and memory resources, and complicated by 
overfitting and convergence issues that require repetitive and time-consuming 
adjustments [41]. A valid alternative for CNN training from scratch involves fine-tuning 
a CNN using transfer learning, which involves transferring the learned features from a 
pre-trained CNN to initialize another task [41,42]. CNN-based transfer learning models 
demonstrated a good performance in classifying OCT-based features in AMD [43]. Several 
state-of-the-art DL techniques have been applied for retinal image segmentation, such as 
FCNN, U-Net, Seg-net, Deeplabv3, and AlexNet [14,44–47]. 

3. Model Analysis in Age-Related Macular Degeneration 
DL models have been implemented using a combination of imaging and non-

imaging features. Several imaging biomarkers have been identified and characterized 
using different imaging modalities. Most of the models were trained using large 
databases, such as the Age-Related Eye Disease Study (AREDS) study database [27,48–
50], which mainly used color fundus photographs (CFP). More recently, with the 
multiplication of clinical trials in AMD [51–54], different imaging techniques were 
adopted, expanding the spectrum of the predictors. The present chapter summarizes the 
DL models developed using different multimodal imaging modalities. 

3.1. Imaged-Based Features 
3.1.1. Fundus Photographs 

CNN models represented the state-of-the-art image classification in retinal diseases 
using CFP. Several DL models were trained to predict AMD stage from the AREDS study 
database with variable levels of accuracy ranging from 63.3% to 92.1% [5,14,35,55]. The 
images were classified according to the AREDS 9-steps plus three scales to identify 
ungradable images. The accuracies increased by restricting the analysis of fundus images 
from individuals 55 years or older, with 82.2% of sensitivity and 97.1% specificity in 
categorizing intermediate AMD (AREDS classes 4–9) features. The algorithm performed 
better for late AMD (AREDS classes 10–12) with a sensitivity of 100% and specificity of 
96.5% [56]. Burlina et al. [28] used AREDS data and employed DCNN (ResNet-50 
network) to stratify images in 4-step and 9-step severity scales. The five-year progression 
risk was then estimated by creating three DCNNs to produce three different predictions. 
The 9-step AMD severity scale was based on the data from AREDS report 17 [56], as 
summarized in Table 1. 

Table 1. The 9-step age-related macular degeneration (AMD) severity scale modified from the 
AREDS 17 report. 

Step Total Drusen Area Increased 
Pigment 

Depigmentation 5-Year 
Risk (%) 

1 <125 μm (C-1) None None 0.3 

2 ≥125 μm (C-1); <250 μm (C-2)  
<125 μm (C-1) 

None 
≥ Q 

None 
≥Q; <354 μm (I-2) 

0.6 

3 ≥250 μm (C-2); <354 μm (I-2) None None 1.9 

4 
≥354 μm (I-2); <650 μm (O-2) 
≥125 μm (C-1); <354 μm (I-2) 
<250 μm (C-2) 

None 
≥Q 
≥0 

None 
≥Q; <354 μm (I-2) 
≥354 μm (I-2); <0.5 DA 

4.9  

5 
≥650 μm (O-2); <0.5DA 
≥354 μm (I-2); <0.5DA 
≥250 μm (C-2); <354 μm (I-2) 

None 
≥Q 
≥0 

None 
≥Q; <354 μm (I-2) 
≥354 μm (I-2); <0.5 DA 

6.1 

6 ≥0.5 DA 
≥650 μm (O-2); <0.5DA 

None 
≥Q 

None 
≥Q; <354 μm (I-2) 

13.9 
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≥354 μm (I-2); <650 μm (O-2) ≥0 ≥354 μm (I-2); <0.5 DA 

7 
≥0.5 DA 
≥650 μm (O-2); <0.5DA 

≥Q 
≥0 

≥Q; <354 μm (I-2) 
≥354 μm (I-2); <0.5 DA 28.1 

8 
≥0.5 DA 
Any 

≥0 
≥0 

≥354 μm (I-2); <0.5 DA 
≥0.5 DA 47.4 

9 Any ≥0 Non central GA 53.2 
C-1: 125 μm and 0.0069 disc area (DA); C-2: 250 μm and 0.028 DA; I-2: 354 μm and 0.056 DA; O-2: 
650 μm and 0.19 DA; 0.5DA 1061 μm and 0.5 DA; Q: questionable; GA: geographic atrophy. 

