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Abstract

Background: over the last year, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants have
highlighted the importance of screening tools with high diagnostic accuracy for new illnesses such as COVID-19. In that regard,
deep learning approaches have proven as effective solutions for pneumonia classification, especially when considering chest-x-rays
images. However, this lung infection can also be caused by other viral, bacterial or fungi pathogens. Consequently, efforts are
being poured toward distinguishing the infection source to help clinicians to diagnose the correct disease origin. Following this
tendency, this study further explores the effectiveness of established neural network architectures on the pneumonia classification
task through the transfer learning paradigm.

Methodology: to present a comprehensive comparison, 12 well-known ImageNet pre-trained models were fine-tuned and used to
discriminate among chest-x-rays of healthy people, and those showing pneumonia symptoms derived from either a viral (i.e., generic
or SARS-CoV-2) or bacterial source. Furthermore, since a common public collection distinguishing between such categories is
currently not available, two distinct datasets of chest-x-rays images, describing the aforementioned sources, were combined and
employed to evaluate the various architectures.

Results: the experiments were performed using a total of 6330 images split between train, validation, and test sets. For all
models, standard classification metrics were computed (e.g., precision, f1-score), and most architectures obtained significant per-
formances, reaching, among the others, up to 84.46% average f1-score when discriminating the four identified classes. Moreover,
execution times, areas under the receiver operating characteristic (AUROC), confusion matrices, activation maps computed via the
Grad-CAM algorithm, and additional experiments to assess the robustness of each model using only 50%, 20%, and 10% of the
training set were also reported to present an informed discussion on the networks classifications.

Conclusion: this paper examines the effectiveness of well-known architectures on a joint collection of chest-x-rays presenting
pneumonia cases derived from either viral or bacterial sources, with particular attention to SARS-CoV-2 contagions for viral
pathogens; demonstrating that existing architectures can effectively diagnose pneumonia sources and suggesting that the transfer
learning paradigm could be a crucial asset in diagnosing future unknown illnesses.
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1. Introduction

Pneumonia is an acute respiratory infection caused by viral,
bacterial or fungal pathogens. This infection can affect either a
single or both lungs and can cause mild to life-threatening ef-
fects in people of all ages. Notably, there are increased risks for
those with preexisting health conditions or in adults with more
than 65 years, and is the largest worldwide infectious cause of
death for children; accounting for 15% of children deaths in
2017, according to World Health Organization (WHO) statis-
tics. Among the possible sources, viruses and bacteria are the
most common pneumonia infection causes [1] and, depending
on the pathogen, the illness shows a different behavior. In
particular, for viral agents, the infection is generally diffused
across all lungs [2], while for bacterial ones it usually con-
centrates on given areas [3]. Therefore, due to intrinsic dif-
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ferences between viruses and bacteria, as well as their potential
treatment, a key aspect is to correctly diagnose the pneumo-
nia source. The latter has become even more crucial since the
discovery of a novel coronavirus in 2019 [4], that has resulted
in the SARS-CoV-2 virus and related COVID-19 disease pan-
demic outbreak. Indeed, while many works are addressing this
diagnosis task [5], there is still a need for increasingly more
general research that might be used to oppose the possibly al-
ready endemic SARS-CoV-2 [6], its future variants [7], or com-
pletely new diseases that might result in other pandemics [8].

To address the pneumonia classification task and help clin-
icians with their diagnoses, an effective solution is to analyze
chest-x-rays images. Indeed, as can be observed in Fig. 1,
the infection spread can be clearly visible through the x-ray
technology, especially for severe conditions such as the one
associated to the SARS-CoV-2 virus. To fully exploit infor-
mation found in such images, deep learning approaches are
being explored since they can already obtain significant per-
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Figure 1: Chest-x-ray samples showing a healthy patient (a), pneumonia from a bacteria infection (b), pneumonia from a virus infection (c), and pneumonia from a
COVID-19 case (d).

formances in several heterogeneous medical fields [9, 10, 11,
12]. In detail, many solutions focus on the binary classifica-
tion between COVID-19 patients and healthy people [13, 14,
15, 16, 17, 18]. For instance, the authors of [15] design a
custom deep neural network (DNN) model with a hybrid di-
agnose strategy (HDS) and fuzzy inference engine to identify
COVID-19 patients, while in [18] transfer learning is applied
to 4 pre-trained networks to distinguish between SARS-CoV-
2 infected and healthy people. Although a binary classifica-
tion allows a given model to completely focus on the COVID-
19 disease, several works try to build more general models by
also differentiating pneumonia patients with other sources (i.e.,
bacterial or virus) through the use of deep learning methods
[19, 20, 21, 22, 23, 24]. In [21], for example, the authors
devise a stacking ensemble method to leverage several Ima-
geNet pre-trained architectures and discern between healthy,
COVID-19 and other pneumonia-affected patients; while a cus-
tom architecture based on long-short term memory (LSTM)
units is trained from scratch in [19] to achieve a similar pur-
pose. Finally, different works propose yet another abstraction
step by recognizing 4 different classes, i.e., healthy, COVID-19,
as well as pneumonia patients infected via bacterial or other vi-
ral pathogens [25, 26, 27, 28, 29, 30]. In particular, the authors
of [25] introduce a convolutional neural network (CNN), called
CoroNet, specifically designed and trained to discriminate be-
tween the aforementioned categories. In [28], instead, 5 Ima-
geNet pre-trained architectures are combined via the ensemble
technique to increase their system classification performance.

