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Abstract

Query answering for Knowledge Bases (KBs) amounts to ex-
tracting information from the various models of a KB, and
presenting the user with an object that represents such infor-
mation. In the vast majority of cases, this object consists of
those tuples of constants that satisfy the query expression ei-
ther in every model (certain answers) or in some model (pos-
sible answers). However, similarly to the case of incomplete
databases, both these forms of answers are a lossy represen-
tation of all the knowledge inferable from the query and the
queried KB. In this paper, we illustrate a formal framework
to characterize the information that query answers for KBs
are able to represent. As a first application of the framework,
we study the informativeness of current query answering ap-
proaches, including the recently introduced partial answers.
We then define a novel notion of answers, allowing repetition
of variables across answer tuples. We show that these answers
are capable of representing a meaningful form of information,
and we also study their data complexity properties.

1 Introduction
A Knowledge Base (KB) is a symbolic representation of the
knowledge pertaining to a specific domain of interest. In the
logical approach to KBs (Levesque and Lakemeyer 2001),
this representation consists of a logical theory, i.e., a finite
set of assertions expressed in some formal language. The
models of this theory define the semantics of the KB or, in
other words, all the possible worlds that are compatible with
the information it represents.

The main task of a system based on the KB paradigm is
to answer user-specified queries (Calvanese et al. 2007b; Bi-
envenu and Ortiz 2015; Calı̀, Gottlob, and Kifer 2013). In
simple words, a query is a formal expression describing the
information the user wants to retrieve. Answering a query
over a KB amounts to extracting the information specified
by the former from the models of the latter and represent
such information in a way that can be presented to users.
These representations are usually called answers.

Example 1. Assume logical predicates Employee/1(E),
hasSupervisor/2(hS). The KB K consists of the TBox T and
the ABox D defined as follows:

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

T = {E ⊑ ∃hS ∃hS− ⊑ E hS ⊑ ¬hS−}
D = {E(Ava), E(Bea), hS(Bea,Carl)}

Intuitively, K describes an organization where employees
are assigned to supervisors that are themselves employees.
Moreover, employees cannot supervise their supervisors,
i.e., hS is anti-symmetric and irreflexive. Formally, the mod-
els of K are all the first-order interpretations I that satisfy
T for which AvaI ,BeaI ∈ EI and (BeaI ,CarlI) ∈ hSI .

Suppose we want to retrieve from K information about
employees and their supervisors. This can be done with the
following first-order logic query (in fact, conjunctive query):

q = {(x, y) | hS(x, y)}

An answer for q over K could be (Bea,Carl), since CarlI

is the supervisor of BeaI in every model I of K.
Carefully choosing the right notion of answers for a spe-

cific application domain is crucial to obtain meaningful in-
formation from a KB. This is because query answers must
satisfy two seemingly antithetic needs. On the one hand,
they should represent as much as possible the information
that users require with their queries. On the other, they must
be simple and compact enough to be reasonably understood
and computed. Whenever a KB has only one single and finite
model, these requirements can be met simply by returning
all those data tuples that satisfy the query expression over
such model (Abiteboul, Hull, and Vianu 1995). Under rea-
sonable assumptions, this set is finite and represents all the
information defined by the query and the KB. In all the other
cases, we need more sophisticated answers.

To answer queries posed to KBs with multiple or even
infinite models, the majority of approaches proposed in the
literature fall in one of two families: certain answers or pos-
sible answers (see (Lipski 1979) for an early account). In-
tuitively, the former are constants that answer a given query
in every model of the KB, while the latter answer the query
in at least one of these models. Despite their wide adoption,
both certain and possible answers cannot represent all the in-
formation that a query requires in several applications (Con-
sole, Guagliardo, and Libkin 2016, 2022; Calautti, Console,
and Pieris 2021).
Example 2. Consider again the scenario of Example 1. It
is easy to verify that the set Θ of certain answers for q over
K is {(Bea,Carl)} while the set Π of possible answers for
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q over K contains every pair of distinct constants except
(Carl ,Bea). Both Θ and Π, however, do not represent all
the information that q can extract from all the models of K.

For example, Θ loses the information that, for every
model I of K, there exist constants m and s such that both
(AvaI , s) and (s,m) satisfy q in I. Similarly, Π loses the
information that, for every model I of K and every pair of
constants (e, s), either (e, s) or (s, e) do not satisfy q in I.

Issues related to the informativeness of query answers are
well-known in incomplete databases (Console et al. 2020).
The main challenge here is to define representation systems,
i.e., families of syntactic objects that can represent the de-
sired set of answers under some requirement of informa-
tiveness (Abiteboul, Hull, and Vianu 1995). Crucially, for
representation systems to work, syntactic objects require se-
mantics, i.e., a formal specification of the set of answers they
represent.

Representation systems exist in different flavors. A
prominent notion in this context is that of strong represen-
tation systems (SRS), i.e., objects whose semantics coincide
exactly with the set of answers we want to represent. SRS,
however, are notoriously hard to obtain, and require com-
plex representations that are hard to understand for a user.
For this reason, (Imielinski and Lipski 1984) proposed the
notion of weak representation systems (WRS), where infor-
mativeness requirements are formulated in terms of a seman-
tic equivalence relation based on certain knowledge. While
their scope of application is broader, WRS are still tight to
a specific notion of equivalence. For this reason, (Libkin
2016) introduced the framework of representation systems
that generalizes SRS and WRS by allowing a more general
notion of equivalence. The same framework has been used in
(Civili and Libkin 2018) to define approximations of certain
answers for expressive KB queries.

