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A B S T R A C T   

Automation modifies workplaces, tools, and production activities, leading to new modalities of human-machine 
interaction. Traditionally, the allocation of functions in automated systems is static over time, i.e., functions are 
assigned to humans or machines. Adaptive Automation (AA) makes functions allocation dynamic, resulting from 
system conditions, performance, and human attributes to face emerging or unpredictable contingencies, and to 
cope with traditional automation challenges and limits. Tracing the evolutionary stages of the topic, the paper 
provides an extensive literature review. First, the review details the current definition of AA, the starting mo-
tivations for AA, and the temporal evolution of the topic considering the pioneers’ theories. Then, the paper 
presents the design elements involved in AA systems, i.e., the Level Of Automation (LOA), the Human-Machine 
Interfaces (HMIs), and the different approaches than can guide the adaptive shift. Finally, the practical appli-
cations of AA in manufacturing are reported. In such a way, the research offers the state of the art of the topic, 
providing the main distinguishing features between static and AA, also outlining the open challenges and the 
future developments in manufacturing.   

1. Introduction 

Adaptive Automation (AA) changes how functions are allocated be-
tween man and machine and how they interact [1–4]. Traditionally, the 
static allocation of system functions and activities defines who is doing 
what. Here, the Level Of Automation (LOA) is unchanged over time, as it 
identifies functions involving humans and machines. Instead, the 
adaptive rationale defines who is doing what, and when [5]. As a result, 
the tasks assigned to humans or machines can change dynamically over 
time, adapting the LOA to contextual conditions. Through AA, the 
allocation of functions results from system conditions, performance, and 
human attributes to cope with emerging and unpredictable contin-
gencies [6,7]. However, these adaptations require a careful design of the 
system [8,9]. In literature, the topic of AA is not novel. In industries 
other than manufacturing, it is established as a successful logic, e.g., in 
aeronautics, automotive, and aviation [10,11]. In manufacturing con-
crete applications are still residual, despite the research showing efforts 
in this field as well, and some test cases are emerging [12–16]. Several 
authors addressed the AA topic, formalizing theoretical models to guide 
the design of adaptive environments. Despite this evidence, a lack of 
extensive research that presents the state of the art on the topic arises. 
The research presented in the literature features practical or theoretical 

aspects, with a narrow focus and an absence of cross-sectional vision. 
For instance, some papers focus on very specific design aspects, like 
interfaces, or they present applied case studies, without this 
cross-sectional vision. This paper aims to fill this gap through a sys-
tematic literature review, answering the following Research Questions 
(RQs): 

RQ1: What is the definition of AA? 
RQ2: Why was AA introduced? 
RQ3: From an historical perspective, who has addressed the AA topic, 

with what purpose, and what theories emerged? 
RQ4: What design elements are involved in an AA system? 
RQ5. Which applications of AA emerged in manufacturing? 
By answering these questions, the paper presents theoretical and 

practical aspects. Moving from the Definitions (Section 3), which frame 
what adaptive automation is, the evolution of the topic over time is 
traced by the Motivations for AA (Section 4), and the Historical Evolution, 
and the pioneers’ theories (Section 5). A further section defines the spe-
cific Design Elements (Section 6) involved in implementing AA. Finally, 
the Practical Applications in manufacturing (Section 7) are presented. A 
comprehensive analysis of such results maps the State of the art of the 
topic (Section 8) as well as the Open challenges and future developments, 
focusing on the manufacturing field (Section 9). 
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2. Materials and methods 

This review investigates documents following the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines, given by Moher et al. (2009) [17]. PRISMA enables the 
identification of AA definitions (RQ1), the extraction of the motivations 
behind the establishment of AA (RQ2), the analysis of the papers in a 
temporal evolution (RQ3), the retrieval of the design elements of AA 
systems (RQ4), and the collection of applications of AA emerging in 
manufacturing (RQ5). PRISMA guidelines define a systematic literature 
review strategy, which is described in Fig. 1. 

Identification 
The review investigates the Scopus database, i.e., the largest abstract 

and citation database of peer-reviewed literature. The choice of this 
database is based on its relevance in academia. At the end of 2022, the 
RELX Annual Report [18] addresses Scopus as a leading source, an 
expertly curated abstract and citated database with content from over 
27,000 journals from more than 7000 publishers to help researchers 
track and discover global knowledge in all fields. The first step of the 
review defines the scope of the search query. The search query looks for 
every document that addresses the so-called “adaptive, or adaptable, or 
dynamic automation” to broadly collect all the contributions that 
explore this topic from different points of view. Since the topic is 
strongly human centered, the research performed a multi-disciplinary 
analysis including the field of engineering, management, psychology, 
social sciences, neuroscience, and decision sciences, which, as hereafter 
discussed, formalized theories that became real triggers for all the 
studies in other research areas. To have broader inclusion criteria, 
quotation marks are used to ensure that terms composed of multiple 
words are searched together, as well as asterisks are used to include both 
singular and plurals terms, and derived terms. The scope of the research 
is limited to contributions published in English. The search query for the 
database is: TITLE-ABS-KEY (“adaptive automation*” OR “adaptable 
automation*” OR “dynamic automation*”)) AND (LIMIT-TO (SUB-
JAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “SOCI”) OR LIMIT-TO 
(SUBJAREA, “PSYC”) OR LIMIT TO (SUBJAREA, “DECI”) OR LIMIT 
TO (SUBJAREA, “BUSI”) OR LIMIT TO (SUBJAREA, “NEUR”)) AND 

(LIMIT-TO (LANGUAGE, “English”)). The query retrieved 344 contri-
butions. Specifically, 156 conference proceedings, 152 journal articles, 
18 book chapters, 10 conference reviews, 6 reviews, 1 book, and 1 short 
review. 15 contributions were eliminated because duplicated. Then, the 
46 contributions for which the extended abstract or the full text was not 
available were excluded. Therefore, the identification phase is 
concluded with 283 contributions selected. 

Screening 
In the screening phase, each contribution is screened in the title, 

abstract, and keywords to evaluate if its research is adherent to the 
objective of the review. Among 283 articles, 50 were excluded due to 
Exclusion Criteria 1 (EC1) and Exclusion Criteria 2 (EC2). Specifically, 
30 are excluded since they ascribed to the concept of Adaptive Auto-
mation a different meaning than the one of interest (EC1), and 20 
because they dealt with Adaptive Automation, but the adaptive subjects 
were not man and machine (EC2). 

Eligibility 
During this phase, 233 documents are analyzed. The authors 

reviewed the full texts and 62 were rejected as they do not meet the 
Inclusion Criteria (IC). The IC1 requires the paper to cover Adaptive 
Automation broadly, presenting high-level aspects. The IC2 requires 
that papers present specific aspects related to Adaptive Automation, 
such as the design of specific parts of the system. The IC3 requires that 
papers contain an application of Adaptive Automation in a specific 
context and finally the IC4 that the papers feature a hands-on experi-
ment of Adaptive Automation. 