An important aspect for methods addressing the pneumonia
classification in COVID-19 affected patients and, more in gen-
eral, of new illnesses is the lack of datasets, especially when
diseases are first discovered. In this context, approaches based
on few-shot learning (FSL), where models are trained on an ex-
tremely small number of annotated samples, can be developed
and prove useful as early diagnosis tools [31, 32, 33]. In [31],
for instance, an encoder is trained over a small number of sam-
ples to extract image embeddings via contrastive learning. This
low-dimensional representation is then fed to a prototypical net-
work that can diagnose the COVID-19 infection. The authors
of [32], instead, exploit FSL to train in a self-supervised way an
architecture organized as an encoder-decoder and perform seg-
mentation of CT scans to detect a SARS-CoV-2 contagion more
easily. Although FSL can considerably help diagnose new-
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Figure 2: Transfer learning paradigm scheme for pneumonia classification.

found illnesses, a relevant problem that can arise when using
few samples is the privacy of the corresponding patients, which
should always be guaranteed. To this end, several approaches
exploit the federated learning (FL) technique when implement-
ing their solution to diagnose COVID-19 [34, 35, 36]. In par-
ticular, FL enables devices to collaboratively learn a shared
global model without sharing their local training data with a
single server, therefore ensuring data privacy through a decen-
tralized approach. The authors of [35], for example, address
the segmentation and classification of COVID-19 while pre-
serving user privacy by developing a capsule network that is
trained through the blockchain FL. Differently, the scheme in
[36] presents a custom strategy where a shared model can main-
tain data without physically exchanging them and train several
known networks on the COVID-19 diagnosis using the devel-
oped methodology.

While many literature works focusing on the SARS-CoV-2
infection introduce specific architectures that handle its classi-
fication, or design models that can keep learning following the
continual learning paradigm [37, 38, 39], others simply focus
on transfer learning capabilities by fine-tuning known architec-
tures on pneumonia datasets [40, 13, 41, 42, 43, 44, 45]. Fol-
lowing the latter methodology, we performed a transfer learn-
ing study by fine-tuning 12 models on an extended collection
derived by combining two public datasets presented, respec-
tively, in [46] and [13]. In particular, we froze all Imagenet
pre-trained models up to their respective classification com-
ponent, as summarized in Fig. 2, which was instead modified
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to handle the classification task of the 4 available categories,
i.e., healthy and pneumonia derived from bacterial, viral and
SARS-CoV-2 pathogens. This allows to train even complex
models in less time and enables the presented architectures to
be ready to handle a complex task such as medical image classi-
fication. Furthermore, we also present qualitative experiments
to explain the networks choices by directly observing what they
focus on inside the chest-x-ray images via the Grad-CAM algo-
rithm [47]. Presenting such a comprehensive transfer learning
overview helps to choose better backbone architectures to build
custom models upon, and offers a strong methodology for pos-
sible future diseases which might require to be diagnosed as
early as possible, and for which it might be difficult to design
good performing neural networks right away.

The rest of this paper is structured as follows. A brief in-
troduction on the rationale behind each pre-trained model used
in this work is provided in Section 2. The dataset, quantitative
and qualitative experimental results, as well as a discussion on
the obtained performances, are presented in Section 3. Finally,
work conclusions and future plans are drawn in Section 4.

2. Materials and Methods

The intuition behind transfer learning is to use a model pre-
trained on a large and heterogeneous dataset, so that its generic
world representation can be exploited on a new and different
task [48]. In particular, when analyzing images, this learning
approach takes advantage of feature maps learned by a network,
without requiring to train the model from scratch and, there-
fore, avoiding a time-consuming and resource-intensive proce-
dure. To transfer previous knowledge to the new task, there
are two possible approaches. In the first one, a pre-trained
model is treated as a feature extractor by freezing its internal
weights. A classifier is then trained on top of this frozen ar-
chitecture to achieve the knowledge transferal, and retain as
much information as possible from the previous field. Notice
that the classifier is usually implemented either via one or more
dense layers, with the last one using the softmax function to ob-
tain the probability distribution over the available classes; as a
completely distinct deep learning architecture; or through ma-
chine learning algorithms such as the support vector machine
(SVM) or random forest (RF). In the second approach, instead,
the whole architecture, or a subset thereof, is fine-tuned on the
new task. In this case, the pre-trained model weights are used
as a baseline instead of starting from a random initialization.
This generally allows a network to reach training convergence
faster, and to specialize its entire structure to the new field.
While both methodologies can be effective, in this work, we
explore the former approach and assess the capabilities of var-
ious networks used as feature extractors; and train the original
classifier component of each model, which is implemented as
one or more fully connected layers, on the collected dataset.
This training strategy allows to emulate the scarcity of data,
typical when new illnesses are first discovered, but still en-
ables to correctly train otherwise data hungry networks [49].
In more detail, we performed experiments on a combined col-
lection derived from datasets presented in [46] and [13] to eval-