In the field of KBs, where queries often fall into sim-
ple fragments of first-order logic to avoid undecidability is-
sues, the scarce informativeness of certain and possible an-
swers is partly mitigated by the simple form that queries
can take. Despite these simplifications, issues of informa-
tiveness are well-known in the literature. For example, in
the context of data exchange, (Arenas, Pérez, and Reutter
2013) defines universal solutions via SRS while (Grahne and
Onet 2012) uses them for query answering purposes . In the
Description Logics setting, the work in (Borgida, Toman,
and Weddell 2016, 2017) argues that certain answers cannot
represent crucial information requested by queries and sug-
gest the use of referring expression to mitigate the issue. In
simple words, referring expressions are first-order sentences
that further describe the properties of constants in the an-
swers. In a similar setting, the work in (Lutz and Przybylko
2022, 2023) suggests the use of minimal partial answers,
i.e., tuples with constant and variable symbols called wild-
cards. Crucially, however, wildcards are allowed to repeat
only within tuples but not across them. This idea, akin to the
V-Tables explored in (Imielinski and Lipski 1984), can rep-
resent more information than certain answers but it is still
unsatisfactory in general.

Example 3. Consider, once again, the setting of Example 1.

The set CW of minimal partial answers for q over K consist
of the tuples (Ava, ⋆), (Carl , ⋆′), and (Bea,Carl), where ⋆
and ⋆′ are wildcards. Clearly, CW is much more informative
than the set Θ = {(Bea,Carl)} of certain answers for q
over K. However, CW still does not capture the information
described in Example 2. Conversely, the following set CV ,
still based on V-Tables, captures such information: CV =
{(Ava, ⋆1), (⋆1, ⋆2), (Bea,Carl), (Carl , ⋆′1), (⋆′1, ⋆′2)},
where ⋆1, ⋆2, ⋆′1, and ⋆′2 are variables.

To the best of our knowledge, there is no formal frame-
work in the literature that can characterize the informative
content of query answers for KBs. Thus, our intuition that,
in Example 3, CV is more informative than CW cannot be
formally proved. The main goal of this paper is to fill this
gap, and use this novel framework to define more informa-
tive answers for queries over KBs.

More specifically, the contribution of the paper is the fol-
lowing. Firstly, we present a framework to characterize the
information that query answers for KBs are able to repre-
sent. Our framework is inspired by the notion of representa-
tion systems presented in (Libkin 2016), with suitable mod-
ifications to work with KBs. As a first application of our
framework, we study the informativeness of current query
answering approaches and define properties of answer ob-
jects that are needed for more informative results. Such re-
sults would be difficult to obtain without a framework of
this kind and, thus, we consider them a central contribu-
tion of this work. Then, we introduce a novel notion of an-
swers based on V-tables. This notion, similar in spirit to the
one used in (Lutz and Przybylko 2022, 2023), allows repeti-
tion of variables across answer tuples. Using our framework,
we prove that these answers are able to represent a mean-
ingful form of information whenever KBs possess widely
accepted structural properties and queries are expressed as
unions of conjunctive queries. Finally, we study the compu-
tational characteristics of these answers for KBs expressed
in well-known languages for formulating KBs.

The remainder of this paper is organized as follows. In
Section 2 we introduce notions from the literature that will
be used in this work. In Section 3 we present our framework
for informativeness of query answers, and in Section 4 we
study current techniques for query answering under the lens
of our framework. In Section 5 we present novel forms of
answers for KBs and study their informativeness, while their
computational properties are studied in Section 6. Finally, in
Section 7 we conclude.

2 Preliminaries
In what follows, we fix two countably infinite and disjoint
sets C and V used for constants and variables, respectively.
First-Order Logic. Due to space limitations, we assume
that the reader is familiar with the syntax and semantics
of first-order logic and refer to (Levesque and Lakemeyer
2001) for a detailed account. A signature is a countably in-
finite set of predicate symbols disjoint from C ∪ V . Let S be
a signature, an atom over S is a syntactic expression of the
form p(t1, . . . , tm), where p ∈ S is a predicate symbol of
arity m and ti ∈ C ∪ V , for each i = 1, . . . ,m. An atom
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is ground if it contains not variables. Moreover, we will use
FO(S) to denote the set of all the first-order (FO) sentences
that can be constructed from symbols of S , C, and V for
predicate names, constants, and variables, respectively.

