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Abstract: Chronic Lymphocytic Leukemia (CLL) is an indolent malignancy characterized by the
accumulation of quiescent mature B cells. However, these cells are transcriptionally and translation-
ally active, implicating an active metabolism. The recent literature suggests that CLL cells have an
oxidative-type phenotype. Given the role of cell metabolism, which is able to influence the outcome of
treatments, in other neoplasms, we aimed to assess its prognostic role in CLL patients by determining
the ex vivo bioenergetic metabolic profile of CLL cells, evaluating the correlation with the patient
clinical/biological characteristics and the in vivo response to BTK inhibitor treatment. Clustering
analysis of primary samples identified two groups, characterized by low (CLL low) or high (CLL high)
bioenergetic metabolic rates. Compared to the CLL high, CLL with lower bioenergetic metabolic rates
belonged to patients characterized by a statistically significant higher white blood cell count and by
unfavorable molecular genetics. More importantly, patients in the CLL low cluster displayed a better
and more durable response to the BTK inhibitor ibrutinib, thus defining a bioenergetic metabolic
subgroup that can benefit the most from this therapy.
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1. Introduction

Chronic Lymphocytic Leukemia (CLL) is an indolent malignancy characterized by the
accumulation of quiescent, immunologically dysfunctional mature B cells which are CD5
positive and that fail to undergo apoptosis, leading to leukocytosis and absolute lympho-
cytosis, lymphadenomegaly, and splenomegaly. CLL cells reside in bone marrow, spleen,
lymph nodes, and peripheral blood, being exposed to different microenvironments [1–3].
CLL cells, even if known as slowly proliferating or quiescent, are transcriptionally and
translationally active, suggesting an active metabolism [4,5]. Antigenic stimulation, and,
therefore, the constitutive activation of B-cell receptor (BCR) signaling plays a fundamen-
tal role in CLL pathogenesis by supporting the growth and survival of CLL cells [4,6,7].
Thus, the signaling pathways activated by this receptor represent elective targets for
molecular therapies. Aberrant signaling by the activation of BCR has a profound im-
pact on CLL cell metabolism [5]. According to recent data, CLL cells have an increased
oxidative phosphorylation despite a glucose consumption comparable to their healthy
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counterpart [8–10]. Although a certain degree of activity is present at the level of the
glycolytic pathway, this does not seem to play a fundamental role in the metabolism of
CLL, unlike other lymphoproliferative neoplasms characterized by a more pronounced
proliferation [8,11]. Moreover, the transformation of CLL in Richter’s syndrome has been
reported to be associated with an increased uptake of FluoroDeoxyGlucose (FDG) [12].
ATM and TP53, in addition to their role in controlling genomic integrity, also appear to
be central regulators of carbon metabolism, thus correlating with metabolic and molec-
ular profile [13]. In fact, del(11q) CLL cells would appear to be particularly sensitive to
inhibition of glycolysis [14]. Similarly, Kluckova K et al. [15] reported that CLL cells in
proliferation centers of several samples from patients with deletion of chromosome 17p
(del17p) manifested increased spontaneous aerobic glycolysis in the BCR-unstimulated
state (suggestive of a BCR-independent metabolic phenotype). The TP53 mutation or
del17p seem to confer a greater glucose dependence to these cells. TP53 in fact limits
glucose uptake by repression of GLUT1 and GLUT4, and regulates glycolysis by activating
the transcription of TIGAR (TP53-inducible regulator of glycolysis and apoptosis) [16,17].
TIGAR is expressed by primary CLL cells, and hijacks the use of glucose-6-phosphate on
the pentose phosphate (PPP) pathway [16,18]. The overexpression of oxoglutarate dehy-
drogenase and isocitrate dehydrogenase, two enzymes that facilitate both the oxidation
and reduction in alpha-ketoglutarate, supports the hypothesis that these lymphocytes are
characterized by a sustained oxidative phosphorylation [9].

Furthermore, CLL cells have an increased number in mitochondria and an increased
production in ROS compared to normal B cells [11]. Other studies have shown that fatty
acid metabolism plays an important role in leukemogenesis, including CLL [9]. It has
been shown that CPT1 is overexpressed in CLL cells, and its inhibition by etomoxir causes
cytotoxic effects on the cells, accompanied by an increase in ROS levels [13,19,20]. CPT1,
therefore, represents a promising therapeutic target in CLL [21]. Previously, our group
has shown that the use of a CPT1 inhibitor, ST1326, in AML, ALL, and CLL cells is able to
determine cell growth arrest, mitochondrial damage, and the induction of apoptosis [21].
Taken together, these data indicate an active metabolism to CLL cells. Given the role of
metabolism in other neoplasms that are able to influence the outcome of treatments, we
aim to further assess its prognostic significance in CLL. To this end, we have determined
the ex vivo cellular bioenergetic metabolic profile of CLL patients, both untreated and
with a history of prior treatment, evaluating the correlation between cellular bioenergetic
signature, clinical/biological characteristics, and response to BTK inhibitor treatment.

