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Abstract—This article investigates the transformation of
Hamiltonian structures under sampling. It is shown that the
exact sampled equivalent model associated to a given port-
Hamiltonian continuous-time dynamics exhibits a discrete-
time representation in terms of the discrete gradient, with
the same energy function but modified damping and in-
terconnection matrices. By construction, the proposed
sampled-data dynamics guarantees exact matching of both
the state evolutions and the energy-balance at all sampling
instants. Its generalization to port-controlled Hamiltonian
dynamics leads to characterize a new power conjugate out-
put so recovering the concept of average passivation. On
these bases, energy-management control strategies can be
proposed. An energetic interpretation of the approach is
confirmed by its formulation in the Dirac formalism. Two
classical examples are worked out to validate the proposed
sampled-data modeling in a comparative way with the liter-
ature.

Index Terms—Computational methods, energy systems,
nonlinear systems, sampled-data control.

I. INTRODUCTION

GRADIENT or Hamiltonian dynamics at large, endors-
ing straight relations with fundamental physical proper-

ties such as energy conservation or variation principles, have
been widely investigated in the continuous-time setting (see [1]
and [2] and references therein). Among the vast dedicated litera-
ture, two main conceptual approaches can be distinguished with
their own features depending on the goal, modeling or control:
the Dirac approach and the input-state-output approach. The first
one, employing an abstract generalization of the bond-graph
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formalism, is efficient to model the interconnections and the
energy flowing between the components of the system [3]–
[5]. The second one, based on the differential representation
of the Hamiltonian function, is well suited for energy-based
design [6]–[12]. Nowadays, an efficient interplay between both
approaches supports innovative research in various physical
domains where energy and energy exchanges serve as lingua
franca (e.g., [5], [8], and [13]).

All of this essentially concerns the continuous-time frame-
work while a consensus on a unifying input-state-output rep-
resentation of Hamiltonian structures in discrete time is still
missing. As in continuous time, the aforementioned approaches
coexist, describing port-Hamiltonian systems on discrete mani-
folds in the Dirac formalism [14]–[16] or Hamiltonian difference
equations in a state-space-oriented approach [17]–[21]. In this
latter case, the discrete gradient function that properly expresses
the variation of a function between two points, is used in place
of the usual gradient function. Such a choice, that opens toward
discrete structures looking similar to the continuous-time ones,
unfortunately brings to implicit difference state-space represen-
tations [18], [22]–[24]. The interest of the community recently
extends to a digital environment including dynamics issued
from sampling, with direct impact in real-time applications. In
this context, several works find their roots in various sampling
and time-integration devices so providing Hamiltonian forms
through symplectic integration [25]–[27], geometric scatter-
ing [28], spatial discretization of the continuous-time energy-
balance [29], [30], Galerkin discretization [31] up to numeri-
cal methods like Runge–Kutta [32], and Gauss–Legendre [33].
Despite these studies provide structures satisfying the required
energy-balance properties, well identified links between all these
forms are still missing.

The attempt of this work is to fill this gap starting from the
understanding of the structure of Hamiltonian representations
under sampling. The study is performed for nonlinear dynamics
and set in a formal way, inspired from the Lie series framework
involved in the characterization of sampled dynamics associated
to nonlinear differential dynamics developed in [34]. Our anal-
ysis is motivated by a recent authors’ contribution [24] where
a discrete-time port-Hamiltonian representation embedding the
required properties of energy conservation or dissipation has
been introduced. These discrete-time forms are adopted in this
study as target structures to recover under exact sampling.

Along these lines, this article addresses the preservation
of Hamiltonian structures under sampling or time integra-
tion at large in a nonlinear context. In all cases (gradient,
port-Hamiltonian, and port-controlled Hamiltonian), we show
that similar discrete-time structures can be recovered under
exact sampling with respect to the same Hamiltonian function
with modified structural matrices (embedding the interconnec-
tion and the dissipation matrices). The relevant consequence of
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preserving the Hamiltonian while assuring exact matching of
the state evolutions lies in the characterization of an energy-like
representation that can be profitably employed in the design.
The approach is constructive. The solutions are described by
their series expansions in powers of the sampling period that
can be computed, iteratively, in an approximation perspective.
In addition, the continuous-time model is recovered in first
approximation so preserving a physical interpretation of the
results. To strengthen physical validity, the associated discrete
Dirac structure is described and compared with the underlying
continuous-time one.

The contributions of this work are specified in the sequel.
1) The formal expressions of discrete gradient, Jacobian, and

Hessian along a given sampled-data dynamics proposed
in Proposition 5 specify the basic formal instruments.
These forms provide new computable series expansions
of these objects around the usual gradient, Jacobian, and
Hessian.

2) The sampled-data equivalent forms to continuous-time
gradient and Hamiltonian structures are specified in The-
orems 1 and 3. Gradient forms are transformed into
Hamiltonian-like ones with modified dissipation matrix;
conservative or dissipative Hamiltonian structures are
transformed into equivalent structures that preserve the
continuous-time energy-balance equality (EBE) at the
sampling instants. All these forms are parameterized by
the sampling period.

3) The characterization of port-controlled Hamiltonian dy-
namics under sampling is in Theorem 5 opening toward
energy-based stabilizing control strategies. A power-
conjugate output is defined and its relation with the
average-passifying output introduced in [35] is clarified.
Accordingly, it is briefly discussed how digital damping
through negative output feedback may be worked out for
stabilization.

4) The discrete Dirac structure sustaining the proposed
sampled-data form is described in Theorem 7 enforcing
its physical interpretation.

Besides their theoretical interests, the results are constructive
and open wide perspectives to digital energy management and
structure assignment designs as well as networked modeling of
interconnected structures. A preliminary work making reference
to linear time-invariant (LTI) models is in [36].

The rest of this article is organized as follows. Notations
and recalls are in Section II to fix port-Hamiltonian input-state-
output representations in both the continuous and discrete-time
frameworks. The notions of discrete gradient, Jacobian, and
Hessian are given. The section ends formalizing the general
question addressed in thise article with the LTI case discussed
as a motivating example. In Section III, instrumental results,
developed in the formalism of the algebra of series, are proved
as fundamental tools to reshape exact sampled-data models into
discrete port-Hamiltonian structures. Section IV addresses the
question for gradient dynamics as a preliminary attempt toward
the case of port-Hamiltonian dynamics. The main results are
in Sections V where sampled-data input-state-output represen-
tations of port-Hamiltonian dynamics are described and their
structural and energetic properties highlighted. Section VI dis-
cusses the extension to port-controlled Hamiltonian dynamics.

On these bases, energy-based stabilizing control strategies are
briefly discussed. In Section VII, simulated case studies are
worked out to illustrate computational aspects. Finally, Sec-
tion VIII concludes this article.

II. PROLEGOMENA

A. Some Notations

All functions and vector fields defining the dynamics are
assumed smooth and complete over the respective definition
spaces. R and N denote the set of real and natural numbers
including 0, respectively. Rn×m denotes the set of real valued
n×m matrices. For any vector v ∈ Rn, |v| and v� define the
norm and transpose of v, respectively. Id denotes the identity
function on the definition space, while I denotes the identity
operator and the identity matrix when related to a linear operator.
For a matrix A ∈ Rn×n, we denote by A−1 its inverse, and for
the sake of the notations, its pseudoinverse when singular. The
symmetric and skew-symmetric parts of A ∈ Rn×n are denoted
bysym(A) = 1

2 (A+A�) andskew(A) = 1
2 (A−A�). Given

a differentiable real-valued functionV (·) : Rn → R,∇V repre-
sents the gradient column-vector with ∇ = col{ ∂

∂xi
}i=1,n and

∇2V denotes its Hessian matrix with ∇2 = { ∂2

∂xi,∂xj
}i,j=1,n.

Given a vector-valued functionF (x) = col(F1(x), . . . , Fn(x)),
J [F (x)] = { ∂

∂xj
Fi(x)}i,j=1,n denotes the Jacobian of F .

The symbols ′′ > 0′′ and ′′ < 0′′ denote positive and negative
definite functions (or matrices), respectively. Indicating by X
a formal variable that can represent an operator (or a matrix in
the linear case), one defines the formal exponential series eX =
I +

∑
p≥1

Xp

p! with Xp the power p composition of X with
respect to a given product. Accordingly, formal manipulations
are worked out as the inverse series denoted by (I +X)−1 with
(I +X)−1 = I +

∑
p≥1(−1)pXp, or formal quotient denoted

by eX−1
X , that stands for the formal cancellation of X in the

numerator series eX − 1 so getting eX−I
X = I +

∑
p≥1

Xp

(p+1)! ;
similar rules apply to define formal algebraic relations along this
article.

Given a smooth vector field f over Rn, Lf =
∑n

i=1 fi(x)
∂

∂xi

denotes its associated Lie derivative operator. Setting L0
f = I ,

one iteratively defines the composition at power p as Lp
f =

LfL
p−1
f ; ef := I +

∑
p≥1

Lp
f

p! represents the exponential Lie
series operator recovering, for linear vector fields, the expo-
nential of the matrix representing the operator. For any smooth
function h(·) : Rn → R, the equality of functions efh(x) =
h(ef (x)) = efh|x holds true [37, p. 22], where |x denotes
the evaluation of the function at x. Given a function of time
γ(t), γk := γ(kδ) denotes its value at time t = kδ, with k ∈
N for a fixed δ ∈]0, T �[, T � > 0. The root-mean-square er-
ror (RMSE) between a continuous-time function γ(t) and a
discrete sequence γd(kδ) is given for T > 0 by RMSE =√∑T

k=1
1
T (γd(kδ)− γ(t)|t=kδ)2. A function R(x, δ) : B ×

R → Rn is said in O(δp) with p ≥ 1, if it can be written as
R(x, δ) = δp−1R̃(x, δ) for all x ∈ B and there exist a function
θ ∈ K∞ and δ� > 0 s.t. ∀δ ≤ δ�, |R̃(x, δ)| ≤ θ(δ).

