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The peculiar challenge of
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the brain: Perspectives in the
clinical application to the
treatment of pediatric central
nervous system tumors
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Childhood malignant brain tumors remain a significant cause of death in the

pediatric population, despite the use of aggressive multimodal treatments. New

therapeutic approaches are urgently needed for these patients in order to

improve prognosis, while reducing side effects and long-term sequelae of the

treatment. Immunotherapy is an attractive option and, in particular, the use of

gene-modified T cells expressing a chimeric antigen receptor (CAR-T cells)

represents a promising approach. Major hurdles in the clinical application of this

approach in neuro-oncology, however, exist. The peculiar location of brain

tumors leads to both a difficulty of access to the tumor mass, shielded by the

blood-brain barrier (BBB), and to an increased risk of potentially life-threatening

neurotoxicity, due to the primary location of the disease in the CNS and the low

intracranial volume reserve. There are no unequivocal data on the best way of

CAR-T cell administration. Multiple trials exploring the use of CD19 CAR-T cells

for hematologic malignancies proved that genetically engineered T cells can

cross the BBB, suggesting that systemically administered CAR-T cell can be used

in the neuro-oncology setting. Intrathecal and intra-tumoral delivery can be

easily managed with local implantable devices, suitable also for a more precise

neuro-monitoring. The identification of specific approaches of neuro-
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monitoring is of utmost importance in these patients. In the present review, we

highlight the most relevant potential challenges associated with the application

of CAR-T cell therapy in pediatric brain cancers, focusing on the evaluation of the

best route of delivery, the peculiar risk of neurotoxicity and the related

neuro-monitoring.
KEYWORDS

pediatric brain tumors, CAR-T cells, blood-brain barrier, glymphatic system,
neurotoxicity
1 Introduction

Brain tumors are the most common solid tumors in childhood

(1). Treatment and prognosis depend on the histological type and

molecular profile of the neoplasm, ranging from a watch-and-wait

approach after initial surgery, for low-grade tumors, to toxic

therapeutic approaches including chemotherapy and radiotherapy

in high-grade tumors. Despite aggressive multimodal treatment,

high-grade central nervous system (CNS) tumors remain the

leading cause of childhood cancer-related death (2). Many

subtypes, such as high-grade gliomas (HGG) and diffuse intrinsic

pontine gliomas (DIPGs), continue to have a dismal prognosis, with

5-year overall survival <20% and 5%, respectively (3). These tumors

are characterized by a strong intrinsic genetic and phenotypic

heterogeneity, recently proved to be involved in the enhanced

tumorigenicity and resistance to therapy typical of these tumors

(4), explaining the difficulty of eradicating the disease.

Furthermore, the intensive treatment approaches conventionally

in use, in particular the brain irradiation, are associated with

devastating long-term morbidities, including endocrine, psychiatric,

cognitive and developmental disorders and neurological impairment,

as well as secondary tumors (5). Overall, these findings underscore the

still unmet need to identify innovative treatment strategies to improve

the outcome of children affected by high-grade CNS tumors, sparing

them from the burden of long-term sequelae.

Immunotherapies, exploiting the capacity of immune system to

attack cancer cells, have become the focus of a wide stream of

translational research. The advances in cancer immunotherapy

have improved outcomes for several human cancers, and in some

cases have produced dramatic responses in patients highly

refractory to all conventional treatments (6, 7). The most

remarkable success of immunotherapies resulted in significant

improvement of overall survival in phase II–III trials in some

tumors, such as melanoma (7) and leukemia (8).

In adult cancers, high mutational burden and expression of

immune checkpoint molecules have been shown to correlate with

response to certain immunotherapy approaches, especially

checkpoint inhibitors (9). Some of the most clinically aggressive

pediatric brain tumors, including DIPG, HGG and medulloblastoma

(MBL), do not show a highly immunosuppressive nor inflammatory

immune tumor microenvironment (TME), representing
02
immunologically ‘cold’ tumors (10, 11). Moreover, the TME tends

to vary among the different types of pediatric brain tumors (12). In

recent years, our knowledge of molecular patterns of pediatric CNS

tumors has increased, as result of high-resolution genomic, epigenetic

and transcriptomic profiling, allowing a more specific classification of

these tumors. Interestingly, large-scale sequencing studies of pediatric

tumors identified novel driver genetic mutations, but underscored

that pediatric cancers, including brain tumors, typically have very few

somatic mutations (13, 14). This low mutational burden is thought to

represent the reason for the lower immunogenicity demonstrated by

pediatric cancers, as compared to adult cancers (15), and for the

unsatisfactory results obtained with checkpoint inhibitors (16).

Discouraging results observed with immune checkpoint

inhibition in high-grade tumors have oriented interest on other

types of immunotherapy and several evidences encourage the

development of new strategies for treatment of brain tumors,

ranging from monoclonal antibodies (mAb) to cellular therapy.