A step forward was performed by drusen quantification, which contemplated 
assessing the total area and number of large drusen (125 μm), and the recognition of 
reticular pseudodrusen (RPD), achieving an accuracy of 96% [5]. The CNN DenseNet 
model demonstrated superior performance to other CNNs (VGG version 16, VGG version 
19, Inception V3, and ResNet version 101) in detecting RPD on both CFP and FAF images 
[57]. 

DeepSeeNet is a DL model designed as a CNN with an Inception-v3 architecture, 
developed to determine patient-based AREDS Simplified Severity Scale scores using 
bilateral CFP. This model consisted of three main subnetworks: a) Drusen-Net (D-Net), 
which classifies drusen according to dimensions (small/none, medium, and large); b) 
Pigment-Net (P-Net), which identifies the presence of pigmentary abnormalities; and c) 
Late AMD-Net (LA-Net), which detects the presence of late complications including 
neovascular AMD and/or geographic atrophy. The performance of DeepSeeNet was 
superior to retinal specialists in classifying AMD according to AREDS scores. When 
considering the D-Net and P-net subnetworks, the model was superior in assessing large 
drusen and pigmentary abnormalities. However, the recognition of late AMD through the 
LA-net was similar to that of retinal specialists. Noteworthy, DeepSeeNet is publicly 
available on https://github.com/ncbi-nlp/DeepSeeNet (accessed on 1 November 2022) 
[35]. 

Using longitudinal images on a dataset of 4903 eyes with AMD selected from the 
AREDS, a three-step model comprised of a pre-trained SNN (Inception V3) was 
developed by reducing each image into a single feature vector; the feature vectors were 
then combined by applying an interval scaling to account for the uneven time intervals. 
Finally, a recurrent neural network classified the images according to the progression [58]. 
The authors compared their results with a model that used a CNN of retinal fundus 
images combined with single nucleotide polymorphisms (SNPs) and AMD severity to 
predict late AMD progression. The severity scale was assessed on a centralized grading 
based on the AREDS AMD scale of fundus images at each semi-annual or annual follow-
up visit. The model was simplified into sub-models. The fundus image taken at the current 
visit was used alone or combined with the SNPs to predict whether the progression time 
to late AMD exceeded the inquired year [59]. By comparing the two methodological 
approaches, the longitudinal prognostic model, taking into account two- and three-times 
points, performed better over the single time point method. However, the three-time 
points model had a non-significant increase over the two-time points, suggesting that 
using more than two-time points does not affect the predictive value of the model [58]. 

3.1.2. Fundus Autofluorescence 
Fundus autofluorescence (FAF) has a limited application in DL models for AMD, 

mainly restricted to geographic atrophy (GA) assessment and, more recently, to its 
prediction [26,56,60,61]. 

A recent DL model used data from the study of eyes of patients with bilateral GA 
enrolled in lampalizumab phase 3 clinical trials (Chroma [NCT02247479]; Spectri 
[NCT02247531]) or in an observational study (Proxima A [NCT02479386]) to predict GA 
progression. The model was designed as a regression task, with three multi-task CNN 
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trained using FAF alone, OCT alone, and a multimodal approach (combined FAF/OCT) 
at the same visit. The GA growth rate prediction performance was high for both the FAF 
alone and the multimodal model, with r2 of 0.48 and 0.47, respectively [51]. 

DenseNet achieved the highest performance at 0.939 over the other 4 CNN models 
tested in detecting RPD on FAF. The FAF image analysis using DenseNet demonstrated 
the highest κ value for the primary performance metric (0.789) compared to human 
graders, with higher specificity and precision levels of two retinal fellows [56]. FAF-based 
algorithms can segment the GA lesions 6-times more quickly than human evaluation with 
very high performance, validation, and testing scores [59]. 

