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• Hyperspectral imaging analytical pro
tocols for efficient microplastics 
detection

• Comparative study of spatial resolu
tions, spectral ranges and classification 
models

• Definition of the detection limits for 
microplastics in different analytical 
setups

• Microplastics >250 μm can be identified 
with 150 μm/pixel in 1000–1700 nm by 
PLS-DA.

• Microplastics >100–200 μm can be 
identified with 30 μm/pixel in 
1000–2500 nm by ECOC-SVM.
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A B S T R A C T

Microplastics (MPs) pollution is a global and challenging issue, necessitating the development of efficient 
analytical strategies for their detection to monitor their environmental impact.

This study aims to define an optimal analytical protocol for characterizing MPs by hyperspectral imaging 
(HSI), comparing different setups based on spatial resolution, spectral range and classification models. The 
investigated MPs include polymers commonly found in the environment, such as polystyrene (PS), polypropylene 
(PP) and high-density polyethylene (HDPE), subdivided in three size classes (1000–2000 μm, 500–1000 μm, 
250–500 μm). Furthermore, MP particles with diameters ranging from 30 to 250 μm were assessed to determine 
the limit of detection (LOD) in the different configurations. Hyperspectral images were acquired with two spatial 
resolutions, 150 and 30 μm/pixel, and two spectral ranges, 1000–1700 nm (NIR) and 1000–2500 nm (SWIR). 
Three classification models, Partial Least Square-Discriminant Analysis (PLS-DA), Error Correction Output 
Coding-Support Vector Machine (ECOC-SVM) and Neural Network Pattern Recognition (NNPR) were tested on 
the acquired images. The correctness of these models was evaluated by prediction maps and statistical param
eters (Recall, Specificity and Accuracy). The results demonstrated that for MP particles larger than 250 μm, the 
optimal setup is a spatial resolution of 150 μm/pixel and a spectral range of 1000–1700 nm, utilizing a linear 
classification model like PLS-DA. This approach offers accurate predictions while being time- and cost-efficient. 
For MPs smaller than 250 μm, a higher spatial resolution of 30 μm/pixel with a spectral range of 1000–2500 nm 
and a non-linear classification method like ECOC-SVM is preferable. The LOD is 250 μm for the 150 μm/pixel 
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resolution and ranges from 100 to 200 μm for the 30 μm/pixel resolution. These findings provide a valuable 
guide for selecting the appropriate HSI acquisition conditions and data processing methods to optimally char
acterize MPs of different sizes.

1. Introduction

Microplastics (MPs) can be defined as plastic particles of primary or 
secondary origin ranging in size between 5.000 and 0.1 μm (Munoz- 
Pineiro, 2018). MPs pollution has significantly increased over the last 
century in many marine and terrestrial environments (Du et al., 2020; 
Hale et al., 2020; Issac and Kandasubramanian, 2021; Welsh et al., 2022; 
Cheung and Not, 2023; Christian and Köper, 2023; Rani-Borges et al., 
2023), and they have even been detected in humans (Ragusa et al., 
2021; Vethaak and Legler, 2021; Liu and You, 2023). For these reasons, 
global attention to MPs as an emerging ubiquitous pollutant is steadily 
growing and there is the need to find efficient, fast and accurate methods 
to detect and analyze these particles in different environmental 
matrices.

In recent years, several studies have been carried out on analytical 
techniques useful for detecting and quantifying MPs (Zarfl, 2019; Kavya 
et al., 2020; Yang et al., 2021; Du et al., 2022; Huang et al., 2023; Lee 
et al., 2023). However, the great variety in size, shape and composition 
of MPs still makes their recognition a very complex challenge. In this 
context, analytical methods that allow the identification of the type of 
polymer are an essential part of MPs studies.

In recent years, hyperspectral imaging (HSI) has emerged as a 
powerful technique for the analysis of MPs in environmental samples 
(Serranti et al., 2018; Serranti et al., 2019; Faltynkova et al., 2021; Fiore 
et al., 2022; Faltynkova and Wagner, 2023). This advanced sensing 
technique combines the spatial information of digital imaging with the 
spectral information of spectroscopy, collecting a spectral signature for 
every pixel of the acquired image in the investigated wavelength range 
with a high spectral resolution. The acquired three-dimensional datasets 
are usually called hypercubes and they are processed in order to extract 
the required information by chemometric logics (Datta et al., 2022; 
Ozdemir and Polat, 2020; Calvini et al., 2019; Gewali et al., 2018; Amigo 
et al., 2013).