In the technical development of this paper, formulae will
be interpreted under the standard name assumption using
constants in C as standard names. This is done for the sake
of a simplicity but all the results we present can be easily
extended to the general case. Formally, an interpretation for
S is a pair I = ⟨C, ·I⟩ such that ·I assigns to each constant
c ∈ C itself, i.e. cI = c for each c ∈ C, and to each n-ary
predicate P ∈ S an n-ary relation P I ⊆ Cn. As usual,
we will write I |= φ (resp., I ̸|= φ) to denote the fact
that I satisfies (resp., does not satisfy) φ ∈ FO(S). More-
over, for readability purposes, we will often write P (c̄) ∈ I
(resp. P (c̄) ̸∈ I) for c̄ ∈ P I (resp. c̄ ̸∈ P I) and use ⊆ and
̸⊆ accordingly. In this way, we will effectively blur the dis-
tinction between sets of ground atoms and interpretations.
Relevant Fragments of FO. We proceed to define frag-
ments of FO that are relevant for the technical development
of this paper. Given S as above, a language of sentences
(simply, language) over S is a subset of FO(S). The lan-
guage ∃Pos(S) consists of all the sentences in FO(S) of
the form

∨
i ∃x̄i. φi(x̄i) where each φi(x̄i) is a conjunc-

tion of atoms over S with variables in x̄i. We will use
∃Poslocal(S) for the fragment of ∃Pos(S) where variables
are not allowed to repeat across atoms. Other languages of
interest are defined by restricting the number of variables
allowed in their sentences. For every positive integer n, we
use ∃Pos[n](S) for the language of sentences in ∃Pos(S) of
the form

∨
i ∃x̄i. φi(x̄i) where each x̄i consists of at most

n distinct variables and ∃Posv[n](S) for the restriction of
∃Pos[n](S) to constant-free sentences. Finally, we will use
∃PosG(S) for the restriction of ∃Pos(S) to sentences with-
out variables and GA(S) for ground atoms.
Valuations and Homomorphisms. Valuations and homo-
morphisms will be crucial in the technical development of
this work. A valuation v is simply a function from C ∪ V to
C ∪ V such that v(c) = c for each c ∈ C. Given an atom
α = R(t1, . . . , tm) and a valuation v, we write v(α) for the
atomR(v(t1), . . . , v(tm)) and extend this notation to sets of
atoms in the obvious way. Given two sets of atoms over A
and B, we say that a valuation h is a homomorphism if, for
every α ∈ A, we have h(α) ∈ B.
Knowledge Bases. We fix a signature Σ and call its ele-
ments ontological predicates. In this paper, whenever we re-
fer to a knowledge base (KB) K, we implicitly mean a pair
⟨T ,D⟩, where T is a finite set of sentences in FO(Σ) that
do not mention constants and D is a finite set of sentences
in GA(Σ). Usually, T is called the TBox of K while D is
called the ABox of K (Baader et al. 2003). We denote by
C(D) the constants appearing in D. As usual, the semantics
of a KB K is given in terms of its models, which are those
interpretations for Σ that satisfy the assertions of K. Given a
KB K, we denote by Mod(K) the set of its models, and say
that K is consistent if Mod(K) ̸= ∅; inconsistent otherwise.

A KB language K is simply a family of KBs, and a KB K
will be a called an K KB if it belongs to K. In what follows,
we will be interested in several KB languages defined either

by structural properties or by syntactic definitions. We say
that a KB language K enjoys the universal model property
if, for every consistent K KB K, there exists a set U of atoms
over Σ and terms from C(D) ∪ V for predicate names and
terms, respectively, satisfying the following properties:
• for every I ∈ Mod(K) there exists a homomorphism

from U to I (seen as a set of atoms); and
• for every bijection v : V → (C \ C(D)), v(U) (seen as an

interpretation) belongs to Mod(K).
We use Univ for the language of consistent KBs with the
universal model property. Furthermore, we say that a KB
language K enjoys the invariance under disjoint-union prop-
erty if, for every consistent KB ⟨T ,D⟩ in K, and every finite
set of ground atoms B such that ⟨T ,B⟩ is consistent and B
does not use constants in D, also ⟨T ,D ∪ B⟩ is consistent.
We use Disj for the language of consistent KBs with the in-
variance under disjoint-union property. Many expressive KB
languages enjoy such properties, e.g. tuple-generating de-
pendencies (tgds) and the Description Logic (DL) ALCHI .

Finally, we mention that our negative results will be of-
ten formulated with respect to the KB language DL-Litecore,
which is the least expressive KB language of the lightweight
DL-Lite family (Calvanese et al. 2007b) of DLs.
Queries Whenever we will refer to a query q, we implicitly
mean an expression of the form q = {x̄ | φ(x̄)}, where φ(x̄)
is a first-order formula whose free variables are those occur-
ring in x̄ and which adopts symbols from Σ for predicate
names, symbols from C for constants, and symbols from V
for variables. The arity of a query q as above is the arity of
the tuple x̄, and a query q is called n-ary if n is its arity. We
denote by FQ the language of all the possible (FO) queries.

Given an interpretation I for Σ and an n-ary query q =
{x̄ | φ(x̄)}, an n-tuple c̄ ∈ Cn of constants is an an-
swer tuple for q over I if I satisfies the FO(Σ) sentence
φ(x̄/c̄), i.e. if it holds that I |= φ(x̄/c̄). For a Boolean query
q = {() | φ} and an interpretation I for Σ∪ C, we say that
I satisfies q if I |= φ. Given a KB K and an n-ary query
q, an n-tuple c̄ ∈ Cn of constants is a certain (resp. pos-
sible) answer tuple for q over K if I |= φ(x̄/c̄), for every
(resp. some) model I ∈ Mod(K). For simplicity, given a
Boolean (i.e. 0-ary) query q = {() | φ} and a KB K, we
say that K entails q if I |= φ for every model I ∈ Mod(K).