Given two matrices A ∈ Rn1×n2 and B ∈ Rm1×m2 , the Kro-
necker product is denoted by A⊗B ∈ Rn1m1×n2m2 . Given
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a matrix-valued function L(x) : Rn → Rn×n, the following
representations are set under differentiation:

∂L(x)

∂x
=

∂

∂x
⊗ L(x) =

(
∂L(x)
∂x1

. . . ∂L(x)
∂xn

)
∈ Rn×n2

and consequently, for an n-dimensional vector, N(x) : Rn →
Rn

∂L(x)N(x)

∂x
=

∂L(x)

∂x
(N(x)⊗ I) + L(x)

∂N(x)

∂x

= L(x)
∂

∂x
N(x) +

n∑
i=1

(
∂

∂xi
L(x)

)
N(x).

B. Discrete Gradient Function

Let us first recall from the literature (see [18]–[20]) the
definition of discrete gradient function.

Definition 1 (Discrete gradient): Given a smooth real-valued
function V (·) : Rn → R, its discrete gradient is a vector-valued

function of two variables, ∇̄V
∣∣∣.
.
: Rn × Rn → Rn satisfying

the variational equality

V (w)− V (v) = (w − v)�∇̄V
∣∣∣w
v

(1)

with, by continuity, ∇̄V
∣∣∣v
v
= ∇V (v).

Setting ∇̄V
∣∣∣w
v
=col{∇̄iV

∣∣∣w
v
}i=1,n with v=col{v1, . . . , vn}

and w = col{w1, . . . , wn}, the discrete gradient can be com-
puted component-wise through the integral form

∇̄iV
∣∣∣w
v
=

1

wi − vi

∫ wi

vi

∂V (w1, . . ., wi−1, ξ, vi+1, . . ., vn)

∂ξ
dξ.

(2)

From this definition, the extended notions of discrete Jacobian
and discrete Hessian are now introduced.

Definition 2 (Discrete Jacobian and discrete Hessian): Given
a vector functionF = col{F1, . . . , Fn} : Rn → Rn withFi(·) :
Rn → R, its discrete Jacobian is a matrix-valued function of two
variables J̄ [F ]

∣∣∣.
.
: Rn × Rn → Rn×n satisfying

F (w)− F (v)= J̄ [F ]
∣∣∣w
v
(w − v)=col

{
(w − v)�∇̄Fi

∣∣∣w
v

}
i=1,n

(3)

and J̄ [F ]
∣∣∣v
v
= J [F (v)] when defining J̄ [F ]

∣∣∣w
v
= [∇̄j [Fi]∣∣∣w

v
]i,j=1,n with ∇̄Fi

∣∣∣w
v
= col{∇̄jFi

∣∣∣w
v
}j=1,n.

When F (·) = ∇V (·), one gets analogously the discrete Hes-

sian matrix of V (·) as ∇̄2V
∣∣∣w
v
= J̄ [∇V ]

∣∣∣w
v

with ∇̄2V
∣∣∣v
v
=

∇2V (v).
According to the aforementioned definitions, the discrete

gradient, Jacobian, or Hessian are not uniquely defined. In the
following, the following general constructive forms are used.

Proposition 1: For a given smooth function V (·) : Rn → R,
by the mean value theorem, one gets

V (w)− V (v) = (w − v)�
∫ 1

0

∇V
∣∣∣
v+s(w−v)

ds

so providing the constructive form of the discrete gradient

∇̄V
∣∣∣w
v
=

∫ 1

0

∇V
∣∣∣
v+s(w−v)

ds (4)

with v + s(w − v) = col{v1 + s(w1 − v1), . . . , vn + s(wn −
vn)}. For a given smooth vector function F (·) : Rn → Rn, one
gets

F (w)− F (v) =

∫ 1

0

J [F ]
∣∣∣
v+s(w−v)

ds(w − v)

so providing the constructive forms of the discrete Jacobian

J̄ [F ]
∣∣∣w
v
=

∫ 1

0

J [F ]
∣∣∣
v+s(w−v)

ds (5)

and of the discrete Hessian when F (·) = ∇V (·)

∇̄2V
∣∣∣w
v
= J̄ [∇V ]

∣∣∣w
v
=

∫ 1

0

∇2V
∣∣∣
v+s(w−v)

ds.

Remark 1: With reference to a quadratic function V (v) =
1
2v

�Pv with P = P�, the discrete gradient takes the form

∇̄V
∣∣∣w
v
=

1

2
P (v + w) =

1

2
∇V (v + w). (6)

Remark 2: With reference to a separable function V (v) =∑n
i=1 Vi(vi), the integral form (2) simplifies for i = 1, . . . , n as

∇̄iV
∣∣∣w
v
=

1

wi − vi

∫ wi

vi

dVi(ξ)

dξ
dξ =

∫ 1

0

∇Vi

∣∣∣
vi+s(wi−vi)

ds.

C. Port-Hamiltonian Dynamics

Hamiltonian dynamics were historically expressed over R2n,
in the canonical generalized coordinates (q, p) through a real-
valued function H(·) : R2n → R. In the recent literature, port-
Hamiltonian structures are commonly defined over Rn, with the
function H(·) : Rn → R catching the energy-like properties of
the plant (e.g., [2] and [5]). Such dynamics are briefly recalled
in the continuous- and discrete-time settings.

Definition 3: Given a smooth function H(·) : Rn → R, a
continuous-time port-Hamiltonian dynamics is given by

ẋ = f(x) = (J(x)−R(x))∇H(x) (7)

with J(x) = −J�(x) ∈ Rn×n and R(x) = R�(x) ∈ Rn×n for
R(x) ≥ 0 the interconnection and damping matrices.

The following comments are in order:
1) all local extrema of H(x) (xe ∈ Rn such that ∇H(xe) =

0) are equilibria of (7);
2) whenH(x) is bounded from below, stability ofxe follows

from the variational inequality

Ḣ(x) = LfH(x) = −∇�H(x)R(x)∇H(x) ≤ 0

3) when R(x) = 0, conservation of H(x) follows;
4) when J(x) andR(x) are constant andH(x) is a quadratic

function, (7) specifies a linear Hamiltonian dynamics;
5) canonical Hamiltonian dynamics are referred to

R(x) = 0 and J(x) =

(
0 I

−I 0

)

6) when J(x)−R(x) = −I , (7) is called gradient dynam-
ics.

Port-Hamiltonian models employing the discrete gradient of
H(·) have been proposed in discrete time as recalled here as
follows (e.g., [19], [21]–[24], [38], and [39]).

Definition 4: Given a smooth function H(·) : Rn → R, a
discrete-time port-Hamiltonian dynamics can be described as

x+ = x+ (Jd(x)−Rd(x))∇̄H
∣∣∣x+

x
(8)
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whereJd(x) = −J�
d (x) ∈ Rn×n andRd(x) = R�

d (x) ∈ Rn×n

with Rd(x) ≥ 0 are the interconnection and damping matrices;
x ∈ Rn is the state at the discrete-time instant k ≥ 0, while x+

indicates its value one step ahead, that is at k + 1.
Exploiting (8), one verifies the following expected energetic

properties:

1) all local extrema xe ∈ Rn of H(·) (i.e., ∇̄H
∣∣∣xe

xe

=

∇H(xe) = 0) are equilibria of (8);
2) from (8) and Definition 1, one gets

H(x+)−H(x) = −∇̄�H
∣∣∣x+

x
Rd(x)∇̄H

∣∣∣x+

x
≤ 0 (9)

so that xe is stable for (8) ifH(x) is bounded from below;
3) when Rd(x) = 0, the dynamics (8) is energy -

conservative

H(x+)−H(x) = ∇̄�H
∣∣∣x+

x
Jd(x)∇̄H

∣∣∣x+

x
= 0.

The representation (8) specifies the state evolution through a
set of implicit first-order difference equations. This represents
the main source of difficulties: recovering an explicit state-space
representation in the form of a map (say x+ = x+ F (x)) from
(8) is not an easy task, except for the case of a quadratic
Hamiltonian function.

Remark 3: Assuming H(x) = 1
2x

�Px, with P = P� ≥ 0
and invoking Remark 1, the discrete dynamics (8) rewrites in
explicit form as

x+ =

(
I − 1

2
(Jd(x)−Rd(x))P

)−1

×
(
I +

1

2
(Jd(x)−Rd(x))P

)
x.

D. Problem Statement

Consider a generic nonlinear dynamics
ẋ = f(x) (10)

with f(·) : Rn → Rn. Denoting by δ > 0 the sampling period,
its equivalent sampled-data dynamics [34] specifying the one
step-ahead evolution at time t = (k + 1)δ starting from t = kδ,
gets the form of a map

x+ = x+ F δ(x) (11)

with x = x(kδ), x+ = x((k + 1)δ). Whenever f(x) is smooth,
F δ(x) admits for all δ ∈]0, T �[ the asymptotic expansion

F δ(x) = eδfx− x = δf(x) +
∑
i≥2

δi

i!
Li−1
f f(x). (12)

with eδfx the Lie exponential applied to x, T � > 0 the conver-
gence interval upper bound of the exponential expansion.

Assuming now a port-Hamiltonian continuous-time dynam-
ics (7) with f(x) = (J(x)−R(x))∇H(x), a natural question
arises: Is the port-Hamiltonian structure preserved under sam-
pling? More precisely, the problem we address is formally set
as follows.