Inclusion 
A total of 171 documents are included for analysis. Further refer-

ences, i.e., 10 documents, were included in the sample through the 
backward and forward snowball sampling technique [19]. A final sam-
ple of 181 documents was reviewed thoroughly, to allow data extraction 
and to synthesize the information pertinent to the scope of this review. 
Data are organized to categorize information concerning citation in-
formation, abstract and keywords, domains of application, and infor-
mation concerning theories, models, methods, and frameworks that 
emerged. The fields reported are the following: authors, the title of the 
paper, year, source title, number of citations, DOI, abstract, keywords, 

Fig. 1. Literature review strategy.  
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document type, and domain. 

3. Definitions 

RQ1: What is the definition of AA? 
Differentiated definitions regarding AA emerged in the literature. 

More than one author highlighted a variety of forms of adaptability, 
with the main goal to compare system performance as it varies. Namely, 
[20] compares practical adaptive scenarios to benchmark their costs and 
benefits, trust-related issues, and it highlights how the design of human 
interfaces depends on them. In [21] the authors focused on operator 
performance, like [22]. In this latest research, experiments are presented 
to highlight which solutions improve performance for the operator and 
ensure a less perceived workload. In [23] the research presented the 
most suitable allocation strategies and triggers that should drive the 
allocation and other systemic aspects, as the adaptation possibilities 
vary. So, it emerges how the topic is mainly discussed from a practical 
point of view, lacking shared theoretical and homogeneous definitions 
and illustrations. Reviewing the scientific contributions, the findings 

revealed how AA encompasses several logics that need to be considered 
and differentiated. First, highlighting the difference between static and 
dynamic automation, and then differentiating the types of dynamic 
automation, i.e., adaptive, adaptable and hybrid, by formalizing the 
differences also on a graphical basis (Fig. 2). If the Level Of Automation 
(LOA) does not change over time and it’s fixed if human or machine 
perform the task, the allocation is static, i.e., the design choices remain 
unchanged over time [24]. This involves two agents within the system, 
the human, and the machine. However, if the LOA is not fixed but can 
change over time during the operations, the allocation is dynamic [25], 
i.e., the division of work between human and machine agents is not fixed 
but flexible, and context-dependent [26]. The possibility to dynamically 
initiate LOA or function assignment, whenever one or more triggers are 
met [27,22], can reflect different dynamic criteria, adaptive or adapt-
able. The difference lies in the authority that initiates the dynamic shift, 
which can be considered as a third agent of the system. The agent with 
this authority was defined by Sheridan as an Allocation Authority Agent 
(AAA) [28]. If the authority belongs to the human operator, the dynamic 
allocation is called adaptable automation [26]. If the authority belongs 

Fig. 2. Graphical representation of different automation scenarios, considering the allocation of function between human and machine and the Allocation Authority 
Agent (AAA): static allocation (top left), adaptable allocation (top right), adaptive allocation (bottom left), and hybrid allocation (bottom right). 
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to the machine, it is referred to as adaptive automation. Hybrid auto-
mation occurs when the allocation authority is variable. Adaptable 
automation has been found to result in greater human operator accep-
tance, in appropriate levels of trust in automation, and in greater situ-
ational awareness [29]. On the other hand, considerable skepticism 
emerges about the applicability of adaptable automation in 
high-complexity and criticality domains [22,30]. Several experiments 
comparing adaptive, adaptable and hybrid automation emerged in the 
literature with a low replicability in industry [23,31–33]. That is, some 
experiments imposed a limit on the duration of the automated task [31, 
32]. Others imposed that humans guide the modifications of the LOA. In 
the experiments comparing adaptive automation with adaptable auto-
mation [23,33], the adaptable scenarios revealed lower levels of oper-
ators’ workload, fatigue, and anxiety, and higher confidence. Other 
experiments [22,33,34], show that hybrid automation presents advan-
tages over the others (adaptable or adaptive) since it generates better 
humans’ performance and lower mental and physical workload. 

Since it is the most common label in the literature, including both 
adaptive and adaptable automation, the paper will refer to all dynamic 
modes as “AA”, i.e., "Adaptive Automation, as other authors have 
already done in different contexts [35]. 

4. Motivations for AA 

RQ2: Why was AA introduced? 
The concerns that static automation introduced are not a recent 

issue. About half a century ago, Bainbridge reflected on the “irony of 
automation” [36]. Her referenced paper discusses how machines work 
more precisely and reliably than operators, even if, as she stated: “the 
more advanced a control system is, the more crucial may be the contribution 
of the human operator, in case of anomalies”. Automation of industrial 
processes, despite bringing shared benefits, generates significant prob-
lems [1,3,22,37–46]. Here, the relationship between humans and ma-
chines brings increasingly questionable challenges [47]. 

As articulated by Gartenberg et al. [48], the central objective of AA is 
to address and rectify the criticalities that arise from static automation. 
This involves a multifaceted approach that encompasses both the human 

and machine perspectives, as illustrated in Fig. 3. What follows is an 
in-depth exploration of both perspectives. 

In literature, the main concerns for humans operating in static 
automated systems refer to the out-of-the-loop condition, and to the 
degradation of skills and knowledge, which lead to a decrease in situa-
tion awareness, behavioral adaptation, automated induced errors, job 
dissatisfaction, and distrust in automation [45]. The out-of-the-loop 
condition refers to the difficulty for operators to know and govern 
automated processes. This condition arises since automation mostly 
leaves the operator the task to monitor the system, generating a 
marginalization from practical activities [49]. Automation can also 
cause a degradation of operators’ skills and knowledge, both considering 
long- and short-term expertise and capabilities [3,38,44]. As an 
example, pervasive automation diminishes the opportunity to train 
manual skills, which are ineffective when an urgent manual control of 
the system is needed. Additionally, in automated systems, operators may 
become unaware of automation’s inherent changes, experiencing un-
expected mode transitions that can be traced back to the decrease of 
situation awareness [22,50–53]. This entails a decreased ability to 
detect automation failures and resume manual control [22,37]. 

Moreover, automation may increase perceptions of safety and op-
erators may adapt their behavior and encounter new risks; this phe-
nomenon is known as behavioral adaptation [44]. While automation 
compensates for or reduces some human errors, it also generates new 
forms of human errors, and new types of human mistakes related to 
unexpected system transitions, i.e., automation-induced errors [45]. 
These arise from the difficulty in understanding and interpreting the 
system. 

Automation can also result in job dissatisfaction, since it could be 
perceived as a threat to workers, especially when inadequate training or 
retraining processes arise [45,54]. Distrust in automation arise when 
operators perceive the system unreliable [45], and when they are not be 
able to predict the machine’s behavior and future performance, nor be 
sure the machine will work in his or her interest [55–58]. Complacency, 
i.e., the belief in and reliance on automated systems is highly relevant in 
automated processes [44]. 

From a machine’s point of view, the high specialization of automated 

Fig. 3. From static to adaptive automation: motivations.  
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machines causes breakdowns against failures, i.e., some operations to 
stop in the face of failures or unforeseen events [38]. No other element in 
the system can fully replace the machines when they stop working. 
Moreover, the high specialization of the machines makes them highly 
efficient only on pre-set tasks [59]. These factors cause the decrease of 
flexibility, over the system’s efficiency [60]. 