Bacteria Normal Virus COVID-19 Total

[46] [13] [62, 63]1

Train 2249 1060 1056 84 - 4449
Val 289 289 289 - 289 1156
Test 242 234 148 101 - 725

1https://github.com/ieee8023/covid-chestxray-dataset

Table 1: Final merged dataset distribution.

uate 12 well-known ImageNet pre-trained models briefly dis-
cussed later in this section, i.e., AlexNet [50], DenseNet [51],
GoogleNet [52], MnasNet [53], MobileNetv2 [54], MobileNet
v3 (Large) [55], ResNet50 [56], ResNeXt [57], ShuffleNet [58],
SqueezeNet [59], VGG16 [60] and Wide ResNet50 [61]. More-
over, each modelM was modified and adapted to the new task
by changing the output layerMo nodes number, by exploiting
the following equation:

Mlogits =Wo ∗ Dropout(ReLU(Whx)), (1)

whereMlogits and Wo represent the model output logits andMo

weights, respectively; Dropout(·) is a regularization technique
employed to avoid overfitting; ReLU(·) corresponds to the cho-
sen activation function applied to the incoming inputs; Wh indi-
cates weights betweenMo and its preceding hidden layerMh;
while x denotes theMh output. In particular, given the model-
dependent input size n = |x|, Wh and Wo will have a dimension
of Rn×256 and R256×4, respectively. Finally, to train a modelM,
we employed the categorical cross-entropy loss L defined as:

L = −
1
N

N−1∑
i=0

yi log ŷi, (2)

where N corresponds to the number of classes, i.e., normal, bac-
teria, virus, and COVID-19; while ŷi and yi indicate, respec-
tively, the predicted output and ground truth labels.

2.1. AlexNet
The AlexNet [50] architecture had a significant impact in

the computer vision field over the last decade. Its success can be
related to the ImageNet LSVRC-2012 [64] competition, which
it won by a large margin compared to the second classified, i.e.,
with an accuracy increase of 10.9%. The architecture comprises
5 convolutional layers using kernels with size 11×11, 5×5, and
3×3 for the last three layers. Moreover, max pooling, dropout,
and ReLU are applied after the first, second, and fifth convo-
lution to extract a vector of relevant features with dimension
9216. Finally, the latter are classified through 3 fully connected
layers with a shape of 4096, 4096, and 1000, respectively.

2.2. DenseNet
A more recent model is the DenseNet [51], developed to

mitigate the vanishing/exploding gradient problem which is a
typical issue in deep neural networks with many layers. To this
end, the authors organized their network into dense blocks in-
terleaved by transition layers that can act as a bottleneck to re-
duce the architecture parameters number as well as the input
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Figure 3: Dataset subdivision scheme.

size. Moreover, a dense block can contain several convolutions
(e.g., 6, 12, 24), and each of these operations receives as input
all of the feature maps produced by its preceding layers. This
allows to forward more information inside a given block, and
results in an overall more compact configuration, via this dense
blocks subdivision, as well as in improved performances. For
this model, the classifier is composed of a single dense layer
taking as input a feature vector of size 1024.

2.3. GoogLeNet

Another key architecture is GoogLeNet [52], organized into
27 layers containing convolutions as well as 5 max pooling op-
erations and 9 inception modules. The latter are designed to
allow a more efficient computation through a dimensionality
reduction achieved via 1×1 convolutions. What is more, on top
of these convolutions, GoogLeNet also retains crucial spatial
information by analyzing the input at different scales by using
kernel sizes of 1×1, 3×3, and 5×5 inside its inception modules.
Finally, intermediate classifications are also performed to rein-
force the final network output and improve the network gradient
throughout its training. To this end, while the classifier of this
model receives as input a feature vector of dimension 1024, the
intermediate classifiers are fed with vectors of size 2048.

2.4. MnasNet

A network specifically optimized to obtain significant per-
formances on mobile devices through the Mobile Neural Ar-
chitecture Search (MNAS) approach, is the MnasNet [53]. In
particular, the architecture latency, i.e., the time required to per-
form inference on a given image, is incorporated directly into
the main objective to be minimized at training time; enabling
the model search to find a good trade-off between accuracy and
latency. Moreover, the MnasNet employs 9 layers compris-
ing convolutions as well as depthwise separable convolutions
and mobile inverted bottlenecks, which exploit inverted resid-
ual connections, to extract a feature vector with 1280 elements
that is classified using a single dense layer. Notice that both
techniques were defined by the MobileNet v2, presented in the
following section.

2.5. MobileNet v2

An earlier network devised for mobile devices is the Mo-
bileNet v2 [54]. This model implements a fully convolution
layer followed by 19 residual bottleneck layers that extend the
depth-wise separable convolution designed for the MobileNet
[65]. In detail, this operation applies convolutions on the input
channels in a disjoint fashion, then merges the resulting outputs
via 1×1 point-wise convolution. In MobileNet v2, this opera-
tion is further refined through an inverted residual block that ex-
pands, performs a depth-wise separable convolution, then com-
presses the output to filter features; preventing overfitting and
reducing the model parameter number. Finally, similarly to the
MnasNet, the MobileNet v2 classifies a feature vector with di-
mension 1280 via a single dense layer.