2. Materials and Methods
2.1. CLL Patients

Primary samples from CLL patients (n = 35) were collected after written informed
consent from subjects admitted for diagnostic and therapeutic procedures to the Hematol-
ogy of the University Hospital Sant’Andrea-Sapienza, Rome, Italy. The overall population
included untreated patients and patients with a history of prior treatments. Clinical charac-
teristics and treatment history for each patient are reported in Supplementary Table S1.

After sampling for bioenergetic metabolic profile, 13 of the 35 patients included
in the study underwent ibrutinib treatment at different times, according to clinical and
prognostic genetic criteria. All patients received the standard dose of 420 mg/die of
ibrutinib. Treatment response was defined according to the criteria proposed by iwCLL [22].
The follow-up was at least monthly.
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2.2. CLL Cell Enrichment

Primary samples from CLL patients (percentage of CD19+ cells ranged from more than
81% to 87% according to flow cytometry in lower and higher WBC count, respectively) were
enriched in CLL cells using Lympholyte-H (Cederlane, Burlington, ON, Canada) density-
gradient centrifugation, counted, and immediately used for metabolic measurements, as
described below.

2.3. B-Cells Purification

Peripheral blood normal B cells (n = 6) were purified from buffy coats using Ficoll-
Hypaque (GE Healthcare, Chicago, IL, USA) density gradient centrifugation, followed by
magnetic-activated cell sorting to select CD19+ cells (CD19 Microbeads; Miltenyi Biotec,
Bergisch Gladbach, Germany, GER). B cell purity, as analyzed using flow cytometry for
CD20+, was >90%.

2.4. Flow Cytometry

CD49d expression was analyzed using 3-color immunofluorescence by combining anti-
CD49d-PE (clone 9F10), anti-CD5-FITC, and anti-CD19-PerCP-Cy5.5 or anti-CD19-APC (all
from BD Biosciences, Franklin Lakes, NJ, USA). CD49d expression data were reported as
the percent of CD5+CD19+ CLL cells displaying specific fluorescence intensity greater than
the 98% to 99% of the same unstained population. The cutoff of 30% of CD49d expressing
cells was employed to define CD49dhigh cases, as previously reported [23].

2.5. Cytogenetic and Molecular Analysis

Interphase FISH was performed to detect del17p, 11q22.3 deletion (del11q), 13q14
deletion (del13p), and trisomy 12 (tris12), as reported in [24].

Mutational status of TP53, NOTCH1, SF3B1, BIRC3, C481S (BTK gene), R665W, L845F,
and S707Y (PLCG2 gene) related to ibrutinib resistance was assessed using next generation
sequencing (NGS), with an amplicon-based strategy with at least 2000x coverage covering
exons 2 to 11 for TP53, the whole exon 34 and part of 3′ untranslated region for NOTCH1,
exons 12 to 17 for SF3B1, and exons 6 to 9 for BIRC3.

Sequencing analysis of IGHV was performed on either genomic DNA or comple-
mentary DNA using consensus primers for the IGHV leader or the IGHV FR1 regions in
conjunction with JH primers, according to LymphoTrack IGHV Leader or IGHV FR1 assays
(Invivoscribe, Shanghai, China). Sequences were analyzed using the IMGT databases and
the IMGT/V-QUEST tool (http://imgt.org/, version 3.2.17, accessed on 2 April 2020).

2.6. Bioenergetic Metabolic Measurements

Bioenergetic metabolic rates were measured using a Seahorse XFp Extracellular Flux
Analyzer (Agilent Technologies, Santa Clara, CA, USA), as previously published [25].
Briefly, 5 × 105 CLL cells/well were resuspended in unbuffered DMEM medium, supple-
mented with 2 mM L-glutamine, 11 mM glucose and 1.2 mM pyruvate, and adjusted to pH
7.35. CLL cells were transferred in the XFp-dedicated plates pre-coated with poly-L-lysine
(Merck KGaA, Darmstadt, Germany), centrifuged for 5 min at 1000 rpm with no accelera-
tion and no brakes, and then incubated for 30 min at 37 ◦C in a CO2-free incubator. Oxygen
Consumption Rates (OCR) and ExtraCellular Acidification Rates (ECAR) were measured
for the basal state and following the sequential injection of oligomycin (1 µM), carbonyl
cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) (0.4 µM), and a mix of antimycin
A (2 µM) and rotenone (2 µM) (all reagents from Merck KGaA, Germany) in each well,
according to Seahorse Mito Stress Test protocol [26]. The data of the experiments were
analyzed through dedicated software (XF Wave version 2.4.0, Agilent Technologies, CA,
USA). Mito stress test parameters were been calculated according to the manufacturer’s
instructions. OCR and ECAR values from the third measurement point, corresponding to
the basal state, before any injection, were used for the following clustering analyses.