5. Historical evolution and pioneers’ theories 

RQ3: From an historical perspective, who has addressed the AA 
topic, with what purpose, and what theories emerged? 

When analyzing the historical evolution of the AA, key authors 
emerge, i.e., Raja Parasuraman, David Kaber, Mark Scerbo, and Chris 
Miller [61]. The contribution of these authors is summarized in Fig. 4. 

Raja Parasuraman retraced the history of AA and provided the 
background for the subsequent debate [62]. He discussed the main 
theoretical positions, and he pointed out that even though the topic of 
AA was proposed several years ago, extensive empirical studies were not 
conducted. Real-world applications reveal that there is a significant 
correlation between out-of-balance mental workload, impaired situa-
tional awareness, complacency, and cognitive skill degradation, all of 
which are found to reduce human performance and result in associated 
costs [63]. Such costs can be reduced with AA. Overall, empirical results 
have shown that AA can reduce the detrimental impacts of unfamiliar-
ity. Another key figure in the historical evolution of AA research is David 
Kaber. He mapped out a program for applying AA methods to real-world 
assignments [64,65]. Furthermore, Mark Scerbo reviewed recent efforts 
to implement this topic [66]. He stated that AA relates to a single 
technology form in which both the user and the system can initiate 
changes in the system’s operation. Emphasis was placed on how changes 
between system states are triggered [67]. He also presents research on 
performance-based and physiological triggers [68]. Chris Miller 
described how users demand to stay in charge of actions, despite their 
appreciation regarding the benefits AA provides them. A key factor is the 
explicit dialogue between user and machine, to fully understand their 
intentions and behaviors. Although such interaction somewhat increases 
the operator’s workload, it has a payoff in terms of the operator’s sense 
of control and, consequently, in terms of situational awareness, user 

acceptance, and human-machine performance [69]. 
To closely understand the origin of the idea that automation should 

be designed and implemented adaptively, a historical perspective is 
needed. First, by understanding the theories related to static automa-
tion, and then analyzing their modifications and evolutions. Reviewing 
the theories’ temporal evolution, the main conceptual phases are sum-
marized in Fig. 5. 

Static view 
The earliest automation theory dates to the 1950s, when the static 

function allocation was discussed by the pioneers of human factors and 
computer science. Referring to a posthumous classification drafted by 
Rouge in 1991, to allocate functions within a static automated system, 
three analyses can be made. The first analysis is called allocation by 
comparison. Such strategy compares the abilities of humans and ma-
chines for each function and allocate the function to the most capable 
agent (human or machine). The most famous “MABA-MABA list” (what 
"Men Are Better at Doing" and what "Machines Are Better at Doing") is 
the one compiled by Fitts in 1951 [20,70]. The second type of analysis is 
called leftover allocation. This strategy allocates to machines all func-
tions that can be automated. Human operators are assigned the leftover 
functions for which automation technologies are not available. The third 
type of analysis is called economic allocation, i.e., an allocation that 
ensures economic efficiency. Even when technology is available to 
automate a function, if the costs of automation are higher than those of 
employing a human operator, the function is allocated to the operator. It 
should be noted that the static strategies just described "who does what” 
with a fixed function allocations perspective [37]. 

Static view questioning 
The first break from that perspective comes with Sheridan’s “Model 

for Supervisory Control” in 1978 [71]. Here, static design choices started 
to be questioned. As more tasks and jobs became computerized, the 
potential to question decision-making processes and other cognitive 
functions emerged. That model proposed scenarios in which a human 
operator controlled a physical process through an intermediate com-
puter, creating temporal, and dynamic moments where static choices 
could be doubted. 

Human-based reactive adaptation 
A decade later, researchers such as Hancock [72,73], Parasuraman 

Fig. 4. The most influence authors’ conceptual contribution on AA.  
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[63], and Rouse [74,75] suggested that design choices could be fitted to 
human performance. The design choices started to become adaptive 
considering the measurement of human performance. In 1980, Peter A. 
Hancock in “The foundations of adaptive automation in physiological the-
ories” [76] argues that adaptation in human-machine systems is based 
on a redistribution of workload through the analysis of physiological 
and neurophysiological signals. This strand of research stated gaining 
ground when the U.S. Navy provided funding for empirical researches, 
namely by the “Adaptive Function Allocation for Intelligent Cockpits 
(AFAIC) program” in 1993 [77,78]. This program initiated a period of 
empirical research designed to examine the performance benefits and 
potential costs of AA. The results demonstrated the ability of AA systems 
to mitigate, at least in part, the costs associated with human-machine 
interaction, such as unbalanced mental workload [79], 
self-satisfaction [27] and reduction of situational awareness [80]. In the 
early 2000s, F. Wilson in “On the use of physiological measures to determine 
the functional status of the operator in the implementation of adaptive aids”, 
states that AA can improve system performance by intervening when the 
operator needs it, providing the appropriate LOA [11]. This requires that 
the functional state of the operator is monitored continuously. 

System-based reactive adaptation 
Later, the adaptation was extended to the measurement of the per-

formance related to the entire system. In 2007, Raja Parasuraman and 
Miller in “Designing for Flexible Interaction Between Humans and Auto-
mation: Delegation Interfaces for Supervisory Control” [81,82], focuses on 
resolving the debate between system-driven (adaptive) and user-driven 
(adaptable) automation, highlighting the combined benefits of both. 
Namely, both human and machine can initiate adaptive actions, shifting 
the operation between the two agents. In 2010, Richard Jagacinski in 
“Comparison of decision-making and control task models” states that a 
dynamic system or process is a sequence of dynamic decisions that must 
ensure the efficiency of the whole human-machine system over time 
[11]. The same year, Christopher D. Wickens in “Stages and Levels of 
Automation: An Integrated Meta-analysis” [29,83], considers that in some 
cases automation could fail and human must intervene, but also the 
contrary. So, both human and machine must be involved in generating 
alternative solutions to guarantee the proper functioning of the whole 
system cognition [80,84]. 

Human-based reactive and proactive adaptation 
Human Factors and Ergonomics history was revolutionized in the 

20th century when machines needed to adapt to users in a dynamic and 
continuous way [85–88]. The increasingly complex and close 
human-machine relationship begins to include subjective, human, and 
environmental aspects not entirely predictable and ever-changing, such 
as operators’ physiological signals [89,90]. Furthermore, the literature 
stipulates machines should become context-aware, i.e., able to under-
stand and learn from human behavior, adapting to human performance, 
emotions, and decision making [91]. Thus, besides reactive interven-
tion, system performance analysis can also be performed to build 

predictive models, by estimating the state of both the operator and the 
machine. 

6. Design elements 

RQ4: What design elements are involved in an AA system? 
By reviewing the documents, it emerges how, when designing an AA 

system, specific elements must be defined to be alterable over time. They 
effectively influence the configuration of the human-machine system 
and how it evolves. The authors refer to the Level Of Automation (LOA), 
Human Machine Interfaces (HMIs), and adaptive approaches to make 
adaptive shifts (Structural-, Functional- and Event-based approaches). 
The subsequent section provides a detailed explication of these elements 
of design. Each one answers a specific research sub-question, as 
reported. 