Problem 1: Consider a continuous-time port-Hamiltonian
dynamics (7) in the sense of Definition 3 and let (11) be
the sampled-data equivalent model. Compute, if any, matrices
Jδ(f, x) = −Jδ�(f, x) and Rδ(f, x) = Rδ�(f, x) ≥ 0 verify-
ing

F δ(x) = δ
(
Jδ(f, x)−Rδ(f, x)

) ∇̄H|x+F δ(x)
x

i.e., its equivalent sampled-data model (12) admits a discrete-
time port-Hamiltonian structure in the sense of Definition 4

x+ = x+ δ
(
Jδ(f, x)−Rδ(f, x)

) ∇̄H|x+

x

verifying for all k ≥ 0, x = x(kδ) whenever x0 = x(0). �
Solving this problem provides the following two immediate

outcomes:
1) it provides a sampled-data Dirac structure;
2) it proves the preservation of port-controlled Hamiltonian

structure under sampling [24].
We underline that for guaranteeing both exact sampling and

preservation of the Hamiltonian (energetic) structure, the inter-
connection and damping matricesJδ(f, x) andRδ(f, x)will not
be the same as in continuous time and will result to be explicitly
parameterized by δ, the sampling period. This is motivated by
the LTI case detailed as follows.

E. Case of LTI Dynamics

For LTI dynamics of the form

ẋ = (J −R)∇H(x) (13)

with quadratic HamiltonianH(x) = 1
2x

TPx, a solution to Prob-
lem 1 has been given in [36]. Recalling in that case ∇̄H|x+

x =
1
2P (x+ x+), a discrete-time port-Hamiltonian representation
of the sampled dynamics equivalent to (13) can be obtained
by comparing the target implicit form (8) with the explicit
sampled-data dynamics computed according to (12), i.e.,

x+ = x+
δ

2
(Jδ −Rδ)(x+ x+) ≡ x+ = eδ(J−R)Px.

(14)

From the equivalence of the aforementioned forms, one deduces
the matrix equalities

eδ(J−R)P =

(
I − δ

2
(Jδ −Rδ)

)−1(
I +

δ

2
(Jδ −Rδ)

)
(15a)

δ(Jδ −Rδ) = 2(eδ(J−R)P − I)(eδ(J−R)P + I)−1P−1 (15b)

with Jδ → J and Rδ → 0 as δ → 0.
The modified structural matrices Jδ and Rδ are uniquely

defined by (15b) and naturally depend on δ, the sampling period.
As an example, for the simplest case of a canonical Hamiltonian
dynamics over R2 (R = 0, P = I), one computes

eδJ =

(
cos δ sin δ

− sin δ cos δ

)
, δJδ =

(
0 2 sin δ

1+cos δ

− 2 sin δ
1+cos δ 0

)

(16)

so characterizing the discrete-time Hamiltonian form as

x+ = x+ δJδ∇̄H
∣∣∣x+
x

= x+

(
0 sin δ

1+cos δ

− sin δ
1+cos δ 0

)
(x+ x+)

(17)

matching the sampled evolutions of the continuous-time canoni-
cal port-Hamiltonian dynamics. The implicit representation (17)
motivates the need of changing J → Jδ to recover an equivalent
sampled-data representation. Note that Jδ is not an arbitrary
skew-symmetric matrix, but a proper δ-dependent matrix that
infinitesimally recasts J as δ → 0.
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III. FORMAL INSTRUMENTAL RESULTS

The results proposed in this section exploit the exponential
form representation (12) of sampled-data dynamics to describe
the discrete gradient function computed over a fixed sampled-
data dynamics. They are instrumental for the results and further
computational aspects.

Given a continuous-time dynamics (10) described by the
vector field f(x), let (11) be its associated sampled-data model
described in the form of a map as in (12) by the map F δ(x). Let
the formal differential operator Dδ

f be defined as

Dδ
f =

eδf − I

δf
= I +

∑
i≥1

δi

(i+ 1)!
Li
f . (18)

The first proposition provides a matrix form representation of
F δ(x) in terms of f(x).

Proposition 2: Given a continuous-time dynamics (10) on
Rn, then its sampled-data equivalent dynamics satisfies for all
δ ∈]0, T �[ the equality

x+ − x = F δ(x) = δM δ(f, x)f(x) (19)

with square matrix M δ(f, x), locally nonsingular, given by

M δ(f, x) =
1

δ

∫ δ

0

J [x(s)]ds = J [Dδ
f (x)] (20)

and x(s) = esfx.
Proof: The proof follows from the definition ofx+ = eδfx =

x+ F δ(x) and computing

eδfx− x = δf(x) +
δ2

2!
Lff(x) +

δ3

3!
L2
ff(x) + . . .

=

(
δJ [x] +

δ2

2!
J [f ] +

δ3

3!
J [Lff ] + . . . )f(x

)

= J

[
δx+

δ2

2!
f(x) +

δ3

3!
Lff(x) + . . .

]
f(x)

= J [δDδ
f (x)]f(x)

= J

[∫ δ

0

esfxds

]
f(x) =

∫ δ

0

J [esfx]dsf(x)

= δM δ(f, x)f(x)

with M δ(f, x) as in (20). The nonsingularity of M δ(f, x) fol-
lows by construction for δ small enough. �

It is worth to note that M δ(f, x) coincides with the Jacobian,
evaluated atx, of the result of the differential operatorDδ

f applied
to the identity function; it admits an asymptotic expansion in
powers of δ of the form

M δ(f, x) = J [Dδ
f (x)] = J

[
eδf − I

δf
(x)

]

= I +
δ

2
J [f(x)] +

δ2

3!
J [J [f(x)]f(x)]

+
∑
i≥3

δi

(i+ 1)!
J [Li−1

f f(x)]. (21)

Remark 4: According to (19), truncating the expansion
M δ(f, x) in (21) at any finite order in δ, provides approximate
sampled-data dynamics of increasing order. SettingM δ(f, x) =
I , the Euler approximation is recovered.

Remark 5: With reference to an LTI dynamics, f(x) = Ax,
one gets �δAx = (eδA − I)(δA)−1 and constant matrix M δ =
(eδA − I)(δA)−1 parameterized by δ and satisfying (19), i.e.,

x+ − x = δM δAx

= δ

(
I +

δ

2!
A+

δ2

3!
A2 + · · ·

)
Ax = eδAx− x.

The next proposition specifies the variation of a real-valued
function V (·) along the sampled-data dynamics (11).

Proposition 3: Given a smooth vector field f(·) on Rn and a
smooth real-valued function V (·) : Rn → R, then the variation
of the functionV (·) along the associated sampled-data dynamics
(11) satisfies for all δ ∈]0, T �[ the equality

V (x+)− V (x)

δ
= ∇�V δ

av(f, x)f(x) = LfV
δ

av(f, x) (22)

with

V δ
av(f, x) =

1

δ

∫ δ

0

V (x(s))ds = Dδ
f (V )(x) (23)

and x(s) = esfx.
Proof: The proof follows from the definition of V (x+) =

eδfV (x) when x+ = eδfx, so getting

eδfV (x)− V (x) = δLfV (x) +
δ2

2!
L2
fV (x) +

δ3

3!
L3
fV (x) + · · ·

= δLf

(
V (x) +

δ

2!
LfV (x) +

δ3

3!
LfV (x) + · · ·

)

= ∇�
(
δV (x) +

δ2

2!
LfV (x) +

δ3

3!
LfV (x) + · · ·

)
f(x)

= ∇�
(∫ δ

0

esfV (x)ds

)
f(x) = ∇�

(∫ δ

0

V (x(s))ds

)
f(x).

�
V δ

av(·) in (23) can be computed through the application of Dδ
f

toV (·) and evaluating the result atx so getting the computational
formula

V δ
av(f, x) = Dδ

f (V )(x) = V (x) +
∑
i≥1

δi

(i+ 1)!
Li
fV (x). (24)

Remark 6: With reference to the LTI case, f(x) =
Ax, V (x) = 1

2x
�Px, (24) specifies as V δ

av(f, x) =
1
2x

�P δx
with

P δ =
1

δ

∫ δ

0

esA
�
PeAsds

= (eδA
�
+ I)P (eδA − I)(δA)−1 = P +

∑
i≥1

δi

(i+ 1)!
Pi

and Pi = Pi−1A+A�Pi−1. From (22), the variation of V (·)
along the linear sampled-data dynamics gives

V (x+)− V (x) = δx�P δAx = x�(eδA
�
+ I)P (eδA − I)x.

To conclude, a constructive characterization of the discrete
gradient of any functionV (·) along the sampled dynamics eδf (·)
associated to anyf(·) is given; such a form is clearly not uniquely
defined.

Proposition 4: Given a smooth vector field f(·) on Rn, then
the discrete gradient of V (·) along the sampled dynamics (11)
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can be computed for all δ ∈]0, T �[ according to

∇̄�V
∣∣∣x+

x
= ∇�V δ

av(f, x)(M
δ(f, x))−1

=
(Dδ

f (∇V )(x)
)� (

J [Dδ
f (x)]

)−1
(25)

with Dδ
f (·) in (18) and V δ

av(f, ·) in 23.
Proof: From Definition 1, Propositions 2 and 3, one gets the

equality

∇̄�V
∣∣∣x+

x
M δ(f, x)f(x) = ∇�V δ

av(f, x)f(x)

=
[Dδ

f (∇V )(x)
]�

f(x)

which proves that (25) is an admissible solution because the
matrix M δ(f, x) invertible for δ small enough. When δ → 0

and x+ → x, one recovers ∇̄�V
∣∣∣x
x
= ∇V (x). �

For the first terms in O(δ3), one computes

(M δ(f, x))−1= I − δ

2
J [f(x)]

− δ2

3!
J [J [f(x)]f(x)]+

δ2

4
J [f(x)]J [f(x)]+O(δ3).

Remark 7: When f(x) = Ax, V (x) = 1
2x

�Px, one gets
from (25)

∇̄V
∣∣∣x+

x
= δA(eδA − I)−1P δx. (26)

Finally, a computational relation between the usual gradient of
a given function V (·) and its discrete gradient along the sampled
dynamics associated to a vector field f(·) can be set.

