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ABSTRACT

Mutations in genes encoding for proteins along the RAS-RAF-MEK-ERK pathway have 
been detected in a variety of tumor entities including ovarian carcinomas. In the recent 
years, several inhibitors of this pathway have been developed, whose antitumor potential is 
currently being assessed in different clinical trials. Low grade serous ovarian carcinoma, is 
a rare gynecological tumor which shows favorable overall survival, compared to the general 
ovarian cancer population, but worrying resistance to conventional chemotherapies. The 
clinical behavior of low grade serous ovarian carcinoma reflects the different gene profile 
compared to high-grade serous carcinoma: KRAS/BRAF mutations. BRAF inhibitors as 
single agents were approved for the treatment of BRAF mutated tumors. Nevertheless, many 
patients face progressive disease. The understanding of the mechanisms of resistance to 
BRAF inhibitors therapy and preclinical studies showing that BRAF and mitogen-activated 
protein kinase kinase (MEK) inhibitors combined therapy delays the onset of resistance 
compared to BRAF inhibitor single agent, led to the clinical investigation of combined 
therapy. The aim of this paper is to review the efficacy and safety of the combination of BRAF 
plus MEK inhibitors on ovarian carcinomas, in particularly focusing on low grade serous 
ovarian carcinoma.
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INTRODUCTION

In the rapidly evolving landscape of precision medicine, there is an escalating demand to 
pinpoint target mutations for both research and clinical applications. The identification 
of numerous oncogenic driver mutations and the subsequent enhancement in patient 
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Synopsis
RAS-MAPK pathway represents an intriguing target for low-grade ovarian cancer who 
poorly respond to conventional chemotherapy. In particular, MEK inhibitors showed 
encouraging activity. Further trials are warrented to identify the optimal (chemotherapy-
free) treatment for advanced low-grade ovarian cancer.
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survival through targeted therapy have been extensively cataloged across a spectrum of solid 
tumors. Non-small cell lung cancer (NSCLC) serves as a prominent illustration of precision 
cancer medicine, where the identification of a driver mutation significantly reshapes the 
disease’s natural trajectory [1-6]. Molecular/genomic profiling, facilitated by next-generation 
sequencing (NGS), proves to be a highly effective tool in identifying these pivotal driver 
mutations. A prime example is the RAS-RAF-MAPK signaling pathway, which frequently 
undergoes alterations in various malignancies, becoming activated and promoting malignant 
traits such as autonomous cellular proliferation. BRAF proteins, serving as serine-threonine 
kinases and encoded on chromosome 7q34, play a pivotal role in mediating signals between 
RAS and mitogen-activated protein kinase (MAPK) kinase (MEK). A growing body of 
evidence supports the adoption of BRAF and MEK inhibitors in the treatment of metastatic 
melanoma, colonic cancer, and NSCLC [1-6]. The combination, particularly involving BRAF 
and MEK inhibitors, has exhibited promising results and emerged as a transformative 
therapeutic approach for diverse tumor types. Noteworthy is the observation that in patients 
with the BRAF V600E mutation, the adoption of BRAF and MEK inhibitors correlates with 
a significantly higher response rate compared to the standard of care, both in adjuvant and 
metastatic settings among melanoma patients. It is imperative to underscore that while the 
integration of NGS and targeted therapy is firmly established in various oncologic disciplines, 
its application is still in its nascent stages in the field of gynecologic oncology. Despite the 
relatively low prevalence of BRAF alterations compared to other solid tumors, it is essential 
to recognize their considerable significance in a substantial proportion of gynecological 
patients. Data extracted from cBioPortal for cancer genomics reveal that BRAF alterations 
occur in 9%, 6%, 5%, and 5% of patients with high-grade serous ovarian, uterine, vulva/
vaginal, and cervical cancer, respectively [2-5]. Moreover, BRAF alteration may be more 
prevalent in specific subsets of gynecological cancer patients, including those with low-grade 
ovarian carcinoma (with BRAF mutation rates ranging from 2% to 33%), serous borderline 
ovarian tumors (up to 46%), and mucinous ovarian cancer (up to 80%). Given the notable 
prevalence of BRAF alterations in gynecological tumors and the ongoing development of 
more effective targeted therapies, the objective of this paper is to conduct a comprehensive 
review of current evidence and explore prospective avenues for the adoption of BRAF and 
MEK inhibitors in gynecological cancers. This exploration commences with a concise 
overview of the BRAF gene and BRAF inhibitors, followed by an in-depth discussion of the 
potential applications of BRAF (and MEK) inhibitors in the context of ovarian cancer.

