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The aim of the paper is to model ambiguity in a randomized reinsurance stop-loss 
treaty. For this, we consider the lower envelope of the set of bivariate joint probability 
distributions having a precise discrete marginal and an ambiguous Bernoulli marginal. 
Under an independence assumption, since the lower envelope fails 2-monotonicity, 
inner/outer Dempster-Shafer approximations are considered, so as to select the optimal 
retention level by maximizing the lower expected insurer’s annual profit under reinsurance. 
We show that the inner approximation is not suitable in the reinsurance problem, 
while the outer approximation preserves the given marginal information, weakens the
independence assumption, and does not introduce spurious information in the retention 
level selection problem. Finally, we provide a characterization of the optimal retention 
level.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Uncertainty is usually modeled through a probability measure, however a demand for more flexible models arises in 
different fields with the aim to provide tools able to manage partially specified information (imprecision) through a class 
of compatible probability measures. This work is essentially motivated by an application related to reinsurance and aims at 
incorporating ambiguity in a simple randomized reinsurance model, introduced in [2].

A reinsurance treaty (see, e.g., [1]) is a contract between a reinsurer and a (first-line) insurer (also called cedent) for 
transferring some parts of the insurance risk, upon the payment of a reinsurance premium. Most of non-life reinsurance 
contracts are actually written for a one year horizon, thus we will focus on a one-year period. Given a non-negative random 
variable X , expressing the aggregate loss that the insurer faces over the one-year period, a stop-loss treaty is a contract in 
which the retained loss of the insurer is the random variable r(X, d) = min(X, d), where d ≥ 0 is a fixed retention level.

In [2], the classical stop-loss treaty is randomized according to an independent Bernoulli random variable Y with pa-
rameter p, leading to a retained loss r(X, Y , d) which is min(X, d) if Y = 1 and X otherwise. In such a randomization, the 
parameter p of the Bernoulli distribution can be interpreted as the probability of a rare event or as a default probability. 
For a fixed p, the goal is to choose a retention level d∗ , that maximizes the expected annual profit Z(X, Y , d), by taking into 
account the total premium π(X) received from the first-line insurer, the reinsurance premium πR (d), the cost-of-capital 
rate rcoc , and a solvency risk measure ρ(r(X, Y , d)).
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Since the parameter p can suffer from misspecification, the aim of present paper is to investigate the effect of ambiguity 
on the choice of the optimal retention level d. A random vector (X, Y ) is considered with X having a discrete distribution 
P X , whereas the distribution of Y belongs to a class PY of Bernoulli distributions, where p ranges in a closed interval. Under 
the hypothesis of independence of the two variables, meaning that under P X and any element of PY the two variables are 
independent, we prove that the class of joint probability distributions generates a class of probability measures (credal set) 
P , that is closed and convex, but whose lower envelope P is generally not 2-monotone. Moreover, the core of P (i.e., the 
set of all probability measures dominating P ) strictly contains P .

Following the approach of [21], we first look for an inner Dempster-Shafer approximation Beli of P , that is a belief 
function dominating P and minimizing the Euclidean distance. Depending on the chosen parameters, such Beli can be 
either additive or non-additive, but its use in the reinsurance application is impaired since between the core of Beli and the 
class P no containment relationship may hold.

For this, we move towards an outer Dempster-Shafer approximation [22,25,26] that further preserves the marginal prob-
ability distribution of X , namely Beloo . Such a belief function is asked to dominate P , to preserve the marginal probability 
distribution P X of X and to minimize the Euclidean distance. We provide a closed-form expression for Beloo and show that 
Beloo also preserves the imprecise marginal of Y , that is P Y = minPY . Since P is strictly contained in the core of Beloo , 
its use allows us to weaken the independence assumption between X and Y which is, in turn, not easy to justify when 
interpreting p as the probability of a rare event or a default probability.

Both Beli and Beloo allow the computation of lower expectations (with respect to their core) as Choquet expectations 
and are used to model the lower expected insurer’s annual profit under reinsurance. The use of the Choquet integral, with 
respect to either Beli or Beloo , subsumes a maximin criterion of choice, nevertheless, besides the Choquet integral, other 
expectation operators could be considered inside Dempster-Shafer theory [35]: this will be addressed in future research. 
Incidentally, Beli and Beloo are proved to be optimal approximations of P in the wider framework of 2-monotone lower 
probabilities.

Following the approach in [2], for the solvency risk measure ρ(r(X, Y , d)) we adopt an ambiguous version of the value-
at-risk (see, e.g., [19] for the classical definition) that relies on the lower cumulative distribution function induced by Beli

or Beloo . Such choice is motivated by the common use of the value-at-risk in solvency contexts, joined with a cautious 
approach towards ambiguity due to the lower envelopes Beli and Beloo .

We show that the lower expected profit computed with respect to P coincides with the Choquet expected profit com-
puted with respect to the outer approximation Beloo , thus their maximization to determine the optimal retention level d∗
gives rise to the same optimization problem. In other terms, by working with Beloo we weaken the independence assump-
tion between X and Y , and further we do not introduce spurious information in the reinsurance optimization problem. This 
leads us to focus on Beloo only, for which we provide a characterization of the optimal d∗ .