Proposition 5: Given a smooth vector field f(·) on Rn, then
the discrete gradient of V (·) along its sampled-data equivalent
dynamics (11) satisfies for all δ ∈]0, T �[ the equality

∇̄V
∣∣∣x+

x
= ∇V (x) + δQδ(V, f, x)f(x) (27)

with square matrix Qδ(V, f, x) given by

Qδ(V, f, x)=

(∫ 1

0

∫ 1

0

s1∇2V
∣∣∣
x+s2s1F δ(x)

ds2ds1

)
M δ(f, x).

(28)

Proof:The proof follows from Proposition 1 as

∇̄V
∣∣∣x+

x
= ∇̄V

∣∣∣x+F δ(x)

x
=

∫ 1

0

∇V (x+ s1F
δ(x))ds1 =

= ∇V (x) +

∫ 1

0

s1J̄ [∇V ]
∣∣∣x+s1F

δ(x)

x
F δ(x)ds1

= ∇V (x) +

∫ 1

0

s1∇̄2V
∣∣∣x+s1F

δ(x)

x
F δ(x)ds1

so recovering (27) as ∇̄2V
∣∣∣x+s1F

δ(x)

x
=

∫ 1

0 ∇2V∣∣∣
x+s2s1F δ(x)

ds2 and F δ(x) = δM δ(f, x)f(x) from

Proposition 2. �
For the first terms in O(δ3), one computes

δQδ(V, f, x) =
δ

2
∇2V (x) +

δ2

4
∇2V (x)J [f(x)]

+
δ2

3!

∂∇2V (x)

∂x
(f(x)⊗ I) +O(δ3).

Remark 8: The discrete gradient (27) admits a computable
power expansion in δ of the form

∇̄H|x+

x = ∇H(x) +
∑
i>0

δi

(i+ 1)!
∇̄iH(x) (29)

with, for the first terms

∇̄1H(x) = ∇2H(x)f(x)

∇̄2H(x) =
∂∇2H(x)

∂x
(f(x)⊗ I)f(x)

+
3

2
∇2H(x)J [f(x)]f(x).

Remark 9: When f(x) = Ax, V = x�Px, one gets
Qδ( 12x

�Px,Ax, x) = 1
2P (eδA − I)(δA)−1.

IV. GRADIENT DYNAMICS UNDER SAMPLING

Consider the continuous-time gradient dynamics

ẋ = f(x) = −∇H(x) (30)

that satisfies the inequality

H(x+)−H(x) = −
∫ δ

0

∇�H(x(s))∇H(x(s))ds ≤ 0.

(31)

We address the following question: Does the equivalent
sampled-data dynamics admit a discrete gradient form? To this
end, let us specify the Proposition 4 to the case f = −∇H .

Proposition 6: Given a smooth gradient vector field f(·) =
−∇H(·) on Rn, then the discrete gradient of H(·) along its
sampled equivalent dynamics (11) is given for all δ ∈]0, T �[ by

∇̄�H
∣∣∣x+

x
=

∇�H(x)

∫ δ

0

(I − sJ [∇s
avH(x)])�

(I − sJ [∇s
avH(x)])ds(δM δ(f, x))−1 (32)

with from definition (23) and setting x(�) = e�fx

s∇s
avH(x) =

∫ s

0

∇H(x(�))d� = s∇H(x)

+
∑
i>1

si

i!
Li−1
f ∇H(x). (33)

Proof: According to Proposition 4, when f = −∇H , the
discrete gradient H(·) along its sampled dynamics satisfies the
following equality:

−δ∇̄�H
∣∣∣x+

x
M δ(f, x)∇H(x)=−

∫ δ

0

∇�H(x(s))∇H(x(s))ds

with x(s) = esfx. Rewriting now H(x+)−H(x) along the
continuous-time dynamics according to

∇H(x(s)) = (I − sJ [∇s
avH(x)])∇H(x)

one gets the equality

δ∇̄�H
∣∣∣x+

x
M δ(f, x)∇H(x)=∇�H(x)

∫ δ

0

(I − sJ [∇s
avH(x)])�

× (I−sJ [∇s
avH(x)])ds∇H(x)

which is solved by the choice (32), so concluding the proof. �
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For the first terms in O(δ3) in (32), one computes

∇̄H
∣∣∣x+

x
=

(
I − δ

2
∇2H(x) +

δ2

4
∇2H(x)∇2H(x)

+
δ2

3!

∂∇2H(x)

∂x
(∇H(x)⊗ I)

)
∇H(x) +O(δ3).

On these bases, the following result can be proved.
Theorem 1: Given the continuous-time gradient dynamics

(30), then for all δ ∈]0, T �[, its sampled-data equivalent dynam-
ics (11) admits the discrete-time form as follows:

x+ − x = −δIδ(H,−∇H,x)∇̄H
∣∣∣x+

x
(34)

with nonsingular symmetric positive-definite matrix

Iδ(H,−∇H,x) = M δ(−∇H,x)(I − δQδ(H,−∇H,x))−1

=
(
Iδ(H,−∇H,x)

)�
> 0. (35)

The function H(·) satisfies the variational inequality

H(x+)−H(x) = −δ∇̄�H
∣∣∣x+

x
Iδ(H,−∇H,x)∇̄H

∣∣∣x+

x
< 0.

(36)

Proof: According to Proposition 5 as (I − δQδ(f, x)) is non-
singular by construction, one rewrites F δ(x) as

F δ(x) = − δM δ(−∇H,x)(I − δQδ(H,−∇H,x))−1

(I − δQδ(H,−∇H,x))∇H(x)

so getting the result when setting Iδ(H,−∇H,x) as in (35).
Nonsingularity of Iδ(H,−∇(x), x) follows from nonsingular-
ity of M δ(f, x) and (I − δQδ(H, f, x)). Moreover, exploiting
Proposition 6 and the discrete-gradient (32), one rewrites (35)
as

Iδ(H,−∇H,x) = δM δ(f, x)

(∫ δ

0

(I − sJ [∇s
avH(x)])�

×(I − sJ [∇s
avH(x)])ds)−1 (M δ(f, x))�

which is symmetric and positive definite by construction. The
equality (36) is obtained by expressingH(x+)−H(x) either as

H(x+)−H(x) = ∇̄�H
∣∣∣x+

x
(x+ − x), or equivalently as the in-

tegration of the Hamiltonian function along the continuous-time
dynamics H(x+)−H(x) =

∫ δ

0 Ḣ(x(s))ds. Both are equal
since the sampled-data dynamics matches at the sampling times
the continuous-time one by definition. �

For the first terms in O(δ3) in (35), one computes

Iδ(H,−∇H,x) =

(
I − δ

2
∇2H(x) +

δ2

3!
J [∇2H(x)∇H(x)]

)

×
(
I − δ

2
∇2H(x) +

δ2

4
∇2H(x)∇2H(x)

−δ2

3!

∂∇2H(x)

∂x
(∇H(x)⊗ I)

)
∇H(x)

)−1

= I − δ2

12
∇2H(x)∇2H(x) +O(δ3).

It is important to stress that the sampled equivalent dynamics
(34) to the continuous-time gradient dynamics (30) does not
exhibit a discrete gradient form in general.

When considering a quadratic Hamiltonian, Theorem 1 re-
covers the results in [36]. In detail, when H(x) = 1

2x
�Px with

P ≥ 0, the gradient dynamics ẋ = −∇H(x) = −Px admits the
sampled-data representation (34) specified as

x+ − x = −Iδ
P

2
(x+ x+)

with x+ = e−δPx and

Iδ = 2δ(I − e−δP )P−1(I + e−δP )−1. (37)

In addition, the following result can be given.
Theorem 2: Given a LTI gradient-dynamics (30) (i.e., f(x) =

−Px and H(x) = 1
2x

�Px, there exists a new Hamiltonian
function Hδ = 1

2x
�P δx parameterized by δ > 0 with

P δ = IδP = (P δ)� > 0

such that the sampled-data equivalent dynamics preserves a
discrete gradient form; namely, one gets

x+ − x = −∇̄Hδ
∣∣∣x+

x
= −P δ

2
(x+ x+). (38)

Proof: From Theorem 1, Iδ = (Iδ)� > 0, so getting that the
so-defined P δ, coinciding with the one in Remark 6, is positive
definite and symmetric. Also as x+ = x and δ → 0, one gets
∇̄Hδ|xx = Px so concluding the result. �

V. PORT-HAMILTONIAN DYNAMICS UNDER SAMPLING

The results of the previous section are now generalized to
port-Hamiltonian dynamics of the form (7). To this end, we
specify to this context the results in Proposition 6, when setting
for compactness S(x) = J(x)−R(x).

Proposition 7: Given a smooth vector field f(x) =
S(x)∇H(x) on Rn, then for all δ ∈]0, T �[, the discrete
gradient of H(·) along its sampled equivalent can be
rewritten as

∇̄�H
∣∣∣x+

x
=∇�H(x)×

∫ δ

0

(I + sJ [∇s
avH(x)]S(x))� S�(x(s))

(I + sJ [∇s
avH(x)]S(x)) ds× (δM δ(f, x)S(x))−1 (39)

with x+ = eδfx, x(s) = esfx and s∇s
avH(x) as in (33).

Proof: According to Proposition 4, when f(x) =
−S(x)∇H , the discrete gradient of the function H(·) along its
sampled dynamics satisfies the following equality:

δ∇̄�H
∣∣∣x+

x
M δ(f, x)S(x)∇H(x)

=

∫ δ

0

∇�H(x(s))S(x(s))∇H(x(s))ds.