OVERVIEW ON BRAF GENE

The BRAF gene, situated on chromosome 7q34, stands as a pivotal proto-oncogene that 
encodes a member of the RAF family, specifically a serine/threonine protein kinase. This 
multifaceted protein assumes a central role in orchestrating the intricacies of the MAP 
kinase/ERK signaling pathway, exerting influence over fundamental cellular processes like 
cell division, differentiation, secretion, and survival [2].

Initiating its action upstream of BRAF, the binding of growth factors to receptor tyrosine 
kinases (RTKs) on the cell surface triggers a cascade of events, including the phosphorylation 
of RAS proteins, ultimately culminating in the activation of BRAF. This, in turn, sets in 
motion a series of signal transduction events downstream from BRAF to MEK1 and MEK2, 
ultimately resulting in ERK activation. The activated ERK subsequently phosphorylates a 
myriad of cellular targets, thereby propagating the signal [3].
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Within the realm of genetic aberrations, mutations in the BRAF gene, particularly the frequently 
identified V600E mutation, stand out as the predominant culprits behind cancer initiation, 
notably in melanoma. These mutations induce the constitutive activation of BRAF, consequently 
setting off downstream activation of MEK and ERK. As a corollary, these mutations have been 
identified in an array of hematological and solid tumors, spanning non-Hodgkin lymphoma, 
colorectal cancer, thyroid carcinoma, non-small cell lung carcinoma, hairy cell leukemia, and 
lung adenocarcinoma [4-6]. The pervasive occurrence of these mutations’ positions BRAF as an 
enticing target for inhibition in therapeutic interventions [4,5].

OVERVIEW OF BRAF INHIBITORS

In light of the widespread prevalence and clinical significance of the BRAF mutation, 
numerous studies have meticulously investigated the role of BRAF inhibitors in patients 
afflicted with both hematological and solid tumors. One of the pioneering explorations in 
this field focused on scrutinizing the safety and efficacy of sorafenib [6]. Functioning as a 
multi-kinase inhibitor, sorafenib impedes tumor progression by targeting FLT3, c-Kit, and 
BRAF. Despite its examination in melanoma patients, a demographic known for the frequent 
occurrence of BRAF mutations, sorafenib exhibited constrained clinical anti-tumor efficacy, 
whether employed as a sole agent or in combination with chemotherapy. This limitation is 
attributed to its diminished affinity for mutant BRAF [6,7]. In response to this constraint, 
a cohort of selective BRAF inhibitors, including dabrafenib, vemurafenib, and encorafenib, 
were developed with the precise aim of overcoming this drawback. Unlike sorafenib, these 
groundbreaking kinase inhibitors were intricately engineered to specifically bind to the ATP-
binding pocket of the active conformation of BRAF, displaying a pronounced preference for 
BRAF V600E, thereby resulting in heightened potency and specificity [8,9]. Fig. 1 shows the 
molecular pathways and mechanisms of BRAF in cancer therapy.

Clinical trials investigating the efficacy of BRAF inhibitors as monotherapy for metastatic 
melanoma uncovered a notable rate of objective response. Nevertheless, a relatively 
substantial proportion of patients developed resistance, rendering this therapeutic approach 
ineffective in the majority of cases [10-12]. A substantial body of evidence substantiates 
the notion that resistance is typically mediated through the paradoxical reactivation of the 
MAPK pathway signaling in BRAF wild-type cells. Whereas RAF inhibitors effectively inhibit 
ERK signaling in cells harboring mutant BRAF, they unexpectedly enhance signaling in cells 
with wild-type BRAF [13,14]. In an effort to address or preempt resistance, combination 
therapy targeting both BRAF and MEK, a downstream signaling target of BRAF in the 
MAPK pathway, was thoroughly investigated and demonstrated synergistic benefits [15]. 
These compelling findings have culminated in the approval by the U.S. Food and Drug 
Administration of 3 distinct BRAF and MEK inhibitor combinations, namely dabrafenib plus 
trametinib (endorsed for metastatic and resected stage III melanoma, NSCLC, and anaplastic 
thyroid cancer), vemurafenib plus cobimetinib (sanctioned for metastatic melanoma), and 
encorafenib plus binimetinib (acknowledged for metastatic melanoma) [3].