Chimeric antigen receptor T cell (CAR-T) therapy provided

unprecedented results in relapsed/refractory B-cell acute leukemia

and high-grade B-cell non-Hodgkin lymphoma (NHL) (17). These

outstanding results opened up the interest of CAR-T cell therapy

also in solid tumors, but, unfortunately, not with comparable results

(18). Major limitations of CAR-T cells in solid cancer include: i) the

heterogeneous target antigen expression, ii) the difficult trafficking

and penetration of CAR-T cells into the tumor, iii) the low CAR-T

cell expansion and persistence due to immunosuppressive and

hypoxic tumor microenvironment (19, 20). All these conditions

are even more pronounced in brain tumors (21). In addition, several

specific challenges exist in targeting CNS tumors with

immunotherapy, such as the peculiarity of the brain location, the

presence of the blood-brain barrier (BBB) and the risks associated

with the occurrence of an inflammatory reaction in the CNS. All

these aspects will be outlined in the present review.
2 Chimeric antigen receptors

Chimeric antigen receptors derive by the combination of the

Major Histocompatibility Complex (MHC)-independent antigen

recognition due to the ScFV portion of mAb and the effector
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function of T cells, originally ideated by Eshhar et al. in 1989 (22). It

is based on the engineering of T cells to express a chimeric molecule

resulting from the fusion of the heavy and light chain variable

regions of a mAb to the cytotoxic zeta chain (z) of a T cell receptor

(TCR) (first generation CAR) (Figure 1) (23). Using this strategy, it

is possible to target a wide range of tumor-associated targets

expressed on the surface of tumor cells and to potentially

overcome the low immunogenicity of tumors related to the low

levels of antigen and their poor presentation by MHC molecules.

The advantages of CAR-T cells over mAb are multiple and rely on

the ability of CAR-T cells to self-amplify upon activation and to

better distribute in the tissues. Moreover, cytokines secretion upon

T-cell activation associated with the tumor antigen encounter

recruits additional components of the immune system, improving

the anti-tumor response. Lastly, CAR-T cells may enter the memory

pool and provide long lasting protection against tumor re-growth.

Engagement of the CAR by its ligand on the tumor cell results in

tyrosine phosphorylation of immune-receptor activation motifs

present in the cytoplasmic domain, initiating T-cell signaling and

specific tumor cell lysis via the perforin/granzyme pathways.

However, tumors rarely express costimulatory molecules. The

presence of the signal 1 (z chain of the TCR) in the absence of

the signal 2 (costimulatory molecules signaling) enables CAR-T

cells to be activated and kill tumor cells, but not to proliferate and

expand. This observation led to the development of second-

generation CARs incorporating signaling domains of the T-cell

costimulatory molecules in tandem with the CD3 z chain, so that,

upon ligation, T cells both kill and proliferate (24). Intracytoplasmic
Frontiers in Immunology 03
signaling domains of CD28, CD134 (OX40), CD137 (4-1BB),

inducible costimulatory (ICOS), CD27, DAP10 or CD244 (2B4),

in various combinations, have been used (25, 26). However, it is well

known that, in the setting of solid tumors, second generation CARs

do not always expand properly after infusion into patients, and it is

well accepted that antitumor efficacy requires adequate expansion

and persistence in vivo (27). Understanding how the CAR structure

influences these properties is therefore key for the future designs of

CAR-T cells. An example is represented by the evidence of the

primary role of T-cell exhaustion in limiting the antitumor efficacy

of T cells in the setting of chronic antigen exposure (28, 29).

Recently, the central role of the CAR structure in predisposing

chronic T-cell activation and exhaustion has been demonstrated,

proving that CD28 co-stimulation augments, whereas 4-1BB co-

stimulation reduces, exhaustion induced by persistent CAR

signaling (30). In the search for the optimal design for a CAR,

even more potent constructs were developed, containing two

costimulatory domains (Figure 1). These so-called third

generation CAR constructs provide more potent proliferation in

response to tumors than either first or second generations;

moreover, higher T-cell resistance to several tumor evasion

strategies was observed (31). However, while the superiority of

second-generation CAR over the first has been clearly proved,

whether the incorporation of additional costimulatory domains in

the third generation provides further benefits remains to be

definitely documented (27). The optimal design of a given CAR

remains an area of active investigation and should be empirically

evaluated for the treatment of different malignancies (32).
FIGURE 1

Second and third generation CAR-T cell construct.
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3 CAR-T cells antigens for
CNS tumors

In contrast to hematological diseases, brain tumors are

characterized by antigenic heterogeneity on the cell surface, with

B7-H3 and GD2 being the most consistently expressed antigens (33).

CAR-T cells were designed for different type of antigens, all of

these tested in pre-clinical and/or clinical trials: epidermal growth

factor receptor variant III (EGFRvIII), human epidermal growth

factor receptor 2 (HER2), interleukin 13 receptor alpha 2 subunit

(IL13R 2), EGFR806, B7-H3 and disganglioside-GD2.

In a recent study published by Haydar et al. the mean antigen

expression on tumor cells obtained from pediatric brain tumor

patient-derived orthotopic xenograft models was 68% for B7-H3,

74.1% for GD2, 37.5% for IL-13Ra2, 50.1% for EphA2 and 36.1%

for HER2 (33).

Recently, new potential targets, such as CXCL5/CXCL6 and

PTK7, were explored (34, 35). The heterogenous antigen expression

prompted the use of simultaneous multiple targeting that

demonstrate increase antitumor potency, reducing the possibility

of tumor escape in pre-clinical mouse models (36–39).

CAR-T cells showed in vitro anti-tumor activity against

glioblastoma and medulloblastoma by targeting HER2, EGFR806

and B7-H3. Phase I clinical trials are now ongoing to study the

efficacy of these antigen-specific CAR-T cells in children and young

adults with recurrent or refractory CNS tumors.
Frontiers in Immunology 04
An overview of published and ongoing phase 1 clinical trial on

CAR-T cell for pediatric brain is detailed in Table 1.
4 Trafficking through BBB
and glymphatic system: Has the
brain still to be considered an
immune sanctuary?

The BBB is a permeability barrier characterized by the

connection, through tight junctions, of endothelial cells with the

luminal and abluminal membranes lining the capillaries of the brain

(40). The crucial role of BBB consists in protecting the brain from

pathogens and finely tuning the brain homeostasis. Thanks to its

low permeability, BBB prevents the entry of circulating ionic

substances, large molecules and immune cells into the brain, as

well as the passage of numerous therapeutic agents (41, 42).