Rewriting ∇H(x(s)) = (I + sJ [∇s
avH(x)]S(x))∇H(x), one

gets

δ∇̄�H
∣∣∣x+

x
M δ(f, x)S(x)∇H(x) = ∇�H(x)

×
∫ δ

0

(I+sJ [∇s
avH(x)]S(x))�S(x(s))

× (I+sJ [∇s
avH(x)]S(x)) ds∇H(x)

which is solved by the choice (39). �
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Remark 10: From Propositions 7 and 5, it is a matter of
computation to verify that

I + δQδ(H, f, x)S(x) = (δM δ(f, x)S(x))−�

×
∫ δ

0

(I + sJ [∇s
avH(x)]S(x))� S�(x(s))

× (I + sJ [∇s
avH(x)]S(x)) ds (40)

with x(s) = esfx and s∇s
avH(x) as in (33).

The main result in the following generalizes Theorem 1 to
port-Hamiltonian dynamics.

Theorem 3: Given a continuous-time port-Hamiltonian dy-
namics as in (7), then for any δ ∈]0, T �[, its sampled equiv-
alent model (11) admits the discrete-time port-Hamiltonian
structure

x+ − x = δSδ
J−R(f, x)∇̄H

∣∣∣x+

x
(41)

with f(x) = S(x)∇H(x), x+ − eδfx and

Sδ
J−R(f, x) = M δ(f, x)S(x)

(
I + δQδ(H, f, x)S(x)

)−1
.

(42)

The following EBE is satisfied:

H(x+)−H(x) = −δ∇̄�H
∣∣∣x+

x
Sδ
J−R(f, x)∇̄H

∣∣∣x+

x

= −
∫ δ

0

∇�H(x(s))R(x(s))∇H(x(s))ds ≤ 0. (43)

Proof: According to Proposition 2, one rewrites

x+ − x = F δ(x) = δM δ(f, x)S(x)∇H(x)

and the discrete gradient function satisfies

∇̄H
∣∣∣x+

x
=

(
I + δ

∫ 1

0

s∇̄2H
∣∣∣x+sF δ(x)

x
dsM δ(f, x)S(x)

)

∇H(x)

so getting (41). Moreover, by definition of the discrete gradient,
the EBE rewrites as

H(x+)−H(x) = δ∇̄�H
∣∣∣x+

x
Sδ
J−R(f, x)∇̄H

∣∣∣x+

x

= −
∫ δ

0

∇�H(x(s))R(x(s))∇H(x(s))ds ≤ 0

so verifying energy dissipation (43). �
From Remark 10, an alternate characterization of Sδ

J−R(f, x)
in Theorem 3 is obtained by substituting (40) into (42).

Corollary 1: Sδ
J−R(f, x) in (42) can be equivalently rewritten

in terms of s∇s
avH(x) in (33) as

Sδ
J−R(f, x) = δM δ(f, x)S(x)

×
(∫ δ

0

(I + sJ [∇s
avH(x)]S(x))�S�(x(s))

× (I + sJ [∇s
avH(x)]S(x)) ds

)−1

× S�(x)(M δ(f, x))�. (44)

Remark 11: The sampled-data structural matrix (42) can be
described by its power expansion in δ according to

Sδ
J−R(f, x) = S0(x) +

∑
i≥1

δi

(i+ 1)!
Si(x) (45)

with, for the first terms

S0(x) = J(x)−R(x)

S1(x) =

(
∂S0(x)

∂x
(∇H(x)⊗ I)

)
S0(x)

S2(x) = − 1

2
S0(x)∇2H(x)S0(x)∇2H(x)S0(x)

− 1

2
S0(x)∇2H(x)S1(x)− 1

2
S1(x)∇2H(x)S0(x)

+
∂S0(x)

∂x
(∇H(x)⊗ I)S1(x)

−∇2H(x)
∂S0(x)

∂x
(f(x)⊗ I)S0(x)

+

(
∂

∂x

(
∂S0(x)

∂x
(∇H(x)⊗ I)

))
(f(x)⊗ I)S0(x).

(46)

Remark 12: From (46), when R and J are constant, one gets

S1 = 0, S2 = −1

2
S0∇2H(x)S0∇2H(x)S0.

In the LTI case, the following theorem generalizes [36, Th.
4.2] and recovers the results.

Theorem 4: When f(x) = (J −R)Px,H(x) = 1
2x

�Px, its
sampled port-Hamiltonian form (41) specifies as

x+ − x = δSδ
J−RP (x+ + x)

with x+ = eδ(J−R)Px and

Sδ
J−R = 2(eδ(J−R)P − I)(I + eδ(J−R)P )−1(δP )−1. (47)

The following corollaries characterize the structure matrix
Sδ
J−R in (42) when the port-Hamiltonian system (7) is purely

conservative (R = 0) or in the degenerate case, dissipative
(J = 0).

Corollary 2: If J(x) = 0 (i.e., f(x) = −R(x)∇H(x)), its
sampled equivalent model takes the form

x+ − x = δSδ
−R(f, x)∇̄H

∣∣∣x+

x

with x+ = eδfx and symmetric, negative semidefinite matrix

Sδ
−R(f, x) = −M δ(f, x)R(x)

×
(∫ δ

0

(I − sJ [∇s
avH(x)]R(x))�R(x(s))

(I − sJ [∇s
avH(x)]R(x))ds

)−1

×R(x)(δM δ(f, x))� = (Sδ
−R(f, x))

� ≤ 0.

Accordingly, one gets dissipation

H(x+)−H(x) = δ∇̄�H
∣∣∣x+
x

Sδ
−R(f, x)∇̄H

∣∣∣x+

x

= −
∫ δ

0

∇�H(x(s))R(x(s))∇H(x(s))ds ≤ 0.

In conclusion, the purely dissipative structure of a
port-Hamiltonian dynamics is preserved under sampling
making reference to the new dissipation matrix −Sδ

−R(f, x).
Remark 13: In the LTI case (i.e., f(x) = −RPx), one

recovers [36]

Sδ
−R(−RPx, x) = 2(e−δRP − I)(I + e−δRP )−1(δP )−1
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with symmetric and positive definite −Sδ
−R(−RPx, x) as

proved in Corollary 2.
Corollary 3: If R(x) = 0 (i.e., f(x) = J(x)∇H(x)), its

sampled equivalent model takes the form

x+ − x = δSδ
J(f, x)∇̄H

∣∣∣x+

x

with x+ = eδJ∇Hx and skew symmetric matrix

Sδ
J(f, x) = −M δ(f, x)J(x)×(∫ δ

0

(I + sJ [∇s
avH(x)]J(x))�J(x(s))

× (I + sJ [∇s
avH(x)]J(x))ds

)−1

× J(x)(δM δ(f, x))� = −(Sδ
J (f, x))

�.
Accordingly, the sampled equivalent dynamics is conservative

H(x+)−H(x) = δ∇̄�H
∣∣∣x+

x
Sδ
J(f, x)∇̄H

∣∣∣x+

x
= 0. (48)

One concludes that a purely conservative port-Hamiltonian
structure is preserved under sampling making reference to the
new interconnection skew symmetric matrix Sδ

J(f, x).
Remark 14: In the LTI case f(x) = JPx, one recovers [36]

Sδ
J(JPx, x) = 2(eδJP − I)(I + eδJP )−1(δP )−1

where, from Corollary 3, Sδ
J(JPx, x) = −(Sδ

J(JPx, x))�.

A. Sampled-Data Structural Matrix

Given the port-Hamiltonian representation (41), providing a
unique characterization of the corresponding dissipating and
conservative components of the structural matrix is not an easy
task in general. Several options are possible for decompos-
ing Sδ

J−R(f, x) = Jδ(f, x)−Rδ(f, x) into a suitably defined
interconnection (Jδ(f, x)) and damping (Rδ(f, x)) matrices
according to Definition 4. These matrices are uniquely defined
in the LTI case discussed in Theorem 4, by setting

Rδ = −sym(Sδ
J−R), Jδ = skew(Sδ

J−R).

Along these lines, in the nonlinear case, the easiest choice is
to separate Sδ

J−R(f, x) into its symmetric and skew-symmetric
components by setting

Jδ(f, x) = skew(Sδ
J−R(f, x))

Rδ(f, x) = − sym(Sδ
J−R(f, x))  0.

(49)

However, the result is quite conservative as in general
Jδ(f, x) �= 0 when J(x) = 0 or Rδ(f, x) �= 0 when R(x) = 0.

A more accurate choice is based on the computation of
Rδ(f, x) as the solution to the dissipation-matching equality

δ∇̄�H
∣∣∣x+

x
Rδ(f, x)∇̄H

∣∣∣x+

x

=

∫ δ

0

∇�H(x(s))R(x(s))∇H(x(s))ds

with x+ = eδfx, x(s) = esfx that gives

δRδ(f, x)=
(
I + δQδ(H, f, x)S(x)

)�
∫ δ

0

(I + sJ [∇s
avH(x)]S(x))�

×R(x(s)) (I + sJ [∇s
avH(x)]S(x)) ds(

I + δQδ(H, f, x)S(x)
)
. (50)

The so-defined matrix is by construction positive definite and
symmetric with the EBE of the form

H(x+)−H(x) = δ∇̄�H
∣∣∣x+

x
Sδ
J−R(f, x)∇̄H

∣∣∣x+

x

= −
∫ δ

0

∇�H(x(s))R(x(s))∇H(x(s))ds ≤ 0

with

H(x+)−H(x) = −δ∇̄�H
∣∣∣x+

x
Rδ(f, x)∇̄H

∣∣∣x+

x
.

Accordingly, energy dissipation (43) is verified by skew sym-
metry of the matrix J(x).

The advantage of such a choice is to exactly match the
continuous-time dissipation through the so-defined dissipation
matrix Rδ(f, x). Accordingly, one sets Jδ(f, x) = Rδ(f, x) +
Sδ
J−R(f, x) so preserving exact state sampling but not skew

symmetry of Jδ(f, x) in general. However, it is guaranteed that
Rδ(f, x) = 0 when R(x) = 0, and analogously, Jδ(f, x) = 0
when J(x) = 0.

