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Abstract. The defuzzi�cation of a type-2 fuzzy set is a two-stage pro-
cess consisting of �rstly type-reduction, and a secondly defuzzi�cation
of the resultant type-1 set. All accurate type reduction methods used
to build fuzzy classi�ers are based on the recursive Karnik-Mendel algo-
rithm, which is troublesome to obtain a feedforward type-2 fuzzy network
structure. Moreover, the KM algorithm and its modi�cations complicate
the learning process due to the non-di�erentiability of the maximum and
minimum functions. Therefore, this paper proposes to use the smooth
maximum function to develop a new structure of the fuzzy type-2 clas-
si�er.
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1 Introduction

In recent years, fuzzy logic methodology has shown to be very e�ective in solving
complex nonlinear systems containing uncertainties that are otherwise challeng-
ing. However, it is also noted that fuzzy rules working in an uncertain or non-
stationary environment require a higher order of fuzziness. This is due to the
fact that type-1 fuzzy sets, whose membership grades are real numbers, could
have limitations in minimizing the e�ect of uncertainty, whereas the membership
grades of a type-2 fuzzy logic system are themselves fuzzy logic systems in [0, 1].
Describing a type-2 fuzzy set by a rectangular membership function su�ciently
describes the uncertainty in modeling of most processes. However, for the out-
put, there will need a type reduction to convert the output of the fuzzy inference
engine into a type 1 fuzzy sets before defuzzi�cation can be performed to ob-
tain a crisp output. The center-of-sets iterative Karnik-Mendel (KM) approach
to type reduction is of great interest. Over the years, modi�cations have been
made to the basic KM algorithm, including Wu and Tan [17] who presented their
concept using a genetic algorithm. In this paper, the smooth method is used to
design e�cient type reduction algorithms.



Fig. 1. Type-2 FLS (from Mendel [8])

2 An Overview

The Type-1 Fuzzy Set Let X be a universe of discourse. A fuzzy set A on X is
characterised by a membership function µA : X → [0, 1] and can be represented
as follows:

A = {(x, µA(x));µA(x) ∈ [0, 1]∀x ∈ X} (1)

The Type-2 Fuzzy Set Let P̃ (U), where U = [0, 1], be set of fuzzy sets
in U . A type-2 fuzzy set Ã in X is a fuzzy set whose membership grades are
themselves fuzzy [23].

Ã = {(x, µÃ(x));µÃ(x) ∈ P̃ (U)∀x ∈ X} (2)

where µÃ(x) is a fuzzy set in U for all x, i.e. µÃ(x) : X → P̃ (U).

It implies that ∀x ∈ X ∃Jx ⊆ U such that µÃ(x) : Jx → U [4].

µA(x)) = {(u, µÃ(x)(u))|µÃ(x)(u) ∈ U∀u ∈ Jx ⊆ U} (3)

where X is called the primary domain, Jx the primary membership of x, U is
known as the secondary domain and µÃ(x) is the secondary membership of x.

In this paper, an interval singleton type-2 fuzzy logic system type is used.
This means that the fuzzi�er converts the fuzzy logic system input signals into
fuzzy singletons and then the inference engine adjusts the fuzzy singletons with
the fuzzy rules in the rule base.



Considering a type-2 fuzzy system with K rules will be used with the follow-
ing scheme [7]:

R̃k : IF Ã
′
is Ãk THEN B̃

′
is B̃k. (4)

where Ã
′
, Ãk, B̃

′
and B̃k are type-2 fuzzy sets. In the interval case, they

are subintervals of [0, 1] expressed by of upper and lower bounds, e.g. Ãk =[
µ
Ak

(x) , µAk
(x)

]
⊆ [0, 1] for each x ∈ X.

The output needs a type reduction to convert into a type 1 fuzzy sets before
defuzzi�cation can be performed to obtain a crisp output. This is the main
structural di�erence between type-1 and type-2 logic fuzzy sets. One of the most
common type reduction methods is the centroid type-reducer. The centroid of a
type-1 fuzzy set when the domain X is discretised into k points is:

CA =

∑k
i=1 xiµA(xi)∑k
i=1 µA(xi)

(5)

Referring to the literature [6, 23] the centroid of a type-2 fuzzy set Ã with
domain X discretised into k points x1, ...xk with x1 < ... < xk as

CÃ =

∫
u1∈Jx1

...

∫
uk∈Jxk

[µÃ(x1)(u1) · ... · µÃ(xk)(uk)] /

∑k
i=1 xiui∑k
i=1 ui

(6)

In case Ã is interval type-2 logic fuzzy set, then the centroid is the crisp set:

CÃ =

∫
u1∈Jx1

...

∫
uk∈Jxk

/

∑k
i=1 xiui∑k
i=1 ui

(7)

It has been shown that this iterative procedure can converge in at most K
iterations [8]. Once yl and yr are available, they can be used to compute the
approximate output. Since the reduced type set is an interval fuzzy set of type
1, the fuzzy output value is [17]:

y(x) =
ymax + ymin

2
(8)

The KM type reduction in its simplest form can be summarized as follows in
algorithm 1.1.