3.1.3. Optical Coherence Tomography 
The CNN-based models were used to transfer learning for classifying OCT images. 

Transfer learning employed pre-trained models as the starting points to process other 
tasks reducing the computation time, resources, and the need to develop neuronal 
network models ex novo. Using pre-trained CNN with transfer learning is considered 
faster and easier than building a new CNN. The model can be fine-tuned to learn specific 
features from a new data set of OCT images [43,62]. 

OCT imaging modality applied in AI prediction models is gaining consideration as 
it provides both a qualitative assessment of the drusen and other features such as 
hyperreflective foci (HRF) and a quantitative estimation of the morphometric changes in 
retinal layers [63–69]. Different strategies have been developed to create predictive models 
using retinal morphological features. To extract and measure OCT features, fully 
automated image analysis is essential to identify specific biomarkers of interest, such as 
the status of outer retinal layers, drusen, RPD, and HRF [70,71]. The main biomarkers 
considered for AMD progression included the automated drusen segmentation on OCT 
volumetric cube extrapolating different quantitative drusen features such as number, 
mean volume, topographic distribution, maximum height, slope, reflectivity, and drusen 
area. Furthermore, the presence and distribution of HRF, choroidal thickness, presence of 
RPD, and photoreceptor outer segment loss were also estimated for an accurate prediction 
[72–74]. 

3.2. Non-Imaging Features 
3.2.1. Demographic Features 

Demographic features are confounding factors for AMD progression that should be 
incorporated to implement the risk prediction algorithm [75]. Implementing a hybrid 
sequential prediction model permitted to incorporate longitudinal OCT images and 
demographic information in a recursive neural network (RNN) model. The demographic 
factors included age, gender, race, smoking status, and visual acuity. The model 
performance in predicting AMD progression was high in both the short term, with an 
AUC of 0.96 within 3 months, and long term, reaching an AUC of 0.97 within 21 months, 
supporting the importance of combining imaging and demographic factors [70]. A 5-year 
predictive model revealed an AUROC of 0.92, obtained by incorporating baseline 
demographic features with both qualitative and quantitative OCT features [76]. 

An ML algorithm predicting the progression from early into late AMD at 1 or 2 years 
was built using a logistic model tree (LMT), combining socio-demographic characteristics 
with color fundus images. The demographic parameters included gender, age, smoking 
status, diabetes, body mass index, blood pressure, sunlight exposure, visual acuity, and 
AMD in the fellow eye. By stratifying the patients according to gender, smoking, and age, 
the authors noticed that all the models performed better on females and nonsmokers, 
while the 1-year models performed worse in subjects less than 60 years old [5]. 

Another model obtained by the bootstrap least absolute shrinkage and selection 
operator (LASSO) considered a combination of retinal phenotypes, demographic 
characteristics, and genetic features. The model found that the most relevant non-imaging 
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predictors were represented by age, smoking status, pulse pressure, education, and 
Mediterranean diet score, with AUCs comprised between 0.88 and 0.92 [77]. 

3.2.2. Genetic Factors 
Genetic features integrated into predictive models incorporated risk alleles of single-

nucleotide polymorphisms (SNPs) at different AMD-associated loci [69]. Despite the 
strong evidence of a genetic association in advanced AMD, no univocal associations were 
found to be directly linked to GA progression [78]. Likewise, DL models interpolating 
demographic, genetic, and imaging features failed to identify specific AMD risk-
associated SNPs with a predictive value for neovascularization and GA [69]. Yan et al. [58] 
combined 52 AMD genetic variants previously identified (Appendix A, Table A1) [79] 
with fundus images and AMD severity, demonstrating that the addition of genotypes 
improved only modestly the accuracy of the predictive model. Moreover, Peng et al. [80] 
confirmed that the 52-SNPs AMD genetic risk score did not improve the prediction of the 
DL model at 5 years, while the accuracy only slightly improved when considering two 
SNPs (ARMS2 rs10490924, CFH rs1061170). 