OVARIAN CANCER

Ovarian cancer looms as a formidable gynecologic malignancy, leaving an indelible impact 
with an estimated 19,710 new cases and 13,270 deaths in the USA in 2023 [16]. A substantial 
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90% of ovarian cancers trace their origins to epithelial cells [17], rendering them a pivotal 
focus in both clinical and research domains.

Epithelial ovarian tumors exhibit a spectrum of histologic types, encompassing serous, 
endometrioid, mucinous, and clear cell variants. Despite their histologic diversity, these 
tumors are classified into benign, borderline malignant (tumors of low malignant potential), 
and malignant forms. Serous ovarian carcinomas, constituting around 50% of all invasive 
carcinomas among epithelial ovarian cancers, carry particular significance [18].

The historical categorization of serous ovarian carcinomas into high-grade (International 
Federation of Gynecology and Obstetrics [FIGO] grade 3), intermediate grade (FIGO 
grade 2), or low-grade (FIGO grade 1) by Malpica et al. [19] in 2004 instigated subsequent 
refinements. The introduction of a 2-tier grading system, primarily based on nuclear atypia 
and the mitotic rate, showcased its superiority in predicting clinical outcomes compared 
to the traditional 3-tier FIGO grading system [19,20]. This refinement garnered further 
validation from Bodurka et al. [21] in 2012.

Validation of the 2-tier grading system for serous carcinoma, substantiated by distinct 
molecular, clinical, and epidemiological features, identified approximately 5% to 8% of 
ovarian carcinomas as low-grade serous ovarian cancers (LGSOCs) [22]. This classification 
ignited discussions on the continuum between borderline serous tumors and low-grade 
serous carcinomas, distinguishing them from high-grade serous cancers [23,24].
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Fig. 1. Molecular pathways and mechanisms of BRAF in cancer therapy. 
PI3K, phosphoinositide 3-kinase; MEK, mitogen-activated protein kinase kinase; mTOR, mammalian target of 
rapamycin.



Crucially, the clinical trajectory sets apart LGSOC from high-grade serous ovarian cancer 
(HGSOC). LGSOC progresses slowly, presenting a distinct clinical course compared to the 
rapid evolution characteristic of HGSOC. Demographic disparities, such as age at diagnosis 
(55.5 years for LGSOC and 62.6 years for HGSOC), and familial predispositions underscore 
the unique nature of low-grade serous cancers [25,26].

Molecular disparities contribute to the uniqueness of LGSOC, with the majority (91%) of 
women with a BRCA1 mutation and ovarian cancer presenting high-grade serous cancer. 
Notably, mutations in KRAS and BRAF, key regulators of the MAPK pathway, emerge as 
distinctive features of LGSOC and its potential precursors, serous borderline tumors [27]. 
While supporting the close association between low-grade serous cancers and serous 
borderline tumors, the latter exhibits a higher frequency of BRAF mutations [28,29].

Further investigations suggest that advanced-stage low-grade serous cancers often originate 
from serous borderline tumors lacking BRAF mutations. Intriguingly, the presence of a 
BRAF mutation in a serous borderline tumor may act protectively against the development of 
subsequent low-grade serous carcinoma [30-32].

Despite their low-grade classification, a majority of LGSOC cases present at an advanced 
stage, and approximately 70% of women with low-grade serous cancer succumb to the 
disease. Remarkably, the presence of a KRAS/BRAF mutation in low-grade serous cancers 
appears to be a favorable prognostic factor, paving the way for tailored therapies targeting 
these specific RAS-RAF-MEK pathway components [33].

Ongoing trials actively explore the efficacy of BRAF/MEK inhibitors, either as standalone 
treatments or in combination with other investigational drugs, for the treatment of recurrent 
or persistent low-grade serous cancer. Presently, the standard treatment for women with low-
grade serous cancers mirrors that for high-grade serous cancers, involving surgical debulking 
followed by a combination of platinum/taxane-based chemotherapy for 6 to 8 cycles. Despite 
the relative chemo-resistance of low-grade cancers, this approach remains the established 
norm [32,34].