2.6. MobileNet v3

A further advancement for mobile networks is also pro-
vided by MobileNet v3 [55], where a feature vector of size
1280 classified by a single dense layer is extracted by inverted
residual blocks with depth-wise separable convolutions, i.e.,
MobileNet v2 blocks, that are improved through the squeeze-
and-excitation technique [66]. Specifically, the latter explic-
itly models interdependencies between channels by recalibrat-
ing channel-wise feature responses through adaptive weights
associated to each feature map. Furthermore, AutoML [67] is
also employed to find the best neural network architecture using
the extended inverted residual blocks mentioned above.

2.7. ResNet50

An effective architecture focusing on the extracted features
is the ResNet50 [56] which, as the name implies, contains 50
convolutional layers. In more detail, this architecture applies
a first convolution and a max pooling operation to consistently
reduce the input size. Subsequently, residual blocks are im-
plemented to reach the desired size of 50 convolutional layers
that generate a feature vector of dimension 2048, classified by
a single dense layer. Moreover, a key component of this ar-
chitecture lies in its residual blocks, which leverage residual
connections. The latter define an identity shortcut that skips 3
layers and ensures input data is feed-forwarded throughout the
model, enabling for a higher information retention.

2.8. ResNeXt

The ResNeXt [57] architecture extends the ResNet resid-
ual blocks with a split-transform-merge paradigm similar to the
GoogLeNet inception module. Differently from the latter, that
concatenates depth-wise feature maps generated using different
kernel sizes, ResNeXt merges the different paths by summa-
tion. What is more, each path will employ identical kernels
for its convolutions, effectively designing an architecture by re-
peating a building block with a specific set of transformations;
resulting in a simple and homogeneous design and reducing the
number of hyper-parameters to be set. Finally, this architec-
ture, similarly to the ResNet50, classifies a feature vector of
size 2048 using a single dense layer.
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Hyperparameter Value

Max Epochs 40
Optimizer Adam
Learning Rate 1e-3
Batch size 100
Loss function Categorical Cross-Entropy
Model Selection High Accuracy

Table 2: Model training hyperparameter configuration.

2.9. ShuffleNet

The ShuffleNet model [58] is another network optimized
for mobile devices that requires low computational resources.
To reduce the latter, generally measured in Mega Floating-point
Operations per Second (MFLOPs), this model defines two oper-
ations that reduce the computational costs while still preserving
accuracy, i.e., point-wise group convolution and channel shuf-
fle. These two procedures rearrange feature maps channels to
increase the architecture abstraction level, achieving high per-
formances on mobile devices (e.g., 18x faster execution with
respect to an AlexNet on ARM-based devices, for similar ac-
curacy) even though the structure contains 50 layers organized
into 4 stages that apply the aforementioned mechanisms. No-
tice that similarly to other architectures, ShuffleNet implements
a single dense layer to classify a feature vector containing 1024
elements to reduce the amount of parameters in the classifier.

2.10. SqueezeNet

Differently from other networks, SqueezeNet [59] focuses
on significantly reducing the model size, resulting in a compact
CNN with 18 convolutional layers generating a feature vector
with dimension 1000, classified by a single dense layer that
has similar performances to AlexNet on the ImageNet dataset
[50], but with 50x less parameters. To obtain these results,
SqueezeNet authors describe Fire layers implementing an al-
ternating squeeze-expand strategy, where parameters are con-
strained by reducing the convolution filter size. In particular,
1×1 as well as 1×1 and 3×3 kernels are used in the squeeze and
expand components, respectively. As a result, the parameter
number reduction allows for more feature maps to be generated
in deeper layers to enhance the model accuracy.

2.11. VGG16

One of the first networks to include a deeper architecture is
the OxfordNet model, also known as VGG16 [60]. The Oxford
Visual Geometry Group achieved remarkable performances by
stacking up to 13 convolutional layers, interleaved by 5 max
pooling operations applied at the second, fourth, seventh, tenth,
and thirteenth convolutions to reduce the input size. Through
this structure, a vector of meaningful features with size 25088 is
extracted from the input image and fed to a classifier composed
of three dense layers that discriminates between the ImageNet
1000 classes. Moreover, the VGG16 is one of the first models
applying smaller kernels in its convolutions, i.e., with a shape of
3×3, used to capture details in extremely small receptive fields.

Model Training time Test time Params

AlexNet 17m 19s 58M
DenseNet 48m 19s 27M
GoogleNet 15m 19s 5M
MnasNet 37m 18s 3M
MobileNet v2 37m 18s 2M
MobileNet v3 39m 18s 3M
ResNet50 36m 19s 24M
ResNext 43m 20s 23M
ShuffleNet 50m 19s 1M
SqueezeNet 17m 18s 0.7M
VGG16 42m 22s 135M
Wide ResNet50 47m 21s 67M

Table 3: Training and test time comparison expressed in (m)inutes and
(s)econds, respectively. Lower values correspond to a better performance.