B. Approximate Sampled-Data Port-Hamiltonian Models

Computing closed forms of the sampled port-Hamiltonian
dynamics (41) is in general a difficult task that is, in most
cases, not likely possible. The main issues basically rely on the
following difficulties:

1) (i) the computation of the structural matrix Sδ(f, x) in
(42);

2) the computation of the discrete gradient itself (1)
3) the exact inversion of the implicit model (41) involved in

the explicit computation of x+ that might be not possible,
even for simple classes of Hamiltonian functions (e.g.,
separable).

Still exploiting the smooth δ-dependence of all mappings and
matrices, one naturally defines approximations as truncations of
the series expansions in powers of δ defining the exact solutions
Sδ(f, x) in (45) and ∇̄H|x+

x in (29), respectively.
More in detail, the pth-order approximation of the structural

matrix (45) is defined as

S
δ,[p]
J−R(f, x) := S(x) +

p∑
i=1

δi

(i+ 1)!
Si(x) (51)

with p ≥ 0 resulting in the pth-order approximation of the
implicit Hamiltonian model (41) as

x+ − x = δS
δ,[p]
J−R(f, x)∇̄H

∣∣∣x+

x
. (52)

When p = 0, one recovers the usual Euler-like approximate
Hamiltonian model of the literature (e.g., [38]–[41]).

These approximate forms are instrumental when control
strategies aimed at assigning a desired port-Hamiltonian struc-
ture (i.e., target structural matrixRδ

d(·)− Jδ
d (·) and Hamiltonian

function Hd(·)) are designed. However, the approximate form
above is still implicitly defined in x+.

Remark 15: When the Hamiltonian function is quadratic, the
explicit approximate form associated to the implicit approximate
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form (52) given by

x+ =

(
I − δ

2
S
δ,[p]
J−R(f, x)P

)−1(
I +

δ

2
S
δ,[p]
J−R(f, x)P

)
x

does not recover the truncation at the order p ≥ 0 of the explicit
map eδfx = x+ F δ(x) in (12) with f(x) = (J(x)−R(x))P .

When the discrete-gradient function cannot be exactly com-
puted as a function ofx andx+, one defines approximate implicit
models of order (p, q) from the qth-order approximation of the
discrete gradient (1) along the trajectoriesx+ = eδfx so getting,
for q ≥ 0

∇̄[q]H
∣∣∣x+

x
:= ∇H(x) +

q∑
i=1

δi

(i+ 1)!
∇̄iH(x). (53)

Accordingly, we define for p, q > 0 the (p, q)-order port-
Hamiltonian form associated to (41)

x+ − x = δS
δ,[p]
J−R(f, x)∇̄[q]H

∣∣∣x+

x
(54)

that is explicitly defined as a function of x but again does not
coincide with the truncation at a certain order r ≤ q + p of the
map eδfx = x+ F δ(x) defined in (12). However, when p =
q = 0, (54) recovers the usual Euler approximate model x+ =
x+ δf(x), associated to (7).

VI. PORT-CONTROLLED HAMILTONIAN DYNAMICS

We discuss now port-controlled Hamiltonian (pcH) dynamics
and show the preservation under sampling of the energy-balance
equalities as well as their use in damping-feedback design. For
the sake of simplicity, we consider single-input single-output
systems even if all results hold true, with simple modifications,
in the general case.

Along with the literature (see [2] and the reference therein),
consider a continuous-time port-controlled Hamiltonian system
composed by the dynamics (7) with additional input-affine con-
trolled part and a conjugate output map; i.e.,

ẋ = (J(x)−R(x))∇H(x) + ug(x) (55a)

y = h(x) = g�(x)∇H(x) (55b)

where g(·) is a smooth vector field over Rn and u ∈ R. The
following well-known facts are recalled:

1) the dynamics (55a) satisfies the EBE

H(x(t))−H(x(0)) = −
∫ t

0

∇�H(x(s)R(x(s))

×∇H(x(s))ds+

∫ t

0

u(s)g�(x(s))∇H(x(s))ds

(56)

2) the system (55) is passive with storage functionH(x) and
dissipation rate d(x) = ∇H�(x)R(x)∇H(x); lossless
when R(x) ≡ 0.

On these bases, stabilizing strategies under output feedback
are developed in terms of passivity-based control (PBC) via
damping [8].

A discrete-time port-controlled Hamiltonian structure has
been recently introduced by the authors in [24]. Denoting by x+

and x+(u) the one step ahead unforced and forced evolutions,
respectively, the following definition is given.

Definition 5: A discrete-time port-controlled Hamiltonian
system is given by

x+(u) = x+ (Jd(x)−Rd(x))∇̄H
∣∣∣x+

x
+ ugd(x, u) (57a)

y = hd(x, u) = g�d (x, u)∇̄H
∣∣∣x+(u)

x+
(57b)

where gd(·, u) : Rn → Rn and hd(·, u) : Rn → R are smooth
functions of the state and the control u ∈ R.

By construction, the following holds true:
1) the dynamics (57a) satisfies the energy-balance equation,

i.e., for any integer k ≥ 1

H(xk)−H(x0) = −
k−1∑
i=0

∇̄�H
∣∣∣x+

i

xi

Rd(xi)∇̄H
∣∣∣x+

i

xi

+
k−1∑
i=0

uig
�
d (xi, ui)∇̄H

∣∣∣x+
i (ui)

x+
i

(58)

2) the system (57) is passive with storage function H(x)

and dissipation rate d(x) = ∇̄H�
∣∣∣x+

x
Rd(x)∇̄H

∣∣∣x+

x
; it is

lossless when Rd(x) ≡ 0.
Remark 16: When compared to the literature (e.g., [23]

and [41]), two main differences hold. The dynamics (57) is
defined in terms of the discrete gradient of the Hamiltonian
along the free evolution only, the conjugate output is described
in terms of the discrete gradient of the Hamiltonian along the
control-dependent part of the evolution only. Accordingly, one
gets passivity with respect to the so-defined conjugate output that
recovers the average passivating output map introduced in [35].

A. Sampled-Data pcH Dynamics

Theorem 3 extends to controlled dynamics as follows.
Theorem 5: Consider a continuous-time port-controlled

Hamiltonian system (55) and assume the control variable con-
stant over time intervals of amplitude δ; i.e., u(t) = uk, ∀t ∈
[kδ, (k + 1)δ[. Then, for all δ ∈]0, T �[, its sampled equivalent
model admits the discrete-time port-controlled Hamiltonian
structure as follows:

x+(u)− x = δSδ
J−R(f, x)∇̄H

∣∣∣x+

x
+ δgδ(x, u)u (59a)

yδ = hδ(x, u) = (gδ(x, u))�∇̄H
∣∣∣x+(u)

x+
(59b)

with δugδ(x, u) = eδ(f+ug)x− eδfx and Sδ
J−R(f, x) given in

(42). Moreover, the following properties hold:
1) the dynamics (59a) satisfies the EBE

H(xk)−H(x0) = − δ

k−1∑
i=0

∇̄�H
∣∣∣x+

i

xi

Sδ
J−R(f, xi)∇̄H

∣∣∣x+
i

xi

+ δ
k−1∑
i=0

ui(g
δ(xi, ui))

�∇̄H
∣∣∣x+

i (ui)

x+
i

(60)

2) the system (59) is passive with storage functionH(x) and

dissipation rate dδ(x) := ∇̄H�
∣∣∣x+

x
Rδ(f, x)∇̄H

∣∣∣x+

x
; it is

lossless when R(x) ≡ 0;
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3) whenever the system is zero-state-detectable, any feed-
back ū = γδ(x) solving the algebraic equality

ū=−κ
(
gδ(x, ū)

)� ∇̄H
∣∣∣x+(ū)

x+
, κ > 0 (61)

is a sampled-data PBC making x� asymptotically stable
with increasing damping; i.e., one gets in closed loop the
modified EBE, with ūi = γδ(xi)

H(xk)−H(x0) = −δ

k−1∑
i=0

∇̄�H
∣∣∣x+

i

xi

Sδ
J−R(f, xi)∇̄H

∣∣∣x+
i

xi

− δκ

k−1∑
i=0

∇̄H
∣∣∣x+

i (ūi)

x+
i

[gδ(xi, ūi)][g
δ(xi, ūi)]

�∇̄H
∣∣∣x+

i (ūi)

x+
i

.

Proof: (1) and (2) are an immediate consequence of the fact
that the sampled-data form (59) exhibits the same structure as
(57). (3) specifies to the sampled-data form (59), PBC strategies
developed in [35, Th. 4.1] for nonlinear discrete-time dynamics
(negative output feedback design with respect to suitably defined
passivating output map). �

Remark 17: Under ū = γδ(x) solution to (61), one gets

x+(ū)− x = δSδ
J−R(f, x)∇̄H

∣∣∣x+

x

− κδgδ(x, ū)(gδ(x, ū))�∇̄H
∣∣∣x+(ū)

x+

that does not properly exhibit a port-Hamiltonian structure of the
form (57). Nevertheless, it properly adds damping to the natural
one in free evolution through a well-structured term so getting
in closed loop the EBE as follows:

H(x+(ū))−H(x) = −δ∇̄�H
∣∣∣x+

x
Sδ
J−R(f, x))∇̄H

∣∣∣x+

x

− δκ∇̄�H
∣∣∣x+(ū)

x+
gδ(x, ū)(gδ(x, ū))�∇̄H

∣∣∣x+(ū)

x+
.

Remark 18: The PBC ū = γδ(x) is defined as the solution
to the nonlinear equality (61). Even though such an equality is
solvable in virtue of the implicit function theorem [35], exact
solutions are tough to compute in practice. However, as the
solution can be expressed through its series expansion in powers
of δ, computational approximations can be easily implemented
(see [35] for details).