This paper extends some preliminary results presented in [31]. The paper is structured as follows. Section 2 collects the 
necessary preliminaries. Section 3 introduces the inner and outer Dempster-Shafer approximations and provides a character-
ization of the outer approximation, together with a study of its properties. Section 4 introduces ambiguity in a randomized 
stop-loss treaty and shows that the outer Dempster-Shafer approximation leads to the same retention level selection prob-
lem of the original lower joint probability. Section 5 provides a characterization of the optimal retention level under the 
outer Dempster-Shafer approximation. Finally, Section 6 collects our conclusions and future perspectives.

2. Preliminaries

Let � = {ω1, . . . , ωn} be a finite non-empty set and denote by 2� its power set. A function P : 2� → [0, 1] such that 
P (∅) = 0 and P (�) = 1 is called a:

• (coherent) lower probability if there exists a closed set P of probability measures on 2� such that, for every A ∈ 2� ,

P (A) = min
P∈P P (A);

• k-monotone lower probability with k ≥ 2 if for every A1, . . . , Ak ∈ 2� ,

P

(
k⋃

i=1

Ai

)
≥

∑
∅�=I⊆{1,...,k}

(−1)|I|−1 P

(⋂
i∈I

Ai

)
.

A lower probability which is k-monotone for every k ≥ 2 is called a belief function and is denoted as Bel [13,34].
Every lower probability P induces the closed (in the product topology) convex set of probability measures on 2� , called 

core, defined as

core(P ) = {P : P is a probability measure on 2�, P ≥ P }.
In general, there may be infinitely many closed and convex sets of probability measures inducing a lower probability P : 

such sets are also referred to as credal sets [20]. The set core(P ) is the largest credal set associated with P .

2
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A lower probability P is completely determined (see [18]) by its Möbius inverse m : 2� →R through the relations, for all 
A ∈ 2� ,

m(A) =
∑
B⊆A

(−1)|A\B| P (B) and P (A) =
∑
B⊆A

m(B). (1)

The function m is such that m(∅) = 0, m({ωi}) ≥ 0, for all ωi ∈ �, and 
∑

A∈2� m(A) = 1. We have that P is 2-monotone (see 
[7]) if and only if m further satisfies∑

{ωi ,ω j}⊆B⊆A

m(B) ≥ 0, for all A ∈ 2� and all ωi,ω j ∈ A, ωi �= ω j , (2)

while P is a belief function if and only if m ranges in [0, 1] (see, e.g., [18,34]).
Denoting by R� the set of all random variables on �, the issue of introducing a notion of expectation with respect 

to a closed set of probability measures P can be faced in two different manners: either referring to the Choquet integral 
with respect to the lower probability P or to the lower expectation functional with respect to P . Given P and X ∈R� , the 
Choquet expectation of X with respect to P (see, e.g., [14,18]) is defined through the Choquet integral

CP [X] =
n∑

i=1

(X(ωσ(i)) − X(ωσ(i+1)))P (Eσ
i ),

where σ is a permutation of � such that X(ωσ(1)) ≥ . . . ≥ X(ωσ(n)), Eσ
i = {ωσ(1), . . . , ωσ(i)} for i = 1, . . . , n, and 

X(ωσ(n+1)) = 0.
In particular, if P reduces to a probability measure P , then CP [X] = EP [X], where EP denotes the usual expectation 

operator with respect to P . On the other hand, given P , the corresponding lower expectation of X ∈R� is

EP [X] = min
P∈PEP [X]. (3)

In general [37,41], we have that CP [X] ≤ Ecore(P )[X] ≤ EP [X], where the two inequalities can be strict. Nevertheless, in 
the particular case P is (at least) 2-monotone (see, e.g., [14,18]), then CP [X] = Ecore(P )[X] and Ecore(P )[X] = EP [X] if P
has the same extreme points of core(P ).

3. DS-approximation of joint lower distributions with an independent ambiguous Bernoulli marginal

Let X, Y be discrete random variables taking values in X = {x1, . . . , xt} and Y = {0, 1}. Assume that no logical relations 
(structural zeros) are present between X and Y , therefore, we can simply identify X and Y with the projection maps on the 
product measurable space (X ×Y, 2X×Y ). We also denote by 2̃X and 2̃Y the sub-algebras of 2X×Y isomorphic to 2X and 
2Y , respectively.

In what follows, we consider marginal probability distributions for X and Y , i.e., probability measures on the power sets 
of their ranges, respectively. To avoid cumbersome notation, we write P X (x) := P X ({x}) and P Y (y) := P Y ({y}), for all x ∈X
and y ∈ Y .

Let P X : 2X → [0, 1] be a probability distribution for X and

PY = {P p
Y : 2Y → [0,1] : p ∈ [p1, p2]}

be a family of probability distributions for Y , where

P p
Y (1) = p and P p

Y (0) = 1 − p, with 0 ≤ p1 ≤ p2 ≤ 1.