http://imgt.org/
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2.7. Statistics

Clustering analyses on patients were performed using Matlab 2018b (Mathworks,
Natick, MA, USA) and the File Exchange function (Bart Finkston. MATLAB Central File
Exchange, https://www.mathworks.com/matlabcentral/fileexchange/10161-mean-shift-
clustering, 2021), aiming at segregating the population into subgroups. Results were
analyzed through different clustering approaches to ensure a statistically correct group
definition. In this respect, finding the optimal number of clusters given in a population
is a well-known challenge, as most clustering methods require an a priori guess. The
Mean-Shift Clustering (MSC) [27] was selected, since it does not require prior knowledge
of the number of clusters. The MSC can be tuned using a single parameter, i.e., the window
radius. The latter is the width of the search area where the mean of the selected datapoints
is computed, yielding a centroid which is then updated iteratively. All the points lying
within the radius distance from the centroid are then labelled as belonging to one cluster.
The clustering was performed in three steps: (1) we obtained a candidate number of clusters
(n) by running the MSC 48 times using an increasing radius at each run, (2) we selected
the number of clusters (n) that occurred the most among all the runs, and (3) we used the
selected number of clusters to segregate the population into subgroups. In the first step, we
computed the Euclidean distance between all data points to identify the test range of the
radius which was set within the minimum and the mean distance. In the third step, the
radius was selected as the mean of all the radius values which yielded the most occurring
number of clusters.

Student’s T test has been applied with p < 0.05 as the level of significance, using
Microsoft Excel 2010 (Microsoft, Redmond, WA, USA) for mitochondrial parameter analysis.
For enrichment analysis on clinical and biological patient characteristics, a one way-χ2

has been applied with p < 0.05 as level of significance (MedCalc Software Ltd. One-way
Chi-squared test version 22.023: https://www.medcalc.org/calc/chisquared-1way.php,
accessed on 29 April 2024).

3. Results
3.1. Bioenergetic Metabolic Clustering

Cells from 35 CLL patients (Table 1) have been analyzed for basal rates of ECAR
and OCR and compared to normal B cells obtained and purified from 6 healthy donors
(Figure 1a,b). We used the third measurement points as reported in Section 2.6. We applied
the MSC to cluster this data using the procedure described in Section 2.5. The occurrences
of the number of clusters n among 48 runs of the MSC are shown in Figure 1c, where the
value n = 2 was the most frequent, and was therefore selected to identify the radius value
r = 17.5. A realization of the MSC with r = 17.5 is shown in Figure 1d.

Table 1. Clinical and biological parameters associated with the OCR and ECAR values obtained
using the bioenergetic metabolic analysis for each patient (neg: negative; nd: not determined; OCR is
expressed as pmolesO2/min, ECAR is expressed as mpH/min).

pt n. WBC IgHV MUTATIONS CYTOGENETICS OCR
Mean

OCR
SD

ECAR
Mean

ECAR
SD

low
#1 37210 unmutated Del13q14.3; del11q22.3 17.90 0.64 2.36 0.98

#2 73290 unmutated del13q14.3; del 17p
(15%) 23.01 5.53 6.56 1.04

#3 159000 unmutated SF3B1 neg 10.48 1.75 2.39 0.25

https://www.mathworks.com/matlabcentral/fileexchange/10161-mean-shift-clustering
https://www.mathworks.com/matlabcentral/fileexchange/10161-mean-shift-clustering
https://www.medcalc.org/calc/chisquared-1way.php
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Table 1. Cont.