In Nowicki's work [10] on defuzzi�cation for binary class membership of ob-
jects, it can be seen that the result does not require any ordering of yj,k as is
done in the KM method.

According to a theorem stated in the literature [15] with a proof, it turns out
that for given rough approximations, µ

j,k
and µj,k of the binary set yj,k = 0, 1

representing by a single rule class membership, where k is the index for rules
k = 1, ....,K and j is the index for classes j = 1, ....J , the lower and upper



1. Let the consequent values be aranged in the ascending order
y1 < y2 < . . . < yK

2. calculate type-1 system output y0 as an average of yk weighted by mean

membership grades, i.e.,
(
µ
k
+ µk

)
/2,

3. set the initial values ymin = ymax = y0,
4. for each k = 1, 2, . . . ,K, if yk > ymax, then −→µ k = µk, otherwise

−→µ k = µ
k
,

5. �nd the closest ynext = min
k=1,...,K

yk : yk > ymax,

6. calculate ymax as an average of yk weighted by new grades −→µ k,
7. if ymax ≤ ynext, continue, else go to step 4,
8. for each k = 1, 2, . . . ,K, if yk < ymin, then µ

←−k = µk, otherwise µ
←−k = µ

k
,

9. �nd the closest ynext = max
k=1,...,K

yk : yk < ymin,

10. calculate ymin as an average of yk weighted by new grades µ
←−k,

11. if ymin ≥ ynext, �nish, else go to step 8.

Algorithm 1.1: The KM type reduction

approximations of the object's class membership Cj are given by

ymin (j) =

∑K
k=1 µj,k

yj,k∑K
k=1 µj,k

yj,k +
∑K

k=1 µj,k¬yj,k
, (9)

ymax (j) =

∑K
k=1 µj,kyj,k∑K

k=1 µj,k
¬yj,k +

∑K
k=1 µj,kyj,k

. (10)

3 Smooth Type Reduction

To characterize the smooth type reduction, assume that the described system
has an output value Vp, where p = 1...P . Then its smooth maximum of v1, ..., vp
would be a di�erentiable approximation of maximum of a function with continu-
ous derivatives. In addition, the universal smooth maximum/minimum function
is de�ned as

yα (υ1, . . . , υP ) =

∑P
p=1 υpe

αυp∑P
p=1 e

αυp

(11)

which yα has the following properties:

1. yα → max as α → ∞,
2. yα → min as α → −∞,

3. y0 =
∑P

p=1 υp

P

Notably, this means that the values of y−∞ and y∞ are the endpoints of
the reduced set, respectively ymin and ymax. In the search for end points, e.g.,
ymax, only those tuples should be considered that have lower memberships for
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Fig. 2. Adaptive interval type-2 fuzzy logic system using KM type-reduction

consequents being no larger than y0, which is the output of the type 0 fuzzy
system in an interval fuzzy system of type 2. For values of υk arranged in as-
cending order, we run the algorithm. Perform a right-shift operation to compute
the output values υp that maximize the result. An example shift is demonstrated
in the table 1 and the proposed algorithm using the smooth extremum function
is presented in algorithm 1.2.



r\k 1 2 R R+1 K−1 K

R 0 0 1 1 1 1
R+1 0 0 0 1 1 1
K−1 0 0 0 0 1 1
K 0 0 0 0 0 1

Table 1. Right-shifted mask to calculate ymax
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Fig. 3. Adaptive interval type-2 fuzzy logic system using smooth type-reduction

Another approach to smooth maximum is to use LogSumExp, which is as
follows: LSE (υ1, . . . , υP ) = 1

α log
∑

P exp (αυp), which can be normalized for
all non-negative VP , yielding a function with domain [0,∞)n and range [0,∞):
g (υ1, . . . , υP ) = log(

∑
P exp (υp)−(P −1)). There is also another approach that

uses the p-norm, ∥(υ1, . . . , υR)∥p = (
∑

r |υr|
p
)

1
p . The LogSumExp approach as

well as the p-Norm approach generate similar results.



1 Let the consequent values be aranged in the ascending order
y1 < y2 < . . . < yK and the values in vector forms, i.e.,

y = [y1, . . . , yK ]

µ = [µ1, . . . , µK ]

µ =
[
µ
1
, . . . , µ

K

]
To compute the right and the left endpoints of the type-reduced set, perform
the following steps:

1. calculate type-1 system output y0 as an average of elements of yweighted by
mean membership grades, i.e.,

(
µ+ µ

)
/2,

2. �nd index R of the closest yR = min
k=1,...,K

yk : yk > y0,

3. for r = R, . . . ,K − 1:
(a) set a mask Mr = 0 . . . 01 . . . 1

1 ... R ... K
,

(b) apply the mask to upper and lower memberships
−→µ = (1−Mr)⊙ µ+Mr ⊙ µ (where ⊙ is the Hadamard product),

(c) calculate ymax,r as an average of elements y weighted by −→µ ,
4. return ymax as an aggregation of all ymax,r with the use of smooth maximum,

r = R, . . . ,K − 1,
5. �nd index L of the closest yL = min

k=1,...,K
yk : yk < y0,

6. for l = 2, . . . , L:
(a) set a mask Ml = 1 . . . 10 . . . 0

1 ... L ... K
,

(b) apply the mask to upper and lower memberships
←−µ = (1−Ml)⊙ µ+Ml ⊙ µ,

(c) calculate ymin,l as an average of elements y weighted by ←−µ ,
7. return ymax as an aggregation of all ymax,r with the use of smooth maximum,

r = R, . . . ,K − 1.