While surgery plays a pivotal role in the treatment of LGSOC, targeted systemic treatments 
are deemed essential. Encouragingly, several studies highlight the potential of BRAF/MEK 
inhibitors in ovarian cancer, especially in LGSOC, showing promising results compared to 
standard therapy (Table 1).

The outcomes of ongoing trials affirm that tumors characterized by alterations in the MAPK 
pathway, such as low-grade serous ovarian cancer, may significantly benefit from treatment 
with BRAF/MEK inhibitors. Comprehensive details of ongoing trials, encompassing adverse 
events, toxicities, and the efficacy of new molecules inhibiting the aberrant activation of the 
RAS-RAF-MEK pathway in patients with ovarian carcinoma, are outlined in Table 2. These 
innovative therapeutic agents hold immense potential to optimize tumor efficacy, minimize 
toxicity, and markedly enhance outcomes for women grappling with epithelial ovarian cancer.
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CURRENT EVIDENCE ON BRAF INHIBITORS IN OVARIAN 
CANCER
Explorations into the dysregulation of the MAPK and phosphoinositide 3-kinase (PI3K) 
pathways initially concentrated on a single facet of the pathway, specifically targeting patients 
with incurable solid tumors harboring BRAF mutations. This marked the initial foray into 
understanding the intricate mechanisms of these pathways and their potential implications 
in cancer therapeutics. In a pivotal development in 2012, Falchook et al. [35] undertook a 
phase 1 trial aimed at determining the recommended phase 2 dose in patients with BRAF-
mutant tumors. This trial included diverse cohorts such as metastatic melanoma, melanoma 
with untreated brain metastases, and non-melanoma solid tumors. The investigative agent 
in focus was Dabrafenib (GSK2118436), a potent ATP-competitive inhibitor of BRAF kinase 
with selectivity for mutant BRAF tumors. The trial enrolled 184 patients, with melanoma 
being the predominant cohort, and only one patient presented with ovarian cancer. Notably, 
the solitary patient with BRAF-mutant ovarian cancer, who had not received prior BRAF 
or MEK inhibitor treatment, exhibited a notable achievement of stable disease with a 28% 
decrease. This highlighted the potential therapeutic impact of targeting the BRAF pathway in 
ovarian cancer. Adverse events of grade 2 or higher mainly included cutaneous squamous-cell 
carcinoma or keratoacanthoma, fatigue, and pyrexia. Dabrafenib demonstrated mild toxicity, 
with only three grade 2 or higher toxic effects recorded in more than 5% of patients. These 
findings emphasized the manageable safety profile of dabrafenib. While the study primarily 
focused on patients with melanoma and brain metastases, a population with historically 
limited survival, the results were intriguing. All 10 patients in this cohort were alive at the 
specified juncture, and 2 displayed durable antitumor activity with survival extending beyond 
12 months. This highlighted the potential efficacy of dabrafenib, particularly as the first drug 
of its class to demonstrate activity in treating melanoma brain metastases.

Despite these promising outcomes, the emergence of acquired resistance to dabrafenib 
necessitated further investigation. This led to a subsequent phase 1 study examining the 
combination of dabrafenib with the MEK inhibitor, trametinib (GSK1120212) [36]. This 
combination demonstrated significant improvements in progression-free survival (PFS), 
suggesting a synergistic effect with BRAF and MEK inhibition.

In 2013, Farley et al. [37] initiated another significant study. This open-label, single-arm phase 
2 study focused on selumetinib (AZD6244, ARRY-142886), a potent and selective inhibitor of 
MEK1/2, in women with recurrent LGSOC or peritoneal carcinoma. The rationale behind this 
study was grounded in the high frequency of mutational alterations in the MAPK pathway 
observed in low-grade serous ovarian cancers. The study enrolled 52 patients, and its conclusion 
revealed that 8 patients (15%) exhibited a best response of complete or partial response, while 
65% displayed stable disease. The median PFS was reported as 11.0 months, and the 2-year overall 
survival (OS) was 55%, showcasing substantial activity in recurrent low-grade serous tumors. 
Crucially, this approach presented favorable tolerability compared to cytotoxic regimens, making 
selumetinib an appealing candidate for further exploration in low-grade serous ovarian cancers.