Suppose that, for every P p
Y ∈ PY , the random variables X, Y are stochastically independent and the joint probability 

distribution P p : 2X×Y → [0, 1] of the vector (X, Y ) is obtained extending by additivity the assessment

P p({(x, y)}) = P X (x) · P p
Y (y), for all (x, y) ∈ X ×Y . (4)

The above hypothesis of independence generalizes the original model given in [2], that is recovered for p1 = p2. Therefore, 
we get the family of joint distributions

P = {P p : P p is a joint distribution of (X, Y ) given by (4), p ∈ [p1, p2]}. (5)

Proposition 1. The set P is a closed and convex subset of [0, 1]2X×Y
endowed with the product topology, and its extreme points form 
the set ext(P) = {P p1 , P p2 }.

3
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Proof. The set PY of marginal probability distributions for Y is a closed and convex subset of [0, 1]2Y
endowed with the 

product topology, and P p(X × {y}) = P p
Y (y), for all p ∈ [p1, p2]. In turn, this implies that every sequence {P pn }n∈N in P

converging pointwise on 2X×Y has a limit P = P p ∈ P , the convex combination of P p, P p′ ∈ P with α ∈ [0, 1] is such that 
P = αP p + (1 − α)P p′ ∈P , and ext(P) = {P p1 , P p2 }. �

Let P = minP be the lower envelope of P and denote by P Y = minPY . The following example shows that P is generally 
not 2-monotone and we also have that P is strictly contained in core(P ).

Example 1. For X = {x1, x2}, denote

X ×Y = {(x1,1)︸ ︷︷ ︸
=a1

, (x1,0)︸ ︷︷ ︸
=a2

, (x2,1)︸ ︷︷ ︸
=a3

, (x2,0)︸ ︷︷ ︸
=a4

},

and let Ai = {ai}, Aij = {ai, a j}, Aijk = {ai, a j, ak} and A1234 = X × Y . Take the marginal probability distributions such that 
P X (x1) = 3

4 , P X (x2) = 1
4 , P p

Y (1) = p, P p
Y (0) = 1 − p, where p ∈

[
1
4 , 3

4

]
. The family P of joint probability distributions for 

(X, Y ) has extreme points and lower envelope reported below: 

2X×Y ∅ A1 A2 A3 A4 A12 A13 A14 A23 A24 A34 A123 A124 A134 A234 A1234

P p1 0 3
16

9
16

1
16

3
16

12
16

4
16

6
16

10
16

12
16

4
16

13
16

15
16

7
16

13
16 1

P p2 0 9
16

3
16

3
16

1
16

12
16

12
16

10
16

6
16

4
16

4
16

15
16

13
16

13
16

7
16 1

P 0 3
16

3
16

1
16

1
16

12
16

4
16

6
16

6
16

4
16

4
16

13
16

13
16

7
16

7
16 1

The lower envelope is easily seen not to be 2-monotone since

P (A123) = 13

16
<

15

16
= P (A12) + P (A23) − P (A2).

We also have that P ⊂ core(P ) since ext(core(P )) = {P1, P2, P3, P4}, where, identifying each probability distribution on 
2X×Y with the vector of its values on the atoms of 2X×Y we have

P1 = P p1 ≡
(

3
16 , 9

16 , 1
16 , 3

16

)
, P2 = P p2 ≡

(
9

16 , 3
16 , 3

16 , 1
16

)
,

P3 ≡
(

7
16 , 5

16 , 1
16 , 3

16

)
, P4 ≡

(
5

16 , 7
16 , 3

16 , 1
16

)
.

The inclusion P ⊂ core(P ) is due to fact that P is the credal set associated with a coherent lower prevision functional, 
while core(P ) is the credal set induced by its restriction on indicators, that is P (see, e.g., [37,41]). In turn, this is another 
motivation to the failure of 2-monotonicity for P : 2-monotonicity would imply P = core(P ). Actually, the failure of 2-
monotonicity is not surprising since the set P can be considered as a particular strong product of two imprecise marginal 
probabilities [9,10].

Despite the failure of 2-monotonicity, the set P assures an important decomposition property, when computing lower 
expectations. The property reported in Proposition 2 recalls the external additivity property, discussed in the context of 
independent products [11,12,39].

Proposition 2. For every f :X →R and g :X ×Y →R we have

EP [ f (X) + g(X, Y )] = EP X [ f (X)] +EP [g(X, Y )],
where EP X denotes the expectation with respect to the marginal P X .