pt n. WBC IgHV MUTATIONS CYTOGENETICS OCR
Mean

OCR
SD

ECAR
Mean

ECAR
SD

#4 32500 mutated del13 8.67 1.34 2.10 0.26
#5 27900 mutated del 13q 17.20 2.81 6.92 0.38
#6 50000 mutated del 13q14.3 16.75 3.58 7.16 0.30
#7 25000 unmutated NOTCH1 tris 12 40.87 3.34 10.57 1.16
#8 80600 unmutated del11q22.3 7.06 2.12 1.54 0.05
#9 20900 unmutated neg 44.49 2.21 12.53 1.30
#10 49200 mutated neg 31.45 4.18 11.59 1.89
#11 140000 unmutated del11 19.43 6.33 6.58 2.56
#12 102400 unmutated TP53, SF3B1 del 17p; del 11q 23.86 2.06 10.98 0.54
#13 47200 mutated SF3B1 del 13q14.3; del11q22.3 19.79 1.45 5.75 0.32
#14 79230 mutated neg 27.43 4.12 8.44 1.95
#15 77240 mutated del13 4.50 3.56 2.40 0.82
#16 40940 mutated del13 21.74 2.44 6.08 0.58
#17 40400 mutated del 13q14.3 23.46 8.73 7.43 1.91
#18 25400 mutated del13 17.71 2.11 5.95 0.96
#19 76200 mutated neg 11.57 1.37 4.47 0.92
#20 16300 unmutated TP53 del 13q14.3 32.83 1.23 12.53 0.16
#21 41600 unmutated NOTCH1 del 13q14.3 (7%) 36.21 2.40 14.01 0.65
#22 78000 unmutated NOTCH1 del13 15.95 4.90 2.72 0.62
#23 92300 unmutated TP53, SF3B1 del17;tris12;del13 27.73 6.42 6.71 1.99
#24 15300 mutated SF3B1 neg 15.72 2.62 5.72 0.14
#25 26800 unmutated neg 37.25 4.70 14.32 1.08
#26 50000 mutated TP53 del17:del13 34.21 2.50 13.38 0.94

high
#27 15100 unmutated tris 12 51.88 1.10 21.07 3.13
#28 4600 mutated SF3B1 neg 56.42 9.17 24.86 4.14
#29 30000 mutated nd 75.60 3.46 20.29 0.81
#30 32290 unmutated tris 12 68.23 1.49 22.83 1.59
#31 15400 mutated del 13q14.3 71.15 6.37 21.30 1.81
#32 3880 nd 46.02 19.65 20.56 7.68
#33 21100 mutated neg 66.63 1.96 20.18 0.37
#34 14810 unmutated tris 12 60.83 2.07 22.14 1.43
#35 6040 mutated nd 69.08 10.05 22.06 4.93

The clustering analysis showed that the 35 analyzed patients could be segregated into
two different clusters, defined as CLL high bioenergetic metabolism (CLL high) and CLL
low bioenergetic metabolism (CLL low) (Figure 1d and Table 1).

The CLL low cluster was composed of 26 patients that showed a bioenergetic metabolic
phenotype characterized by low levels of ECAR (mean value 7.35 ± 4.06 millipH/min) and
OCR (mean value 22.59 ± 10.95 pmolesO2/min) compared to the remaining 9 patients, and
CLL high, which displayed a significantly higher bioenergetic metabolic phenotype both in
terms of ECAR (mean value 21.70 ± 3.39 millipH/min, p < 0.005) and of OCR (mean value
62.87 ± 11.70 pmolesO2/min, p < 0.005) (Table 1).

Moreover, CLL low cells showed an oxidative metabolism like normal B cells (OCR
mean value 22.59± 10.95 vs. 25.87± 12.86 pmolesO2/min, respectively) and a significantly
lower ECAR (mean value 7.35 ± 4.06 vs. 14.08 ± 7.93 millipH/min, respectively, p = 0.002).
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Mitochondrial metabolism has been further dissected by analyzing the parameter
derived from the Mito stress test protocol (see Section 2.6). In total, 34 out of 35 patients
were evaluated (Supplementary Table S2). The results showed differences between the
two CLL groups in terms of basal respiration (39.00 ± 6.62 vs. 14.45 ± 7.25 pmolesO2/min,
in CLL high and CLL low, respectively, p < 0.005), maximal respiration (169.82 ± 57.64
vs. 26.19 ± 24.08 pmolesO2/min, p < 0.005), spare respiratory capacity (130.82 ± 54.98
vs. 11.73 ± 20.50 pmolesO2/min, p < 0.005), and ATP production (39.63 ± 11.14 vs.
13.57± 7.51 pmolesO2/min, p < 0.005) (Figure 2). Other parameters (proton leak and
spare respiratory capacity as the percentage and coupling efficiency) showed no
significant differences.
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Figure 1. Clustering of CLL patients’ B-cells using rates of basal ECAR and OCR. (a) Example of a
mito stress test analysis (see Section 2.6) for a CLL high patient (n. 34, red), CLL low patient (n. 21,
green), and a normal b cell (blue) (ant/rot: antimycin A and rotenone). (a) Shows OCR curves,
while (b) shows ECAR curves, obtained at the same time from the same samples. ECAR and OCR
values corresponding to the third measurement points (min. 19) for 35 CLL patients have been used
for the clustering analysis (c). (c) Number of clusters histogram obtained with 48 runs of the MSC:
two clusters is the most frequent result. (d) Scatter plot of the patient distribution based on ECAR
and OCR values, where each color corresponds to a cluster obtained with MSC and r = 17.5. Red
indicates the CLL high patients’ cluster, whereas green indicates the CLL low patients’ cluster.
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3.2. Clinical/Biological Correlations

When analyzed, according to a clinical–biological perspective, the two patient clusters
that were characterized by a statistically significant different White Blood Cell Count (WBC):
CLL low patients had a median of 48,200 (range 15,300–159,000), compared to a median of
15,100 (range 3880–32,290) in CLL high patients (p = 0.002).