HSI working in the NIR-SWIR regions (1000–1700 and 1000–2500 
nm) has been successfully applied to identify plastic waste by polymer in 
the recycling industry (Bonifazi et al., 2023; Cucuzza et al., 2023). This 
proven capability can be transferred to address the growing challenge of 
microplastic analysis, thanks to the flexibility of HSI to be applied from 
macro- to micro- scale, modifying field of view and pixel resolution, 
according to the size of the analyzed samples (Faltynkova et al., 2021; 
Vidal and Pasquini, 2021; Shan et al., 2019; Schmidt et al., 2018). In 
addition, HSI technique is highly attractive due to its minimal sample 
preparation required for MPs acquisition. Despite the great advantages 
of HSI in MPs identification, especially in the reduction of analysis time 
in comparison with the most popular techniques usually applied, such as 
FT-IR and Raman spectroscopy, there is the need to define a standard
ized protocol for MPs analysis by HSI. The main aspects that must be 
better investigated for the definition of a standardized methodology are 
the appropriate selection of: 1) spatial resolution (i.e.: image pixel size); 
2) spectral range and 3) classification model for data processing.

Spatial resolution in hyperspectral imaging systems refers to the 
sensor's ability to distinguish spatial details in the acquired image. It is 
determined by the size of the pixels in the sensor, affecting the sharpness 
and detail of images (Lodhi et al., 2019). The higher the spatial reso
lution, the smaller the details that can be resolved. However, increasing 
the spatial resolution often reduces the spectral resolution or sensitivity 
of the sensor. Higher spatial resolution means that the energy detected 
by each pixel is distributed over a smaller area, which can reduce the 
signal-to-noise ratio and therefore image quality (Chen et al., 2023). The 
selection of the spatial resolution of the HSI device is essential for the 

definition of the MPs particle limit of detection (LOD), ensuring that the 
system is optimized for detecting the smallest possible particles, facili
tating at the same time the comparison of results across different studies. 
It is important to highlight that usually the spatial resolution does not 
coincide with the LOD as a particle can require more than just one pixel 
to provide a significant spectral signature (Faltynkova et al., 2021).

The choice of the spectral range is important both from an economic 
and technical point of view. A HSI sensor working in the spectral range 
of 1000–1700 nm is less expensive and is widely used for plastic 
recognition in various sectors. However, expanding the spectral range 
up to 2500 nm can significantly improve plastic recognition, particularly 
when the signal-to-noise ratio is low (Tasseron et al., 2021). Evaluating 
and comparing the results obtained in the identification of MPs by HSI 
working in NIR and SWIR ranges, respectively, can allow to assess the 
capability to distinguish between different polymers in the two spectral 
ranges, based on their typical spectral signatures, also determining the 
LOD of MPs particles in each spectral range. Based on the results, it could 
be possible to define if the wavelength range of 1700–2500 nm must be 
included for the optimal classification and to select the most cost- 
effective solution according to the investigated MPs samples.

Finally, the selection of the most appropriate classification model is a 
crucial aspect for material recognition by HSI. Linear models, such as 
partial least squares-discriminant analysis (PLS-DA), are simple, quick to 
train, and easy to interpret. However, they are limited in handling the 
complexities of hyperspectral data, where relationships between vari
ables can be nonlinear. Nonlinear models, such as nonlinear support 
vector machines or neural networks, offer greater flexibility in capturing 
these complexities and improve recognition accuracy (Cao et al., 2017). 
However, the training process can be more complex in nonlinear models 
and increases the risk of overfitting if the hyperspectral data have a 
linear trend. The comparison of different classification models for data 
processing can help to identify which model provides the most reliable 
results according to the size of MPs particles, finding a balance between 
computational complexity and accuracy and reducing in this way the 
analysis time.

The primary objective of this study is therefore to investigate the 
above-mentioned aspects in order to define a valuable protocol for the 
characterization of MPs by HSI, as a rapid, non-invasive and non- 
destructive analytical method. This protocol aims to provide valuable 
information on HSI-based analytical procedure to improve computa
tional and instrumental efficiency in MPs identification of different 
sizes. MPs classification results obtained by different HSI-based analyt
ical setups are compared and discussed, with reference to the selection 
of two different spatial resolutions and spectral ranges and three clas
sification models, whose efficiency was evaluated in terms of prediction 
maps and statistical parameters (Recall, Specificity and Accuracy). 
Finally, a LOD analysis for the different setups was carried out, defining 
the optimal analytical conditions for MPs particles ranging from 30 to 
250 μm.