The intricate dynamics of the PI3K and MAPK pathways, known for their intricate interplay 
and convergence at multiple points, underscore the need for a nuanced therapeutic 
approach. The premise lies in the understanding that inhibiting one pathway might trigger 
compensatory activation of the other. Recognizing this intricate relationship, researchers 
have delved into the potential synergies of dual blockade, utilizing both PI3K and MEK 
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inhibitors. This novel approach has sparked interest, particularly in patients with tumors 
characterized by genetic aberrations in these pathways.

In a pivotal phase Ib dose-escalation study conducted in 2015 by Bedard et al. [38], the focus 
was on combining the oral pan-PI3K inhibitor, buparlisib (BKM120), with the oral MEK1/2 
inhibitor, trametinib (GSK1120212). This meticulously designed study, with its open-label, 
dose-finding approach, involved dose escalation followed by an expansion part. The patient 
cohort was strategically selected, encompassing those with RAS- or BRAF-mutant non–small 
cell lung, ovarian, or pancreatic cancer.

Buparlisib (BKM120) emerged as a potent and highly specific oral pan-class I PI3K inhibitor, 
with a notable characteristic of sparing mTOR and Vps34 kinases. On the other hand, 
trametinib (GSK1120212; Mekinist) played its role as a reversible, highly selective allosteric 
inhibitor of MEK1/MEK2 activation and kinase activity.

The primary objectives of this groundbreaking study were 2-fold. Firstly, the focus was 
on determining the maximum tolerated dose (MTD) and/or recommended phase II dose 
(RP2D) for the combination of buparlisib and trametinib when administered orally to adult 
patients with selected advanced solid tumors. Subsequently, the study aimed to evaluate the 
safety and preliminary antitumor activity of the established MTD and/or RP2D in patients 
with advanced non-small cell lung cancer (NSCLC), ovarian cancer, or pancreatic cancer 
harboring RAS or BRAF mutations during the expansion phase of the study, as identified by 
the clinicaltrials.gov registry with identifier NCT01155453. The initial MTD was pegged at 70 
mg buparlisib and 1.5 mg trametinib, but this dose underwent revision during RP2D due to a 
high incidence of adverse events, primarily stomatitis and rash. Ultimately, the dose chosen 
for the dose expansion phase was established at 60 mg buparlisib and 1.5 mg trametinib. 
Of the 21 patients with ovarian cancer, 4 participated in the dose-escalation phase, and 17 
entered the dose-expansion phase. These patients, with a substantial prior treatment history 
averaging 3 prior lines of therapy, demonstrated a noteworthy overall response rate (ORR) of 
29%, with 1 confirmed complete response and 5 confirmed partial responses. This response 
rate further improved to 50% at RP2D, with 1 confirmed complete response and 3 confirmed 
partial responses. Additionally, 2 patients (10%) showcased a best target lesion reduction 
of at least 30%, although not subsequently confirmed. The median PFS for all patients with 
ovarian cancer was a commendable 7 months (95% confidence interval=4.2–12.9). As of the 
data cutoff date, the median OS had not been reached, with the majority (18 patients, 86%) 
of ovarian cancer patients still alive. This phase 1b study not only established the safety of 
combining the oral pan-PI3K inhibitor buparlisib and the oral MEK1/2 inhibitor trametinib 
but also identified a robust RP2D. This promising combination exhibited notable antitumor 
efficacy, particularly for patients with RAS/BRAF-mutant ovarian cancer.

A fascinating observation surfaced regarding patients with KRAS-mutant ovarian cancer, 
displaying a higher ORR compared to a single-agent MEK inhibitor in the same population. 
This observation opens intriguing possibilities, suggesting that PI3K and MEK inhibitor 
combination therapy might be more active in specific KRAS-mutant genotypes, such as G12V. 
This underscores the importance of recognizing the nuanced biology within the KRAS-
mutant subgroup, hinting at potential differential responses to the same treatment.

While these findings are certainly promising, it's essential to approach them with caution, 
given the non-statistical significance and the study’s limited sample size. Numerous questions 
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arise, prompting the need for further investigation. These include exploring the role of KRAS 
mutation as a predictive biomarker in low-grade serous ovarian cancer and understanding 
the potential benefits of MEK inhibitor therapy or PI3K and MEK inhibitor combinations in 
other histologic subtypes of ovarian cancers with RAS mutations. The study provides a crucial 
foundation, but additional data from larger-scale studies are imperative to draw definitive 
conclusions and unlock the full potential of this innovative therapeutic approach.