In the technical sections of this paper, we are interested
in conjunctive queries and unions thereof, whose languages
will be denoted by CQ and UCQ, respectively. Formally, a
union of conjunctive queries (UCQ) is a query of the form
q = {x̄ | ∃ȳ1.ϕ1(x̄, ȳ1) ∨ . . . ∨ ∃ȳm.ϕm(x̄, ȳm)} such that
ϕi(x̄, ȳi) is a conjunction of atoms for each i = 1, . . . ,m,
and q is also a conjunctive query (CQ) if m = 1.

3 Framework
We now introduce our framework to characterize the infor-
mation content of query answers for KBs. To this end, we
first provide a general definition of query answers that can
accommodate different scenarios. Assume a query language
Q and a KB language K. A query evaluation function for Q
over K is simply a function eval from Q×K to a set of ob-
jects A. Intuitively, eval describes the behavior of a query
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evaluation system, and the elements of A, called the answer
objects of eval, are understood as the answers that such sys-
tem provides. The goal of our framework is to characterize
how informative these objects are.

To this end we observe that, in principle, query evaluation
functions allow for any kind of answer objects. However,
in order to be meaningful, query answers should represent
information that queries actually require. To formally estab-
lish this connection, our framework provides a mechanism
to connect the answer objects returned by a query evaluation
function for Q over K to the information that queries of Q
extract from the models of KBs of K. Our next step is to
formalize such mechanism.

Let ANS =
⋃∞

i=0{ansi} be a countably infinite set of
predicates where each ansi has arity i and does not occur in
Σ. An answer structure is simply an interpretation for ANS,
and we denote the set of all answer structures by ANSC .
Given an n-ary query q, the complete answer for q over an
interpretation I (written q(I)) is the answer structure such
that ansn(ā) ∈ q(I) iff ā is an answer tuple for q over I
and ans

q(I)
m = ∅, for each m ̸= n. Intuitively, q(I) collects

all the answer tuples for q over I within a single structure.
This rather standard construction allows to define the infor-
mation provided by the answer tuples for q over I in terms
of logically-definable properties.
Example 4. Assume predicates R/2, S/2, the interpretation
I such that RI = {(a, b), (c, d)} and SI = {(b, c), (d, b)},
and the query q = {(x, y) | ∃z.R(x, z) ∧ S(z, y)}. Then,
ans

q(I)
2 = {(a, c), (c, b)}, and it is easy to see the following:

• q(I) contains a path of length 2, i.e., q(I) |= ψ1 where
ψ1 = ∃x, y, z. ans2(x, y) ∧ ans2(y, z);

• q(I) does not contain (an embedding of) a triangle,
i.e., q(I) ̸|= ψ2 where ψ2 = ∃x, y, z. ans2(x, y) ∧
ans2(y, z) ∧ ans2(z, x);

• q(I) is not symmetric, i.e., q(I) ̸|= ψ3 where ψ3 =
∀x, y. ans2(x, y) → ans2(y, x);

Complete answers can be extended to KBs in the natural
way. Given a KB K, the set of complete answers for q over
K, written q(K), is defined as follows:

q(K) = {q(I) | I ∈ Mod(K)}

Simply put, q(K) collects all the complete answers that one
can obtain from q and the models of K.
Example 5. Assume the scenario of Example 4 and let J be
such that RJ = {(e, f), (g, h)} and SJ = {(f, g), (h, f)}.
Finally, let K be a KB such that Mod(K) = {I,J }. Then,
q(K) = {q(I), q(J )} with ansq(J )

2 = {(e, g), (g, h)}.
Clearly, q(K) contains all the information that q extracts

from the models of K. To establish a meaningful semantics
for an answer object eval(q,K), then, we provide a mech-
anism to define the properties of the elements of q(K), i.e.,
answer structures, that are represented by eval(q,K). For-
mally, an answer domain is a pair ⟨A, |=A⟩, where A is a
set of objects and |=A⊆ A×FO(ANS) is a relation. In sim-
ple words, the goal of answer domains is to provide formal
semantics to a set A of answer objects. This is done by the

relation |=A that defines the (first-order definable) properties
of answer structures the objects of A satisfy. The notion of
query answering system, defined next, connects query eval-
uation functions and answer domains.
Definition 1. A query answering system (QAS) is a tuple
⟨Q,K,A, eval⟩, where Q is a query language, K is a KB
language, A = ⟨A, |=A⟩ is an answer domain, and eval is a
query evaluation function from Q×K to A.

In the next example, we define a QAS that behaves ac-
cording to the classical notion of certain answers.
Example 6. Let K be an arbitrary KB language and let
SG = ⟨FQ,K,AG, certG⟩ be the QAS defined as follows:

• AG = ⟨2GA(ANS), |=G⟩, where A |=G φ if and only if A
(seen as an interpretation) satisfies φ, i.e., A |= φ; and

• certG(q,K) is the set of all ansp(c̄), where p is the arity
of q and c̄ is a certain answer tuple for q over K.

Let q, ψ1, ψ2, and ψ3 be as in Example 4. We have that
certG(q,K) |=G ψ1 iff the set of certain answers for q
over K contains a path of length 2, certG(q,K) |=G ψ2

iff such set contains (an embedding of) a triangle, and
certG(q,K) |=G ψ3 iff such set is symmetric.