6.1. Level Of Automation 

RQ4.1 What LOA taxonomies emerged over time and how did the 
taxonomies integrate into AA contexts? 

Within AA research, the topic of Level Of Automation (LOA) is 
pivotal, as it identifies functions involving humans and machines. This 
concept was pervasive in the automation literature since it was first 
introduced by Sheridan and Verplanck [92]. In the design of an AA 
system, the LOA needs definition, in terms of starting LOA and how it 
may change over time. These choices affect the whole system, ensuring 
the creation of effective human-machine interaction. Recently, a new 
branch of research investigates the impact of LOA on human perfor-
mance, workload, and situational awareness [93–96]. Also, the impor-
tance of LOA definition lies in the practical ability to communicate to 
key stakeholders (e.g., system operators, designers, and managers) that 
there is not just one way to implement automation, but rather a range of 
options between fully manual and fully automated [96]. Although it 
may appear intuitive, such variety is often new to stakeholders, whose 
ideas about human-computer interaction are quite influenced by tradi-
tional systems implemented in the past. Table 1 summarizes the main 
LOA taxonomies arising in the literature, chronologically. For each LOA 
taxonomy collected, the table shows the author(s), the year, the context 
of application if available and the number of LOA proposed. 

To understand how LOA taxonomies integrated into AA contexts 
over time, firstly the evolutionary time frames defined by the pioneers’ 
theories presented were considered. When analyzing the temporal 
evolution, discontinuity elements that allowed the identification of 
different taxonomic approaches were investigated. The analysis 
revealed that the element of discontinuity consisted of activities initi-
ated and managed by human and machine. Specifically, an increasing 
number of primary activities can be performed by human, machine, or 
shared: implement, control, select, communicate, and generate actions. 
A cross and in-depth interpretation of the content presented in the LOA 

Fig. 5. Main conceptual phase of AA theories’ evolution.  
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taxonomies resulted in the identification of disruptive and incremental 
taxonomies. Specifically, the disruptive taxonomies introduced new el-
ements, logic, rules, or modes. In the incremental ones, the authors 
contributed to improving, augmenting, or consolidating the previous 
taxonomies. After all, the LOA taxonomies were grouped into time pe-
riods, as represented in Fig. 6 and detailed below. Still in Fig. 6 the 
authors who proposed disruptive taxonomies are given. Only from the 
second period onward, LOA characteristics account for AA features. The 
last period is still evolving. 

Period I 
In the early beginning, LOA taxonomies focused on statically 

defining “who”, the human or the machine, implement actions and has 
the definitive decisional control, without explicitly describing how the 
operator and the machine share information in the control of the sys-
tems. Bright in 1958 proposed a LOA taxonomy to define who, i.e., 
human or automation, is initiating the control [97]. To this period be-
longs the pioneering work of Thomas Sheridan and William Verplanck 
(1978), who provided the starting point for many later-developed tax-
onomies [92]. Here, the LOAs range from a fully manual to a fully 
automated system. The authors stressed which activities were assigned 
to humans and to machines, for each LOA, and which of the two agents 
held ultimate decision-making control [26,81]. Later, Marsh and Man-
nari (1981) defined “automaticity” LOAs, that range from the possibility 
to conducts tasks manually, to fully automated [98]. In 1981 Chiantella 
referred to automation in manufacturing as a two-based class of auto-
mation: mechanization and computerization [99]. He stressed the topic 
of control actions by feedback, describing how information gathered 
from the process can be used to generate a control loop [44,99]. Kern 
and Schumann (1985) taxonomy described static LOAs in terms of 
implementor agents (human or machine) in manufacturing systems 
[100]. Similarly, Endsley (1987) identified which functions the human 
operator or machine is in charge of [101]. 

Period II 
From Riley’s (1989) taxonomy onward, new aspects emerge. More 

than implement and control actions, the agents can select actions be-
tween a wider range of alternatives. Namely, different decision-making 
elements can guide the choice of LOA. In this way, different moments of 
system control arose, up to now only intended as final decision-making 
control. Riley proposed a two-dimensional matrix whose rows corre-
spond to LOA and columns to levels of intelligence. For each LOA, a 
different combination of actions and agents can be chosen. Each com-
bination is called an “automation state”. In this approach, the agent has 
multiple elements to consider in deciding what is the correct combina-
tion of actions to be performed [102]. Kotha and Orne (1989) intro-
duced levels of mechanization [44,103], i.e., the possibility to select a 
different number of operations to be performed manually. Each com-
bination defines the system LOA. Milgram (1994) introduced a 
multi-dimensional approach. It includes different criteria, such as the 
structure of the environment, and the different roles the human operator 
could play [104], providing a range for selecting different actions to be 
executed for a given LOA. 

Period III 
The elements introduced in the taxonomy of Endsley and Kiris 

(1995), start to address the static automation’s concerns for human 
beings. Endsley and Kiris focused on the problem of out-of-loop per-
formance, i.e., the inability to guarantee the manual control in the 
system in case of failure. This problem originates in the static allocation 
of functions between man and machine and in the ineffective commu-
nication between the two agents. Their specific goal was to identify how 
to sufficiently keep human operators in the control loop during the 
normal system operation. Also, Draper in 1995 recognized the need for 
communication between operators and machines. He entered in his LOA 
taxonomy the function of sharing critical information between agents 
[101,105]. One year later Anderson introduced a context-specific tax-
onomy [44], as well as the Schwartz’s (1996), focused on a 
context-based communication. They specified which information is 
needed for the effectively operations among different LOAs. Billing 
(1997) proposed not a single progression from total manual control to 
fully automated, but a parallel control-management continuum, where 
the agents can exchange and share information and activities over time 
[44]. Endsley and Kaber (1999) provided a LOA taxonomy which 
included a broader range of cognitive and psychomotor tasks that 
require real-time control and communication. They referred to specific 
domains that have common characteristics, e.g., situation with high task 
demands and limited time resources [38]. Parasuraman, Sheridan and 
Wickens (2000) based on the earlier work of Sheridan and Verplank 
(1978) proposed that each LOA should be evaluated by examining the 
consequences on human performance. Furthermore, they highlight 
secondary evaluation criteria, including the reliability of automation 
and the costs of the consequences of decisions and actions [106]. Finally, 
Wickens and Holland (2000) proposed a LOA from a human information 
processing perspective [107,108]. 

Period IV 
Lorenz (2001) stated that LOA should be regulated and changed over 

time to protect humans and system performance. Humans themselves 
can hold the authority to generate actions, and to decide which actions 
to perform, by producing different LOA’s options. Lorenz presents a 
taxonomy that considers LOAs with a human-centric rationale. The 
operator can choose among alternatives when actions are proposed by 
the automation system. A rejection by the operator is equivalent to a 
switch of actions [26]. Duncheon (2002) proposed a similar approach 
focused on assembly activities [109], while Ruff et al. (2002) on the 
remote operations [44]. Clough (2002) presented a taxonomy focused 
on the amount of human-machine interaction in the system and on the 
point at which it occurs [26,110]. Clough’s perspective was followed by 
Proud’s (2003) multidimensional approach. Therein, LOAs are differ-
entiated by considering who among the human and the machine is the 
primary agent, in terms of observing, directing, deciding, and acting 

Table 1 
LOA taxonomies over years.  