2.12. Wide ResNet

A different approach to typical deep neural network design
is explored by the Wide ResNet model [61]. In this architec-
ture, ResNet residual blocks, which were otherwise devised to
lessen the number of parameters of deep neural networks by al-
lowing for deep, thin and effective structures, are modified to
reduce their depths and increase their width. In particular, this
is achieved by limiting the amount of layers in residual blocks,
while employing bigger kernels and generating more feature
maps per convolution. A strategy that enabled the Wide ResNet
with its 16-layer structure, followed by a single dense layer
classifier taking as input a feature vector of 2048 elements, to
outperform other deeper models on the ImageNet Large Scale
Visual Recognition challenge [64].

3. Experimental Results and Discussion

Extensive experiments were carried out to assess the trans-
fer learning capabilities of all networks. The dataset employed
for evaluation and its merging procedure are described in Sec-
tion 3.1. Implementation details and the chosen testing proto-
col are instead presented in Section 3.2. Finally, quantitative
and qualitative experimental results are shown and discussed in
Section 3.3.

3.1. Dataset

To explore transfer learning capabilities on pneumonia clas-
sification of chest-x-rays images, with particular attention to the
SARS-CoV-2 infection, we performed experiments on a dataset
that was specifically designed to contain data from different
public collections addressing the pneumonia classification task.
Notice that the merged collection has heterogeneous chest-x-
ray dimensions due to its data deriving from distinct research
groups. However, when fed to the selected models, the images
are resized to a shape of 224×224 to match the required input
size of the architectures. In detail, the merged dataset contains
four categories, namely: normal (i.e., healthy), and pneumonia
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Model Prec.% Sens.% Spec.% F1% #Params

AlexNet 80.41 78.45 92.82 77.73 58M
DenseNet 84.70 83.01 94.34 84.00 27M
GoogleNet 83.09 80.52 93.51 81.33 5M
MnasNet 69.50 56.49 85.50 54.60 3M
MobileNet v2 83.78 81.91 93.97 82.48 2M
MobileNet v3 84.92 83.43 94.48 84.36 3M
ResNet50 80.58 76.38 92.13 77.49 24M
ResNext 79.55 77.49 92.50 78.50 23M
ShuffleNet 83.19 78.04 92.68 79.33 1M
SqueezeNet 20.73 27.49 75.83 19.70 0.7M
VGG16 77.39 74.72 91.57 75.35 135M
Wide ResNet50 79.83 74.45 91.48 76.23 67M

Table 4: Performance comparison computed on the test set for precision, sensi-
tivity, specificity, and F1-score metrics. All models are trained using 100% of
the training set.

Model Prec.% Sens.% Spec.% F1% #Params

AlexNet 79.58 77.07 92.36 76.36 58M
DenseNet 83.97 79.97 93.32 81.07 27M
GoogleNet 80.78 76.80 92.27 77.41 5M
MnasNet 68.93 51.66 83.89 48.06 3M
MobileNet v2 82.16 78.31 92.77 80.16 2M
MobileNet v3 82.67 79.00 93.00 79.85 3M
ResNet50 78.46 71.13 90.38 72.46 24M
ResNext 77.74 70.44 90.15 71.30 23M
ShuffleNet 80.56 72.51 90.84 73.19 1M
SqueezeNet 11.17 33.42 87.81 12.53 0.7M
VGG16 70.62 67.96 89.32 67.00 135M
Wide ResNet50 75.27 70.30 90.10 70.90 67M

Table 5: Performance comparison computed on the test set for precision, sen-
sitivity, specificity, and F1-score metrics. All models are trained using 50% of
the training set.

deriving from bacteria, generic viruses, or COVID-19, as illus-
trated in Fig. 3.

Regarding the first three classes, they are taken from a well-
known Kaggle pneumonia challenge, and split into training, de-
velopment, and test sets in accordance with [46]. This dataset
comprises more than 5000 (anterior-posterior) chest-x-rays im-
ages that were selected from retrospective cohorts of pediatric
patients with an age between one and five years old during the
pre-COVID-19 era. In detail, the images were collected by the
Guangzhou Women and Children’s Medical Center, and they
were graded by at least two expert physicians. However, the
original dataset is annotated as a binary classification task, i.e.,
images either containing pneumonia symptoms or not. Never-
theless, thanks to its metadata it is possible to further split the
images according to the illness source, i.e., either bacterial or
virus, therefore resulting in 3 of the aforementioned classes.

Concerning chest-x-rays images showing a COVID-19 con-
tagion, we further extend the training and test sets with 185
images by following the same arrangement proposed in [13].

Model Prec.% Sens.% Spec.% F1% #Params

AlexNet 79.41 76.66 92.22 75.48 58M
DenseNet 81.20 77.21 92.40 78.00 27M
GoogleNet 79.92 75.69 91.90 75.12 5M
MnasNet 47.79 45.86 81.95 32.07 3M
MobileNet v2 78.53 73.48 91.16 74.80 2M
MobileNet v3 76.73 45.03 81.68 39.21 3M
ResNet50 77.13 65.19 88.40 68.58 24M
ResNext 76.17 70.86 90.29 70.03 23M
ShuffleNet 76.56 67.13 89.04 61.98 1M
SqueezeNet 11.17 33.43 77.81 12.53 0.7M
VGG16 69.57 62.43 87.48 62.34 135M
Wide ResNet50 74.22 66.99 89.00 66.86 67M

Table 6: Performance comparison computed on the test set for precision, sen-
sitivity, specificity, and F1-score metrics. All models are trained using 20% of
the training set.