Proof. Every P ∈P is such that P |2̃X coincides with the marginal distribution of X , therefore

EP [ f (X) + g(X, Y )] = min
P∈PEP [ f (X) + g(X, Y )]

= min
P∈P

(
EP X [ f (X)] +EP [g(X, Y )])

= EP X [ f (X)] + min
P∈PEP [g(X, Y )]
= EP X [ f (X)] +EP [g(X, Y )]. �
4
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Due to the desirable property expressed after equation (3), we look for a belief function that approximates the lower 
probability P by following [21,22,25,26], so as to reduce lower expectations to Choquet expectations. We refer to it as DS-
approximation (where “DS” stands for Dempster and Shafer). The decomposition property reported in Proposition 2 reveals 
to be of particular importance in the reinsurance application faced in Section 4, to compute reinsurance premia. For this 
reason, we seek DS-approximation schemes enforcing an analogous decomposition property with Choquet expectations. In 
turn, for this to hold, a necessary and sufficient condition is that the restriction of the DS-approximation of P on 2̃X

coincides with P X , as this implies that all dominating joint probabilities have the same property.

3.1. Inner D S-approximations

We start our analysis by considering inner DS-approximations, for which the quoted decomposition property is auto-
matically satisfied. Indeed, since P |2̃X coincides with P X , every lower probability Q inner approximating P , i.e., satisfying 
Q ≥ P pointwise on 2X×Y , inherits the same property. We notice that in financial applications, inner DS-approximations 
are preferred, due to the phenomenon of dilation in lower-upper prices induced by other approximation schemes [8].

Searching for an inner DS-approximation (see [21]) means to look for a belief function Beli that dominates P , i.e., Beli ≥ P
pointwise on 2X×Y , and is as close as possible to P according to the squared Euclidean distance D2 defined over the set of 
lower probabilities on 2X×Y :

minimize D2(P , Bel)

subject to:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
B⊆A

m(B) ≥ P (A), for all A ∈ 2X×Y ,

∑
B⊆X×Y

m(B) = 1,

m(B) ≥ 0, for all B ∈ 2X×Y ,

m(∅) = 0.

(6)

We have that D2, besides assuring uniqueness of the inner DS-approximation, has a justification in terms of a penalty 
coherence condition for belief functions [32]. Indeed, D2 turns out to be the Bregman divergence [6] induced by the Brier 
scoring rule [5] that is used in [32] to provide an interpretation of belief assessments as forecasts. Thus, D2 allows us to 
define the notion of projection onto a convex set of belief functions that, in this case, reduces to the classical orthogonal 
projection. The function D2 is also referred to as quadratic distance, however, other distances for lower probabilities can 
be considered [4,21,22,25,26,33]. In particular, in [21] the authors consider inner approximations by means of D2 together 
with some particular subfamilies of belief functions. We point out that, besides the quoted distances and divergences, 
several other choices are available, like minimizing the Kullback-Leibler divergence [27,28] or a measure of nonspecificity 
(or imprecision) [15].

It trivially holds that there are infinitely many inner DS-approximations of P , as every P p will work, so problem (6) is 
always feasible.

The following Example 2 shows that the D2-optimal inner DS-approximation Beli of P is generally non-additive, though 
it may be additive for particular parameter settings. Nevertheless, the same example shows that, even though core(Beli) ⊂
core(P ), we have that core(Beli) � P and P � core(Beli). This last fact has important consequences when computing lower 
expectations, since no dominance relation can be established between the lower expectation computed with respect to P
and the Choquet integral with respect to Beli .

Example 2. Let P be as in Example 1. The D2-optimal inner DS-approximation Beli of P and its Möbius inverse mi are 
reported below:

2X×Y ∅ A1 A2 A3 A4 A12 A13 A14 A23 A24 A34 A123 A124 A134 A234 A1234

mi 0 4
16

4
16

2
16

2
16

4
16 0 0 0 0 0 0 0 0 0 0

Beli 0 4
16

4
16

2
16

2
16

12
16

6
16

6
16

6
16

6
16

4
16

14
16

14
16

8
16

8
16 1

We have that ext(core(Beli)) = {Q 1, Q 2} where

Q 1 ≡
(

4
16 , 8

16 , 2
16 , 2

16

)
and Q 2 ≡

(
8

16 , 4
16 , 2

16 , 2
16

)
.

Though core(Beli) ⊂ core(P ), since none between Q 1, Q 2 can be expressed as the convex combination of P p1 , P p2 and vice 

versa, it follows that between core(Beli) and P no containment relationship holds.

5



D. Petturiti, G. Stabile and B. Vantaggi International Journal of Approximate Reasoning 161 (2023) 108986
3.2. X-preserving outer D S-approximations

Example 2 suggests to move towards an outer DS-approximation. In this case, we search for a belief function Belo that 
is dominated by P , i.e., Belo ≤ P pointwise on 2X×Y , and is as close as possible to P according to D2.

As already noticed, the decomposition property expressed in Proposition 2, which is a desideratum in the reinsurance 
problem we face in Section 4, is implied by the fact that P |2̃X coincides with the probability distribution of X . This property 
is inherited by any inner DS-approximation Beli but generally not by an outer approximation Belo . Thus, we search for an 
outer approximation Beloo such that Beloo

|2̃X coincides with the marginal probability distribution of X . Such an outer DS-

approximation will be called X-preserving and can be found solving the following optimization problem

minimize D2(P , Bel)

subject to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
B⊆A

m(B) = P (A), for all A ∈ 2̃X ,

∑
B⊆A

m(B) ≤ P (A), for all A ∈ 2X×Y \ 2̃X ,

∑
B⊆X×Y

m(B) = 1,

m(B) ≥ 0, for all B ∈ 2X×Y ,

m(∅) = 0.