Author(s) Year Context application Number of 
LOA 

Bright 1958 Manufacturing 17 
Sheridan e 

Verplanck 
1978 Avionics 10 

Marsh and 
Mannari 

1981 Manufacturing 6 

Chiantella 1982 Manufacturing 6 
Kern and 

Schumann 
1985 Manufacturing 3 

Endsley 1987 Avionics 4 
Ntuen and Park 1988 Teleoperation 5 
Riley 1989 No specific context 12 
Kotha and Orne 1989 Manufacturing 4 
Milgram 1994 Remote control operations 5 
Endsley e Kiris 1995 No specific context 5 
Draper 1995 Manufacturing 5 
Anderson 1996 Telerobots 3 
Schwartz 1996 Teleoperations of satellites 6 
Billing 1997 Air traffic controller 6 
Endsley e Kaber 1999 Air traffic, piloting, advanced 

manufacturing, teleoperations 
10 

Parasuraman, 
Sheridan, 
and Wickens 

2000 Avionics 4 

Wickens and 
Holland 

2000 Manufacturing Not defined 

Groover 2001 Manufacturing 3 
Lorenz 2001 Spacelift teleoperations 3 
Duncheon 2002 Manufacturing 3 
Clough 2002 Unmanned aircraft 4 
Ruff 2002 Remotely operated and unmanned 

vehicles 
3 

Proud 2003 Spacelift vehicles 8 
Fereidunian 2007 Electricity 11 
Revisiting of LOA concept  

M. Bernabei and F. Costantino                                                                                                                                                                                                               



Robotics and Computer-Integrated Manufacturing 88 (2024) 102724

8

[111]. Fereidunian’s (2007) approach, extended Sheridan’s methodol-
ogy by introducing a lower staring LOA [26,112]. 

From 2007 on, the authors started to revisit the LOA concept. An 
evolution of the LOA taxonomy concept emerges in the work of Endsley 
[,[113] by the Human-Autonomy System Oversight (HASO) model. This 
model shows how LOA combines with other central design decisions, 
including dynamic principles, control granularity, and key characteris-
tics of the automation interfaces. What emerges here, is how the concept 
of LOA is not the only important aspect of automation design but con-
stitutes a central design decision that significantly influences the oper-
ator and how the operator interacts with the automation at the systemic 
level [114]. Moreover, the concept of working agreement is considered 
as an evolution of LOA topic. Working agreements define how and when 
human-automation teams divide tasks [115,116]. Also, in which situa-
tions the responsibilities over these tasks can change. Most of the effort 
in implementing such agreements is to reduce the discrepancy between 
different agents’ expectations about the system and about how they 
interact with it, improving collaboration, transparency, and 
human-machine performance [117]. 

6.2. Human-machine-interfaces 

RQ4.2 How should interfaces be designed for AA? 
Even in highly automated systems, the human remains a central 

player in manufacturing operations [118]. Human operators interact 
with machines by means of user interfaces, i.e., the 
Human-Machine-Interfaces (HMIs), that constitute the modern cockpit 
of any manufacturing plant [14]. The HMIs become even more complex 
as new functions are implemented in systems [119]. Typically, auto-
mation requires a trade-off between performance and work sustain-
ability [120]. New automation systems should incorporate HMIs that 
account for workers’ skills and flexibility needs, compensating for their 

limitations and exploiting their expertise [121,122]. This must be 
ensured especially in AA contexts [123]. AA can introduce additional 
elements of complexity into system operation and control. As a result, 
operators require advanced HMIs that are useful to manage this 
complexity and improve system performance [123]. 

Typically, the HMIs design account for task and interaction in-
terfaces, whose design input data and purposes are different [124]. 
These features lead to different possible levels of adaptation (Fig. 7). 
Considering the rationales on which AA system rely, the HMIs design 
cannot just consider task interfaces, but should also include interaction 
interfaces. 

Designing the task HMIs implies considering human data to assigning 
functions to the operator and/or machine considering the ergonomic 
point of view. This results in tasks the operator can perform safely and 
efficiently, without damage to health or compromise of well-being. 
Here, the possible level of adaptation is the interaction-level, i.e., how 
to adapt the modality in which the interaction is enabled to generate 
optimized reciprocal influence by actions, communication, and contact. 

For interaction HMIs, the proper design looks at human, machine, 
task, and environment data. Workers should be able to perform their 
assigned tasks without compromising their safety and efficiency, as well 
as the effectiveness and reliability of the machine operations. The 
reviewed documents show how interaction HMIs can play three roles: 
supportive, situation awareness, and training. 

When it comes to a supportive role, HMIs should be designed to 
measure the user’s capabilities, experience, and cognitive load [9]. The 
goal is to develop HMIs that fully fits the worker’s physical and cognitive 
state, including impairments, and experience in the work scenario. Here, 
it is essential to build an accurate representation of the worker [125], 
accounting for static characteristics, e.g., cultural backgrounds, com-
petencies, and ages, and dynamic states, e.g., fatigue. 

Moreover, the interaction HMIs aim to improve the worker’s 

Fig. 6. Evolution of LOA taxonomies (marked in blue) and integration in AA context (top arrow), considering the element of discontinuity, i.e., the activities initiated 
and managed by human and machine, and the evolutionary time frames defined by the pioneers’ theories. 
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situational awareness for timely interaction with the system, enabling a 
full understanding of system behavior and facilitating intervention in 
dynamic and unforeseen situations. So, the design of interaction HMIs 
must consider the dynamic contexts and environment in which the 
worker operates, including machine data, task progress, and environ-
mental conditions. This supports the development of a complex and 
accurate situation model that is critical to the operator’s situational 
awareness [121,126]. 

Finally, interaction HMIs can enhance worker capabilities, both in 
terms of on-the-job and long-term training. By providing offline, online, 
and real-time information, the HMIs increase performance and prevent 
failures [127]. 

Here, the possible levels of adaptation are three: the interaction- 
level, the perception-level, and the cognition-level. Thus, two more 
levels of adaptation than task interfaces. Namely, the perception-level 
considers how to adapt the way information is presented to produce 

positive observation and mental image directly and instinctively from 
the result of perceiving. This adaptation should generate awareness of 
the elements of environment, and of their relationships. The cognition- 
level considers how to adapt the typology of information presented to 
stimulate deep mental action and process of acquiring existing knowl-
edge to discover new knowledge. This adaptation encompasses different 
intellectual processes and functions such as perception, memory, judg-
ment, evaluation, reasoning, problem-solving and decision-making. 

Within AA systems the HMIs design must consider all the aspects 
involving both humans and machines, conceived as a unified system [6, 
124]. Also, the design needs to consider that the elements of the system 
may change dynamically. While in a static system the perception and 
cognition levels of adaptation could be minimal, in an adaptive system 
they gain prominence. Therefore, the HMIs design should follow both 
the principles of task and interaction interfaces. 