With the notion of QAS in place, we are now ready
to characterize the information content of answer objects.
Specifically, for a QAS ⟨Q,K,A, eval⟩, our characteriza-
tion is based on the (FO definable) properties of q(K) that
eval(q,K) represents according to A. In what follows, we
are interested in two families of properties: those that hold in
q(I) for every (resp., some) I ∈ Mod(K). Intuitively, these
properties represent the certain (resp., possible) knowledge
provided by q(K). Clearly, other interesting family of prop-
erties exist but they go beyond the scope of our work.

Formally, we define the relations |=c and |=p as follows:

|=c≡ {(B,φ) | B ⊆ ANSC and b |= φ, for each b ∈ B}

|=p≡ {(B,φ) | B ⊆ ANSC and b |= φ, for some b ∈ B}
Definition 2. Let S = ⟨Q,K, ⟨A, |=A⟩, eval⟩ be a QAS and
F ⊆ FO(ANS) be a language of formulae. We say that
• S |=c-preserves F if, for each q ∈ Q, K ∈ K, and φ ∈ F ,

it holds that eval(q,K) |=A φ if and only if q(K) |=c φ;
• S |=p-preserves F if, for each q ∈ Q, K ∈ K, andφ ∈ F ,

it holds that eval(q,K) |=A φ if and only if q(K) |=p φ.
The technical tool provided by Definition 2 allows to char-

acterize and compare the information content of query an-
swers. Specifically, the larger the language F that a QAS
S |=c-preserves (resp, |=p-preserves), the more informative
such a QAS is w.r.t. those properties. The tool that this defi-
nition provides represents the heart of our framework.
Example 7. Let SG as in Example 6 and assume that
K is the family of DL-Litecore knowledge bases. If
certG(q,K) |=G α, for some α ∈ GA(ANS), then, A |= α,
for each A ∈ q(K). Thus, we can conclude that SG pre-
serves the certain knowledge of GA(ANS). However, SG
does not preserve the possible knowledge of GA(ANS). This
is because, intuitively, if certG(q,K) ̸|=G α, for some α ∈
GA(ANS), there may still exist A ∈ q(K) such that A |= α.
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QAS can define several different notions of query answers
for the same KB and query languages. However, one can
show that QAS that preserve (either |=p or |=c) a given lan-
guage F are equivalent w.r.t. F in the following sense. Let
S1 = ⟨Q,K, ⟨A1, |=1⟩, eval1⟩ and S2 = ⟨Q,K, ⟨A2, |=2

⟩, eval2⟩ be two QAS and F ⊆ FO(ANS) be a language
of sentences. We say that S1 and S2 are F -equivalent if
eval1(q,K) |=1 φ if and only if eval2(q,K) |=2 φ, for every
q ∈ Q, K ∈ K, and φ ∈ F .
Proposition 1. Let S1 and S2 be QAS that |=⋆-preserve F
(with ⋆ ∈ {c, p}). We have that S1 and S2 are F -equivalent.

Answers as Sets of Tuples Obviously, QAS can accom-
modate several forms of query answers for KBs, from very
simple to very complex. However, while very expressive an-
swers paired with suitable evaluation functions may be able
to preserve more information, understanding these repre-
sentations may become a very challenging task. In light of
Proposition 1, we will focus on QAS based on a simple form
of answers akin to the classical V-Tables. As we will show,
these answers are expressive enough to preserve a meaning-
ful family of properties.

Let AV be the family of all sets (finite or infinite) of
atoms over ANS, C, and V . Given A ∈ AV , the seman-
tics of A, written JAK, is the set of all the answer structures
obtained from A by replacing variables with constants. We
define |=V ⊆ AV × FO(ANS) such that, for each A ∈ AV ,
A |=V φ if and only if C |= φ, for each C ∈ JAK.
Definition 3. Atup is the answer domain ⟨AV , |=V ⟩.

We say that a QAS S = ⟨Q,K,A, eval⟩ is based on tuple-
set answers if A = Atup as in Definition 3. Moreover, we
say that S is based on finite tuple-set answers if it is based
on tuple-set answers and, additionally, the set eval(q,K) is
finite, for every q ∈ Q and K ∈ K.

In the remainder of the paper, we will study QAS based
on tuple-set answers and show that, in some cases, this
seemingly simple family is able to preserve relevant part
of possible and certain knowledge. Before concluding this
section, we observe that the definition of |=V is intuitively
based on the closed-world assumption for the elements of
AV . Obviously, other definitions are possible, e.g., using the
open-world or weak closed-world assumptions. However,
due to the languages considered, any of these three defini-
tions would not make any difference and, thus, we opted for
the one that, we believe, yields the clearest construction.

4 Current Approaches to Query Answering
As a first application of our framework, we study the infor-
mation content of query answers from the literature and dis-
cuss properties that are needed for more informative QAS.
Besides being an essential first step towards the definition of
more informative query answers, results in this section shed
light on techniques that are widely adopted in the literature
and, thus, they are interesting in their own right.

Firstly, we proceed to analyze the classical notion of
certain answers. To this end, we define the QAS Cu =
⟨UCQ,Univ,Atup, certG⟩ where certG is the evaluation
function defined in Example 6. Intuitively, Cu captures the
case of classical certain answers for UCQ over Univ KBs.