(7)

Denoting by P X ∗ the inner measure induced by P X on 2X×Y , defined, for all A ∈ 2X×Y , as

P X ∗(A) = sup

{∑
x∈B

P X (x) : B ×Y ⊆ A, B ∈ 2X
}

,

P X ∗ is an X-preserving outer DS-approximation of P . In turn, this implies that problem (7) is always feasible, and taking 
D2 it admits a unique optimal solution.

Let us notice that the set of X-preserving outer DS-approximations of P is a convex subset of [0, 1]2X×Y
, and Beloo turns 

out to be the orthogonal projection of P onto such set.

Example 3. Let P be as in Example 1. The D2-optimal X-preserving outer DS-approximation Beloo of P and its Möbius 
inverse moo are reported below:

2X×Y ∅ A1 A2 A3 A4 A12 A13 A14 A23 A24 A34 A123 A124 A134 A234 A1234

moo 0 3
16

3
16

1
16

1
16

6
16 0 0 0 0 2

16 0 0 0 0 0

Beloo 0 3
16

3
16

1
16

1
16

12
16

4
16

4
16

4
16

4
16

4
16

13
16

13
16

7
16

7
16 1

We have that ext(core(Beloo)) = {Q 1, Q 2, Q 3, Q 4} where

Q 1 = P p1 ≡
(

3
16 , 9

16 , 1
16 , 3

16

)
, Q 2 = P p2 ≡

(
9

16 , 3
16 , 3

16 , 1
16

)
,

Q 3 ≡
(

3
16 , 9

16 , 3
16 , 1

16

)
, Q 4 ≡

(
9

16 , 3
16 , 1

16 , 3
16

)
.

We stress that the first set of equalities appearing in system (7) guarantees that each belief function Bel we consider 
in the optimization problem satisfies Bel|2̃X = P X . If such equalities are relaxed to less than or equal to inequalities, then 
the optimal solution turns out to be the D2-optimal outer DS-approximation Belo . Though Belo is generally closer to P
with respect to Beloo in terms of squared Euclidean distance, it generally fails the X-preserving property, as shown in the 
following example.

Example 4. Let P be as in Example 1 and Beloo as in Example 3. The D2-optimal outer DS-approximation Belo of P and its 
Möbius inverse mo are reported below: 

2X×Y ∅ A1 A2 A3 A4 A12 A13 A14 A23 A24 A34 A123 A124 A134 A234 A1234

mo 0 3
16

3
16

1
16

1
16

5
16 0 1

16
1

16 0 1
16 0 0 0 0 0

o 3 3 1 1 11 4 5 5 4 3 13 13 7 7
Bel 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 1

6
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It holds that D2(P , Belo) = 4
256 < 8

256 = D2(P , Beloo), nevertheless, it is easy to verify that Belo|2̃X does not coincide with 
P X .

The following theorem provides a characterization of the D2-optimal X-preserving outer DS-approximation of P .

Theorem 1. The D2-optimal X-preserving outer DS-approximation Beloo of P has Möbius inverse moo : 2X×Y → [0, 1] satisfying the 
following properties:

(i) moo({(x, y)}) = P X (x)P Y (y), for all (x, y) ∈X ×Y ,
(ii) moo({x} ×Y) = P X (x) − ∑

y∈Y
P X (x)P Y (y), for all x ∈X ,

(iii) moo is 0 on 2X×Y \ ({{(x, y)} : (x, y) ∈X ×Y} ∪ {{x} ×Y : x ∈X }).

Proof. The proof consists in proving the following points:

1. moo satisfying (i)–(iii) is the Möbius inverse of an X-preserving outer DS-approximation Beloo of P ;
2. every X-preserving outer DS-approximation Bel of P with Möbius inverse m satisfies the properties

(a) Bel({(x, y)}) ≤ Beloo({(x, y)}), for all (x, y) ∈X ×Y ;
(b)

∑
(x,y)∈X×Y

m({(x, y)}) + ∑
x∈X

m({x} ×Y) = 1;

3. if an X-preserving outer DS-approximation Bel of P is such that Bel({(x, y)}) = Beloo({(x, y)}), for all (x, y) ∈ X × Y , 
then Bel = Beloo;

4. Beloo minimizes D2 in the class of X-preserving outer DS-approximations of P .

Point 1. For all (x, y) ∈X ×Y , we have that

P ({(x, y)}) = P X (x)P Y (y) = moo({(x, y)}) = Beloo({(x, y)}),
and, for all x ∈X , we have that

P ({x} ×Y) = P X (x) = moo({x} ×Y) +
∑
y∈Y

moo({(x, y)}) = Beloo({x} ×Y),

which implies that, for all A ∈ 2X , it holds that

P (A ×Y) =
∑
x∈A

P X (x) = Beloo(A ×Y).