2. Materials and methods

2.1. Microplastic samples preparation

The studied MPs samples were obtained from the comminution of 
post-consumer plastic packaging selected among the most widespread 
polymers in the environment, such as PS, PP and HDPE (Duis et al., 
2016; Rytelewska et al., 2022). Size reduction process was performed 
using a cutting mill (SM 2000, Retsch GmbH, Germany). For each 
studied polymer, 3 size classes were prepared using stacked sieves, i.e., 
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Fig. 1. Selected MPs of the three polymers (PS, PP and HDPE) for each size class (isize 1: − 2000 μm +1000 μm; size 2: − 1000 μm +500 μm; size 3: − 500 μm +250 
μm) disposed on a black background both scattered and bulk to build the calibration dataset (a) and disposed in line to create the validation dataset (b).
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size 1: − 2000 μm +1000 μm; size 2: − 1000 μm +500 μm; size 3: − 500 
μm + 250 μm. Selected MPs particles of the three polymers for each size 
class were disposed on a black background both scattered and bulk to 
build the calibration dataset (Fig. 1a) and in line (Fig. 1b) to build the 
validation dataset, enhancing discrimination capabilities of the smallest 
particles and considering the variance related to their three-dimensional 
nature and signal disturbances arising from particle proximity.

Furthermore, MPs particles with a diameter from 30 to 250 μm were 
selected under a stereomicroscope (Fig. 2) to evaluate the LOD for the 
different HSI architecture set-up (in terms of investigated spectral range, 
spatial resolution and classification model).

2.2. Analytical methods

2.2.1. Hyperspectral imaging architecture setups
Image acquisitions were carried out using the pushbroom sensor 

“Sisuchema XL™ Chemical Imaging Workstation”, embedding an 
ImSpector™ N25E (Specim®, Finland), operating in the SWIR range 
(1000–2500 nm), coupled with a MCT camera (320 × 240 pixels) and 
located at the Raw Materials Laboratory (RawMaLab) of the Department 
of Chemical Engineering, Materials & Environment (DICMA) of Sapi
enza University of Rome. The number of acquired spectral bands is 240, 
with a spectral resolution of 10 nm. Hyperspectral images were acquired 
at two different spatial resolutions, using two different objectives: 1) a 
31 mm lens, covering a 5 cm field of view (FOV) corresponding to a 
spatial resolution of 150 μm/pixel and a scanning speed of 17.35 mm/s; 
2) a macro lens, covering a 1 cm FOV, corresponding to a spatial reso
lution of 30 μm/pixel and a scanning speed of 2.55 mm/s. A diffused 
line-illumination unit was adopted optimizing the imaging of various 
surfaces. Reflectance of hypercubes is automatically set up by an inter
nal standard reference target.

2.2.2. Hyperspectral data handling and analysis
Different hyperspectral images of MPs, including PS, PP and HDPE 

particles, considering the three investigated size classes (size 1, 2 and 3), 
were acquired at two different spatial resolutions (i.e., 150 μm/pixel and 
30 μm/pixel, respectively), with two different particle grouping, i.e. 
scattered and bulk, in order to create the calibration and validation 
datasets. The datasets were acquired in the spectral range 1000–2500 
nm and they were then reduced to obtain the range 1000–1700 nm, 
resulting in distinct datasets for each of the two spectral ranges.

Two mosaic calibration datasets (Fig. S1) were generated, one for 
each spatial resolution, comprising 18 hyperspectral images (i.e. 3 
polymers × 3 size classes x 2 different particle grouping). The di
mensions of the mosaic calibration dataset acquired at 150 μm/pixel are 
710 × 2611 pixels with a size of 3.8 GB for the dataset in the range 
1000–2500 nm and 1.7 GB for the dataset in the range 1000–1700 nm. 
The dimensions of the mosaic calibration dataset acquired at 150 μm/ 
pixel are 2017 × 2880 pixels with a size of 11.95 GB for the dataset in 
the range 1000–2500 nm and 5.3 GB for the dataset in the range 
1000–1700 nm.

Furthermore, a mosaic validation dataset was created consisting of 9 

Fig. 1. (continued).

Fig. 2. Selected MPs of the three polymers with diameters ranging from about 
30 to 250 μm used for the LOD evaluation.
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hyperspectral images (i.e.: 3 polymers × 3 size classes), for both the 
spatial resolutions, containing selected MP particles disposed in line and 
employed to evaluate the prediction performances of the classifiers in 
identifying MPs of different sizes. The dimensions of the mosaic vali
dation dataset acquired at 150 μm/pixel are 748 × 367 pixels with a size 
of 544.5 MB for the dataset in the range 1000–2500 nm and 242.96 MB 
for the dataset in the range 1000–1700 nm. The dimensions of the 
mosaic validation dataset acquired at 30 μm/pixel are 1597 × 1491 
pixels with a size of 4.9 GB for the dataset in the range 1000–2500 nm 
and 2.2 GB for the dataset in the range 1000–1700 nm.

Finally, to evaluate the LOD of MP particles, a specific test was 
carried out on individual particles with size ranging from 30 to 250 μm. 
These particles were classified applying all the developed models in the 
two considered spatial resolutions and spectral ranges.