Proposition 2. Cu |=c-preserves ∃PosG(ANS).
Proposition 2 tells us that, as expected, certG captures

all the certain information about properties that can be
expressed as conjunctions of ground atoms. Unsurpris-
ingly, though, this property ceases to hold if we con-
sider languages slightly beyond ∃PosG(ANS). Let CDL =
⟨CQ,DL-Litecore,Atup, certG⟩. The case of CDL is already
problematic, as the following proposition shows.
Proposition 3. CDL does not |=c-preserve ∃Pos[1](ANS),
and it does not |=c-preserve ∃Poslocal(ANS).

We now turn our attention to an extended form of certain
answers that was recently presented in (Lutz and Przybylko
2022, 2023). To define a suitable QAS for these answers, we
need to introduce some additional notation. Let K be a KB
and q a query. We say that an atom α over ANS is a partial
answer for q over K if, for every I ∈ Mod(K), there is a ho-
momorphism from {α} to q(I) (seen as a set of atoms). Let
now β be an atom over ANS. We say that α is more infor-
mative than β (written β ≺ α) if there is a homomorphism
h from {β} to {α} but not vice versa. Finally, we say that α
is a minimal partial answer for q over K if it is a partial an-
swer for q over K and there exists no β such that β is partial
answer for q over K and α ≺ β.
Definition 4. Let W = {α1, . . . , αm} be a set of minimal
partial answers for q over K that share no variables. The
set W is a certain answer with wildcards for q over K if,
for every minimal partial answer β for q over K, there is
j ∈ [m] and a valuation v such that v(β) = αj .

Intuitively, a certain answer with wildcards collects all
the minimal partial answers for q over K, up to variable re-
naming. We define the QAS associated to certain answers
with wildcards as follows. Let certW be the query evaluation
function that associates, to every pair of KB K and query q,
a certain answer with wildcards for q over K. We define the
QAS WDL = ⟨CQ,DL-Litecore,Atup, certW ⟩.
Proposition 4. WDL does not |=c-preserve ∃Pos[1](ANS).

With respect to classical certain answers, the additional
information that certain answers with wildcards are able to
represent can be characterized by a rather specific language
of sentences, as the following proposition shows.
Proposition 5. WDL |=c-preserves ∃Poslocal(ANS).

Finally, we turn our attention to the other major family
of answers for KBs, i.e., possible answers. To this end, we
define PDL = ⟨CQ,DL-Litecore,Atup, possG⟩, where possG
associates, to each pair ⟨q,K⟩, the set of all the possible an-
swer tuples for q over K.
Proposition 6. PDL |=p-preserves GA(ANS), and it does not
|=p-preserves ∃PosG(ANS).

The positive result in Proposition 6 can be easily extended
to more expressive KB languages. However, it is easy to see
that PDL does not have finite answers and, thus, it cannot be
implemented in practice. To mitigate this issue, possible an-
swers are often restricted to constants that explicitly appear
in the KB. Let possfinG be the evaluation function that asso-
ciates, to each pair ⟨q,K⟩, the set of all the possible answers
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for q over K whose constants explicitly occur in K, and let
Pfin be the QAS ⟨CQ,DL-Litecore,Atup, poss

fin
G ⟩. This re-

striction has a severe impact on the informativeness of the
answers, as the following proposition shows.
Proposition 7. Pfin does not |=p-preserve GA(ANS).

Before concluding this section, we discuss properties of
QAS that are required to preserve specific languages.

Let S = ⟨Q,K, ⟨A, |=A⟩, eval⟩ be a QAS and Atup =
⟨AV , |=V ⟩ as in Definition 3. We say that S has the tuple-set
property for a language F ⊆ FO(ANS) if, for every K ∈ K
and q ∈ Q, there exists aAV ∈ AV such that eval(q,K) |=A

φ if and only if Atup |=V φ, for every φ ∈ F . The QAS S
has the finite tuple-set property if, additionally, AV is finite.

Intuitively, S has the (finite) tuple-set property if the
answers it provides are equivalent to a (finite) set of tu-
ples. Such hypothesis is at the core of several practical
query answering systems for KBs and classical databases.
We now study the impact that these two properties have
on the informativeness of query answers. Let SDL =
⟨CQ,DL-Litecore,A, eval⟩. Even for such simple languages,
the finite tuple-set property is too restrictive.
Proposition 8. If SDL has the finite tuple-set property for
∃Pos(ANS), then SDL does not |=c-preserve ∃Pos(ANS).

Intuitively, Proposition 8 tells us that answers based on
finite sets of tuples cannot represent all the certain properties
definable in ∃Pos that UCQs extract from KBs defined in the
very simple DL-Litecore language.

The case of possible knowledge is even more problematic,
as the following proposition shows.
Proposition 9. If SDL has the tuple-set property for
∃PosG(ANS), then SDL does not |=p-preserve ∃PosG(ANS).

Proposition 9 rules out the possibility of obtaining an-
swers based on sets of tuples (finite or infinite) that repre-
sent the possible knowledge definable in ∃PosG(ANS) (and,
thus, of ∃Pos[n](ANS)) that UCQs extract from KBs defined
in the very simple DL-Litecore language.

Finally, note that the results of Proposition 8 and 9 apply
to every QAS S = ⟨CQ,K,A, eval⟩ with K ⊇ DL-Litecore.