In the same year, Hyman et al. [39] conducted a groundbreaking histology-independent 
phase 2 "basket" study examining the use of vemurafenib in BRAF V600 mutation-positive 
non-melanoma cancers. Their comprehensive findings emphasized the crucial role of 
histologic context in determining responses to BRAF V600-mutated cancers. Despite 
observing partial responses and tumor regression in ovarian cancer patients, the study’s 
limited sample size, particularly in the ovarian cancer subgroup, with fewer than 27 patients, 
underscores the need for cautious interpretation. It became evident that BRAF V600-mutated 
tumor types exhibit varied responses to BRAF-targeted therapy, challenging the notion of 
solely relying on molecular nosology. Pending more definitive data, these findings present a 
potential therapeutic avenue, especially for clinicians using tumor genomic profiling, though 
interpretation must be approached with caution.

In 2018, a noteworthy phase Ib dose-escalation study with binimetinib (MEKi) in 
combination with weekly paclitaxel for platinum-resistant or refractory epithelial ovarian 
cancer reported an overall response rate of 14% [40]. However, the subsequent multinational, 
randomized phase III trial on binimetinib (MILO/ENGOT-ov11 ClinicalTrials.gov identifier: 
NCT01849874) [41], in which Grisham participated, did not demonstrate a significant 
difference in the primary endpoint of PFS compared to physician’s choice chemotherapy 
in patients with recurrent or persistent LGSOC. Despite the early closure of the study, 
binimetinib displayed activity in LGSOC across secondary efficacy endpoints. The study did 
not reach its primary PFS endpoint, showing median PFS of 9.1 months for binimetinib and 
10.6 months for physician choice, though secondary efficacy endpoints like overall response 
rate, duration of response, and OS were comparable between the 2 groups. While the trial did 
not meet its primary objective, binimetinib remains a viable treatment option for LGSOC.

Subsequently, a randomized phase II/III trial [42] presented at European Society for Medical 
Oncology 2019 indicated that the MEK inhibitor Trametinib offers significant benefits 
in OS, overall response rate, and PFS for women with recurrent low-grade serous ovarian 
cancer compared to physician’s choice standard of care. This study showcased trametinib’s 
efficacy, with patients experiencing a median PFS of 13.0 months compared to 7.2 months 
in the control arm. This underscores trametinib's potential as a robust treatment option for 
recurrent low-grade serous ovarian cancer, especially considering its efficacy in patients with 
a history of multiple prior chemotherapies, offering a notable advantage over previous studies 
like the binimetinib trial (MILO/ENGOT-ov11) [41], which was limited to patients with a 
maximum of 3 prior lines of chemotherapy. The apparent PFS benefit of trametinib regardless 
of KRAS, BRAF, or NRAS mutation status suggests that MAPK pathway activity is important, 
even in the absence of a canonical mutation. This benefit could be due to less common gene 
mutation events or to activation of the pathway at the epigenetic, transcriptional, or post-
transcriptional levels. By comparison, the MILO/ENGOT-ov11 study reported improvements 
in PFS and ORR in the KRAS-mutant group compared with the wild-type KRAS group of 
patients given binimetinib; however, the study did not directly address whether this mutation 
was predictive. Despite differences in inclusion criteria, both studies highlight the promising 
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efficacy of MEK inhibitors in the treatment landscape, with trametinib demonstrating 
significant clinical benefits in patients with recurrent low-grade serous ovarian cancer.

In 2020, Subbiah et al. [43] create a histology-independent, BRAF V600E-mutant basket 
study with vemurafenib that showed differential activities between histologies. In this study, 
melanoma and papillary thyroid cancer were excluded because previous studies had already 
shown that they were responsive to BRAF inhibition in those with the mutation [44,45], 
therefore they focused on different histologies and found similar efficacy results. But this 
study has some important limitations. Notably, it was launched before numerous studies 
demonstrated that the combination of BRAF and MEK inhibition is often superior to BRAF 
inhibition alone [46,47]. Therefore, the efficacy reported here may represent a lower bound 
estimate of what could have been achieved if the same population had been treated with a 
RAF/MEK combination, although this remains unproven. Therefore, we can only infer that 
these data further contribute to our understanding of the therapeutic relevance of BRAF 
inhibition in BRAF V600 mutated cancers.