According to cytogenetic and molecular characteristics (Table 2), we found that the
CLL low cluster were enriched in patients bearing del(13q) (10 out of 26 CLL low pa-
tients) vs. only one case in CLL high. In contrast, three out of eight CLL high patients
were characterized with trisomy of chromosome 12 vs. one patient in CLL low, all with
high CD49d expression. All patients carrying the del(11q) and the multiple deletions,
three del(13q);del(11q) and three del(13q);del(17p) are in the CLL low group. Similarly,
all patients displaying mutated TP53 and BIRC3 are in the CLL low group, as well as
5/6 patients with mutated SF3B1.
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Table 2. Cytogenetic and molecular characteristics of patients according to bioenergetic metabolic
status (n.s. = not significative).

Tot CLL High (%tot) CLL Low (%tot) p

IGHV Mutated 18 5 (27.8%) 13 (72.2%) n.s.

IGHV Unmutated 16 3 (18.8%) 13 (81.2%) 0.0124

del(13q) 11 1 (9.1%) 10 (90.9%) 0.0067

del(17p) 0 0 (0%) 0 (0%) n.s.

del(11q) 2 0 (0%) 2 (100%) n.s.

del(13q);del(17p) 3 0 (0%) 3 (100%) n.s.

del(11q);del(17p) 1 0 (0%) 1 (100%) n.s.

del(11q);del(13q) 3 0 (0%) 3 (100%) n.s.

Tris12 4 1 (25%) 3 (75%) n.s.

TP53 4 0 (0%) 4 (100%) 0.046

NOTCH1 2 0 (0%) 2 (100%) n.s.

BIRC3 5 0 (0%) 5 (100%) 0.025

SF3B1 6 1 (16.7%) 5 (83.3%) n.s.

3.3. Response to Treatment with Ibrutinib

In total, 13 of the 35 patients underwent ibrutinib treatment according to clinical criteria
and biological parameters. Thus, we decided to analyze whether the response to the BTK
inhibitor could be associated with a different bioenergetic metabolism profile by isolating
bioenergetic data from the previous analysis and analyzing them in correlation with clinical
characteristics (Table 3) and ibrutinib response (Figure 3) in this subpopulation. None of
the 13 patients carried BTK and PLCG2 mutations, which are consistently associated with
ibrutinib resistance [28].

Despite the small number of cases, the subdivision of patients into two clusters ac-
cording to the basal bioenergetic metabolism (CLL low and CLL high) was preserved. In
particular, 9 out of 13 patients showed a bioenergetic metabolic phenotype characterized
by low OCR levels (mean value 26.57 ± 11.80 pmoles O2/min) and low ECAR levels
(mean value 8.14 ± 4.15 mpH/min), while the remaining four patients presented a distinct
bioenergetic metabolic phenotype, which is significantly higher compared to the low bioen-
ergetic metabolism cluster in terms of both OCR (mean value 62.27± 14.15 pmoles O2/min,
p < 0.0001 vs. low) and ECAR (mean value 20.79 ± 3.45 mpH/min, p < 0.0001 vs. low).
These data were confirmed in the Mito Stress Test parameters (Supplemental Table S2).

Table 3. Clinical and biological parameters associated with OCR and ECAR value obtained from
bioenergetic metabolic analysis for each patient receiving ibrutinib treatment (neg: negative; nd: not
determined; OCR is expressed as pmolesO2/min, ECAR is expressed as mpH/min).

pt n. WBC IgHV MUTATIONS CYTOGENETICS OCR
Mean

OCR
SD

ECAR
Mean

ECAR
SD

low

#2 73290 unmutated del13q14.3; del 17p
(15%) 23.01 5.53 6.56 1.04

#3 159000 unmutated SF3B1 neg 10.48 1.75 2.39 0.25
#7 25000 unmutated NOTCH1 tris 12 40.87 3.34 10.57 1.16
#9 20900 unmutated neg 44.49 2.21 12.53 1.3
#12 102400 unmutated TP53, SF3B1 del 17p; del 11q 23.86 2.06 10.98 0.54
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Table 3. Cont.

