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Direct numerical simulations of turbulent pipe flow at high Reynolds number
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Flow in circular pipes is paradigmatic in the study of fluid turbulence. For compelling practical
reasons, it was considered since pioneering studies dealing with hydraulic engineering [1], in
which it continues to play a prominent role. Pipe flow was also the subject of the landmark study
of Reynolds [2], which first highlighted the importance of what was later called the Reynolds
number in determining the passage from a direct to a sinuous regime. Pipe flow was considered
by Nikuradse [3] in the first systematic study of the effect of coarse and fine roughness on resistance
as a function of the Reynolds number. Because of its theoretical and practical importance, pipe flow
has been studied in modern experimental facilities, such as the Princeton Superpipe pressurized
facility [4–6] and the CICLoPE facility of the University of Bologna [7,8], which however suffer
from problems in accessing the near-wall layer. Direct numerical simulations (DNSs) are a better
candidate than experiments to provide high-quality visualizations of turbulent flow. Direct numerical
simulations of pipe flow have been numerous, although not as many as for channel flow, and include
a number of notable works [9–13].

In a recent paper [14] the present authors first reported DNS results of pipe flow at friction
Reynolds number from Reτ ≈ 180 to Reτ ≈ 6000 [here Reτ = uτ R/ν, with uτ = (τw/ρ)1/2 the
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FIG. 1. Pipe geometry: (a) coordinate system and typical length scales and (b) location of reference shells
used in the flow visualizations.

friction velocity, R the pipe radius, τw the wall shear stress, and ρ and ν the fluid density and kine-
matic viscosity]. Rendering and animations of the flow field computed from the DNS database of
Pirozzoli et al. [14] have been generated by using the open-source cinematic package BLENDER [15]
and the visualization toolkit PARAVIEW [16]. Full automation of the process of animation generation
has been achieved by means of the PVPYTHON backend. The numerical simulations are carried out
in a domain with axial length 15R [see Fig. 1(a). In the figure we also show for reference two
cylindrical shells corresponding to a near-wall position y+ ≈ 15 (y = R − r is the distance from the
wall and the plus superscript denotes normalization with wall units uτ and ν) and farther from it,
namely, y/R = 0.3.

The instantaneous axial velocity field at Reτ = 6000 is shown in Fig. 2. The flow in the
cross-stream plane [Fig. 2(a)] features a limited number of bulges distributed along the azimuthal
direction, which correspond to alternating intrusions of high-speed fluid from the pipe core and
ejections of low-speed fluid from the wall. As in all canonical wall-bounded flow, flow-aligned
streaks are visible in the near-wall cylindrical shell [17]. The organization of the streaks is clearly
on two different length scales: On top of a sea of tiny streaks, larger zones with velocity higher than
the mean (in red) and lower than the mean (in blue) are visible, which are elongated along the axial
direction and whose size is comparable to the pipe radius.

Additional information about the large-scale streaks, which are referred to as very-large-scale
motions [18], is provided in Fig. 3, where we show axial velocity contours in the two reference
cylindrical shells, after unrolling for ease of interpretation. Scale separation between small- and

FIG. 2. DNS of pipe flow at Reτ = 6000: instantaneous axial velocity field (a) in a cross-stream plane and
(b) at y+ ≈ 15. The color scale ranges from 0 (blue) to 1.3ub (red) and the white isoline in (a) marks the isolevel
uz/ub = 0.9.
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FIG. 3. DNS of pipe flow at Reτ = 6000: instantaneous axial velocity field uz/ub, in unrolled cylindrical
shells, at (a) y+ = 15 and (b) y/R = 0.3. The color scale ranges from 0 (blue) to 1.3ub (red).

large-scale streaks is here more clearly visible, with large structures scaling with R and small ones
scaling in wall units. Hand-sketched black lines are used to trace the approximate boundaries of
the large-scale high- and low-speed streaks in the near-wall shell, which are also reported in the
y/R = 0.3 shell [Fig. 3(b)]. Remarkable association is observed, which proves with little doubt that
large-scale near-wall organization results from imprinting of large eddies residing in the core part
of the flow [19].

Reynolds number effects are emphasized in Fig. 4, in which we compare DNSs at extreme
Reynolds numbers. Figure 4(a) strikingly highlights that, despite the presence of finer details, the
flow organization at the large scales at Reτ = 6000 is very similar to the case Reτ = 180, both
in the near-wall shell and in the core flow. This is corroborated by Fig. 4(b), which shows that
the large-scale organization of the velocity field is essentially unaffected by a large change of the
Reynolds number. In fact, analysis of the azimuthal spectra shows the dominance of the kθ = 4
mode in both cases.

In summary, the flow visualizations reported herein provide strong support for the idea that
turbulence in pipe flow results from superposition and interaction of near-wall dynamics occurring
on viscous length scales and timescales and of a core flow dynamics whose typical eddies scale on R
and which just like the former is characterized by streamwise leaning streaks which are meandering
in the azimuthal directions. This evidence seems to be in support of the scenario envisaged by
Dennis and Sogaro [20], based on experimental measurements at lower Reynolds number.

A baseline software supporting the findings of this paper can be found in [21]. The code can also
be found in [22].
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FIG. 4. Comparison of axial velocity fields for DNS at Reτ = 180 and 6000: (a) near-wall shell (left) and
y/R = 0.3 shell (right) and (b) cross-stream plane.
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