A bootstrap LASSO model indicated that the genetic risk score was one of the four 
most relevant predictors, together with the presence of intermediate drusen, the AREDS 
simplified scale, and age. The prediction model had high performances with AUC 
between 0.91 and 0.92, but when subtracting the genetic score the model was similar with 
AUCs between 0.88 and 0.93. The authors specified that in a minority of cases the genetic 
evaluation helped identify high-risk patients, especially when the simplified AREDS score 
[76] was 0 in patients with a high genetic score instead [62]. Taken together, the results 
from different studies suggested that including genotype information may have a 
marginal role in the predictive models, with a negligible contribution to the predictive 
power further complicated by the scarce availability of genetic analysis in clinical practice. 

4. Automated Analysis of OCT Biomarkers and Morphometric Parameters 
The use of DL models allowed the automatic quantification of imaging biomarkers 

and morphometrics parameters, revolutionizing the clinical approach to predicting 
disease progression [25]. The leading automated imaging analyses included the 
evaluation of retinal layers thickness, drusen volume and topographic distribution, 
reticular pseudodrusen estimation, and hyperreflective foci distribution. These features 
have an important role in predicting AMD progression, as summarized below. 

4.1. Retinal Layers Morphometric Analysis 
The morphometric changes in retinal layers were deemed important quantitative 

biomarkers of AMD progression. Studies have demonstrated a progressive thinning of 
the outer retinal layers reflecting photoreceptor degeneration, but also indicating 
involvement of rod, bipolar, and horizontal cells [81–83]. Structure–function correlations 
further corroborated the role of outer nuclear layer (ONL) thickness as a surrogate of cone-
rod dysfunction [65,66,84]. The progressive ONL thinning was considered a robust 
predictor of conversion with a faster thinning in eyes developing GA [68]. 

Ellipsoid zone (EZ) retinal pigment epithelium (RPE) thickness was included as an 
OCT surrogate of photoreceptor outer segment length and EZ integrity, while the RPE-
Bruch’s membrane (BrM) thickness was included as a morphometric parameter for drusen 
load and topographical distribution [75,85]. The segmentation of RPE with photoreceptors 
was previously labeled as RPE+ inner segment/outer segment (IS/OS) [69]. OCT B-scans 
segmentation also included the retinal nerve fiber layer, ganglion cell layer, inner 
plexiform layer, and the choroid performed through the CNN model using the raw B-scan 
with normalized intensity as input. Retinal layers segmentation can be better visualized 
using the en face thickness and drusen maps [86]. 
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Retinal thickness maps obtained through a fine-tuned DCNN (VGG16) were 
compared to a CNN model trained from scratch (AMDnet), demonstrating that the layer 
segmentation-based preprocessing showed the strongest predictive power for 
progression into advanced AMD, reaching AUC of 0.89 for the B-scan and 0.91 for the 
volumes [87]. 

4.2. Drusen Volumetric Evaluation and Reticular Pseudodrusen Estimation 
Automated drusen segmentation algorithms have been developed that allow easy 

drusen growth and regression detection over time [65,84,88]. Considering drusen as RPE 
elevations, the delineation of the RPE with respect to the BrM plane into every single B-
scan resulted in a three-dimensional segmentation and a topographical map of the drusen 
in the OCT volume [70]. Drusen thickness is often reported with an en face topographical 
representation with quantitative correlate displayed in a colorimetric scale [65,67,69,84]. 
The quantification of total drusen area, number of large drusen (≥125 μm), and RPD were 
used for late AMD prediction increasing the predictive model performance [5,67,88]. The 
most remarkable drusen features involved in the prediction included the mean drusen 
thickness, maximum drusen height, and the mean drusen attenuation considering the 
attenuation within drusen in comparison with the overlying outer retinal bands and the 
ONL [89]. 