pt n. WBC IgHV MUTATIONS CYTOGENETICS OCR
Mean

OCR
SD

ECAR
Mean

ECAR
SD

#13 47200 mutated SF3B1 del 13q14.3; del11q22.3 19.79 1.45 5.75 0.32
#17 40400 mutated del 13q14.3 23.46 8.73 7.43 1.91
#22 78000 unmutated NOTCH1 del13 15.95 4.9 2.72 0.62
#25 26800 unmutated neg 37.25 4.7 14.32 1.08

high
#29 30000 mutated nd 75.6 3.46 20.29 0.81
#32 3880 nv 46.02 19.65 20.56 7.68
#33 21100 mutated no 66.63 1.96 20.18 0.37
#34 14810 unmutated tris 12 60.83 2.07 22.14 1.43
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Figure 3. Responses to ibrutinib treatment in individual CLL high and low patients (in bold lines,
CLL high; PD, progressive disease; CR, complete remission; PR, partial remission).

The two patient clusters were once again analyzed based on the following clinical
characteristics: sex, age, beta-2 microglobulin, LDH, WBC count, Rai and Binet staging,
time from diagnosis, and previous therapies performed.

Similar to the overall population, a higher WBC count was observed in the CLL low
group compared to the CLL high (median CLL low: 47,200—range 20,900–159,000; median
CLL high: 17,955—range 3880–30,000), although in this subpopulation, the differences
did not reach statistical significance (p = 0.07) due to the small sample size (Table 3). No
correlations were found for the other parameters. A sample in the CLL high group was
found to be inadequate for cytogenetic and molecular biology evaluation, and therefore
it was not considered in the analysis of these results. As for the IGHV genes’ mutational
status (Table 4), seven out of nine patients of the CLL low cluster had unmutated IGHV
(p = 0.034). Except for a case of trisomy of chromosome 12, all of the analyzed cytogenetic
and molecular alterations were detected in samples from patients belonging to the CLL
low group, as summarized in Table 4. Each patient was evaluated for their response to
ibrutinib, as reported in Figure 3.
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Table 4. Cytogenetic and molecular characteristics of patients undergoing ibrutinib treatment accord-
ing to their bioenergetic metabolic status.

Tot (12) CLL High (3—%tot) CLL Low (9—%tot)

IGHV MUTATED 4 2 (50%) 2 (50%)

IGHV UNMUTATED 8 1 (12.5%) 7 (87.5%)

del(13q) 1 0 (0%) 1 (100%)

del(17q) 0 0 (0%) 0 (0%)

del(11p) 0 0 (0%) 0 (0%)

del(13q);del(17p) 1 0 (0%) 1 (100%)

del(11q);del(17p) 1 0 (0%) 1 (100%)

del(11q);del(13q) 1 0 (0%) 1 (100%)

Tris12 2 1 (50%) 1 (50%)

TP53 1 0 (0%) 1 (100%)

NOTCH1 1 0 (0%) 1 (100%)

BIRC3 3 0 (0%) 3 (100%)

SF3B1 3 0 (0%) 3 (100%)

From the analysis of the bioenergetic metabolic profile in relation to the response to
ibrutinib, some differences emerged between the two clusters.

As shown in Figure 3, CLL low showed a better and longer response to treatment
with ibrutinib. After 12 months of treatment, it was observed that in the CLL low clus-
ter, 3/9 patients achieved CR and 6/9 obtained PR. In contrast, only one patient in
the CLL high achieved CR, while three of four patients manifested PD and therefore
discontinued treatment.

After 24 months follow-up (Figure 3), 4/9 CLL low patients were in CR, 4/9 main-
tained a PR, and only one patient exhibited PD. The only CLL high patient in CR maintained
the response at 24 months.

4. Discussion

Aberrant cell metabolism is currently being recognized as a paramount factor in
the response of cancer cells to therapeutic agents. Indeed, metabolic plasticity has been
correlated to the resistance to chemotherapy [29]. An in-depth understanding of how
cancer cells undertake a path of metabolic reprogramming with the acquisition of new
bioenergetic phenotypes is useful to expand the current therapeutic strategies, avoiding
the insurgence of resistance phenomena and thus improving patients’ prognosis.