Therefore, T-cell penetration into the brain parenchyma involves

complex mechanisms. Resting T cells do not cross the BBB, but

traffic from meningeal blood vessels into the cerebrospinal fluid

(CSF), where they can gain access to the brain parenchyma via the

pia mater or choroid plexus. On the contrary, activated T cells seem

to be able to traverse the capillary tight junctions of the BBB (43).

The entry routes of lymphocytes and antigen presenting cells in the

CNS are essentially three, namely: 1) via the post-capillary venules

into the perivascular space; 2) by extravasation through the choroid
TABLE 1 Overview on CAR-T cells clinical trial for pediatric brain tumors.

Trial Center Target Route of delivery Tumor type Recruitment
status

NCT04185038 Seattle Children’s Hospital B7H3 Locoregional Diffuse intrinsic pontine
glioma/diffuse midline
glioma and recurrent or
refractory pediatric
CNS tumors

Recruiting

NCT03500991 Seattle Children’s Hospital HER2 Locoregional HER2-positive
recurrent/refractory pediatric
CNS tumors

Recruiting

NCT03638167 Seattle Children’s Hospital EGFR806 Locoregional EGFR-positive recurrent or
refractory pediatric
CNS tumors

Recruiting

NCT04510051 City of Hope Medical Center IL13Ra2 Intraventricularly Recurrent or refractory
malignant glioma

Recruiting

NCT04099797 Baylor College of Medicine GD2 Intravenously GD2-positive
brain tumors

Recruiting

NCT02442297 Baylor College of Medicine HER 2 Locoregional HER2-positive
brain tumors

Recruiting

NCT04196413 Stanford University GD2 Intravenously or
intracerebroventricularly

DIPG and DMG Recruiting

NCT01109095 Baylor College of Medicine HER2 Intravenously Recurrent or progressive HER 2 positive
glioblastoma

Closed

NCT02208362 City of Hope Medical Center IL13Ra2 Locoregional Recurrent/refractory high-grade glioma Closed

NCT04903080 Pediatric Brain Tumor
Consortium

HER2 Intravenously Ependymoma Recruiting
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plexus of the ventricles into the CSF; or 3) through superficial

leptomeningeal vessels into the subarachnoid space (Figure 2) (44).

The first step in the recruitment of T-cells is represented by the

binding of integrins a4b1 and lymphocyte associated antigen-1

(LFA-1) expressed on activated T-cells to the adhesion molecules

known as vascular cell adhesion molecule 1 (VCAM1) and

intracellular cell adhesion molecule 1 (ICAM1) on endothelial

cells, respectively (45). In the CNS, adhesion of T-cells to

endothelial cells also involves a specific adhesion molecule, the

activated leukocyte adhesion molecule (ALCAM), which binds CD6

on mature T-cells (46). The ligand-binding interactions lead to

conformational changes in T-cells that promote their crossing

through the endothelial lining into the perivascular space.

Activated Tcells must ultimately traverse the glia limitans to enter

the brain parenchyma. Subsequently, the penetration of T-cells into

the brain parenchyma is regulated by matrix metalloproteases

(MMPs) and other soluble factors, including tumor necrosis

factor-a (TNFa), IL-12, TGFb, and IL-6 (47, 48). The

lymphocytes then exit the brain, to reach deep cervical lymph

nodes, exploiting a recently discovered system of lymphatics in

the meninges (49). These observations imply that T cells

administered by systemic infusion can have access to tumors via

the CSF and choroid plexus, overcoming the dogma that considers

the brain as an immune sanctuary (49, 50). Indeed, this evidence is

the basis for the encouraging results demonstrated in the neuro-

immunology field using CAR-T cells, vaccines, and other forms of

immunotherapy (50, 51). These approaches have the ability to

target the tumor tissues, while sparing the normal surrounding

brain parenchyma. Two advantages make CAR-T cells particularly
Frontiers in Immunology 05
attractive for brain tumors, as compared to other immunotherapy

approaches: a) they do not require a functional systemic immune

response, thanks to their intrinsic antitumor cytotoxicity; b) their

efficacy does not correlate with the tumor mutational burden,

depending upon the expression of the target antigen only to be

activated (50, 52). Multiple trials using intravenously (i.v.) infused

CD19-directed CAR-T cells have proven that CAR-T cells can cross

the BBB, as they have been detected in the CSF via flow-cytometry

and immunofluorescence post-treatment, suggesting that

systemically administered CAR-T cell can be used in the neuro-

oncology setting (12, 40).

Another system known to play a central role as guardian of the

brain, beside BBB, is the glymphatic system. It is a distinct and

privileged mechanism of CNS protection represented by a glial-

dependent waste clearance pathway, replacing lymphatic vessels

and draining away soluble waste proteins and metabolic products

(53). Together with the BBB, glia limitans regulates lymphocyte entry

into the brain (45). Specifically, microglia represents the essential

myeloid resident population of the brain microenvironment, the

equivalent of tissue macrophages in the CNS (54, 55). In the

absence of any inflammatory stimuli, it origins from yolk sac

myeloid progenitors and is crucial for brain development and for

maintaining the sterility of CNS (56). When an inflammatory trigger

occurs, circulating monocytes intervene to support microglia with

mechanisms and functions not yet fully understood (57). Finally,

microglia drains to the cervical lymph node via the glymphatic

system running face to face to dural venous sinuses (58). To the

best of our knowledge, no studies have analyzed microglia in the

pediatric population, both in pathologic settings and in the healthy
FIGURE 2

Route of entry of T-cells and CAR-T cells in the brain. Three main routes have been described and are depicted: 1) via the post-capillary venules into
the perivascular space; 2) by extravasation through the choroid plexus of the ventricles into the CSF; or 3) through superficial leptomeningeal vessels
into the subarachnoid space.
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developing brain. Future research may exploit analysis of RNA

sequencing to identify microglial subpopulation, potentially

informing future strategies for microglia-targeted immunotherapy.
5 Strategies of delivery of CAR-T cells
into the brain

Despite the documented ability of i.v. administered CAR-T cells

to cross the BBB, targeted delivery of T cells at the level of the CNS

is an attractive option to reduce systemic toxicity and increase CAR-

T cell homing and concentration at tumor site.