Algorithm 1.2: Smooth type reduction

4 Experimental Results

The source Wisconsin Breast Cancer data are reports of clinical cases [Mangasar-
ian and Wolberg 1990] [18]. The original data set contained 699 cases divided
into two categories: benign breast cancer (65.5% of instances) and malignant
cancer (34.5%). Each case was described by nine attributes: clump thickness,
uniformity of cell size, uniformity of cell shape, marginal adhesion, single ep-
ithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitosis, note
that 16 individuals are missing the attribute.

The speci�city of interval-valued fuzzy logic systems allows us for an analysis
on a lower level of classi�cation if only we make use of the interval outputs of the
system: ymin and ymax. Using this information, instead of strict classi�cation,
we get three groups of objects classi�ed with the following labels:

� certain classi�cation if ymin > 0.5,



� uncertain classi�cation if ymax ≥ 0.5 ≥ ymin,
� certain rejection if ymax < 0.5.

As a result, we get three rate groups: classi�ed, misclassi�ed, and unclassi�ed
(�NoClass.�) when classi�cation cannot be performed certainly. This can help
in practical classi�cation systems such as the medical diagnosis when uncertain
classi�cation cases can be again directed to a thorough examination. The clas-
si�cation results in the imputation of input values by means of rough-fuzzy sets
are presented in Table 2

original data
Singleton Interrval KM-T2FLC Interval T2FLC based

Smooth Type-Reduction
Class./Misclass. Class./NoClass./Misclass. Class./NoClass./Misclass.
0.988/0.012 0.975/0.10/0.015 0.986/0.011/0.003

σ1

1.0 0.978/0.022 0.964/0.019/0.017 0.974/0.020/0.006
5.0 0.931/0.069 0.673/0.315/0.012 0.675/0.317/0.008

σ2

1.0 0.977/0.023 0.963/0.016/0.020 0.973/0.018/0.009
5.0 0.960/0.040 0.647/0.336/0.017 0.660/0.333/0.007

σ3

1.0 0.970/0.030 0.912/0.074/0.014 0.933/0.062/0.005
5.0 0.911/0.089 0.589/0.406/0.005 0.694/0.302/0.004

σ4

1.0 0.977/0.023 0.975/0.009/0.016 0.985/0.009/0.006
5.0 0.967/0.033 0.838/0.152/0.010 0.844/0.150/0.006

σ5

1.0 0.977/0.023 0.970/0.011/0.019 0.981/0.010/0.009
5.0 0.962/0.038 0.795/0.195/0.010 0.799/0.191/0.010

σ6

1.0 0.978/0.022 0.948/0.034/0.019 0.961/0.032/0.008
5.0 0.938/0.062 0.824/0.166/0.010 0.825/0.167/0.008

σ7

1.0 0.980/0.020 0.961/0.024/0.015 0.970/0.025/0.005
5.0 0.965/0.035 0.634/0.360/0.006 0.642/0.352/0.006

σ8

1.0 0.978/0.022 0.968/0.012/0.020 0.978/0.011/0.009
5.0 0.970/0.030 0.854/0.137/0.009 0.853/0.139/0.008

σ9

1.0 0.980/0.020 0.969/0.014/0.018 0.978/0.015/0.008
5.0 0.944/0.056 0.717/0.272/0.011 0.722/0.271/0.007

σall

1.0 0.973/0.027 0.518/0.480/0.002 0.538/0.462/0.000
5.0 0.749/0.251 0.001/0.999/0.000 0.021/0.979/0.000

Table 2. Wisconsin Breast Cancer classi�cation with optional uniform noise applied
to single input X1, . . . , X9 as well as to all inputs Xall



5 Conclusion

In this paper, a smooth type-reduction method that is competitive with the KM
type-reduction system is presented. It shows good results as it achieves low train-
ing error values. It is worth noting that both type-2 fuzzy systems signi�cantly
exceed the learning ability of the type-1 fuzzy system. The proposed system
is worth considering for solving problems with increased model uncertainty or
when there is uncertain input data.

The initial learning of type 2 systems treated as type 1 fuzzy systems, followed
by the application of generating type-2 fuzzy rules methods for uncertain data
using the fuzzy-rough approximation [13, 16] or possibilistic fuzzi�cation [15],
shows that fuzzy systems are important in the process of extracting explanatory
fuzzy rules.
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