More generally, for all B ∈ 2X×Y , we have that

P (B) =
∑

{x}×Y⊆B

P X (x) + min
i=1,2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

(x,y)∈B
{x}×Y�B

P X (x)P pi
Y (y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≥

∑
{x}×Y⊆B

P X (x) +
∑

(x,y)∈B
{x}×Y�B

P X (x)P Y (y)

=
∑
C⊆B

moo(C) = Beloo(B),

therefore, Beloo is an X-preserving outer DS-approximation of P .
Point 2. By point 1 it immediately follows that any X-preserving outer DS-approximation Bel of P satisfies property (a)

since, for all (x, y) ∈X ×Y ,

Bel({(x, y)}) ≤ P ({(x, y)}) = Beloo({(x, y)}).
On the other hand, since Y = {0, 1}, property (b) follows since∑

m({(x, y)}) +
∑

m({x} ×Y) =
∑

Bel({x} ×Y) =
∑

P X (x) = 1.
(x,y)∈X×Y x∈X x∈X x∈X

7
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Point 3. Suppose Bel is an X-preserving outer DS-approximation of P such that Bel({(x, y)}) = Beloo({(x, y)}), for all 
(x, y) ∈X ×Y , and let m be its Möbius inverse. We have that, for all (x, y) ∈ X ×Y ,

Bel({(x, y)}) = m({(x, y)}) = moo({(x, y)}) = Beloo({(x, y)}),
moreover, since Bel is X-preserving, for all x ∈X , it must hold

m({x} ×Y) = P X (x) −
∑
y∈Y

m({(x, y)})

= P X (x) −
∑
y∈Y

moo({(x, y)}) = moo({x} ×Y),

and since by property (b) of point 2∑
(x,y)∈X×Y

m({(x, y)}) + ∑
x∈X

m({x} ×Y)

= ∑
(x,y)∈X×Y

moo({(x, y)}) + ∑
x∈X

moo({x} ×Y) = 1,

it must be m = moo , which implies Bel = Beloo .
Point 4. Let Bel �= Beloo be an X-preserving outer DS-approximation of P , having Möbius inverse m. By property (a) of 

point 2 and point 3, it must be Bel({(x, y)}) < Beloo({(x, y)}) for at least a (x, y) ∈X ×Y , that is m({(x, y)}) < moo({(x, y)}). 
Since Bel satisfies property (b) of point 2 we get that m is 0 on 2X×Y \ ({{(x, y)} : (x, y) ∈X ×Y} ∪ {{x} ×Y : x ∈X }). 
From this we obtain that

D2(P , Bel)2 = ∑
B∈2X×Y

⎛⎜⎜⎝P (B) − ∑
{x}×Y⊆B

P X (x) − ∑
(x,y)∈B

{x}×Y�B

m({(x, y)})

⎞⎟⎟⎠
2

,

D2(P , Beloo)2 = ∑
B∈2X×Y

⎛⎜⎜⎝P (B) − ∑
{x}×Y⊆B

P X (x) − ∑
(x,y)∈B

{x}×Y�B

moo({(x, y)})

⎞⎟⎟⎠
2

,

which implies that D2(P , Beloo) < D2(P , Bel). �
The D2-optimal X-preserving outer approximation Beloo is a joint belief function on 2X×Y that extends the precise 

marginal of X and the imprecise marginal of Y , that is P X and P Y . Indeed, P X and P Y induce an additive belief function 
on 2̃X and a non-additive belief function on 2̃Y , respectively, that are restrictions of Beloo .

We notice that, since P ⊂ core(Beloo), then considering Beloo we are actually weakening the independence hypothesis 
between X and Y , that is core(Beloo) contains joint probability distributions on 2X×Y with marginals P X and P p

Y ∈ PY , 
obtained using copulas (see [29]) different from the independence copula.

3.3. Properties of inner and X-preserving outer D S-approximations

Both Beli and Beloo allow the following decomposition of the corresponding Choquet expectation that is analogous to 
Proposition 2.

Proposition 3. For every f :X →R and g :X ×Y →R we have:

(i) CBeli [ f (X) + g(X, Y )] =EP X [ f (X)] +CBeli [g(X, Y )];
(ii) CBeloo [ f (X) + g(X, Y )] =EP X [ f (X)] +CBeloo [g(X, Y )];

where EP X denotes the expectation with respect to the marginal P X .

Proof. We only prove (i) since the proof of (ii) is analogous. Every P ∈ core(Beli) is such that P |2̃X coincides with the 
marginal distribution of X , therefore

CBeli [ f (X) + g(X, Y )] = min
P∈core(Beli)

EP [ f (X) + g(X, Y )]( )
= min
P∈core(Beli)

EP X [ f (X)] +EP [g(X, Y )]

8
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= EP X [ f (X)] + min
P∈core(Beli)

EP [g(X, Y )]
= EP X [ f (X)] +CBeli [g(X, Y )]. �

As recalled in Section 2, for representing a Choquet expectation as a lower expectation with respect to the core, 
2-monotonicity is sufficient. Therefore, an interesting problem is to look for a D2-optimal inner [X-preserving outer] 
approximation in the space of 2-monotone lower probabilities on 2X×Y , namely a D2-optimal inner [X-preserving outer] 
2M-approximation of P , denoted as Q i [Q oo]. Notice that the problem is well-posed since inner [X-preserving outer] 
DS-approximations are particular inner [X-preserving outer] 2M-approximations. The following theorem proves that ev-
ery inner [X-preserving outer] 2M-approximation is an inner [X-preserving outer] DS-approximation, therefore Q i = Beli

[Q oo = Beloo]. In turn, this implies that working in the framework of belief functions is not a real restriction in this partic-
ular problem.