In this regard, many efforts have been made to clarify the metabolic characteristics of
the many tumor histotypes, as we can observe a heterogeneity in metabolism remodeling
that reflects the dramatically different genetic and proteomic backgrounds of various tu-
mors. CLL cells, as mentioned, differ from the majority of cancer cells, as they do not appear
to be characterized by the Warburg effect, showing a mainly oxidative phenotype [30,31].
Glutamine and fatty acids fuel this oxidative phenotype, feeding the tricarboxylic acid
cycle activity [13]. In the attempt to confer a prognostic significance to CLL cell metabolism,
Vangapandu et al. [32] measured ECAR and OCR in samples from CLL patients compared
to normal B cells and peripheral blood mononuclear cells (PBMC) from healthy donors,
revealing differences between CLL samples. These differences reflected the aggressiveness
of the disease, since a higher respiration correlated with unfavorable prognostic markers
(higher Rai score, β2 microglobulin, Zap70, unmutated IGHV), while ECAR was quite
similar among CLL samples [32]. Accordingly, our data show a variability in OCR rates
between CLL cells from different patients, indicating dissimilar respiration rates that allows
for the clustering of the investigated patient population into two groups according to a
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higher or lower O2 consumption. The lower OCR subgroup was no different to normal B
cells, according to clustering analysis. Further dissection of mitochondrial metabolism by
means of parameter analysis from Mito Stress Test experiments, such as basal, maximal,
spare capacity, and ATP-linked respiration, all correlated with the subdivision in CLL low
and CLL high. However, these differences in OCR were also accompanied by a variability in
ECAR, suggesting a more active bioenergetic metabolism in toto in the CLL high subgroup.
Interestingly, we found that CLL cells with a low bioenergetic metabolism differed from
their normal B counterpart, with ECAR being higher in the latter.

Moreover, according to our data, CLL cells showing lower bioenergetic metabolic
rates belonged to patients characterized by unfavorable molecular genetic factors. CLL
low was in fact associated with a higher WBC, del(11q), and multiple deletions, as well
as mutations in TP53, BIRC3, and SF3B1. On the other hand, three out of four cases with
trisomy 12 were in the CLL high subgroup. Notably, these results are in contrast with those
obtained from Vangapandu’s group [32]. However, there is a fundamental difference in the
approach followed to perform experiments, as they incubated CLL cells in culture medium
for 24h before metabolic parameter assessments. Our approach consisted in the rapid
measurements of CLL cells’ bioenergetic metabolism right after the purification passage,
with a brief (30 min) period of adaptation in culture medium to stabilize temperature,
in the attempt to minimize the ex vivo artefacts. Additional samples are required to
further refine these observations, and future analyses are planned to expand the results. In
particular, the study of the proteomic profile could identify differential protein expression
profiles in the two metabolic groups, thus revealing a specific target useful for reverting
the metabolic phenotypes. Moreover, data from the literature shows the impact of the
stromal microenvironment on CLL cell metabolism, but results are unclear if it is in favor
of glycolysis [33] or OXPHOS [32].

Several studies have highlighted that the aberrant signaling caused by the constitutive
activation of the BCR has a profound impact on the metabolism of CLL cells character-
ized by an increase in oxidative phosphorylation compared to its healthy counterpart [32].
Therefore, studying the metabolism in relation to the response to BCR signaling inhibitors
represents a further element in the characterization of this disease. In fact, we intended to
evaluate whether the presence of a peculiar metabolic phenotype can be predictive of the
response to a specific BCR signaling inhibitor treatment. In total, 13 of the 35 patients en-
rolled in our study underwent ibrutinib treatment, 4 of which were treatment-naïve, while
9 had been previously treated with regimens based on chemo- or chemoimmunotherapy.
Bioenergetic metabolic characterization was performed before starting ibrutinib, confirming
a clear clustering of patients into two groups with low and high bioenergetic metabolism.
The two groups showed a statistically significant difference both in terms of baseline OCR
and Mito Stress Test parameters. Starting from this subdivision, an attempt was made to
further investigate the difference observed in terms of oxygen consumption, comparing the
data of mitochondrial metabolism with the major prognostic factors and with the response
to ibrutinib treatment. According to our reduced sample population, no correlation was
found with sex, age, beta-2 microglobulin, LDH, staging according to Rai and Binet, time
from diagnosis and the start of ibrutinib, and number of previous therapies performed.
However, analysis confirmed that the CLL low group was characterized by a markedly
higher white blood cell count compared to the CLL high group. The most relevant unfavor-
able prognostic factors such as TP53 mutation, del(13q) deletion, multiple deletions, BIRC3
mutation, SF3B1, and NOTCH1 mutation in association with trisomy 12 were present in
the CLL low group. Interestingly, seven out of nine patients in the CLL low cluster had
unmutated IGHV genes, which confers an increased sensitivity to ibrutinib, as reported in
the literature.

As for our study, a better and more durable response to ibrutinib was observed in CLL
low patients, 7/9 of whom remained on BTK inhibitor treatment for more than 24 months.