The recognition of RPD represents a crucial element in AMD progression [90–98] that 
was largely overlooked in AREDS studies for using CFP as the only imaging modality. 
The proper identification of RPD needs a multimodal imaging approach, where the use of 
FAF, near-infrared reflectance, and OCT allows the correctly identification of the stage 
and distribution of such subretinal lesions representing the histopathological correlate of 
subretinal drusenoid deposits (SDD) [93,99–101]. The deep learning detection of RPD was 
possible by utilizing a large dataset provided by the AREDS2 ancillary study of FAF 
imaging, using a standard protocol for their recognition and grading [102]. The DenseNet 
model could discern the presence of RPD on FAF with high accuracy (AUC 0.94). Label 
transfer was applied between FAF and CFP images and classified the corresponding CFP 
image according to the graded FAF for model training. The model then identified RPD on 
CFP with an AUC of 0.83 and a high specificity of 0.90. Therefore, the DenseNet DL model 
was considered highly accurate in identifying RPD presence from FAF images, suggesting 
that the model can exceed the performance of nonspecialized ophthalmologists in routine 
clinical practice [56]. Agrón et al. [103] used a simplified severity scale for AMD [48] 
(Figure 1), assigning 1 point for each feature in both eyes, but in the absence of large 
drusen 1 point was assigned if both eyes had medium-sized drusen. Moreover, the 
original scale modification consisted of including any GA (including noncentral GA) as 
late AMD. The authors found that the presence of RPD was associated with a higher risk 
for progression (Hazard ratio, HR of 4.7, 95%CI, 3.9–5.8) independently from the severity 
scale. When stratifying the patients according to the severity levels, the RPD risk was less 
prominent and non-significant for the 3–4 levels [103]. 
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Figure 1. A schematization of the 4-steps simplified severity scale from AREDS report No. 18. 

4.3. Hyperreflective Foci 
Hyperreflective foci (HRF) on OCT were identified as well-circumscribed 

hyperreflective roundish formations above drusen [75]. The identification of HRF is of 
leading importance in neovascular conversion, representing a distinctive hallmark alone 
and a more robust indicator when overlaying drusen [64,69]. HRF are also important 
predictors of GA development, likely representing the histopathological correlates of 
migrating RPE cells and disaggregated photoreceptors. The increasing number of HRF, 
often accompanying a reduced retinal thickness and ONL thinning, was found to be 
associated with RPE atrophy increase [62,63,69,104,105]. 

An approach to defining the presence of HRF consisted of identifying a set of 
connected HRF voxels greater or equal to four, corresponding to approximately 5.570 μm3, 
through a connected components algorithm [106]. A random forest classifier was also 
trained to provide a probability that a given pixel on B-scan corresponded to HRF, refining 
the results through an iterative approach considering previous classifications. A total of 
150 annotated B-scans by certified readers were used as a dataset for the classifier training 
[88]. 

A component filtering algorithm was applied, and all the HRF colocalizing with 
retinal vessels were removed to account for the potential interference of retinal vessels 
leading to a false estimation of HRF. In this study, HRF voxels detected in a three-
dimensional OCT volume were identified through a U-NET semantic segmentation 
architecture trained on a pre-existing dataset. Moreover, to assess the HRF dynamics, en 
face HRF thickness maps were compared between consecutive examinations [107]. The 
automated identification of HRF allowed evaluation of not only the presence but also load 
and dynamics, which were best obtained using a ResUNet+ model tested on Cirrus and 
Spectralis OCTs. The authors suggested preferring the utilization of cross entropy training 
loss over Dice-based training to obtain a higher performance in HRF automated 
identification [67,108]. 