The HSI data processing was carried out using different tools running 
inside MATLAB® environment (version R2022b, The Mathworks, Inc., 
Natick, MA, USA), namely: PLS toolbox (ver. 9.2 Eigenvector Research, 
Inc., Wenatchee, WA, USA) for PCA and PLS-DA, and Statistics and 
Machine Learning Toolbox™ for ECOC-SVM and NNPR.

2.2.2.1. Image pre-processing. The pre-processing algorithms were cho
sen among those most applied to NIR data (Rinnan et al., 2009; Esquerre 
et al., 2012; Vidal and Amigo, 2012; Amigo et al., 2015), including those 
related to plastic samples (Serranti et al., 2012; Vidal et al., 2012; Ser
ranti et al., 2020; Bonifazi et al., 2022). In particular, the combination of 
Standard Normal Variate (SNV) (Barnes et al., 1989), 1st Derivative 

(Savitzky and Golay, 1964) (window of 15 points) and Mean Center 
(MC) (Jolliffe, 1986) was used to highlight the spectral differences be
tween the studied classes of polymers and to remove anomalous values. 
SNV allows to solve scaling or gain effect due to path length and scat
tering effects, detector changes, or other instrumental sensitivity effects. 
Derivative is an algorithm used to remove insignificant baseline signal 
from data. MC was used to center the data, in fact it is a method used to 
eliminate the data offset which is not of interest for the variance data 
interpretation (Bro and Smilde, 2003; Amigo et al., 2015).

2.2.2.2. Principal Component Analysis (PCA). PCA was utilized with 
explorative purposes and to evaluate the best pre-processing strategy 
according to the separation in the score plots of the considered classes (i. 
e., Background, PS, PP and HDPE) and to reduce the dimensionality of 
the data in the ECOC-SVM and NNPR classifiers. PCA is an unsupervised 
method that allows compression of the data dimensionality at the same 
time reducing to a minimum the loss of information, projecting samples 
into a lower dimensional subspace where the axes, called Principal 
Components (PCs), point in the maximal variance direction. The loading 
vectors, which are the coefficients of the original variables in each 
principal component, indicate the contribution of each feature to the 
PCs and thus help in understanding the underlying structure of the data. 
Looking at the PCA score plot, it is possible to detect similarities among 
samples: the more they are grouped, the more they have similar spectral 
behavior (Jolliffe, 2002; Amigo et al., 2013; Bro and Smilde, 2014).

Fig. 3. Average raw reflectance spectra in the 1000–1700 nm spectral range of the calibration dataset at 150 μm/pixel resolution (a) and at 30 μm/pixel resolution 
(b); average raw reflectance spectra in the 1000–2500 nm spectral range of the calibration dataset at 150 μm/pixel resolution (c) and at 30 μm/pixel resolution (d).
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2.2.2.3. Classification models. Three types of four-class (Background, 
PS, PP and HDPE) classification models were selected, characterized by 
different data processing and approaches: PLS-DA, ECOC-SVM and 
NNPR. In detail, PLS-DA was selected as the most common classification 
model based on data covariance (Ballabio and Consonni, 2013). PLS-DA 
is a supervised method that needs prior knowledge of the data to classify 
samples into predefined and known classes (Barker and Rayens, 2003; 
Ballabio and Consonni, 2013). It is a classification method that combines 
the partial least squares regression features with the discriminant abil
ity. In order to evaluate the model complexity and choose the appro
priate number of Latent Variables (LVs), each PLS-DA model was cross- 
validated using the Contiguous block method. ECOC-SVM was selected 
because it has the benefit of non-linearly mapping the sample to the 
higher dimensional space for dealing with a non-linear relationship 
between observation and classes (Mishra et al., 2018). ECOC-SVM is a 
classification method composed by two parts. The first part, called 
“ECOC”, represents a coding method that treats each binary classifica
tion model as a transmission channel and converts samples through the 
output codes to their correct categories allowing to convert multi-class 
problems into multiple binary problems. The second part, named 
“SVM”, represents the binary classification that creates boundaries be
tween sample responses to provide a class region based on classification 
functions generated from the information available for each sample. 
These functions and boundaries can then predict new samples (Deng 
et al., 2017; Duan et al., 2021). Finally, NNPR was selected as one of 
deep learning-based methods that achieves promising performances 
with high-dimensional data, such as hyperspectral images (Hu et al., 
2015). NNPR is a novel research direction in the field of pattern 