Alternative strategies to directly deliver CAR-T cells to the CNS

include: spinal intrathecal infusion, intraventricular infusion, intra-

tumoral injection and disruption of the BBB by focal ultrasound.

Spinal intrathecal delivery is a well-known strategy in pediatric

oncology (59): intermittent infusion of chemotherapy by lumbar

puncture is a well-established therapy in pediatric oncology services

and is well tolerated. Moreover, implantable chronic infusion

devices are available, with different indications. A spinal

subarachnoid catheter can be easily implanted and connected

either to a subcutaneous reservoir for intermittent percutaneous

injection or to a more sophisticated subcutaneous programmable

infusion pump (60, 61).

An alternative option is represented by a subcutaneous

implantable ventricular access device, a subcutaneous reservoir,

connected to an intraventricular catheter that can be punctured

under sterile technique (62, 63).

A further advantage of intrathecal infusion by implantable

devices is the possibility to use them to obtain CSF samples

easily. Potential drawbacks of intrathecal infusion include CNS

infection, especially in the setting of subcutaneous implantable

devices, and hemorrhage.

An additional strategy to circumvent the BBB consists in the

intra-tumoral delivery of therapeutics. Recently, promising results

have been reported using convection enhanced delivery (CED)

systems, even in children (64, 65). CED is based on the concept

of bulk flow, namely the tridimensional diffusion of molecules

within the brain, pushed by a constant gentle pressure exerted by

a microinjection pump. Injection catheters can be precisely

positioned by stereotactic technique and connected to an

implantable multi-channel infusion device (66). Coupling CED

with computer simulation approaches has resulted in the

possibility to accurately foresee the volumetric distribution of

therapeutics within the brain, reaching a considerable target

volume and a desirable volume shape when multiple injection

catheters are positioned. Potential limitations include availability

of the neurosurgical technical expertise to safely and precisely

implant intra-tumoral catheters, possible clogging of infusion

catheters with the therapeutic cell suspension and local

complications, such as infection, CSF leak and bleeding. In

addition, the effect of bulk flow on mass transfer might result in

transient worsening of neurological signs and symptoms, limiting

infusion speed. In fact, the accurate spatial distribution of injected

therapy typical of CED might not be necessary for CAR-T cells.
Frontiers in Immunology 06
Localized BBB modulation by focal ultrasound (FUS) has been

recently proposed in the neuro-oncology field to increase the

concentration of systemically infused chemotherapy at the tumor

site (67, 68). FUS has the ability to induce an increase in the

permeability of the BBB with the advantage of spatial selectivity

within the CNS. This technique is based on the transcranial delivery

of low frequency ultrasounds that determine oscillations of

microbubbles, finally determining a temporary and reversible

disruption of endothelial tight junctions, a phenomenon known

as sonication (69). This concept can be applied both to magnetic

resonance integrated systems, in which spatial targeting of the

ultrasounds is guided by real time imaging, or to implantable

subcutaneous docking systems, to which an external ultrasound

source is connected whenever sonication is required. A limitation of

FUS is the limited extension of sonication volumes that might

require multiple treatment sessions and multiple subcutaneous

docking systems implantation. Moreover, even if there is a

growing number of preclinical experiences documenting its

effectiveness in BBB disruption, there is little evidence to prove

clinical benefit in neuro-oncology, especially in children (70).

Research using patient-derived orthotopic xenograft models

showed that CAR T cell trafficking into the tumor site is not

affected by the route of administration. However, loco-regional

delivery provides greater antitumor activity and lower systemic pro-

inflammatory cytokine production in these models (33). Studies

comparing delivery routes in preclinical models of glioblastoma

(GBM) have shown that local delivery outperforms systemic

delivery of CAR-T cells. Intratumor administered IL13Ra2‐CAR-
T cells resulted in long‐term survival in orthotopic GBM models,

whereas IV delivery provided no significant benefit over control

(71). Furthermore, when comparing locoregional delivery routes in

a multifocal GBM model, intraventricular infusion exhibited

improved targeting of multifocal disease (71).

The clinical experiences reported to date confirm these

preclinical observations. Intrathecal (into the resected cavity of

the tumor through a catheter device) and intraventricular

administration of CAR-T cells were tested in a patient with

multifocal GBM, proving well tolerated, without cytokine release

syndrome (CRS) or severe neurotoxicity (52). Interestingly, the

intraventricular delivery resulted into a better control of the disease,

probably due to the improved trafficking to sites of multifocal

disease by the delivery of cells into the cerebrospinal fluid.

Similarly, the experience of Majzner et al. shows that the

intracerebral route of administration of GD2-CAR T cells is

feasible and associated with less systemic toxicity as compared to

the intravenous administration (72).