In the same year, the American Society of Clinical Oncology published the results of a phase 
I study on lifirafenib [48], an experimental and reversible inhibitor of BRAF V600E, wild-type 
A-RAF, B-RAF, C-RAF and EGFR, conducted on adult patients with advanced/metastatic solid 
tumors carrying a B-RAF, N-RAS or K-RAS mutation. Lifirafenib demonstrated an acceptable 
benefit-risk profile given the safety outcomes and responses in patients with BRAF V600 
mutated solid tumors, including melanoma and LGSOC, as well as K-RAS mutated NSCLC 
and endometrial cancer. Lifirafenib could potentially benefit patients with MAPK pathway-
associated kinase alterations in addition to BRAF V600 mutations, including activated 
K-RAS. Further studies on the safety/efficacy of lifirafenib as monotherapy or in combination 
are needed, in fact enrollment has recently begun in a phase I/II study of lifirafenib in 
combination with a MEK inhibitor in patients with tumors with BRAF mutations and RAS 
(ClinicalTrials.gov identifier: NCT03905148).

The MILO/ENGOT-ov11 study was the largest randomized study of patients with LGSOC but 
it suffered a premature closure because PFS of the binimetinib cohort (which was the primary 
end point) was superior to that of chemotherapy cohort. Although the primary endpoint of 
this study was not met, the data generated were further analyzed in 2023 [49] evaluating the 
association between MAPK pathway alterations and patient outcomes. Indeed, this post hoc 
tumor tissue analysis showed higher response rates and significantly longer PFS in patients 
with LGSOC treated with binimetinib and, to a lesser extent, in those treated with physician-
chosen chemotherapy, who had alterations of the MAPK pathway. These findings provide 
compelling evidence of how the altered state of the MAPK pathway has prognostic implications 
for patients with LGSOC. Somatic tumor testing should be considered for all patients with 
recurrent LGSOC to aid in clinical decision making regarding the relative benefit of systemic 
therapy and used as a stratification factor in future prospective studies of LGSOC.

Recently, the preliminary results of the ENGOT-ov60/GOG-3052/RAMP 201 part A 
(NCT04625270) reporting data combination between avutometinib and defactinib were 
reported at the 2024 Society of Gynecologic Oncology meeting. The study showed that 45% 
of patients (n=29) achieved a confirmed responses rate. KRAS mutations correlated with 
response to treatment. The response rate was 60% and 29% in patients with and without 
BRAF mutation, respectively [50]. Another interesting ongoing study is the ENGOT-GYN2/
GOG-3051/BOUQUET project [51]. The phase II BOUQUET is a biomarker-directed platform 
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study, investigating different approaches in rare ovarian cancer types [51]. Preliminary data 
on the cobimetinib arm were presented. Data of 20 heavily pretreated patients showed 
interesting results in patients with low-grade serous ovarian cancer and mesonephric-like 
adenocarcinoma. In this group the objective response rate and disease control rate was 33% 
and 89%, respectively [51]. All these results contribute to advancing our understanding of 
tailored therapeutic approaches for distinct ovarian cancer subtypes, encouraging further 
research to refine treatment paradigms and improve outcomes. Ongoing studies (including 
the DETERMINE trial) will clarify the value of different combination in this setting [52].

CONCLUSIONS

A conventional clinical trial design approach may not be feasible to demonstrate the 
effectiveness of a targeted agent against rare molecular mutations in each cancer type. 
Therefore, it would be appropriate to set up clinical studies by classifying tumors based on 
their genomic sequencing, rather than on the basis of the organ of origin. Nowadays most of 
clinical trials (ClinicalTrials.gov) are targeted to relapsed/refractory solid tumors harboring 
certain specific mutations/rearrangements that result in hyper-activation of the RAS-MAPK 
pathway. The partial results (because many studies are still in the recruitment phase) of these 
trials confirm the activity of MAPK in ovarian cancer and suggest that MEK inhibitors might 
be appropriate for the treatment of this malignancy.
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