5 More Informative Answers for KBs
Several well-known notions of query answers for KBs are
based on sets of tuples. Due to Propositions 8 and 9, how-
ever, we cannot expect such answers to represent all the
properties definable in ∃Pos(ANS) that UCQs can extract
from simple DL-Litecore ontologies. These results, however,
leave open the possibility of obtaining QAS that preserve
properties expressible in more limited languages. Here, we
focus on properties in ∃Pos(ANS) that are expressible with
a bounded number of variables and show that suitable QAS
can be obtained for both certain and possible knowledge.

Before presenting our results, however, we need to intro-
duce some additional definitions. Given a set of atoms A,
the Variable-Join Graph J(A) = ⟨A,E⟩ of A is the graph
whose vertexes are the elements of A and there is an edge
between a and b whenever a and b share at least one vari-
able. We say that a set of atoms is Variable-Connected if its
Variable-Join Graph is connected.

Definition 5. An n-Connected Answer is a Variable-
Connected set of atoms over ANS with at most n variables.

We first analyze the case of certain knowledge and show
how n-connected answers can be used to define a family of
QAS that preserve the certain knowledge of ∃Pos[n](ANS).
Let K be a knowledge base and q a query. We say that a
set of atoms A over ANS is certain for q over K if, for ev-
ery model I ∈ Mod(K), there exists a constant-preserving
homomorphism from A to q(I) (seen as a set of atoms).
Definition 6. Let A =

⋃m
i=1Ai, where A1, . . . , Am are n-

connected answers that share no variables. The set A is a
certain n-answer for q over K if:
• Ai is certain for q over K, for each i ∈ [m]; and
• For every n-connected answerB that is certain for q over
K there is j ∈ [m] and a bijection h s.t. h(B) = Aj .

Intuitively, a certain n-answer collects all the n-connected
answers that are certain for q over K, up to variable renam-
ing. For instance, by referring to Example 3, CV is a certain
2-answer for q over K. We proceed to present crucial prop-
erties of this form of answers. Let n be a positive integer.
The query evaluation function certn associates, to every pair
of KB K and query q, a certain n-answer for q over K. Let
Cn = ⟨UCQ,Univ,Atup, certn⟩.
Theorem 1. Cn |=c-preserves ∃Pos[n](ANS).

We now turn our attention to possible knowledge and
use n-connected answers to define a family of QAS that
|=p-preserves ∃Posv[n](ANS). Before delving into the tech-
nical details, we observe that the case of possible knowl-
edge is even more delicate than the one of certain knowl-
edge. In light of Proposition 9, in fact, we cannot expect
to obtain a QAS that preserves the possible knowledge of
∃Pos[n](ANS), even for very simple KBs. However, tuple-
set answers can still represent meaningful information in this
setting with some additional restrictions.

Let K be a knowledge base and q a query. We say that a
set of atoms A over ANS is possible for q over K if there
exists a model I ∈ Mod(K) and a constant-preserving ho-
momorphism from A to q(I) (seen as a set of atoms).
Definition 7. Let A =

⋃m
i=1Ai, where A1, . . . , Am are n-

connected answers that share no variables and mention no
constants. The set A is a possible n-answer for q over K if:
• Ai is possible for q over K, for each i ∈ [m]; and
• For every n-connected answer B that is possible for q

over K there is j ∈ [m] and a bijection h s.t. h(B) = Aj .
Intuitively, a possible n-answer collects all the constant-

free n-connected answers that are possible for q over K,
up to variable renaming. For a positive integer n, let
possn be a query evaluation function that associates, to
every pair of knowledge base K and query q a possi-
ble n-answer for q over K. We define the QAS Pn =
⟨UCQ,Disj,Atup, possn⟩.
Theorem 2. Pn |=p-preserves ∃Posv[n](ANS).

We observe that Cn and Pn are not the only QAS that pre-
serve the certain and possible knowledge of ∃Pos[n](ANS).
However, every such QAS are equivalent, in the sense of
Proposition 1, respectively, to Cn and Pn.
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6 Computational Aspects
In this section, we investigate some relevant decision prob-
lems associated with the query answering problem for the
newly introduced certain and possible n-connected answers.
The study is conducted by implicitly considering the data
complexity measure (Vardi 1982) (i.e. the complexity where
only the ABox is regarded as the input and the other com-
ponents are assumed to be fixed), which is often considered
the more relevant measure when querying KBs as the ABox
is typically significantly larger than the other components.

We start by addressing the recognition problems as-
sociated with certain and possible n-connected answers,
which are parametric w.r.t. a KB language K. We define
CERTREC(K) (resp. POSSREC(K)) as follows: given a con-
sistent KB K ∈ K, a UCQ q, and a n-connected answer A,
check whether A is certain (resp. possible) for q over K.

We now show that (the data complexity versions of)
CERTREC(K) and POSSREC(K) can be reduced in constant
time to the problem of checking whether a suitable Boolean
UCQ is entailed by the input KB K and satisfied by at least
one model of the input KB K, respectively.
Proposition 10. Let q be a UCQ and A be an n-connected
answer. It is possible to compute a Boolean UCQ qA such
that, for any consistent KB K, the following holds:
• A is certain for q over K iff K entails qA;
• A is possible for q over K iff I satisfies qA for at least

one I ∈ Mod(K).
Notably, the above result implies that CERTREC(K) has

exactly the same data complexity as Boolean UCQ entail-
ment over K KBs, for any K. As for POSSREC(K), note that
a Boolean UCQ q = {() | ∃ȳ1.ϕ1(ȳ1)∨ . . .∨∃ȳm.ϕm(ȳm)}
is satisfied by at least one model of a KB K = ⟨T ,D⟩ iff
at least one of the KBs Kϕi

= ⟨T ,D ∪ Dϕi
⟩ is consistent,

where Dϕi
is the ABox obtained by freezing ϕi.