recognition, it has many advantages compared to the traditional pattern 
recognition methods, such as robustness, efficient fault-tolerant and self- 
learning (Zhou et al., 2016). Generally, a complete NNPR architecture is 
divided into three layers, namely, input, hidden and output layers. These 
neurons are connected by links with weights that are selected to meet 
the expected relationship between input and output neurons (Li et al., 
2014; Chang et al., 2013). Here the customized network of “Patternnet” 
in Matlab was used, solving the pattern recognition problem using two- 
level feed-forward networks. For the weight initialization, the Nguyen- 
Widrow initialization algorithm was used. The activation function and 
training algorithm for feed-forward were the tangent sigmoid and 
Levenberg-Marquardt method, respectively. For the NNPR model, 
dimensionality reduction through PCA reduced sensitivity to variations 
in hyperparameters, such as the number of neurons and the learning 
rate, thus simplifying its construction and decreasing computational 
load. To optimize hyperparameters, the calibration dataset was split into 
70 % for training and 30 % for validation. Model performance was 
evaluated using the cross-entropy error, which measures the difference 
between predicted probabilities and actual class probabilities, with a 
layer size set to 30. Finally, the model was validated on an external 
dataset, using the same approach as for PLS-DA and ECOC-SVM.

2.2.2.4. Performance metrics. In a 4-class classification model, True 
Positives (TP), True Negatives (TN), False Positives (FP) and False 
Negatives (FN) are calculated for each class by treating one class as 
positive and all others as negative. TP refers to instances correctly 
classified in the current class, TN are instances that belong to other 
classes and are correctly excluded from the current class, FP are 

Fig. 4. PCA score plots of calibration data in the spectral range from 1000 to 1700 nm at 150 μm/pixel resolution (a) and 30 μm/pixel resolution (b), PCA score plots 
of calibration data in the spectral range from 1000 to 2500 nm at 150 μm/pixel resolution (c) and at 30 μm/pixel resolution (d).
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Fig. 5. Predicted images of the validation dataset at 150 μm/pixel resolution, in the spectral ranges of 1000–1700 nm (a) and (b) 1000–2500 nm, obtained by PLS- 
DA, ECOC-SVM and NNPR. The colored boxes highlight detailed results for each classifier, useful for comparing the misclassification errors among them.
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instances from other classes incorrectly classified as belonging to the 
current class and FN are instances of the current class incorrectly clas
sified as belonging to other classes. From the values of TP, TN, FP and 
FN, Recall (or Sensitivity in binary classification), Specificity, and Ac
curacy can be derived. Recall is defined as the number TP divided by the 
sum of TP and FN. Specificity is the number of TN divided by the sum of 
TN and FP. Accuracy is the proportion of correctly classified instances 
(both TP and TN) relative to the total number of instances (TP, TN, FP, 
FN), representing the overall effectiveness of the classification model 

(Eigenvector, 2018). These metrics range from 0 to 1, with 1 indicating 
the ideal value. The parametric performance of each developed classi
fication model was calculated using a pixel-based approach, considering 
calibration (Cal) and cross-validation (CV) for the training set, as well as 
prediction (Pred) for the validation set.

Fig. 6. Predicted images of the validation dataset at 30 μm/pixel resolution, in the spectral ranges of 1000–1700 (a) and 1000–2500 nm (b), obtained by PLS-DA, 
ECOC-SVM and NNPR. The colored boxes highlight detailed results for each classifier, useful for comparing the misclassification errors among the three classifiers.
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3. Results and discussion

3.1. Datasets spectral features and PCA results

The average raw reflectance spectra of the studied classes (i.e. 
Background, PS, PP and HDPE) in the spectral range 1000–1700 and 
1000–2500 nm of the calibration dataset at 150 μm/pixel and 30 μm/ 
pixel (Fig. 3a-b and c-d, respectively) show very low differences, mainly 
related to the reflectance levels.

The spectra of PP and HDPE from 1000 to 1700 nm range are mainly 
characterized by aromatic C–H and C–H2 stretch of the third and 
second overtone, while extending the range until 2500 nm it is possible 

to obtain the information regarding C–H bending and C–H stretch in 
the first combination region (Miller, 1991; Workman and Weyer, 2012; 
Bonifazi et al., 2018; Bonifazi et al., 2023; Beć et al., 2021). PS spectrum 
from 1000 to 1700 nm range is mainly characterized by C–H2 stretch 
and C–H2 deformation of third and second overtone, while extending 
the range until 2500 nm it is possible to obtain the information 
regarding aromatic C–H stretch plus C–H bending of first overtone and 
aromatic C–H stretch plus sum band (Miller, 1991; Weyer, 2007; 
Workman and Weyer, 2012; Beć et al., 2021). The black background 
shows a low and flat reflectance signal in both the investigated wave
length ranges. All these spectral characteristics are emphasized in the 
pre-processed spectra for both magnifications and spectral ranges, as 

Fig. 6. (continued).
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shown in Fig. S2.
Fig. 4 shows the PCA score plots for the four calibration datasets (i.e.: 

150 μm/pixel and 1000–1700 nm (Fig. 4a), 30 μm/pixel and 
1000–1700 nm (Fig. 4b), 150 μm/pixel and 1000–2500 nm (Fig. 4c) and 
30 μm/pixel and 1000–2500 nm (Fig. 4d), highlighting the principal 
components that allow the best separation between polymer classes. The 
PCA score plots demonstrate how the selected preprocessing methods 
allow for good separation of the microplastics from the background in all 
four calibration datasets, with four clusters of points corresponding to 
the four considered classes (Background, PS, PP and HDPE). Further 
details regarding the PCA score and loading plots are provided in the 
supplementary materials under the section “PCA score and loading plots 
results” and Fig. S3.