  



Photonics 2023, 10, 149 9 of 18 
 

 

5. Predictive Models for Disease Progression in Age-Related Macular Degeneration 
5.1. Geographic Atrophy Prediction 

A predictive model of GA conversion indicated outer retinal (RPE+ inner 
segment/outer segment -IS/OS) and ONL thinning and increasing HRF at the ONL layer 
as morphometric factors predominantly involved; the only non-imaging factor was 
represented by age. SNPs did not contribute significantly to predicting GA conversion 
[69]. Eyes progressing to macular atrophy presented the greatest drusen height and HRF 
localized at 0.5-mm eccentricity, and the distribution of HRF was not concentrated in areas 
overlying drusen [67]. Schmidt-Erfurth et al.[69] also noted that the amount of HRF and 
the alterations seen in GA progressors did not colocalize with drusen but tended to spread 
more into the retina [69]. HRF distribution was found to be associated with the GA border, 
with the majority of HRF (65%) situated within a 1-mm junctional zone; at this level, 
increasing 2D HRF concentrations and counts were associated with GA progression [106]. 

Another feature associated with a higher risk for GA over neovascular conversion is 
represented by the presence of RPD in isolation, not considering the AMD severity scale 
[102]. Other quantitative outer retinal and sub-RPE features identified through ML 
demonstrated a role in identifying GA converters, including EZ-RPE thickness, EZ total 
and partial attenuation, RPE-BrM thickness, and RPE total attenuation [75]. More recently, 
a DL model quantified multimodal imaging biomarkers involved in GA progression. The 
best fit model associated with GA progression included FAF patterns alone, the 
interaction with the HRF concentration (HRF*FAF patterns), and the presence of RPD. In 
contrast, the interaction of age*sqrt GA area was negatively associated with GA growth, 
indicating that larger lesions in older patients were less prone to enlarge [109]. 

Using a variation in the U-Net architecture, where the model outputs a likelihood 
estimate for a given feature for every input image pixel, RPE loss, photoreceptor 
degeneration, and hypertransmission were identified. A fourth model segmented RPE 
and outer retina atrophy (RORA) as regions of overlapping RPE loss, photoreceptor 
degeneration, and hypertransmission. The presence of RORA (30.5%), followed by 
hypertransmission (21.5%), contributed the most to the prediction of visual acuity in GA, 
whilst the low-luminance (VA) was predicted by importance from photoreceptor 
degeneration (38.9%) followed by hypertransmission (26%) [110]. 

5.2. Predictive Factors of Neovascular Conversion 
The prediction towards neovascular conversion included thickening of the RPE-

drusen complex, an increase in the drusen area, and drusen-centric HRF associated with 
a thickening of the ONL where HRF tended to migrate. In this predictive model, 
demographic and genetic factors did not contribute to the neovascular conversion (AUC 
= 0.68) [69]. The relationship between the drusen topographical distribution and HRF was 
confirmed to be relevant when differentiating neovascular and GA conversion. In eyes 
progressing to macular neovascularization (MNV), the greatest drusen volume was 
observable within the foveal center, with a slight increase in mean HRF volume over time 
[67]. A choroidal thinning was also observable in MNV progressors, but the difference 
was not significant after adjusting for the false discovery rate. However, longitudinal 
evaluation confirmed a faster thinning of the ONL and outer retinal bands, as well as 
choroidal thinning towards the point of MNV conversion [68]. 

A greater score in the modified severity scale in conjunction with RPD presence was 
associated with a higher risk of neovascular AMD [102]. Nevertheless, most of the 
literature currently available investigates prognostic indicators or biomarkers of 
treatment response and clinical outcomes after anti-VEGF treatment [111–120]. 
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6. Discussion 
The biomarkers and artificial intelligence prediction models in AMD analyzed in this 

narrative review are summarized in Table 2. The DL models created using CFP included 
three DCNNs estimating the 5-year conversion risk (%) according to clinical features, 
including total drusen area, increased pigmentation, and depigmentation [55]. A pre-
trained CNN (Inception V3) model of multiple longitudinal images with two and three 
time points [42]. Using FAF alone or combined with OCT was dedicated to the GA growth 
prediction using multi-task CNNs [51]. 