Model Prec.% Sens.% Spec.% F1% #Params

AlexNet 79.27 76.10 92.03 74.34 58M
DenseNet 81.26 76.93 92.31 77.96 27M
GoogleNet 78.92 71.41 90.47 70.96 5M
MnasNet 49.74 42.96 80.99 29.92 3M
MobileNet v2 79.79 62.29 87.43 65.23 2M
MobileNet v3 56.56 44.61 81.54 28.40 3M
ResNet50 77.25 62.15 87.38 63.37 24M
ResNext 75.57 62.02 87.34 63.15 23M
ShuffleNet 61.01 67.40 89.13 53.85 1M
SqueezeNet 11.22 33.29 77.76 12.55 0.7M
VGG16 68.16 58.29 89.31 59.84 135M
Wide ResNet50 76.51 72.51 90.84 70.44 67M

Table 7: Performance comparison computed on the test set for precision, sen-
sitivity, specificity, and F1-score metrics. All models are trained using 10% of
the training set.

Moreover, since the latter does not have any validation data,
we also expand the corresponding set through the remarkable
works of [63, 62], which assembled ≈400 chest-x-rays COVID-
19 samples from different publications. In particular, these im-
ages were acquired by different institutions across the world
and include both male and female patients covering all ages up
to 80 years old. From this collection, 289 images were retained
to ensure there were non-overlapping images with respect to
sets defined by [13].

Summarizing, the final dataset, fully described in Table 1,
comprises the bacteria, virus, and normal classes as per [46],
while for COVID-19 it contains train and test sets from [13],
and a validation set taken from [62, 63], for a total of 6330
chest-x-ray images.

3.2. Implementation Details

All experiments performed across the various architectures
make use of a standard set of hyperparameters, summarized in
Table 2, to have a comparable environment across the mod-
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Figure 4: Accuracy computed on the test set.

els. In detail, each network was trained for up to 40 epochs
using the Adam optimizer, a learning rate of 1e-3, and a batch
size of 100, which allowed for a good sample mixture. More-
over, for each model, weights associated to the highest perform-
ing epoch, with respect to the development set accuracy, were
selected as a final configuration to be used for inference. In
addition, we also implemented the standard data augmentation
strategy used for ImageNet which automatically handles input
images with different dimensions by altering them as follows:
random resize crop to a dimension of 256×256, random rota-
tion up to 15 degrees, color jitter, random horizontal flip, and
center crop of size 224×224 to match the network input size.
Finally, several common classification metrics, i.e., precision,
sensitivity, specificity, and F1-score were used to evaluate the
networks performances. Notice that, being in a multiclass clas-
sification scenario, a weighted average of the aforementioned
metrics was used to estimate the models performances so that
the dataset distribution would also be taken into account.

Concerning the architectures implementation, we employed
the PyTorch framework and PyTorch Lightning library, with
a 16-bit floating-point precision to speed up the computation.
Furthermore, ImageNet pre-trained models were imported from
the TorchVision library to exploit the transfer learning paradigm.
Finally, all tests were performed on the Google Colab infras-
tructure with an Intel CPU x86-64 architecture using 25GB of
RAM, along an NVIDIA Tesla V100 with 16GB of VRAM.
The required training and test time using this configuration are
summarized in Table 3. Notice that training times are affected
by the underlying architecture but are not strictly correlated to
the number of available parameters, i.e., more parameters do
not necessarily require longer times to be trained. Contrary to
this phenomenon, test times over the entire test set, i.e., 725
images, are similar across all models, indicating that each net-
work, independently from its performance, can analyze a chest-
x-ray and provide a feedback to the clinician in roughly 3 ms.

3.3. Performance Evaluation

In this section, we evaluate all of the presented models both
quantitatively and qualitatively by means of sheer performances,
for the former, and through an explainable visualization of the
output, for the latter.
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Figure 5: Average accuracy evolution during training.
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Figure 6: Average loss evolution during training.

Concerning the quantitative assessment, a graphical repre-
sentation of the accuracy metric is illustrated in Fig. 4, while
relevant classification metrics are reported in Table 4. As shown,
almost all networks can achieve satisfactory results with a score
higher than 70% across all metrics, indicating that transfer learn-
ing can be an important tool for the early screening of new dis-
eases. Moreover, all models achieve high specificity scores,
implying that, for each class, there generally is a low number
of false positives, i.e., pneumonia sources tend not to be mixed
during predictions. More interestingly, the top performing ar-
chitecture is the MobileNet v3, even though it is one of the
models with the lowest number of parameters since it is opti-
mized for mobile devices. This outcome highlights that more
recent and advanced architectures can have an edge over older
ones (e.g., AlexNet) and, as a consequence, may perform better
using significantly fewer parameters without loss of generality.
While networks with less parameters can still obtain remark-
able performances, the opposite result can also be observed.
Examples of this behavior are the MnasNet and, in particu-
lar, SqueezeNet, which do not perform well during inference as
they cannot effectively transfer previous knowledge to the new
task due to both their architecture and parameters number; an
expected outcome since these networks are mainly focused on
significantly reducing pre-existing models sizes and can have a
lower accuracy as a trade-off. Furthermore, the reduced per-
formances are also confirmed by the average accuracies and
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Figure 7: AUROC metric computed for AlexNet (a), DenseNet (b), GoogleNet (c), MnasNet (d), MobileNet v2 (e), MobileNet v3 (Large) (f), ResNet50 (g),
ResNext (h), ShuffleNet (i), SqueezeNet (j), VGG16 (k) and Wide ResNet50 (l), computed on the test set. Labels N, B, V, C correspond to normal, bacteria, virus
and COVID-19 classes, respectively.