Let us specify Theorem 5 to the LTI case.
Theorem 6: Consider the LTI port-controlled Hamiltonian

system

ẋ(t) = (J −R)Px+Bu

y = Cx = B�Px

with Hamiltonian H(x) = 1
2x

TPx. Then, its sampled equiva-
lent port-controlled Hamiltonian model is given by

x+(u)− x = δSδ
J−R∇̄H

∣∣∣x+

x
+ δBδu (62a)

yδ = [Bδ]�Px+ +
1

2
[Bδ]�PBδu (62b)

with x+ = eδ(J−R)Px, δBδ =
∫ δ

0 eτ(J−R)PBdτ , and Sδ
J−R as

in (47). In addition, the sampled-data PBC

ū = −κ

(
1 +

1

2
κ(Bδ)�PBδ

)−1

(Bδ)�Px+, κ > 0

solution to the damping equality (61) makes the closed-loop
dynamics asymptotically stable.

B. Sampled-Data Dirac Structure

The energy-balance equation (58) satisfied by the sampled
equivalent model to (59) can be recast through a discrete Dirac
structure formulation [15]. Let us first recall the definition of the
Dirac structure in the space of flows and efforts variables.

Definition 6 ([2]): Given a finite-dimensional linear space of
flows F and efforts E (with f ∈ F and e ∈ E), the space E being
the dual of F , then a subspace D ⊂ F × E is a Dirac structure
if it satisfies

1) e�f = 0, ∀(f, e) ∈ D;
2) dimD = dimF .

Accordingly, the Dirac structure associated with the
continuous-time port-controlled Hamiltonian dynamics (55) is
described [2] through three pairs of port variables representing
the energy storage (fS , eS), dissipation (fR, eR) and intercon-
nection with the environment (fI , eI) and satisfying⎛

⎝fS
fR
fI

⎞
⎠ =

⎛
⎝−J(x) −gR(x) −g(x)

g�R(x) 0 0

g�(x) 0 0

⎞
⎠
⎛
⎝eS
eR
eI

⎞
⎠

with skew symmetric graph over dimD = 2n+ 1⎛
⎝
⎛
⎝−ẋ

fR
y

⎞
⎠ ,

⎛
⎝ ∇H(x)

−r(x)fR
u

⎞
⎠
⎞
⎠ ∈ D (63)

for r(x) = r�(x)  0, gR(·) : Rn → Rn, and R(x) =
gR(x)r(x)g

�
R(x). Discrete-time Dirac structures can be

associated to port-controlled Hamiltonian systems of the form
(59) as described in [42, Th. 2.1]. Let us now show how the
continuous-time Dirac structure is transformed under sampling
by suitably defining storing, dissipating, and control ports,
associated with the sampled-data structure (59).

Theorem 7: Given a continuous-time dynamics (7) with Dirac
structure D of dimension 2n+ 1 as in (63), then for all δ ∈
]0, T �[, its sampled equivalent model (59) admits a discrete Dirac
structure Dδ of dimension 3n+ 1 described in terms of then
efforts and flow variables defined as follows:⎛

⎜⎜⎜⎝
⎛
⎜⎜⎝

−(x+ − x)

fδ
R

−(x+(u)− x+)

yδ

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

∇̄H|x+

x

−rδ(x)fδ
R

∇̄H|x+(u)
x+

u

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ ∈ Dδ

where Jδ(f, x) = skew(Sδ
J−R(f, x)), and Rδ(f, x) =

−sym(Sδ
J−R(f, x)) = gδR(x)r

δ(x)gδ�R (x) for rδ(x) =

rδ�(x)  0, gδR(·) : Rn → Rn, with a skew-symmetric graph⎛
⎜⎜⎜⎝
fδ
Sf

fδ
R

fδ
Su

fδ
I

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝
−Jδ(f, x) −gδR(x) 0 0

gδ�R (x) 0 0 0

0 0 0 −gδ(x, eδI)

0 0 gδ�(x, eδI) 0

⎞
⎟⎟⎠

×

⎛
⎜⎜⎜⎝
eδSf

eδR
eδSu

eδI

⎞
⎟⎟⎟⎠ .
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Proof: The proof exploits the splitting of the Hamiltonian
variation between two successive states into free and controlled
parts as

H(x+(u))−H(x) = (H(x+(u))−H(x+))

+ (H(x+)−H(x)).

Accordingly, one splits in the total energy storage the free
elements (fδ

Sf
, eδSf

) ∈ Fδ
Sf

× Eδ
Sf

, from the controlled ones

(fδ
Su

, eδSu
) ∈ Fδ

Su
× Eδ

Su
by, respectively, setting −eδ�Sf

fδ
Sf

=

∇̄�H|x+

x (x+ − x) and −eδ�Su
fδ
Su

= ∇̄�H|x+(u)
x+ (x+(u)− x+)

so verifying eδ�fδ = eδ�Sf
fδ
Sf

+ eδ�Su
fδ
Su

with −eδ�fδ =

∇̄�H|x+(u)
x (x+(u)− x). Regarding interconnection with the

environment through (fδ
I , e

δ
I) ∈ Fδ

I × Eδ
I , one sets by defini-

tion of the conjugate output yδ, eδ�I fδ
I = ∇̄�H|x+(u)

x+ (x+(u)−
x+) = uyδ so setting fδ

I = gδ�(x, eδI)e
δ and eI = u that

gives eδ�Su
fδ
Su

+ eδ�I fδ
I = 0. Regarding the dissipative ele-

ments, (fδ
R, e

δ
R) ∈ Fδ

R × Eδ
R, setting the dissipating constraints

eδR = −rδ(x)fδ
R and fR = gδ�R (x)eδSf

for some rδ(x) =

rδ�(x)  0 and gδR(·) : Rn → Rn such that Rδ(f, x) =
−sym(Sδ

J−R(f, x)) = gδR(x)r
δ(x)gδ�R (x), one recovers the

power balance equality

eδ�Sf
fδ
Sf

+ eδ�R fδ
R + eδ�Su

fδ
Su

+ eδ�I fδ
I = 0.

Finally, since x ∈ Rn and u ∈ R

dimDδ = dimFδ
Sf

+ dimFδ
R + dimFδ

Su
+ dimFδ

I = 3n+ 1.

�

VII. ILLUSTRATIVE EXAMPLES

In this section, two physical examples are worked out: the
gravity pendulum system with a constant structure matrix and
nonlinear Hamiltonian and the controlled rigid body with non-
constant structure matrix and quadratic Hamiltonian. Simula-
tions are carried out to highlight advantages of the proposed
model compared with the one of the literature (e.g., [23], [32],
[38], [40], and [41]). In the lines of Section VI, digital stabiliz-
ing controllers are designed to highlight the advantages of the
proposed structures in feedback design.

A. Gravity Pendulum

The gravity pendulum described by a separable Hamiltonian
is an interesting case study to characterize the series expansion of
Sδ
J−R(f, x) in (42). Setting x = col{x1, x2} = col{ϑ,ml2ϑ̇},

where θ is the angle between the vertical axis and the rod of the
pendulum, the Hamiltonian dynamics is given by

ẋ =

(
0 1

−1 −r

)
∇H(x) (64)

with Hamiltonian and gradient functions

H(x) =
1

2ml2
x2
2 +mgl(1− cos(x1)),

∇H(x) =
(
mgl sin(x1)

1
ml2x2

)
and damping coefficient r ≥ 0. For notational simplicity, we
assume ml2 = 1 and mgl = 1. According to Proposition 1,
both the discrete gradient ∇̄H|x+

x and the discrete Jacobian

Fig. 1. Pendulum: RMSE in the state x and Hamiltonian H at the
sampling instants δ ∈ [0, π

2 ] with x0 = col( 32π, 0).

J̄ [∇H]|x+

x in (4) and (5), respectively, can be exactly computed
so getting

∇̄H|x+

x =
(
− cos(x+

1 )−cos(x1)

x+
1 −x1

x+
2 +x2

2

)
,

J̄ [∇H]|x+

x =

(
sin(x+

1 )−sin(x1)

x+
1 −x1

0

0 1

)
. (65)

From Theorem 3 and (52), one computes for p = 2, the approx-
imate system in O(δ4) with matrix

S
δ,[2]
J−R(f, x)=

(
0 1− 1− r

)
+

δ2

12

( −r (cos(x1)− r2)

r2 − cos(x1)r
3 − r cos(x1)

)
(66)

yielding the dissipation rate

H(x+)−H(x) = −δ

4
r

(
1 +

δ2

6
(cos(x1)− 1

2
r2)

)

(x+
2 + x2)

2 − r
δ3

12

(cos(x+
1 )− cos(x1))

2

(x+
1 + x1)2

+O(δ4) ≤ 0.

From the aforementioned expressions, whenever the pendulum
is undamped (r = 0), the sampled equivalent dynamics is clearly
conservative; namely, H(x+)−H(x) = 0. For completeness,
the Euler-like model proposed in [23] and [39] is recovered by
setting p = 0 in (52), so yielding dissipation H(x+)−H(x)=
− δ

4r(x
+
2 + x2)

2 +O(δ2).
1) Simulations: Fig. 1 shows the RMSE in the state and

Hamiltonian evolutions at the sampling instants, between the
approximate sampled-data model (52) with p = 2 and p = 0 and
the continuous-time one (64). More in detail, the continuous-
time (CT) dynamics (64) is compared with the approximate
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Fig. 2. Pendulum: RMSE in the state x and Hamiltonian H at the
sampling instants δ ∈ [0, π

3 ] with x0 = col( 32π, 0) and r = 0.

model (DT in O(δ4)) given in Theorem 3 with S
δ,[2]
J−R(f, x) and

with the Euler-like (DT EL) of the literature S
δ,[0]
J−R(f, x). This

is performed for both the dissipative and conservative cases,
respectively. From Fig. 1, the performances improvement is
clear. In the conservative case (r = 0), both (DTO(δ4)) and (DT
EL) preserve the energy conservation property over the function
H(x) = 0 although the advantage of the (DT O(δ4)) model is
notable for state matching achievement as depicted in Fig. 1(b).