3.2. Classification results

The predictive results of the classifiers PLS-DA, ECOC-SVM and 

NNPR, applied to the validation dataset at spatial resolutions of 150 and 
30 μm/pixel, in the 1000–1700 and 1000–2500 nm spectral ranges, are 
reported and discussed in the following.

3.2.1. 150 μm/pixel resolution
The prediction maps at 150 μm/pixel resolution (Fig. 5a and b) show 

as all MPs of different sizes are assigned to the correct polymer class. 
However, some misclassification errors occur between particle edges 
and background. Considering the 1000–1700 nm range, in the orange 
boxes of Fig. 5a it is highlighted, for all the classifiers, the wrong 
assignment of background pixels along the edge of a HDPE particle from 
size class 3, however it does not reduce the effectiveness of microplastics 
recognition. Furthermore, considering the 1000–2500 nm range 
(Fig. 5b), it can be observed how ECOC-SVM and NNPR not only 
misclassify pixels along the edge of the HDPE particle (orange boxes), 
but there is also a “salt&pepper noise” (light blue boxes) in the back
ground due to the wrong assignment of some pixels to the HDPE class. 

Fig. 7. Source image, hyperspectral image with reflectance color bar and classification results of PLS-DA, ECOC-SVM and NNPR models applied to hyperspectral 
images of MP particles (PS, PP and HDPE) at resolution of 150 μm/pixel in the 1000–1700 and 1000–2500 nm spectral ranges.
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On the contrary, PLS-DA shows a better recognition of background and 
polymer classes.

The performance parameters Recall, Specificity and Accuracy in Cal 
and CV (Tables S1 and S2, respectively) highlight the robustness of all 
models: in the 1000–1700 nm spectral range, values range from 0.92 to 

1.00 for PLS-DA, from 0.98 to 1.00 for ECOC-SVM and from 0.95 to 1.00 
for NNPR, whereas in the 1000–2500 nm spectral range there are similar 
results, with values ranging from 0.91 to 1.00 for PLS-DA and from 0.97 
to 1.00 for both ECOC-SVM and NNPR. The latter two models show 
slightly better performance in the calibration phase compared to PLS-DA 

Fig. 7. (continued).

S. Serranti et al.                                                                                                                                                                                                                                 Science of the Total Environment 954 (2024) 176630 

11 



due to their ability to find complex and non-linear relationships in the 
data. The performances in prediction (Tables S3 and S4) agree with the 
results shown in the prediction images, in fact similar values were 
reached by the three classifiers in the 1000–1700 nm range (PLS-DA: 
from 0.76 to 1.00; ECOC-SVM: from 0.79 to 1.00 and NNPR: from 0.89 
to 1.00), whereas in the 1000–2500 nm spectral range, PLS-DA provides 
the best performances (from 0.98 to 1.00) compared to ECOC-SVM 

(from 0.72 to 1.00) and NNPR (from 0.63 to 1.00). The latter result 
can be explained considering that hyperspectral images of MPs acquired 
at that spatial resolution are less influenced by the depth of field (DOF), 
allowing to obtain an accurate prediction with a linear classifier, like 
PLS-DA.

These results suggest that, at 150 μm/pixel resolution, using the 
1000–1700 nm spectral range combined with the PLS-DA model offers a 

Fig. 7. (continued).
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cost and time efficient method for MPs classification, delivering high 
accuracy while being easier and faster to apply than the two nonlinear 
models. The obtained results agree with those of other studies (i.e.: Zhu 
et al., 2020), which successfully utilized a HSI system in the range 

1000–1700 nm to classify MPs, allowing to reduce costs and simplify 
data processing in comparison to the range 1000–2500 nm, as suggested 
by Faltynkova et al. (2021).