Fig. 7. Conceptualization of task and interaction interfaces.  
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6.3. Adaptive approaches 

RQ4.3 How to make adaptive shifts? 
To make adaptive shifts, three main approaches are proposed in 

literature. First, a structural-based approach. By mapping the process’s 
nodes, connections, and relationships, some authors proposed a graph- 
based analysis to identify the adaptive elements of the process. Then, 
a functional-based approach, by defining the so-called invocation stra-
tegies. Those strategies can be reactive or proactive in nature. Finally, 
it’s possible to implement an event-based approach, by timely defining 
triggers, i.e., alarm bells for the shift. Such approaches are not exclusive. 
For example, the choice of the trigger should be consistent with the 
invocation strategy. 

6.3.1. Structural-based approach 
When it comes to graph-based analysis, the main theoretical 

contribution is the Function To Task Design Process Model (FTTDPM) 
[2,128]. This approach helps the designer to evaluate how to allocate 
functions to human, machine, or dynamically among them. The illus-
tration of the process highlights the complexity of AA systems from the 
earliest stages of design [128]. It is necessary to define both the general 
goal of the human-machine system and the specific goal of AA. The 
approach generates a graph of the system by decomposing the high-level 
functions into a network of nodes, which explore the relationships be-
tween each function. Mandatory or optional functions and relationships 
may emerge. Also, dependency relationships arise when the completion 
of one task directly affects another. Then, when functions are instanti-
ated into tasks, the system designer assigns each function to an entity: 
human or machine. This assignment is a multi-objective optimization, 
shaped by system and human constraints. When mapping the process, 
the designer also formalizes if agents exchange tasks and information 
over time. By analyzing the structural properties of the graph, sets of 
nodes emerge that are the best candidates to become adaptive. To this 
end, several analysis tools can guide the choice of AA tasks, such as node 
clustering, branch counting, and comparison of intrinsic task load. 

6.3.2. Functional-based approach 
Other authors proposed a functional-based approach based on the 

definition of the so-called invocation strategies [20,21],[48,129]. Those 
strategies can be reactive or proactive in nature, i.e., they can guide the 
allocation shift after or before the event of interest. Before implementing 
the strategies, three aspects must be defined. What is of interest for the 
strategy, e.g., which event or indicator; when is critical, i.e., the 
threshold definition; and how to monitor it, i.e., the detection systems 
statement, which can be intrusive or not. Functional-based approaches 
are based on three main invocation strategies: critical event-, 
psycho-physiological-, and performance-based. Critical events strategies 
shift the allocation when a critical event arises. Such an event de-
termines the performance degradation of the system or introduces risk 
within it. Specifically, three rationales are possible when critical event 
strategies are implemented, reflecting different LOA [80,130]: emer-
gency, executive, and automated visualization. Emergency rationale, if 
the shift does not require any human intervention; executive rationale, if 
the shift requires both human and machine intervention, and the ma-
chine generates the options, while the man selects, and implements the 
modification. Finally, the automated visualization when the shift re-
quires both human and machine intervention. The psycho-physiological 
measures require the measurement of human parameters [131–133], 
due to the strong correlation between these parameters and workers’ 
cognitive, emotional, and operational states. The Electroencephalogram 
(EEG) is a non-invasive recording of electrical activity in the brain using 
external electrodes [133]; the functional Near-Infrared Spectroscopy 
(fNIRS) measures the hemodynamic activity rather than electrical ac-
tivity of the brain [132]. Electrocardiogram (ECG) monitors heart 
rhythm and electrical activity, through sensors fixed to the skin used to 
detect electrical signals produced by the heart. Eye-tracking (ET) 

exploits cameras to track eye and eyelid movements and is based on 
assessment metrics such as the PERCLOS method (PERcentage of eye 
CLOSure), the Fixation Rate (FR), the Transition Rate (TR), the Glance 
Ratio (GR), the Blink Rate (BR), and the Pupil Size (PS). Eye-tracking 
measures are also used to indicate changes in confidence [131]. Mea-
surements can also consider the Heart Rate (HR) [131]. The review of 
the possible measurements reveals the cost of psycho-physiological 
measures. Measuring such parameters requires effort in the selection, 
implementation and tuning of instrumentation, which furthermore can 
be invasive for humans and expensive for organizations. Also, the 
analysis of detected parameters must be customized to each person, as 
the critical thresholds for measured parameters are highly subjective 
and cannot be defined beforehand. Critical issues also stem from the 
privacy of the sensed data. Appropriate policies and regulations must 
ensure the privacy and security of human data collected. An additional 
element of sophistication stems from the consideration that before 
defining such measures, the MWL (Mental-WorkLoad) must be defined, 
subjectively. It results in three classes of indicators [37]: physiologies (e. 
g., strain, fatigue, stress, physiological activation, etc.); behavioral (i.e., 
linked to performances: accuracy, reaction time, etc.); and subjective (i. 
e., linked to the perception of time pressure, mental fatigue, etc.). In AA 
contexts, the NASA-Task Load Index is exploited, which measures the 
mental, physical, and temporary effort required, such and performance, 
effective effort, and frustration [23]. 

Other invocation strategies are based on performance measures. 
They refer to the whole factory system and are external (e.g., flexibility, 
quality, service), or internal (e.g., productivity, efficacy, logistics, 
maintenance, reliability, security). Like psycho-physiological measures, 
performance measurement requires high efforts in the detection, setting, 
customization and analysis stages. 

The above-mentioned aspects can also be modeled to prevent future 
events and behavior and act proactively. Consequently, the following 
models emerge [134]: of critical events; of psycho-physiological mea-
sures; of performance measures. The described strategies are not 
mutually exclusive and can be implemented in a hybrid way. 

6.3.3. Event-based approach 
The event-based approach is based on the definition of specific 

triggers that guide the adaptive shift. There are several triggers to 
initiate the changes behind adaptations [135–138], characterized by a 
different level of onerousness for their definition, implementation and 
monitoring. Operator-based trigger generates adaptations triggered 
directly by the operator or by a systematic evaluation of the operator’s 
status. Here, like the functional approaches based on 
psycho-physiological measures, measures of the operator’s status need 
to be detectable and appropriately evaluated. The cost-effectiveness 
depends on the detection instruments and the customization of the an-
alyses. The instruments may be expensive and intrusive to human be-
ings, and the critical thresholds of the detected measures need to be 
tailored to individual operators. For these reasons, applying these logics 
extensively can be onerous. It appears simplest to confine them to a 
small number of operators and activities. Further event-based ap-
proaches are less onerous in terms of customization of analysis. 
Although they require the definitions of measurement and monitoring 
plans and the availability of detection tools, these can be defined be-
forehand and implemented on larger portions of the system. In detail, 
these are system-based triggers, task and mission-based triggers, 
environmental-based triggers, and spatiotemporal-based triggers. A 
system-based trigger states that the current or predicted states of the 
system can be used to trigger adaptations, such as the different operating 
modes. Then, the task and mission-based trigger defines a mission as the 
composition of a coherent set of objectives and sub-objectives, realized 
by a set of tasks. Triggers may be based on task or mission status. Here, a 
dynamic representation of the tasks performed by the human-machine 
joint system is needed. Therefore, it is essential to know how to repre-
sent the system and how to monitor it in real time. The measurements 
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need to be compared with the expected states of the tasks or missions, to 
understand where to intervene. However, the discretion and custom-
ization level of measurements is lower compared to operator-based 
triggers. The environmental-based trigger is an estimation and a repre-
sentation of the events and considers the environment apart from the 
machines and the operator. For a given scenario, it is required to detect 
and know how to analyze significant environmental parameters and 
compare them with pre-defined thresholds. Finally, a 
spatiotemporal-based trigger is an estimation of spatio-temporal criteria 
including time and position. There is a need for plans and tools to detect 
spatial and temporal measures and evaluate where these deviate from 
the expected thresholds. 