The most crucial multimodal imaging technique is represented by OCT, which allows 
an exhaustive evaluation of several biomarkers and morphometric parameters within a 
single volumetric acquisition. In our opinion, the importance of OCT should also be 
interpreted in light of its wide use in clinical practice, the readiness of execution, and the 
numerous preliminary studies investigating potential predictors to be included in DL 
models. Through the automated segmentation of the OCT volumetric cube it is possible 
to extrapolate different quantitative drusen features, which include drusen number, mean 
volume, drusen area, topographic distribution, maximum height, slope, and reflectivity 
[57]. The most remarkable drusen features involved in the prediction included the mean 
drusen thickness, maximum drusen height, and the mean drusen attenuation considering 
the attenuation within drusen in comparison with the overlying outer retinal bands and 
ONL [88]. An automated grading system can evaluate the presence and distribution of 
HRF, choroidal thickness, the presence of RPD, and photoreceptor outer segment loss [60]. 
The identification of HRF is of leading importance in neovascular conversion, 
representing a distinctive hallmark alone and a more robust indicator when overlying 
drusen HRF, also important predictors of GA development [64,69]. 

Several studies also analyzed the influence of demographic factors alone or in 
combination with clinical or OCT features, as summarized in Table 2. However, the 
specific AMD risk associated with SNPs did not improve the prediction of the DL models 
for both GA and neovascularization [62,69,79]. 

Quantitative outer retinal and sub-RPE features identified through ML that 
demonstrated a role in determining GA converters included EZ-RPE thickness, EZ total 
and partial attenuation, RPE-BrM thickness, and RPE total attenuation [75]. A DL model 
quantified multimodal imaging biomarkers involved in GA progression. The best-fit 
model associated with GA progression included FAF patterns alone, the interaction with 
the HRF, and the presence of RPD [108]. Furthermore, the progressive ONL thinning 
visible on OCT was found to be a robust predictor of conversion with a faster thinning in 
eyes developing GA [68]. Using a variation in the U-Net architecture, the presence of 
RORA (30.5%), followed by hypertransmission (21.5%), contributed the most to the 
prediction of visual acuity in GA [109]. 

Factors contributing to the prediction towards neovascular conversion included the 
thickening of the RPE-drusen complex, an increase in the drusen area, and drusen-centric 
HRF associated with a thickening of the ONL where HRF tended to migrate [69]. 
Moreover, the most significant drusen volume was observable within the foveal center in 
eyes progressing to MNV, with a slight increase in mean HRF volume over time [67]. 

Table 2. Biomarkers considered in artificial intelligence prediction models in age-related macular 
degeneration. 

Imaging and Non-Imaging Features 

Fundus photograph [42,55] 
- Total drusen area 
- Increased pigment 
- Depigmentation 

Fundus autofluorescence [41,51] - GA growth rate 
- RDP presence 
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OCT [56,57,59,75] 

- Quantitative drusen features: drusen number, mean
volume, drusen area, topographic distribution,
maximum height, slope, and reflectivity 

- Presence and distribution of HRF 
- Choroidal thickness 
- Presence of RPD, and photoreceptor outer segment loss 
- Morphometric analysis of retinal layers 

Demographic features [1,5,56,59,62] 

- Age 
- Gender 
- Race 
- Smoking status 
- Visual acuity 
- Diet 
- Education 
- Pulse pressure 
- Body mass index 
- Sunlight exposure 

Genetics [62,69,79] 
- 49 SNPs, smoking, diet quality, education and pulse

pressure 
- 52-SNPs AMD genetic risk score 

AMD: age-related macular degeneration; FAF: fundus autofluorescence; GA: geographic atrophy; 
HRF: hyperreflective foci; MNV: macular neovascularization; OCT: optical coherence tomography; 
ONL: outer nuclear layer; RORA: outer retina atrophy; RPD: reticular pseudodrusen; RPE: retinal 
pigment epithelium; SNPs: Single Nucleotide Polymorphisms. 

7. Conclusions and Future Perspectives 
With recent advances in DL, this field is significantly expanding the spectrum of 

AMD prediction through multimodal imaging. DCNN represented the most relevant and 
suitable DL methodology for recognizing imaging output data. However, training a 
DCNN model from scratch is particularly time-consuming and expensive. A reasonable 
option is represented by fine-tuning CNN, consisting of transferring pre-learned features 
from a pre-trained CNN to initialize a new model. 