losses, which are reported in Fig. 5 and Fig. 6, respectively.
As can be observed, most networks start converging well be-
fore the 40-th epoch, apart from the best performing DenseNet
and MobileNet v3 that kept improving across the entire train-
ing procedure. This implies that previous knowledge, although
useful, can saturate fast during its transferal. What is more,
the SqueezeNet architecture actually diverges when adapting its
classifier to the new task, thus resulting in loss values outside
the reported range, and further justifying the low performance
obtained on the pneumonia classification task. This outcome
suggests that using an extremely low number of parameters can
result in issues when exploiting the transfer learning paradigm,
especially in the case of complex tasks such as the classifica-
tion of chest-x-ray images. These results are also confirmed
by the AUROCs reported in Fig. 7. As shown, most models
obtain remarkable areas on each class, with the highest one be-

ing associated consistently with COVID-19, most likely due to
the extreme effects of pneumonia spread inside the lungs de-
rived from a SARS-CoV-2 infection. Such an outcome indi-
cates that the models can correctly distinguish healthy patients
from those affected by pneumonia and, for the latter, also indi-
viduate the correct source, further highlighting the effectiveness
of the transfer learning paradigm to classify new illnesses. Con-
cluding, notice that the only exception is the SqueezeNet archi-
tecture, i.e., Fig. 7.(j) since it did not converge during training.

On a different note, we performed several experiments to
evaluate the robustness of each model by reducing the train-
ing set size. In particular, we used 50%, 20%, and 10% of
the collected training images to simulate a real case scenario
where chest-x-rays would be limited upon the illness discov-
ery. The results, obtained on the same test set described in
Table 2, are reported in Table 5, Table 6, and Table 7 for the
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Figure 8: Confusion matrices computed for AlexNet (a), DenseNet (b), GoogleNet (c), MnasNet (d), MobileNet v2 (e), MobileNet v3 (Large) (f), ResNet50 (g),
ResNext (h), ShuffleNet (i), SqueezeNet (j), VGG16 (k) and Wide ResNet50 (l), computed on the test set. Labels N, B, V, C correspond to normal, bacteria, virus
and COVID-19 classes, respectively.

training set reduced to 50%, 20%, and 10%, respectively. No-
tice that this percentage is computed per class, following the
training set described in Table 2, to ensure samples from each
source would be included in the training set. As expected, per-
formances naturally decrease for all networks by reducing the
training set size, with the smallest size, i.e., 10%, resulting in
the lowest scores across all metrics. More interestingly, the
best performing model with the entire training set, i.e., Mo-
bileNet v3, suffers from the highest decrease in performance,
reaching almost 56% less F1-score. On the one hand, this indi-
cates a possible limit with the architecture itself, especially no-
ticeable compared to its previous version MobileNet v2 which
has a 17% performance drop. On the other hand, it demon-
strates that models with low performances can achieve higher

results when provided with enough samples. Contrary to Mo-
bileNet v3, AlexNet has the smallest reduction in performance,
with only a 3.39% decrease in F1-score when using 10% of the
training set, suggesting that this convolutional network extracts
robust features. In this context, another model that obtained
remarkable scores across all metrics and training set sizes is
the DenseNet architecture, implying that the internal configu-
ration of a model can influence the computation of meaningful
features, which is a relevant factor when analyzing newly dis-
covered illnesses.

To conclude this quantitative evaluation and better appreci-
ate the capabilities of knowledge transfer, confusion matrices
for all models are shown in Fig. 8. As can be observed, exclud-
ing the diverged SqueezeNet architecture, i.e., Fig. 8.(j), predic-
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(a) (b) (c) (d)

Figure 9: Chest-x-ray inference samples showing a healthy patient (a), pneumonia from a bacteria infection (b), pneumonia from a virus infection (c), and pneumonia
from a COVID-19 case (d). Input images are reported in the first row, while Grad-CAM overlaid images for MobileNet v3 and SqueezeNet are reported in the
second and third row, respectively.