The ideal application route might depend also from the

molecular target. In particular, antigens with wide expression in

normal tissues (i.e. HER2 and B7H3) may be associated with a

significantly reduced toxicity after intracerebral administration

(19). Overall, the evidence currently available from the few

clinical experience favors the loco-regional administration. As

mentioned above, pre-clinical and clinical experience

demonstrated that loco-regional delivery of second‐generation

IL13Ra2‐CAR T cells is safe and well‐tolerated, with no evidence

of dose levels toxicities (19, 71). Systemic administration of HER2
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CAR T cells showed an increased risk of severe pulmonary toxicities

(73, 74). Conversely, the safety of the loco-regional administration

of HER-2 CAR T cells has been demonstrated in the BrainChild-01

trial (75): multiple administration have shown to be feasible and

tolerated and associated with peritumoral edema in MRI and

increased pro-inflammatory cytokine production in CSF,

consistent with CAR T-cell activity (76). GD2 infusion has been

evaluated both loco-regionally and intravenously in several trials for

brain tumors (see Table 1). As previously mentioned, Majzner et al.

recently published a clinical experience with GD2 CAR-T cells in 4

cases of H3K27M-mutated diffuse midline gliomas. They found that

intraventricular administration was associated with less systemic

toxicity, high levels of cytokines and decreased immunosuppressive

cell populations in CSF, compared with intravenous delivery (72).

Concerning B7-H3, it is expressed on the surface of several normal

tissues but the administration of B7H3-directed CAR T cells, either

loco-regionally or systemically, was not associated with evidence of

on-target/off-tumor toxicity in a preclinical, orthotopic mouse

model (33, 77). Last, EGFRvIII antigen is not expressed in healthy

tissue (78) and i.v. administration is not related to severe sides

effects (73, 79, 80). Moreover, infiltrating anti-EGFRvIII CAR T

cells were detected in the tumors of the patients after i.v.

administration (80).

Several obstacles impair the homing of T cells in solid tumors

and will also likely be faced in CNS tumors, regardless the limitation

of the BBB. The dense extracellular matrix (ECM) of the tumor

forms a physical barrier to the infiltration of CAR-T cells.

Innovative strategies, based on engineering of T cells to express

enzymes with lytic activity, including heparanase, have been

proposed to overcome this obstacle (37, 38). Several groups have

also explored the possibility of disrupting physical barriers in solid

tumors developing CAR-T cells able to recognize antigens

expressed on stromal cells, such as the fibroblast activation

protein (FAP) (39, 81). Another strategy to improve T-cell

infiltration relies on the deep characterization of the chemokine

pattern associated with the different tumors and the generation of

CAR-T cells expressing the relative chemokine receptors (CCRs) to

enhance the tumor homing (81–83). Lastly, Adachi and colleagues

developed a CAR-T cell construct able to produce IL-7 and CCL19,

both implicated in the recruitment of T cells from the bloodstream

in the T-cell zone of lymphoid organs. These modified CAR-T cells

resulted in a higher anti-tumor activity and increased tumor

infiltration (84).

Finally, the application route might depend from the cell

product. In the era of adoptive cell immunotherapy several cell

products are being considered. Even if autologous CAR-T cells are

the only cell product currently tested in brain tumors, other cell

products are emerging in the pre-clinical field and for other clinical

applications (i.e. CD19-positive hematological malignancies). In

particular, irradiated CAR-NK cells derived from a cell line have

been explored in vitro and validated in vivo against CD19 malignant

cells (85). Despite the known low risk of toxicity compared with T

cells, CAR-NK cells have some important limitations such as: short

life-time, reduced cytotoxicity in vivo (85). We can hypothesize that

these intrinsic characteristics would favor their use via loco-regional

delivery, although some clinical evidence on the use of CAR-NK
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cells have shown promising results (86). An interesting advantage of

NK cells relies on the possibility of deriving the product from

allogeneic donors, as an “off the shelf product” (87, 88).
6 Pediatric brain tumor-specific
toxicities: Beyond common
neurotoxicity and possible strategies
of monitoring and treatment

The potential for CAR-T cell therapies to induce life-threatening

neurotoxicity has been long-appreciated by researchers in the field

(89, 90), but CNS-directed CAR-T cell therapies could induce

additional neurologic damage as collateral effects of inflammation

arising in the setting of tumor-directed therapy. By targeting tumors

that have infiltrated critical brain structures, adoptive T-cell therapies

induce inflammation, leading to tumoral and peritumoral edema.

This localized edema can alone induce neurologic symptoms. If

edema leads to mass effect and compromises blood or

cerebrospinal fluid circulation, ischemia or life-threatening

increases in intracranial pressure can rapidly develop.

Recently, neurotoxicity correlated to the use of immunotherapies

has been renamed as immune effector cell-associated neurotoxicity

syndrome (ICANS), and it is the second most frequent event after

CRS. Described in about 37% of the patients treated with CD19-

CAR-T cells for B-cell malignancies (91), it is characterized by a wide

spectrum of neurological impairments, ranging from mild to severe

manifestations, including headache, dizziness, irritability, memory

loss, aphasia, tremor until seizures and global encephalopathy (6, 91–

94). In patients with brain tumors, neurotoxicity can be a more

challenging side effect than in patients with leukemia due to the

peculiar primary site of the disease in CNS. Therefore, treating CNS

tumors with CAR-T cells imposes to carefully consider these specific

toxicity scenarios.

Infiltration of tumor tissue by immune cells is an expected and

desired effect of the treatment. In fact, transient tumor volume

increase, a phenomenon known as pseudo-progression, has been

largely described with immunotherapies (95). However, this mass

effect has to be taken into account when selecting potential

candidates. The intracranial volume reserve (i.e. the ability to

tolerate an expanding mass inside the skull) is limited, especially

in patients with CNS malignancies, who already experience an

increase of the intracranial volume related to the mass itself and the

surrounding edema. Unfortunately, there is little data available in

the literature to aid in defining with sufficient precision the

intracranial volume reserve in a specific patient. Post-mortem

studies suggest it accounts for about 5% on the total cranial

volume in young adults, thus being equivalent to about 65-75 ml,

with smaller volumes found in females (96). Volume reserve might

be significantly lower in children and patients with pre-existing

intracranial mass lesions.