7. Practical applications 

RQ5. Which applications of AA emerged in manufacturing? 
The major AA applications exist in aviation, aeronautics, and auto-

motive [10,11,139–145], mainly concerning safety issues. Also if the 
literature shows that several manufacturing processes are a suitable 
environment for AA [146,147], practical applications are still scarce. 
Applications mainly have been tested in the assembly stages. That’s 
because the assembly stages are largely based on manual labor [148]. 
Some human skills, such as cognitive and problem-solving abilities, are 
not yet effectively replaceable [149]. Nevertheless, Manual Assembly 
Systems (MAS) present important limitations [150,151]. MAS lack 
productivity, which is low compared to automated systems, and accu-
racy of tasks performed, due to the variability of human nature [152]. 
Issues in terms of ergonomics are also experienced [153]. Workstations, 
if not carefully designed, can further reduce productivity, and cause 
musculoskeletal disorders, leading to disease, absenteeism, and stress 
[154]. To improve such limitations, higher levels of automation and 
human-machine collaboration are expected [146,155,156] by the 
design of reconfigurable, adaptive, and collaborative assembly systems, 
even leveraging digital technologies [157]. 

Some practical applications of AA represent the attempt to test 
theoretical models in real-world scenarios. That is, in [146,158] where 
the authors present the design, engineer and test of a prototype, i.e., the 
Intelligent Self-Adaptive Assembly System. The analysis between 
different assembly configurations confirms improvements in flexibility 
and productivity, making the proposed system of potential interest and 
immediate applicability in the industry. Moreover, in [14], different 
models are compared to determine the applicability of AA in assembly 
systems. Three additional case studies emerged in [9], focused on 
human-machine interaction in robotic assembly and manufacturing so-
lutions. In [159], the authors tested an adaptive robotic prefabrication 
process, while in [147], an adaptive human-machine collaboration 
paradigm based on machine learning is presented and tested. In [35] an 
adaptive robotic system architecture is conceptualized, and an appli-
cation example is provided. It is based on a combination of adjustable 
and modular approaches to achieving static and dynamic balancing of 
robotic systems. In [160] a framework for manufacturing system 
configuration and optimization is designed and validate to determine 
the optimum locations for robots, and to reconfigure the layout basing 
on dynamic situations. In [1], AA solutions are tested in several 
manufacturing sectors to integrate the operator into the technology 
loop. The findings show improvements in production performance, 
worker safety and well-being. In [2] a new Adaptive Task Sharing model 
in the human-robot assembly is presented to guide its implementation; 
the authors outline the design principles and show the increased flexi-
bility in assembly operations. 

8. State of the art 

The current research on AA relies on the basis that Industry 4.0 en-
ables new types of interaction between operators and machines, pro-
moting a transformation that emphasizes the centrality of humans, in 

line with the principles of Industry 5.0 [161–163]. The system moves 
from the independence of automated and human activities to a 
human-automation symbiosis [146]. Even if for different purposes, AA 
approaches need the formalization of workers’ and work environments’ 
characteristics, as well as the consolidation of new ways of communi-
cation and interaction [164]. AA represents a further possibility to 
enhance human physical, and cognitive capabilities thanks to a synergic 
relationship within all the cyber-physical system [158,165]. 

Compared with static automation, AA modifies different design as-
pects. Static automation needs to define two agents within the system, 
the ones who collaborate in the process, i.e., the human and the ma-
chine. Between them, the tasks are allocated in a time-fixed way. In AA, 
the tasks can be dynamically exchanged between these two agents, and 
so it’s also necessary to define the AAA, i.e., the party authorizing the 
task shift. In AA the LOA changes over time to ensure enhanced system 
performance by dynamically analyzing human and machine activities. 
This possibility requires the two agents to be properly informed about 
the system’s states and events, communicating reciprocally. Moreover, 
when needed, they could also decide to deviate from the expected 
standard operation, proposing new actions themselves. Thus, from an 
adaptive perspective, the agents must communicate actions and should 
generate actions, more than only implement, control, and select actions. 
Therefore, in AA it’s imperative the role of interactive HMIs, since in-
terfaces design must jointly improve the performance of human and 
machine, looking at the whole system. In this sense, users should be able 
to perform their assigned tasks without compromising their comfort and 
safety, as well as the effectiveness, efficiency, and reliability of the 
system. HMIs should not only be designed to adapt at interaction-level, i. 
e., modifying the interaction’s modality to optimize the reciprocal in-
fluence by actions, communication, and contact. HMIs should adapt the 
way information is presented and the typology of information presented. 
This, to generate awareness of the elements of environment, and of their 
relationships, and to stimulate the mental process of acquiring existing 
knowledge to discover new knowledge, respectively. This means adap-
tation at perception and cognition level. Moreover, while in static 
automation the functions are allocated following compared-, leftover- 
and economic-based principles, the adaptive approaches introduce 
structural-, functional- and event-based principles. These main differ-
ences are summarized in Table 2. 

Analyzing these results from a systems design perspective, AA re-
quires a shift from a technocentric to an anthropocentric approach [166, 
167]. AA principles are anthropocentric as they resort to user-centered 
design and adapt system behavior by considering the user’s capabil-
ities and comfort during interaction [168]. Anthropocentric design 

Table 2 
Main distinguishing features between static and adaptive automation.  