Importantly, let us consider any KB language K for which
Boolean UCQ entailment (resp. consistency check) is decid-
able. Then, given any UCQ q and any KB K ∈ K, it is possi-
ble to construct a setCn (resp. Pn) of certain (resp. possible)
n-answers for q over K by means of calls to CERTREC(K)
(resp. POSSREC(K)), for any integer n.

Notice, however, that an n-connected answer might be
redundant w.r.t. other atoms of Cn (resp. Pn). For exam-
ple, suppose that {ans2(a, b)} and {ans2(b, c)} are cer-
tain for q over K, where a, b, c ∈ C. Despite A =
{ans2(a, x), ans2(x, c)} is certain for q over K, where x ∈
V , in Cn there is a set of atoms of the same cardinality of
A that conveys strictly more information than A. Formally,
we say that an n-connected answer A is non-redundant
w.r.t. certain (resp. possible) n-answers for q over K if A
is certain (resp. possible) for q over K and there is no set of
atoms B ⊆ Cn (resp. B ⊆ Pn) such that (i) |B| ≤ |A| and
(ii) there is a constant-preserving homomorphism fromA to
B but not viceversa. In the definition, Cn and Pn are a set of
certain and possible n-answers, respectively. Since they are
unique up to variable renaming, two sets of atoms that are
equal up to variable renaming are considered as the same.

We define NRCERT(K) (resp. NRPOSS(K)) as the fol-
lowing decision problem: given a consistent KB K ∈ K,

a UCQ q, and an n-connected answer A, check whether
A is non-redundant w.r.t. certain (resp. possible) n-answers
for q over K. For these problems, we provide a similar
characterization as Proposition 10 does for CERTREC(K)
and POSSREC(K). For NRCERT(K) we resort to the query
language EQL-Lite(UCQ) and the modal notion of EQL-
entailment (Calvanese et al. 2007a; Cima et al. 2023). Intu-
itively, the expressiveness of the epistemic query language is
used to check whether the given n-connected answerA is (i)
certain for q over K and (ii) no instantiation of A (obtained
by either equating two distinct variables or by specializing a
variable with an unknown constant) is certain for q over K.

Theorem 3. Let q be a UCQ and A be an n-connected an-
swer. It is possible to compute a Boolean EQL-Lite(UCQ)
query q′A and two Boolean UCQs qA and qB such that, for
any consistent KB K, the following holds:

• A is non-redundant w.r.t. certain n-answers for q over K
iff K EQL-entails q′A;

• A is non-redundant w.r.t. possible n-answers for q over
K iff (i) I satisfies qA for at least one I ∈ Mod(K) and
(ii) I does not satisfy qB for every I ∈ Mod(K).

We conclude this section by discussing some relevant
concrete cases derivable using the established results. Let
K be any KB language for which both Boolean UCQ entail-
ment and consistency check are in AC0 in data complexity.
Notable KB languages enjoying such property are the DL
DLR-LiteA,⊑ (Calvanese et al. 2013) and acyclic tgds with
negative constraints (Lukasiewicz et al. 2022). By Proposi-
tion 10 and the second bullet of Theorem 3, we immediately
get that CERTREC(K), POSSREC(K), and NRPOSS(K) are
in AC0 in data complexity. Furthermore, by combining the
first bullet of Theorem 3 with (Calvanese et al. 2007a, The-
orem 8), we get that NRCERT(K) is in AC0 in data com-
plexity as well. This means that, for such K, dealing with
certain/possible n-answers has the same data complexity as
standard UCQ entailment. A similar line of reasoning ap-
plies for those KB languages K for which both Boolean
UCQ entailment and consistency check are P-complete in
data complexity, such as (frontier-)guarded tgds with nega-
tive constraints (Baget et al. 2011). In these cases, we de-
rive that CERTREC(K), POSSREC(K), NRCERT(K), and
NRPOSS(K) are all P-complete in data complexity.

7 Conclusion
In this work, we presented a framework for informative-
ness of query answers in KBs, studied the informativeness
of query answers known in the literature, and studied novel
forms of answers with their computational characteristics.

A first extension of our results is the definition of an-
swers that preserve the certain or possible knowledge of
∃Pos(ANS). Another interesting direction is to design ef-
ficient enumeration algorithms for our novel notion of an-
swers and implement them in practice. Finally, our frame-
work could be used to improve the informativeness of an-
swers in different contexts. For example, we foresee applica-
tions for ontological queries with aggregation and arithmetic
operators or Consistent Query Answering.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10448



Acknowledgements
This work has been supported by MUR under the PNRR
project FAIR (PE0000013) and by the EU under the H2020-
EU.2.1.1 project TAILOR (grant id. 952215). The authors
would like to thank the anonymous referees for their valu-
able comments and Leonid Libkin for the conversations on
the topic of this work.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
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