When approaching AMD prediction, it is essential to know and apply the AMD 
severity scales that allow an improvement in disease prediction along with other imaging 
and non-imaging parameters. Although the imaging biomarkers represented the most 
relevant predictive features, some DL models performed better by including non-imaging 
parameters, such as demographic baseline characteristics including age, gender, race, 
smoking status, fellow eye status, body mass index, blood pressure, sunlight exposure, 
education, and Mediterranean diet score. Contrariwise, the incorporation of genetic 
features such as SNPs modified the predictive power only slightly, suggesting a marginal 
role of genotypic characterization in identifying patients at high risk of AMD evolution 
into late stages. 

Different multimodal imaging modalities were used in the predictive algorithms, 
including CFP, FAF, and OCT. Among those, OCT represented the most informative 
modality, allowing the qualitative identification of specific biomarkers and the 
quantitative estimation of morphometric changes in retinal layers, drusen volume, and 
choroidal thickness. The most relevant predictors are represented by ONL and outer 
retinal layer thickness changes, drusen and volume morphometric modifications, 
quantitative and qualitative changes in HRF, and the presence of RPD. For GA conversion, 
the most important factors identified were outer retina and ONL thinning, increasing HRF 
and their topographic distribution, as well as age as the unique non-imaging factor. The 
prediction towards neovascular conversion was less investigated, but the main factors 
identified were represented by an increasing drusen area and volume within the foveal 
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center with overlying HRF and outer retinal, ONL, and choroidal thinning. Identifying 
OCT predictors presented significant advantages, including the routinary use of this 
imaging modality in clinical practice, the large number of qualitative and quantitative 
features that can be extrapolated at each examination, and the repeatability of acquisition 
and metrics. In AMD, the interpolation of imaging biomarkers and risk factors allowed a 
good risk stratification that can be estimated through DL models with high diagnostic 
performance. The understanding of the strengths and limitation of different DL systems 
is crucial to identify future methodologies. Moreover, further studies are encouraged to 
assess more accurate metrics and predictors and to build even more accurate predictive 
models that can be available in clinical practice. 
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Appendix A 

Table A1. A summary of the 52 independent AMD risk variants identified in 34 loci. 

# Locus Name Variants 

1 CFH 
rs10922109; rs570618; rs121913059; rs148553336; 
rs187328863; rs61818925; rs35292876; rs191281603 

2 COL4A3 rs11884770 
3 ADAMTS9-AS2 rs62247658 
4 COL8A1 rs140647181; rs55975637 
5 CFI rs10033900; rs141853578 
6 C9 rs62358361 
7 PRLR/SPEF2 rs114092250 
8 C2/CFB/SKIV2L rs116503776; rs144629244; rs114254831; rs181705462 
9 VEGFA rs943080 
10 KMT2E/SRPK2 rs1142 
11 PILRB/PILRA rs7803454 
12 TNFRSF10A rs79037040 
13 MIR6130/RORB rs10781182 
14 TRPM3 rs71507014 
15 TGFBR1 rs1626340 
16 ABCA1 rs2740488 
17 ARHGAP21 rs12357257 
18 ARMS2/HTRA1 rs3750846 
19 RDH5/CD63 rs3138141 
20 ACAD10 rs61941274 
21 B3GALTL rs9564692 
22 RAD51B rs61985136; rs2842339 
23 LIPC rs2043085; rs2070895 
24 CETP rs5817082; rs17231506 
25 CTRB2/CTRB1 rs72802342 
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26 TMEM97/VTN rs11080055 
27 NPLOC4/TSPAN10 rs6565597 
28 C3 rs2230199; rs147859257; rs12019136 
29 CNN2 rs67538026 
30 APOE rs429358; rs73036519 
31 MMP9 rs142450006 
32 C20orf85 rs201459901 
33 SYN3/TIMP3 rs5754227 
34 SLC16A8 rs8135665 
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