Feature Declination Difference 
Static 
automation 

Adaptive 
Automation 

Agent design Human, and 
machine 

Human, Machine, 
and Allocation 
Autority Agent 

Type of activity 
demanded to human 
and machine 

Task 
allocation 
design 

Human, or 
machine 

Human, machine or 
shared 

Existence of shared 
activities among 
human and machine 

LOA design Implement, 
control, and 
select actions 

Implement, control, 
select, communicate, 
and generate actions 

Activities initiated 
and managed by 
human and machine 

HMI design Interaction 
adaptation 

Interaction, 
perception and 
cognition adaptation 

Possible level of 
adaptation of the 
human-machine 
system 

Approaches 
design 

Comparison-, 
leftover-, and 
economic-based 

Structural-, 
fuctional-, and 
event-based 

Strategies for 
system’s analysis and 
activities’ allocation 
between human and 
machine  
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methodologies reintroduce users into decision-making and feedback 
loops [1,33],[101,169]. Human decisions must merge seamlessly with 
those made by intelligent decision-makers, i.e., the machines, to adapt to 
exogenous and endogenous factors [41]. All the processes, as well as the 
underlying technologies, should be understandable and transparent to 
humans. In turn, new system goals, aimed at improving both worker 
well-being and overall performance must be established and shared 
among all agents in the process. The effectiveness of the solutions 
adopted needs periodic evaluation to identify and fix any misalignment 
or side effects [170]. As such, the AA approach is based on continuous 
and incremental improvement to promote worker-centered purposes 
[171]. However, is quite important that both parties, human and ma-
chine, provide information that enables the other to adapt, guaranteeing 
a mutual adaptation between technology and user over time [15,172]. 
The applications in manufacturing show how the research is still em-
bryonic, with testing cases mainly in assembly activities. However, a 
strong potential for the development of AA emerges [147]. Flexible 
machines can adapt to cope with the physical and mental conditions of 
workers. Information about the system, collected and transmitted to all 
the actors within the system, allows for effective instrumentation of 
workplaces. The continuous collection and updating of static and dy-
namic data allow for the implementation of customized interventions 
and for the creation of a complete and informed digital representation of 
the production system. In this way, short-term and long-term reconfi-
gurations are possible. Short-term reconfigurations can support the 
human-machine system when their performance deviate from optimal 
ones. Long-term reconfigurations solve intrinsic and systemic problems, 
such as the design-, working method-, and work environment-related. 

9. Open challenges and future development 

To date, many experiments on AA are conducted by simulations, 
needing further demonstration and validation. Still referring to experi-
mental tests, they lack generalization of results. Tests are often case- 
specific and fail in providing a basis for conclusions in other contexts. 
Also, difficulties emerge in determining the frequency at which it is 
feasible to alter function allocation, i.e., in defining the sensitivity of 
algorithms. Too rapid an alteration may cause performance degenera-
tion, while a too slow may not be timely. The concept of working 
agreement previously introduced, may provide support in this sense, 
since it defines how and when human-automation teams divide tasks, 
considering different aspects such as responsibilities and agents’ ex-
pectations about the system [115–117]. Even related to function allo-
cation, more research is needed on invocation strategies, to understand 
what mechanisms are most appropriate in specific contexts and how 
they should be activated to minimize interruptions in operations and to 
ensure the best performance, even during change. Challenges emerge in 
the real understanding of intentions between man and machine. The 
so-called automation surprises, i.e., unexpected behaviors by the ma-
chine that destabilize the human being, can be mitigated by a careful 
HMIs design. Continuous improvement-based approaches to measuring 
and interpreting an AA system and understanding whether it is adapting 
at the right time and in the right direction, have not yet been developed. 
Additional work is needed to ensure that AA systems are not invasive or 
intrusive to humans. This, also to understanding the long-term impli-
cations of AA changes, in terms of human and system performance. 
Furthermore, the situational awareness of the operator in AA 
manufacturing contexts, as well as the level of real human trust in 
automation, has not been evaluated. In the current scenario, the 
complexity of systems and human-machine interactions is increasing, 
and the methodologies focused on human factors and cognitive engi-
neering may no longer be sufficient [173]. The relationship between 
human and technology should be examined according to different fea-
tures: technical, philosophical, organizational, and psychological. So, 
psychological, and physiological principles must be considered in the 
design of adaptive industrial plants, with a specific focus on the 

interaction between the human and the automation system [174]. 
The review shows how the characteristics and criteria behind AA are 

applicable to some new digitized manufacturing contexts, even if further 
steps are needed for pushing AA from test cases and lab to practice. 
Practically, a complete transition from static to adaptive automation is 
not hoped for in all the manufacturing settings. Instead, in some cir-
cumstances a coexistence among different automation rationales might 
occur. In others, the static automation is defeasible. Namely, in pro-
duction processes with certain properties, e.g., high relevant accident 
risk. Here, a LOA as high as possible, tending to the fully automation and 
to the avoidance of the human-machine interaction is desirable. Settings 
characterized by a positive or required human-machine interaction and 
collaboration may consider the adaptive transformation. The closeness 
of intents and goals, as well as the degree of affinity of the activities 
performed, are also factors to assess for the applicability of AA. Where 
AA appears practicable, the degree of feasibility for applying these logics 
to manufacturing contexts requires analyses to scientifically confirm the 
expected benefits. Benefits in terms of human, machine, and economic 
performance. Out of the reviewed methodologies, the ones basing the 
shift of activities between man and machine on critical external events, 
such as environmental contingencies, show a higher degree of applica-
bility. This is because when the shift involves direct measurement of 
human performance, or psychological or physiological parameters, the 
level of subjectivity is so high as to generate criticality in defining 
thresholds of acceptability and reliability. Although it is feasible to 
analyze system performance and define zones of optimality for both 
human and machine, the intermediate zones, where potentially both 
human and machine can operate positively, and the levels of perfor-
mance that determine the shift, are still critical issues. Research con-
ducted in other contexts where AA has reached a higher degree of 
maturity, such as aviation and automotive, can provide guidelines for 
the manufacturing sector. With the right abstraction effort, it is possible 
to understand the types of activities and tasks where AA logics are most 
likely to succeed. Then, given the cross-cutting nature of the expertise 
required to understand and implement AA, scientific effort and collab-
oration must come from a mixed and cohesive background, considering, 
for example, experts in technology, legislature, psychology, and ergo-
nomics. This is to ensure the best connection between man and machine. 
Human well-being factors should be integrated into the conceptualiza-
tion, design, and implementation of AA systems. Ensuring the best 
performance and conditions within a complex human-machine system 
are both perception-related factors and design choices. This affects the 
architecture of workplaces, the customization of tools and interfaces, 
and the approaches that drive AA allocation, requiring in-depth and 
multifaceted studies. These studies also should differentiate when an 
existing setting is transformed into an adaptive one and when it is 
designed from the outset. If carefully pursued, the AA design enables the 
system to respond positively to unexpected events, providing operators 
with the desired benefits. Also, to positively embrace this change, the 
role of training, both short-term and long-term, is crucial. Notably, the 
role of motivation, intended as work engagement and commitment, 
significantly influences job performance [175]. As shown by researchers 
[1] to fully enhance industrial productivity and human workers safety 
and well-being at the same time, the human should fully integrate into 
the whole process, considering his two dimensions as active operator 
and decision maker. Through AA, a successful balance between the 
Human-in-The-Loop (HiTL) and Human-in-The-Mesh (HiTM) condition 
can be wished for. HiTL and HitM are two important concepts for human 
involvement in automation [176]. Namely, HiTL refers to situations in 
which the worker is directly participating in the production process and 
its loop of control, enacted by the role of the operator. HiTM refers to 
situations in which the worker is participating in the process of pro-
duction planning and its loop of control, at management level. Both 
loops should be ensured in AA systems, to address the features and the 
needs of organizations called to operate in complex, dynamic, and 
ever-changing environments [160]. Here, organizations should became 
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a resilient ecosystem, which is able not only to adapt to perturbations, 
but to take advantage of variability and to turn it into innovation [177]. 
This transformation, addressed in literature as “transfactory” [174], can 
reinforce the co-evolution between humans and machines, enabling the 
immediate adaptation of technology to human needs and performance, 
and the long-term co-evolution, where changes concern aspects like 
knowledge, culture, identities, approaches, and job frameworks. 
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