Fig. 7. (continued).
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3.2.2. 30 μm/pixel resolution
At a higher spectral resolution of 30 μm/pixel, the classification re

sults (Fig. 6a and b) are influenced by the increased variability of the 
spectral signatures due to the three-dimensionality of the particles 
captured at a higher magnification with a low DOF. In the 1000–1700 
nm spectral range (Fig. 6a), PLS-DA misclassifies some pixels among 
polymer classes in MP particles of PP and HDPE across all the three size 

classes, as highlighted in green boxes. On the contrary, ECOC-SVM and 
NNPR show a more accurate polymer classification by leveraging their 
ability to capture non-linear variance. Moreover, as in the previous case, 
all models produce a small edge effect, due to the erroneous assignment 
of MPs pixels to the background class (orange boxes). This effect does 
not affect the polymer identification in the case of ECOC-SVM and 
NNPR, whereas for PLS-DA it can contribute to reduce its prediction 

Fig. 7. (continued).
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ability when combined with pixels misclassification. For the 1000–2500 
nm spectral range (Fig. 6b), misclassified pixels at particle edges (orange 
boxes) are fewer compared to the 1000–1700 nm range, and they do not 
significantly reduce the effective recognition of the polymers. Further
more, predictions are more accurate across all MPs sizes, including those 
obtained by PLS-DA model. ECOC-SVM provides the most precise clas
sification as evidenced by the particles appearing better defined and 
closely matching the source image, compared to NNPR and PLS-DA 
(green boxes).

Performance parameters in Cal and CV (Tables S5 and S6) show that 
in the 1000–1700 nm spectral range, all classifiers exhibit high-quality 
results with values ranging from 0.94 to 1.00 for PLS-DA, from 0.97 to 
1.00 for ECOC-SVM and from 0.95 to 1.00 for NNPR. However, in the 

1000–2500 nm range, PLS-DA shows slightly lower values for (from 0.84 
to 1.00), while ECOC-SVM and NNPR maintain high accuracy (both 
from 0.99 to 1.00). The performance parameters in prediction (Tables S7 
and S8) are better in the 1000–2500 nm spectral range than in the 
1000–1700 nm for all the classifiers and ECOC-SVM achieves the best 
parametric performances in both spectral ranges (from 0.87 to 1.00), 
followed by NNPR (from 0.74 to 1.00) and PLS-DA (from 0.66 to 1.00). 
The obtained results are in agreement with the findings on the use of 
SVM techniques for MPs identification on filter papers using HSI (Shan 
et al., 2019).

These classification results suggest that the 1000–2500 nm spectral 
range significantly improves parametric performances compared to the 
1000–1700 nm range, particularly when using nonlinear classifiers like 

Fig. 8. Source image, hyperspectral image with reflectance color bar and classification results of PLS-DA, ECOC-SVM and NNPR models applied to hyperspectral 
images of MP particles (PS, PP and HDPE) at resolution of 30 μm/pixel in the 1000–1700 and 1000–2500 nm spectral ranges.
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ECOC-SVM.). Therefore, hyperspectral images of MPs acquired at this 
spatial resolution, being more influenced by DOF, can be better pro
cessed using a classifier able to capture the non-linear relationship of 
spectral data, such as ECOC-SVM. It is important to highlight that the 
model performances can be influenced by several factors, such as the 
presence of chemical additives, biofilms or physical characteristics such 
as light scattering as reported by Goyetche et al. (2023), especially at 30 
μm/pixel. Such issue can be overcome increasing the spectral library 

constituting the training dataset.

3.3. Limit of detection (LOD) results

To assess the limit of detection (LOD), hyperspectral images were 
acquired in the two spatial resolutions and spectral ranges, and classified 
with the three built models. The prediction maps of single MP particles 
of the three polymers with a diameter ranging from 30 to 250 μm, with 

Fig. 8. (continued).
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reference to the spatial resolution of 150 μm/pixel and 30 μm/pixel are 
shown in Figs. 7a-o and 8a-o, respectively.

3.3.1. 150 μm/pixel resolution
MP particles with a diameter between 30 and 150 μm are charac

terized by low reflectance values, similar to those of the background 
(Fig. 7d, e, h, i, j, n and o) in agreement with what observed in previous 

studies (Piarulli et al., 2022; Zhu et al., 2021) and are not recognized by 
any of the classifiers in both spectral ranges, as expected being their size 
smaller than the spatial resolution.

MP particles with an average diameter between 150 and 250 μm 
(Fig. 7a, b, c, f, g, k, l and m) also show low reflectance values, but 
greater than those of background. PLS-DA predictions are incorrect in all 
cases, while ECOC-SVM and NNPR models in some cases (i.e., Fig. 7a, b, 

Fig. 8. (continued).

Fig. 8. (continued).
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c, f, k, l) correctly classify some MP pixels in both spectral ranges. 
However, these results cannot be considered sufficient for an accurate 
identification of MPs because such single pixels could be confused with 
the ‘pepper noise effect’, observed in paragraph 3.2 for ECOC-SVM and 
NNPR models at a 150 μm/pixel resolution.

Therefore, for the 150 μm/pixel resolution, the LOD of MP particles 
can be set at 250 μm, corresponding to the minimum diameter of size 
class 3, considering that each microplastic has enough pixels to allow an 
accurate recognition.