Most of the compensatory volume following the presence of a

growing intracranial mass is secondary to CSF redistribution. The

compensation ability of intracranial pressure depends not only on

volume itself, but also on volume change/time rate: a slow growing
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large mass is clinically much better tolerated than a fast-growing

smaller lesion. Tumor location deserves a careful evaluation when

considering CAR-T cell treatment in CNS tumors. Intracranial

mass effect increase will potentially be more intimidating for deep

seated lesions (midline thalamic tumors, brainstem and posterior

fossa location) where the risk of trans-falcine and trans-tentorial

pressure cones determining brain herniation and hydrocephalus is

higher. The ideal, opposite scenario would be a leptomeningeal

disseminated disease, with a much lower potential for intracranial

hypertension development. Although the risks of CNS

inflammation also involve the adults, it represents a peculiar issue

in the pediatric setting because of the different intracranial volume

reserve. In particular, in younger children, the unclosed cranial

suture allows for a larger reserve which, on one side, offers a greater

adaptation to the increase of intracranial pressure, but, on the other

side, is responsible for the more insidious symptoms associated to

the occurrence of intracranial hypertension. These elements make

the identification of a more sophisticated and early monitoring

system particularly relevant in the pediatric setting.

Despite limited possibilities for determining non-invasively the

CSF compensatory volume, there is evidence in the literature about

the predictive value of invasive intracranial pressure waves analysis.

Specific wave morphology might suggest a reduction of the buffer

volume, prompting appropriate therapeutic countermeasures (97).

Several strategies can be hypothesized in order to manage this

possibly severe side effect of the treatment. A ventricular access

device might be inserted before infusion of CAR-T cells and used

both to directly assess intracranial pressure waves and to remove

determined CSF volumes, if appropriate to improve intracranial

pressure management. Moreover, whenever a high risk of

decompensation secondary to CAR-T cell treatment is suspected

based on significant mass effect of a CNS lesion, preemptive surgical

debulking might be an option, in selected cases. Lastly, in case of

need of aggressive treatment of intracranial pressure, surgical

decompressive procedures might be considered. However, as well-

known from neurotrauma and malignant stroke literature,

functional outcomes might be unacceptable, raising ethical issues

for invasive maneuvers in fragile patients with an overall dismal

prognosis (98–101).

Other strategies can be considered in order to reduce the risk of

severe, life-threatening increase of intracranial pressure secondary

to pseudo-progression. The sequential administration of low doses

of CAR-T cells might result in a lower tumor infarction with CAR-T

cells and a relatively slow and progressive tumor lysis, reducing the

risk of a sudden intracranial hypertension. In addition, the use of

different cell platform, with a lower persistence over time and a

reduced inflammatory profile upon activation, such as NK cells,

could reduce the risk associated with the infusion of these cells.

Similarly, the use of transiently expressed CAR-T cells, generated by

RNA electroporation, might represent a valuable risk mitigation

strategy. Lastly, the introduction of a suicide gene (i.e. inducible

caspase 9 or Herpes Simplex Virus-1 Thymidine Kinase) (102, 103),

capable to rapidly induce the apoptosis of CAR-T cells and, thus, to

mitigate the inflammation and the pseudo-progression, represents

an attractive option for increasing the safety profile of the approach.
Frontiers in Immunology 08
7 Clinical translation in future

As already mentioned, the hurdles to be overcome in order to

develop CAR T cell approaches for brain tumors are many and

insidious, including, but not limited to: i) tumor heterogeneity, ii)

limited persistence and trafficking, iii) adaptive immune resistance, iv)

immunosuppressive microenvironment. Many efforts still need to be

made to obtain concrete results for future neuro-oncology applications.

Recent molecular characterization of gliomas and other high-

grade tumors of the central nervous system have led to a better

understanding of the heterogeneity of these diseases and the

complex mechanism of interaction between tumor cells and

microenvironment (104–106). Constructs targeting multiple

antigens simultaneously can be more effective but certainly more

challenging, being associated with higher risk of off-tumor toxicity

(36, 107). The validation and application of these targets in the

clinical setting is a daunting challenge that requires the joint work of

multidisciplinary clinical teams and laboratory researchers to

achieve the best results.

To reduce CAR T resistance in brain tissue, various alternative

approaches could be considered, for example: CAR T cells designed

to co-express dominant-negative TGFbRII, which lock up TGFb
signaling within the engineered T cells (108); EBV specific cytotoxic

T lymphocytes transduced with TGFbRII with the aim to produce

cytokines and maintain cytolytic response (109); chimera CAR T

cells expressing a fusion molecule, including IL-4 ectodomain and

IL-7 endodomain, promoting T-cell proliferation and maintaining

antitumor effect (110).

To prolong the persistence, CAR T cells can be armed to deliver

cytokines, with the goal of supporting T persistence and remodeling

TME toward pro-inflammatory environment (111–116).

Moreover, combination therapies to improve CAR T cell

function have been investigated recently. Targeting immune

inhibitory antigens such as PD-1, PD-L1 and CTLA-4 with either

nivolumab, pembrolizumab or ipilimumab have been tested in

clinical studies focused on GBM, showing promising results in

terms of both safety/feasibility and anti-tumor activity (117–121).

Oncolytic viruses genetically modified to target a suppressive TME

(122, 123) and agonist antibodies specific for the 4-1BB costimulatory

receptor can also potentially amplify CAR T cell efficacy by

counteracting the immune-suppressive microenvironment (124). In

addition, the hypoxia transcription factor HIF-1a subdomain can be

incorporated in a CAR construct to reduce on-target off-tumor

toxicity, ensuring CAR T cells activation only under the hypoxic

conditions characteristic of the TME (125).