(a) (b) (c) (d)

Figure 10: Chest-x-ray misclassified samples showing a healthy patient (a), pneumonia from a bacteria infection (b), pneumonia from a virus infection (c), and
pneumonia from a COVID-19 case (d), overlaid with Grad-CAM algorithm.

tions from the various models concentrate, as expected, on the
corresponding matrix diagonal, indicating the right recognition
of the four classes. On a different note, most of the errors are as-
sociated to the misclassification of the normal healthy class into
the viral one. A behavior that can most likely be associated to
artifacts present in the chest-x-ray, which might be confused for
the diffused aspect of mild pneumonia cases from viral sources,
in accordance with the findings of [2]. Nevertheless, there is
a robust COVID-19 recognition across the architectures, even
though viruses, and especially other SARS pathogens, fall into
a different category. This outcome highlights the effectiveness
of transfer learning, and indicates that, for early diagnosis of
new illnesses, it can be a practical strategy thanks to the pre-
existing models prowess.

Regarding the qualitative evaluation, Grad-CAM overlaid
images for the best and worst performing models, i.e., the Mo-

bileNet v3 and SqueezeNet architectures, are shown in Fig. 9.
As can be observed, the former model, reported on the second
row, concentrates on the lungs for pneumonia cases deriving
from bacteria, virus, and COVID-19, i.e., Fig. 9.(b-d); while the
architecture internal weights have a higher response, i.e., red ar-
eas on the Grad-CAM image, on both collar as well as rib cage
bones for a normal chest-x-ray, i.e., Fig. 9.(a). This outcome
is most likely due to the pneumonia absence from the input,
which resulted in the model focusing on other points of interest
to learn the right category. Even more interesting, the activated
areas in pneumonia images seem to confirm the illness prop-
agation described in [2, 3]. Specifically, bacterial pathogens
present a concentrated activation on specific spots, while vi-
ral sources present a diffused activation throughout the lungs.
This effect is especially visible on COVID-19 pneumonia, i.e.,
Fig. 9.(d), where bigger lungs areas have a higher response dur-
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ing inference, indicating that the model could also learn differ-
ences between viral and SARS-CoV-2 pathogens. Differently
from the MobileNet v3, the SqueezeNet architecture tends to
focus on bones and edges from all chest components by focus-
ing on smaller details, most likely due to the smaller kernel
filters of the network. Consequently, this model mixes nor-
mal chest-x-rays with either a bacterial or other generic vi-
ral pathogens, as expected from the diverged confusion ma-
trix presented in Fig.8.(j). A similar issue for this second net-
work, albeit to a lesser extent, is also presented when examin-
ing activated areas in the bacterial and COVID-19 images, i.e.,
Fig. 9.(b) and Fig. 9.(d). In both cases, the model responds to
wider regions of the chest-x-ray in conjunction with rib cage
bones, suggesting that the architecture is not analyzing pneu-
monia effects on lungs and resulting in the sensibly lower re-
ported performances as well as training divergence. What is
more, a comparable scenario can also be observed in Fig. 10,
where misclassified images for the MobileNet v3, i.e., the best
architecture on the presented dataset, are reported. As shown,
for each category, the model has a strong response on other
points of interest, such as collar or rib cage bones, as well as
external lungs locations. Furthermore, for the healthy chest-x-
ray, i.e., Fig. 10.(a), there are active areas within the lung in
correspondence with image artifacts. Such behaviors indicate
that, as mentioned, the architecture fine-tuning could be further
improved, especially since it did not reach convergence on the
training dataset. Moreover, it highlights the complexity of the
task since even proficient networks have difficulties handling
these information-rich images. Regardless of these issues, qual-
itative experiments corroborate the quantitative effectiveness of
transfer learning to diagnose pneumonia sources.

4. Conclusion

In this paper, we presented a benchmark with 12 renowned
deep neural network architectures modified to exploit the trans-
fer learning paradigm. The scope of this study is to describe
a comprehensive evaluation of different models when address-
ing the classification of a specific illness, in order to show both
limitations and effectiveness of many remarkable architectures
when applied to a new task. In particular, a dataset was or-
ganized from several public collections of chest-x-rays for the
pneumonia classification derived by bacteria, generic viral or
SARS-CoV-2 pathogens. Moreover, quantitative and qualita-
tive experiments were reported to assess all models, which man-
aged to reach up to 84.46% average f1-score at inference time.
As shown by the results, one of the smallest architectures, i.e.,
MobileNet v3, achieves the best performances and, when ap-
plying the Grad-CAM algorithm, it exhibits similar patterns
with respect to the corresponding pneumonia source, i.e., high
internal weights responses in concentrated or diffused areas for
bacterial or viral and SARS-CoV-2 sources, respectively; demon-
strating that previous knowledge does indeed help to address a
new task, and suggesting that transfer learning can become a
fundamental tool when diagnosing future unknown illnesses.
Furthermore, the robustness of each model was assessed by re-
ducing the training set size to 50%, 20%, and 10% of its orig-

inal dimension. The results highlighted both limitations and
effectiveness of the tested architectures when provided with a
reduced amount of samples. For instance, MobileNet v3 had a
considerable 56% F1-score decrease while AlexNet showed a
reduction of 3.39% when using the smallest training set.

As future work, an even larger collection will be organized
to account for more variegate pulmonary diseases by merging
other relevant public collections. In addition, further inquiries
will be made by also evaluating other models as well as pre-
processing techniques that could improve a given architecture
performances by mitigating misclassification through the re-
duction, for instance, of artifacts in the input. Finally, we will
develop generic AI-driven tools that can assist clinicians when
diagnosing either known or newly discovered illnesses.
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