Theorem 2. The following statements hold:

(i) every inner 2M-approximation of P is an inner DS-approximation of P .
(ii) every X-preserving outer 2M-approximation of P is an X-preserving outer DS-approximation of P .

Proof. Define the set

V = 2X×Y \ ({{(x, y)} : (x, y) ∈ X ×Y} ∪ {{x} ×Y : x ∈ X } ∪ {∅}) .

Statement (i). Let Q be an inner 2M-approximation of P with Möbius inverse m. By equations (1) and (2), since Q |2̃X

coincides with P X and P ({(x, y)}) = P X (x)P Y (y), for all (x, y) ∈X ×Y , we get that:

• m(∅) = 0;
• P X (x)P Y (y) ≤ m({(x, y)}) ≤ P X (x), for all (x, y) ∈X ×Y ;
• m({x} ×Y) = P X (x) − ∑

y∈Y
m({(x, y)}) ≥ 0, for all x ∈X ;

• ∑
(x,y)∈X×Y

m({(x, y)}) + ∑
x∈X

m({x} ×Y) = ∑
x∈X

P X (x) = 1;

• ∑
B∈V

m(B) = 0.

We show that m(B) = 0, for all B ∈ V . The set V can be partitioned, generally not in a unique way, in a finite number of 
disjoint sets V1, . . . , Vk , where each Vh contains a maximal element Ah ∈ 2X×Y and a minimal element {(xi, yi′ ), (x j, y j′ )} ∈
2X×Y , (xi, yi′ ) �= (x j, y j′ ), such that

Vh = {B ∈ V : {(xi, yi′), (x j, y j′)} ⊆ B ⊆ Ah}. (8)

By equation (2), for h = 1, . . . , k, it holds that∑
B∈Vh

m(B) ≥ 0,

and since

∑
B∈V

m(B) =
k∑

h=1

∑
B∈Vh

m(B) = 0,

we get that, for h = 1, . . . , k, it holds that∑
B∈Vh

m(B) = 0.

Finally, varying all the possible partitions of V in sets of the type (8) we derive that m(B) = 0, for all B ∈ V . Hence, since m
ranges in [0, 1], we have that Q is a belief function, therefore it is an inner DS-approximation of P .

Statement (ii). Let Q be an X-preserving outer 2M-approximation of P with Möbius inverse m. By equations (1) and (2), 
since Q |2̃X coincides with P X and P ({(x, y)}) = P X (x)P Y (y), for all (x, y) ∈X ×Y , we get that:

• m(∅) = 0;

• 0 ≤ m({(x, y)}) ≤ P X (x)P Y (y), for all (x, y) ∈X ×Y ;

9
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• m({x} ×Y) = P X (x) − ∑
y∈Y

m({(x, y)}) ≥ 0, for all x ∈X ;

• ∑
(x,y)∈X×Y

m({(x, y)}) + ∑
x∈X

m({x} ×Y) = ∑
x∈X

P X (x) = 1;

• ∑
B∈V

m(B) = 0.

Proceeding as in the proof of statement (i), we show that m(B) = 0, for all B ∈ V . Hence, since m ranges in [0, 1], we 
have that Q is a belief function, therefore it is an X-preserving outer DS-approximation of P . �
4. Ambiguous randomized reinsurance stop-loss treaties

Referring to X, Y of Section 3, here the variable X denotes the (non-negative) aggregate loss of an insurer over one 
year, while Y (indicating reinsurance) is an ambiguous Bernoulli random variable independent of X , under the marginal 
probability distribution P X and any marginal probability distribution in PY . In this setting, we assume that x1 = minX = 0, 
that stands for a null aggregate loss, moreover, we suppose P X (x) > 0, for all x ∈X , and denote again P Y = minPY .

We further denote by F X the cumulative distribution function of X induced by P X , defined, for every x ≥ 0, as

F X (x) =
∑
x j≤x

P X (x j).