Lastly, although limited data are available in brain tumors,

strategies to improve T cell trafficking and infiltration by

engineering the cells to express tumor homing receptors are

promising, as demonstrated in other types of solid tumors. In

particular, CD70-specific CAR T cells expressing CXCR1 and

CXCR2 have demonstrated improved T cell trafficking and

efficacy, in preclinical models of GBM (126). Additional

promising pathways that can be exploited to enhance CAR T cell

accumulation at tumor site are represented by endothelial adhesion

molecules and vascular cytokines (114, 127).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1142597
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Del Baldo et al. 10.3389/fimmu.2023.1142597
8 Conclusions

CAR-T cells are emerging as a promising treatment for

pediatric brain tumors, raising specific challenges for the

management of these delicate patients. Published evidences are

still extremely scarce, but they offer the opportunity to start a

careful, although still largely speculative, consideration of the

peculiar issues associated to the administration of this treatment

in a peculiar location such as the brain. Although there is no

unequivocal evidence on the best route of delivery, systemically

administered CAR-T cells can be used in the neuro-oncology

setting, thanks to the increasing evidence of T-cell ability to

infiltrate CNS. However, intrathecal and/or intra-tumoral delivery

can be easily managed, due to implantable devices, and early

evidence suggests that it might represent a more efficient and less

toxic option for these diseases.

Concerns related to the peculiar toxicities associated with the

treatment of these tumors need to be carefully evaluated and

properly handled thanks to a multi-disciplinary approach.

Advances in the monitoring and managing of intracranial

pressure, a scrupulous selection of the patients and the

optimization of the CAR products, by the incorporation of a

suicide gene, as well as by the development of products with a

limited half-life, mitigate these risks, making the approach

more manageable.

Progress in immunotherapy is raising optimism in the

neuro-oncology field. The integration of advanced preclinical

studies in current clinical practice may truly bring the promise of

CAR-T cell therapy to the conventional armamentarium of the

neuro-oncologist.
Frontiers in Immunology 09
Author contributions

AM and FL conceptualized the work. GB and FB wrote the

manuscript. CP, PM, ACac contributed to data collection and

figures realization. ACar, CQ, BA, FL and AM contributed to the

finishing of the work and revised it critically for important

intellectual content. All authors contributed to the article and

approved the submitted version.
Acknowledgments

The authors thank Megan Eckley for helping in the English

final version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
.References
1. Pollack IF, Agnihotri S, Broniscer A. Childhood brain tumors: current
management, biological insights, and future directions: JNSPG 75th anniversary
invited review article. J Neurosurgery: Pediatr (2019) 23:261–73. doi: 10.3171/
2018.10.PEDS18377

2. Mochizuki AY, Frost IM, Mastrodimos MB, Plant AS, Wang AC, Moore TB, et al.
Precision medicine in pediatric neurooncology: A review. ACS Chem Neurosci (2018)
9:11–28. doi: 10.1021/acschemneuro.7b00388

3. Hassan H, Pinches A, Picton SV, Phillips RS. Survival rates and prognostic
predictors of high grade brain stem gliomas in childhood: A systematic review and
meta-analysis. J Neurooncol (2017) 135:13–20. doi: 10.1007/s11060-017-2546-1

4. Vinci M, Burford A, Molinari V, Kessler K, Popov S, Clarke M, et al. Functional
diversity and cooperativity between subclonal populations of pediatric glioblastoma
and diffuse intrinsic pontine glioma cells. Nat Med (2018) 24:1204–15. doi: 10.1038/
s41591-018-0086-7

5. Fischer C, Petriccione M, Donzelli M, Pottenger E. Improving care in pediatric
neuro-oncology patients: An overview of the unique needs of children with brain
tumors. J Child Neurol (2016) 31:488–505. doi: 10.1177/0883073815597756

6. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al.
Tisagenlecleucel in children and young adults with b-cell lymphoblastic leukemia. N
Engl J Med (2018) 378:439–48. doi: 10.1056/NEJMoa1709866

7. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL.
Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N
Engl J Med (2017) 377(14):1345–56. doi: 10.1056/NEJMoa1709684

8. Rafei H, Kantarjian HM, Jabbour EJ. Recent advances in the treatment of acute
lymphoblastic leukemia. Leuk Lymphoma (2019) 60:2606–21. doi: 10.1080/
10428194.2019.1605071

9. Samstein RM, Lee C-H, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY,
et al. Tumor mutational load predicts survival after immunotherapy across multiple
cancer types. Nat Genet (2019) 51:202–6. doi: 10.1038/s41588-018-0312-8
10. Jones DTW, Banito A, Grünewald TGP, Haber M, Jäger N, Kool M, et al.
Molecular characteristics and therapeutic vulnerabilities across paediatric solid
tumours. Nat Rev Cancer (2019) 19:420–38. doi: 10.1038/s41568-019-0169-x

11. Rutledge WC, Kong J, Gao J, Gutman DA, Cooper LAD, Appin C, et al. Tumor-
infiltrating lymphocytes in glioblastoma are associated with specific genomic
alterations and related to transcriptional class. Clin Cancer Res (2013) 19:4951–60.
doi: 10.1158/1078-0432.CCR-13-0551

12. Patterson JD, Henson JC, Breese RO, Bielamowicz KJ, Rodriguez A. CAR-T cell
therapy for pediatric brain tumors. Front Oncol (2020) 10:1582. doi: 10.3389/
fonc.2020.01582