In a study by Guo et al. [34], the biological differences between mutated and un-
mutated IGHV CLL were analyzed: the results obtained revealed that the levels of BTK
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phosphorylation were significantly higher in the unmutated IGHV CLL group. In addition,
the unmutated IGHV group presented an increased BCR signaling and a greater sensitivity
to ibrutinib compared to mutated IGHV CLL [34]. We can therefore postulate that in the
CLL low group, mostly with unmutated IGHV, the good response to ibrutinib is attributable
to the cell shut down secondary to the deactivation of the BTK signaling, suggesting that
these cells are addicted to this signaling for their survival. Notably, the only CLL high that
reached and maintained CR for 24 months has unmutated IGHV. Although it has been
reported in the literature that the response to ibrutinib is independent to the mutational
status of IGHV [35], our data seem to indicate that their evaluation, in combination with
other parameters such as the bioenergetic metabolic profile, can stratify patients for a
different response to the inhibitor by BTK.

Moreover, the study of Lu et al. (Haematologica 2019), by using a different approach
focusing on glycolysis, further highlights that heterogeneity in the CLL cells’ bioenergetic
metabolism is influenced by genetic/molecular characteristics [36]. Lu et al., analyzing the
capacity of the glycolytic pathway, observed an increased glycolytic activity in unmutated
CLL as compared to mutated CLL, sustained by an upregulation of the glycolytic key
enzymes [36]. The data shown by the authors suggest that in particular, glycolytic capacity
and reserve parameters correlate with IGHV status and have a strong predictive value for
overall survival [36]. Moreover, these parameters were linked to an increased resistance
towards drugs that affect mitochondria (i.e., rotenone, venetoclax, and orlistat) [36].

Furthermore, two of the four CLL low patients who achieved a partial response had
del(17p), one of which had it in association with TP53 mutation. This underlines that,
although the ibrutinib response seemed independent of clinical and genomic risk factors,
del(17p) and TP53 aberrations could remain unfavorable prognostic factors when using the
BTK inhibitor as continuous monotherapy [3,37,38]. Several studies have already reported
the effect of TP53 mutations on the regulation of cancer metabolism, although, to date, the
role of this alteration on CLL metabolism has not been fully elucidated. Eriksson et al. [39],
by determining ECAR and OCR in various types of tumor cells expressing different TP53
mutations, showed that even the same amino acid substitutions in the p53 protein can
have extremely different phenotypic effects in terms of metabolism, depending on the
origin of the cell line. In particular, the authors demonstrated that, while the glycolytic
changes induced by TP53 mutations can be kept consistent in cancer cells, the pathways of
mitochondrial energy metabolism are influenced by the type of TP53 mutant: some cause
an increase, and others cause a decrease [39]. Looking at our data, CLL could fall into
this second group, and thus TP53 could represent a further element of susceptibility to
therapies, and in particular to BTK inhibitors.

In contrast, in CLL high patients, the BTK signaling may not represent the main
regulator of cell survival, and therefore the use of ibrutinib may not prove to be the most
effective target therapy, at least as a single treatment. Therefore, a useful alternative
approach could be the inhibition of other pathways, also in combination with ibrutinib.
Vangapandu et al. [32], focusing on mitochondrial metabolism, in fact demonstrated how
the pharmacological inhibition of PI3K (by duvelisib and idelalisib) caused a decrease in
cellular OCR levels.

In addition to the IGHV mutational status, trisomy 12 has been reported to be a
determinant of ibrutinib sensitivity. In our study group, the two patients who obtained a
better and more durable response to ibrutinib both had unmutated-IGHV and trisomy 12,
but displayed a divergent bioenergetic metabolic profile (being one of the CLL low group
and one of the CLL high group). This could suggest that the association of these two factors
strongly determines the sensitivity to BTK inhibitor, regardless of the metabolic profile.
Whether we are aware that the main limitation of our study is the small sample size for
the patient undergoing ibrutinib treatment, this observation deserves, in our opinion, to
be further investigated in a larger number of patients in searching for potential predictive
factors of ibrutinib response.
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In conclusion, we have shown that, after analyzing the levels of ECAR and OCR,
CLL patients displayed two different bioenergetic metabolic profiles, and that these are
associated with biological characteristics: CLL cells displaying low bioenergetic metabolism
are characterized, in fact, by a higher WBC count and unfavorable prognostic factors. The
two bioenergetic metabolic profiles also seem to indicate different efficacy of the targeted
therapy with ibrutinib, with the group characterized by lower bioenergetic metabolism
showing a more durable response, thus finding a potential patients’ subgroup that can
benefit the most from this therapy regimen.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cimb46060305/s1, Table S1: previous lines of therapy for each patient (FCR:
Fludarabine-cyclophosphamide-rituximab; R CVP: rituximab plus cyclophosphamide, vincristine,
and prednisone); Table S2: Mitochondrial parameters obtained from mito stress test for each CLL low
and CLL high patient. Results are expressed in pmolesO2/min.
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