3.3.2. 30 μm/pixel resolution
MP particles with a diameter between 30 and 100 μm (Fig. 8d, e, i 

and j) show very low reflectance values, as already observed in other 
studies (Piarulli et al., 2022; Zhu et al., 2021), not allowing their 
distinction from the background by any classifiers, independently from 
the investigated spectral range.

MP particles with a diameter ranging from 100 to 200 μm (Fig. 8g, h, 
k, l, n and o) show variable reflectance values, ranging from 0.04 to 
0.55. The high variability of reflectance in each single MP particle is due 
to its three-dimensional structure and thickness, which significantly 
influences the classification results. Comparing the results in the two 
spectral ranges, the best performances are obtained in the 1000–2500 
nm, with a good classification in most cases for all the three classifiers, as 
shown in Figs. 8k 8 l, 8n and 8o. On the contrary, in the spectral range 
1000–1700 nm the correct recognition of the same MP particles is 
achieved only by ECOC-SVM model, with the exception of the fragment 

in Fig. 8n. Finally, the prediction results of MP particles in Fig. 8g and h 
are not correct as the polymers are misclassified by all models in both 
spectral ranges.

MPs with a diameter between 200 and 250 μm (Fig. 8a, b, c, f and m) 
show more homogeneous reflectance values, ranging from 0.10 to 0.22, 
with lower values along the edge. Looking at each single particle of this 
size range, the MPs with more uniform reflectance values (Fig. 8a and b) 
show a correct classification by all the classification models in both the 
spectral ranges; on the contrary, MPs with higher reflectance variability, 
due to both the morphological complexity of the particle and its textural 
features (Fig. 8c, f and m) are better classified by ECOC-SVM, in 
particular in the range 1000–2500 nm.

Therefore, for the 30 μm/pixel resolution, the LOD of MP particles 
can be set in the size range of 100–200 μm, acquiring hyperspectral 
images in the spectral range of 1000–2500 nm and processing data with 
a nonlinear classification method, like ECOC-SVM, as it is less affected 
by the noise in the MPs spectrum occurring for the small particle size.

4. Conclusions

In this study, an analytical protocol for classification of MPs by HSI 
was defined, testing different setups: 1) two spatial resolutions (150 and 
30 μm/pixel), 2) two wavelength ranges (1000–1700 and 1000–2500 
nm), and 3) three different classification models (i.e., PLS-DA, ECOC- 
SVM, NNPR). The study focused on the three most common polymers (i. 
e., PS, PP and HDPE) of MPs usually polluting the environment.

Fig. 8. (continued).
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Based on the results, several conclusions can be drawn for the defi
nition of the optimal analytical protocol for MPs classification using HSI.

For larger MPs (>250 μm), the ideal protocol includes a spatial 
resolution of 150 μm/pixel, a spectral range between 1000 and 1700 nm 
and PLS-DA as preferred classification model. This setup is efficient in 
terms of time and cost while maintaining accurate MPs classification. 
The PLS-DA linear classification model provides comparable perfor
mance to nonlinear models but is easier and faster to apply.

In contrast, for smaller MPs (<250 μm), the optimal configuration 
involves a higher spatial resolution of 30 μm/pixel and a broader 
spectral range of 1000–2500 nm. In this case, the most suitable classi
fication model is the ECOC-SVM. This configuration enhances para
metric performance significantly. The ECOC-SVM model, which 
captures the nonlinear relationships in spectral data, is better suited for 
processing hyperspectral images at this higher resolution, offering more 
accurate classification despite increased DOF influence.

Concerning the LOD for MPs, the 150 μm/pixel resolution offers a 
detection limit of 250 μm, ensuring that each MP particle at this size has 
sufficient pixel coverage for accurate recognition. On the other hand, the 
30 μm/pixel resolution provides a LOD ranging from 100 to 200 μm. 
Hyperspectral images acquired within the 1000–2500 nm range and 
processed using a nonlinear classification method like ECOC-SVM can 
effectively mitigate noise in the MP spectrum for smaller particles.

In summary, for efficient and cost-effective analysis of MPs larger 
than 250 μm, it is recommended to use the 150 μm/pixel resolution and 
1000–1700 nm spectral range with a linear classification model like PLS- 
DA. However, for a more detailed analysis of MP particles also in terms 
of morphological and morphometrical parameters, it is better to use the 
30 mm/pixel resolution. For MPs smaller than 250 μm, it is suggested to 
adopt a higher spatial resolution of 30 μm/pixel and a broader spectral 
range of 1000–2500 nm, employing a nonlinear model such as ECOC- 
SVM for improved accuracy in classification.

These conclusions offer a comprehensive guide for selecting the 
appropriate acquisition conditions and data processing methods to 
optimize the characterization of MPs of different sizes using HSI.
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