13. Downing JR, Wilson RK, Zhang J, Mardis ER, Pui C-H, Ding L, et al. The
pediatric cancer genome project. Nat Genet (2012) 44:619–22. doi: 10.1038/ng.2287

14. PedBrain-Seq Project ICGC, MMML-Seq Project ICGC, Gröbner SN, Worst
BC, Weischenfeldt J, Buchhalter I, et al. The landscape of genomic alterations across
childhood cancers. Nature (2018) 555:321–7. doi: 10.1038/nature25480

15. Majzner RG, Heitzeneder S, Mackall CL. Harnessing the immunotherapy
revolution for the treatment of childhood cancers. Cancer Cell (2017) 31:476–85.
doi: 10.1016/j.ccell.2017.03.002

16. Park JA, Cheung N-KV. Limitations and opportunities for immune checkpoint
inhibitors in pediatric malignancies. Cancer Treat Rev (2017) 58:22–33. doi: 10.1016/
j.ctrv.2017.05.006

17. Sheykhhasan M, Manoochehri H, Dama P. Use of CAR-T cell for acute
lymphoblastic leukemia (ALL) treatment: A review study. Cancer Gene Ther (2022)
29:1080–96. doi: 10.1038/s41417-021-00418-1

18. Dai H, Wang Y, Lu X, Han W. Chimeric antigen receptors modified T-cells for
cancer therapy. J Natl Cancer Inst (2016) 108:djv439. doi: 10.1093/jnci/djv439

19. Akhavan D, Alizadeh D, Wang D, Weist MR, Shepphird JK, Brown CE. CAR-T
cells for brain tumors: Lessons learned and road ahead. Immunol Rev (2019) 290:60–84.
doi: 10.1111/imr.12773
frontiersin.org

https://doi.org/10.3171/2018.10.PEDS18377
https://doi.org/10.3171/2018.10.PEDS18377
https://doi.org/10.1021/acschemneuro.7b00388
https://doi.org/10.1007/s11060-017-2546-1
https://doi.org/10.1038/s41591-018-0086-7
https://doi.org/10.1038/s41591-018-0086-7
https://doi.org/10.1177/0883073815597756
https://doi.org/10.1056/NEJMoa1709866
https://doi.org/10.1056/NEJMoa1709684
https://doi.org/10.1080/10428194.2019.1605071
https://doi.org/10.1080/10428194.2019.1605071
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1038/s41568-019-0169-x
https://doi.org/10.1158/1078-0432.CCR-13-0551
https://doi.org/10.3389/fonc.2020.01582
https://doi.org/10.3389/fonc.2020.01582
https://doi.org/10.1038/ng.2287
https://doi.org/10.1038/nature25480
https://doi.org/10.1016/j.ccell.2017.03.002
https://doi.org/10.1016/j.ctrv.2017.05.006
https://doi.org/10.1016/j.ctrv.2017.05.006
https://doi.org/10.1038/s41417-021-00418-1
https://doi.org/10.1093/jnci/djv439
https://doi.org/10.1111/imr.12773
https://doi.org/10.3389/fimmu.2023.1142597
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Del Baldo et al. 10.3389/fimmu.2023.1142597
20. Tormoen GW, Crittenden MR, Gough MJ. Role of the immunosuppressive
microenvironment in immunotherapy. Adv Radiat Oncol (2018) 3:520–6. doi: 10.1016/
j.adro.2018.08.018

21. Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer
Cell (2017) 31:326–41. doi: 10.1016/j.ccell.2017.02.009

22. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-t-cell receptor
chimeric molecules as functional receptors with antibody-type specificity. Proc Natl
Acad Sci USA (1989) 86:10024–8. doi: 10.1073/pnas.86.24.10024

23. Eshhar Z, Waks T, GROSSt G, Schindler DG. Specific activation and targeting of
cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding
domains and the y or c subunits of the immunoglobulin and T-cell receptors. Proc Natl
Acad Sci USA (1993) 90(2):720–4. doi: 10.1073/pnas.90.2.720

24. Pule M, Finney H, Lawson A. Artificial T-cell receptors. Cytotherapy (2003)
5:211–26. doi: 10.1080/14653240310001488

25. Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. Human T-lymphocyte
cytotoxicity and proliferation directed by a single chimeric TCRz /CD28 receptor. Nat
Biotechnol (2002) 20:70–5. doi: 10.1038/nbt0102-70

26. Imai C, Mihara K, Andreansky M, Nicholson IC, Pui C-H, Geiger TL, et al.
Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against
acute lymphoblastic leukemia. Leukemia (2004) 18:676–84. doi: 10.1038/sj.leu.2403302

27. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28
costimulation improves expansion and persistence of chimeric antigen receptor–
modified T cells in lymphoma patients. J Clin Invest (2011) 121:1822–6.
doi: 10.1172/JCI46110

28. Wherry EJ. T Cell exhaustion. Nat Immunol (2011) 12:492–9. doi: 10.1038/
ni.2035

29. Woo S-R, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al.
Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function
to promote tumoral immune escape. Cancer Res (2012) 72:917–27. doi: 10.1158/0008-
5472.CAN-11-1620

30. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al.
4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of
chimeric antigen receptors. Nat Med (2015) 21:581–90. doi: 10.1038/nm.3838

31. Loskog A, Giandomenico V, Rossig C, Pule M, Dotti G, Brenner MK. Addition
of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell
resistance to T regulatory cells. Leukemia (2006) 20:1819–28. doi: 10.1038/
sj.leu.2404366

32. Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25years
in the making. Blood Rev (2016) 30:157–67. doi: 10.1016/j.blre.2015.10.003

33. Haydar D, Houke H, Chiang J, Yi Z, Odé Z, Caldwell K, et al. Cell-surface
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