2) Gradient Approximation: In what follows, we illustrate
the role of approximating Sδ

J(f, x) and ∇̄H|x+

x when obtaining
exact solutions is not possible. When approximating the discrete
gradient in (53) up to q = 2, one gets

∇̄[1]H|x+

x =
(
sin(x1)x2

)
+

δ

2

(
cos(x1)x2

−(sin(x1) + rx2)

)

∇̄[2]H|x+

x = ∇̄[1]H|x+

x −

× δ2

4

(
2
3 sin(x1)x

2
2 + cos(x1)(sin(x1) + rx2)

cos(x1)x2 − r sin(x1)− r2x2

)
.

In Fig. 2, the improvement is clear when increasing the orders
of approximation; p = 2, q = 2 versus p = 0, q = 1.

3) Digital Feedback Design: To highlight the improvement
under digital damping (performed over the proposed conjugate
output), we consider the controlled gravity pendulum dynamics

ẋ =

(
0 1

−1 0

)
∇H(x) +

(
0

1

)
u, y =

(
0 1

)
x (67)

with g(x) = B = (0 1)� deduced from (64) with r = 0. Ac-
cording to Theorem 5, the sampled-data equivalent model is of
the form (59) with S

δ,[2]
J−R(f, x) in (66)

gδ(x, u) =

(
gδ1(x, u)

gδ2(x, u)

)
= δ

(
0

1

)
+

δ2

2

(
1

0

)
− δ3

6

(
0

cosx1

)

and discrete gradient evaluated from x+ to x+(u) as

∇̄H|x+(u)
x+ =

(
sinx1

x2

)
+ δ

(
x2 cosx1

1
2u− sinx1

)

+
δ2

2

(− sinx1x
2
2 − cosx1(sinx1 +

1
2u)

−x2 cosx1

)
+O(δ3).

Fig. 3. Pendulum: Stabilization with the sampled period δ = π
2 , initial

condition x(0) = col( 32π, 0), and κ = 1.

Finally, thanks to approximations in O(δ3), the digital PBC
feedback solution to (61) is given by

ū = − κx2 +
δ

2
κ(κx2 + sinx1)

+
δ2

6
κ

(
x2 cosx1 − 3

2
κ(κx2 + sinx1)

)
+O(δ3).

(68)

Accordingly, the origin is made asymptotically stable in a closed
loop. The improvements achieved under digital damping per-
formed over the proposed sampled port-Hamiltonian represen-
tation are illustrated in Fig. 3 with respect to more usual feedback
strategies described in [23], [41], and [43] given by

ul = − κB�∇̄H|x+(ul)
x = −κx2 +

δ

2
κ(κx2 + sinx1)

+
δ2

4
κ (x2 cosx1 − κ(κx2 + sin(x1))) +O(δ3). (69)

B. Controlled Rigid Body

Consider the dynamics of the angular velocities of a rigid
body in the absence of gravity [2] given by

ẋ =

⎛
⎝−r1 −x3 x2

x3 −r2 −x1

−x2 x1 −r3

⎞
⎠∇H(x) (70)
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Fig. 4. Rigid Body with δ = 10−2, r1 = r2 = 0, and r3 = 0.2.

where x = (x1, x2, x3) denote the components of the angular
momentum along the three principal axes, r1, r2, r3 ≥ 0 denote
the decay of the angular momentum, and H(x) describes the
kinetic energy with inertia Ix1

, Ix2
, Ix3

> 0, i.e.,

H(x) =
x2
1

2Ix1

+
x2
2

2Ix2

+
x2
3

2Ix3

. (71)

Note that the unforced dynamics (70) with (71) is dissipative for
some ri > 0, and conversely, conservative for all ri = 0.

In the uncontrolled case, invoking Theorem 5.1 and Remark
5.3, one computes Sδ,[1]

J−R(f, x) = S(x) + δ
2S1(x) in (52) with

S1(x) =⎛
⎜⎜⎝

Ix3
x2
2+Ix2

x2
3

Ix2
Ix3

− Ix2
r2x3+Ix3

x1x2

Ix2
Ix3

Ix3
r3x2−Ix2

x1x3

Ix2
Ix3

Ix1
r1x3−Ix3

x1x2

Ix1
Ix3

Ix3
x2
1+Ix1

x2
3

Ix1
Ix3

− Ix3
r3x1+Ix1

x2x3

Ix1
Ix3

− Ix1
r1x2+Ix2

x1x3

Ix1
Ix2

Ix2
r2x1−Ix1

x2x3

Ix1
Ix2

Ix2
x2
1+Ix1

x2
2

Ix1
Ix2

⎞
⎟⎟⎠.

The Euler-like model [23], [39] is recovered with p = 0 in (52).
1) Simulations: Simulations have been performed fixing

the parameters of the rigid body as in [23] (Ix1
= 1

3 , Ix2
=

1
2 , Ix3

= 1) and initial conditions x0 = (25, 25, 25). The im-
provement due to computing a sampled dynamics in O(δ3)
rather than in O(δ2) is depicted in Fig. 4 that shows the phase
portrait and the Hamiltonian evolution. The benefit of our model,
with respect to the one with p = 0, stands in a better preservation
of the state trajectory and the decay of the dissipation rate as
clearly shown by simulations.

2) Digital Feedback Design: Consider the port-controlled
dynamics of the form [13]

ẋ =

⎛
⎝ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞
⎠∇H(x) +

⎛
⎝g1
g2
g3

⎞
⎠u (72a)

y =
g1
Ix1

x1 +
g2
Ix2

x2 +
g3
Ix3

x3 (72b)

where y is the passive output. According to Theorem 6.1, the
digital passivity-based feedback stabilizing the angular velocity
at zero is the solution to the equality (61) detailed in O(δ2) as

ū = − κ

( 3∑
i=1

gi(x
+
i (ū) + x+

i )

2Ixi

− δ(g2x3+g3x2)(Ix2
−Ix3

)(x+
1(ū)+x+

1 )

4Ix2
Ix3

− δ((g1Ix3
−g3Ix1

)x3+g3(Ix3
−Ix1

)x1) (x
+
2(ū)+x+

2 )

4Ix1
Ix3

− δ(g1x2 + g2x1)(Ix1
− Ix2

)(x+
3 (ū) + x+

3 )

4Ix1
Ix2

)
(73)

when setting

gδ(x, u) =

⎛
⎝g1
g2
g3

⎞
⎠

+
δ

2

⎛
⎜⎜⎝

g2Ix2
x3+g3Ix2

x2−g2Ix3
x3−g3Ix3

x2

Ix2
Ix3

g1Ix3
x3−g3Ix1

x3−g3Ix1
x1+g3Ix3

x1

Ix1
Ix3

g1Ix1
x2+g2Ix1

x1−g1Ix2
x2−g2Ix2

x1

Ix1
Ix2

⎞
⎟⎟⎠+O(δ2).

3) Simulations: The solution to (73) truncated in O(δ3) is
injected into the continuous-time dynamics (72) to digitally
asymptotically stabilize the equilibria. As in [23], we assume
g1 = Ix1

= 1
3 , g2 = Ix2

= 1
2 , g3 = Ix3

= 1, κ = 1, and initial
conditions x0 = (25, 25, 25) so that (73) becomes

ū =−ρx+ δ

2

(
sIρx+

x1

Ix1

(x2−x3)+
x2

Ix2

(x3−x1)

+
x3

Ix3

(x1−x2)

)

− δ2

6

(
sI
2
+

(
Ix1

ρx+
x2x3

Ix2

− x2x3

Ix3

)
(
sI+

x2−x3

Ix1

− x2

Ix2

+
x3

Ix3

)

+

(
Ix2

ρx− x1x3

Ix1

+
x1x3

Ix3

)(
sI+

x1

Ix1

+
x3−x1

Ix2

− x3

Ix3

)

+

(
Ix3

ρx+
x1x2

Ix1

− x1x2

Ix2

)(
sI− x1

Ix1

+
x2

Ix2

+
x1−x2

Ix3

))

(74)

with ρx = x1 + x2 + x3 and sI = Ix1
+ Ix2

+ Ix3
. We have

considered the same simulation as in [23] with an increased
step-size up to δ = 0.675. In Fig. 5, the comparison is
made with respect to the digital control, respectively, de-
scribed in [22] and [23]. Differently from the control con-
sidered in the literature, the proposed control (74) shows
the preservation of the phase portrait under digital feedback
and a decay of the Hamiltonian function at the sampling
instants.
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Fig. 5. Rigid body under digital control for δ = 0.0675.

VIII. CONCLUSION

New forms describing sampled equivalent models of
continuous-time gradient and port-Hamiltonian dynamics have
been provided. It has been shown that it is always possible
to recover under sampling a discrete-time equivalent model
exhibiting a discrete-time port-Hamiltonian structure with re-
spect to the same Hamiltonian function as in continuous time
with modified structure matrices that depend on the sampling
period. The deduced model preserves, beyond the structure, the
same energetic properties as the continuous-time one at all sam-
pling instants, conservativeness, or dissipation. The approach is
constructive through an algorithmic procedure and allows the
definition and computation of approximate models. The case of
port-controlled Hamiltonian systems has been briefly discussed
to show the benefits of the proposed approach in stabilization
through digital damping. As an interesting outcome, we stress
that the sampled-data equivalent model we propose evolves over
a Dirac structure when properly defining effort and flow vari-
ables into the storing and dissipating ports and the environmental
interaction through the input. Perspectives concern the use of
these models to further investigate energy management-based
control strategies of port-controlled-Hamiltonian systems along
the lines of preliminary results set for purely discrete-time sys-
tems [44]. Further perspectives concern the time discretization
of distributed port-Hamiltonian systems [45], [46].
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