In what follows, we refer to the set P of joint distributions of (X, Y ) given by (5) and let P = minP .
Following [2], we consider a reinsurance contract in which the retained loss of the insurer is singled out by the random 

variable

r(X, Y ,d) =
{

min(X,d) if Y = 1,
X if Y = 0,

(9)

where d ≥ 0 denotes the retention in a stop-loss treaty. For every P p ∈P

EP p2 [r(X, Y ,d)] ≤ EP p [r(X, Y ,d)] ≤EP p1 [r(X, Y ,d)].
Let π(X) and πR(d) be, respectively, the total premium the insurer receives from the policyholders for the aggregate loss 

X and the premium required from the reinsurer for a randomized stop-loss treaty with retention level d. By adopting the 
expected value principle (see [1]) with safety loading θ > 0, and assuming a pessimistic attitude towards ambiguity, by virtue 
of Proposition 2, we set

πR(d) = (1 + θ)EP [X − r(X, Y ,d)]
= (1 + θ)

(
EP X [X] +EP [−r(X, Y ,d)]) . (10)

We introduce an ambiguous version of value-at-risk (see, e.g., [19]) as risk measure associated with r(X, Y , d), defined, 
for α ∈ (0, 1), as

VaRα(r(X, Y ,d)) := inf{x : F r(X,Y ,d)(x) ≥ α}, (11)

where F r(X,Y ,d)(x) := P (r(X, Y , d) ≤ x) is the lower cumulative distribution function of r(X, Y , d) under P . This particular 
choice for the solvency risk measure ρ(r(X, Y , d)) is in line with [2] and deals with ambiguity in a cautious way, since it 
refers to a lower cumulative distribution function.

The insurer’s annual profit under reinsurance is

Z(X, Y ,d) = π(X) − πR(d)

1 − rcoc
− r(X, Y ,d) − rcoc

1 − rcoc
VaRα(r(X, Y ,d)), (12)

where rcoc denotes the cost of capital rate. Due to the translation invariance of the lower expectation operator, we get that

EP [Z(X, Y ,d)] = π(X) − πR(d)

1 − rcoc
+EP [−r(X, Y ,d)]

− rcoc

1 − rcoc
VaRα(r(X, Y ,d)). (13)

Under this pessimistic attitude towards ambiguity, the issue is to maximize EP [Z(X, Y , d)] seen as a function of d.

Remark 1. The lower cumulative distribution function F r(X,Y ,d)(x) can be associated with an upper cumulative distribution 

function, defined as F r(X,Y ,d)(x) := 1 − P (r(X, Y , d) > x). It is easily seen that F r(X,Y ,d)(x) ≤ F r(X,Y ,d)(x), thus the pair of 

10
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functions (F r(X,Y ,d), F r(X,Y ,d)) gives rise to a p-box [17,36]. Referring to the upper expectation functional EP induced by P
and to the upper cumulative distribution function F r(X,Y ,d)(x), an optimistic formulation of the optimization problem can 
be provided by suitably changing equations (10), (11), (12) and (13), and replacing the maximin criterion with the maximax 
criterion. What is important to notice is that, in doing so, the modified insurer’s annual profit under reinsurance in (12)
becomes a different random variable, due to the modification of (10) and (11). Thus, the optimistic version of (13) under 
EP is actually a distinct optimization problem (duality does not hold, in general).

Example 5. Take X ranging in X = {0, 100, 1000} with probability distribution such that P X (0) = 9
10 , P X (100) =

6
100 , P X (1000) = 4

100 , and let Y be an ambiguous Bernoulli random variable with probability distribution such that 
P p

Y (1) = p, P p
Y (0) = 1 − p and p ∈

[
8

10 , 9
10

]
. Let P be defined as in (5) and P = minP pointwise on 2X×Y . Take α = 0.99, 

θ = 0.1, rcoc = 0.07, π(X) = (1 + 0.1)EP X [X] = 50.6. Let r(X, Y , d) be defined as in (9):

EP [−r(X, Y ,d)] =

⎧⎪⎨⎪⎩
−0.08d − 9.2 if 0 ≤ d < 100,

−0.032d − 14 if 100 ≤ d < 1000,

−46 if d ≥ 1000,

therefore, we get

πR(d) =

⎧⎪⎨⎪⎩
−0.088d + 40.48 if 0 ≤ d < 100,

−0.0352d + 35.2 if 100 ≤ d < 1000,

0 if d ≥ 1000.

Moreover, F r(X,Y ,d)(x) has the following definitions, according to the value of d

d = 0

F r(X,Y ,d)(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < 0,
0.98 if 0 ≤ x < 100,
0.992 if 100 ≤ x < 1000,
1 if x ≥ 1000,

0 < d < 100

F r(X,Y ,d)(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x < 0,
0.9 if 0 ≤ x < d,
0.98 if d ≤ x < 100,
0.992 if 100 ≤ x < 1000,
1 if x ≥ 1000,

d = 100

F r(X,Y ,d)(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < 0,
0.9 if 0 ≤ x < 100,
0.992 if 100 ≤ x < 100,
1 if x ≥ 1000,

100 < d < 1000

F r(X,Y ,d)(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x < 0,
0.9 if 0 ≤ x < 100,
0.96 if 100 ≤ x < d,
0.992 if d ≤ x < 1000,
1 if x ≥ 1000,

d ≥ 1000

F r(X,Y ,d)(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < 0,
0.9 if 0 ≤ x < 100,
0.96 if 100 ≤ x < 1000,
1 if x ≥ 1000.

Fig. 1 shows the graph of F r(X,Y ,d)(x) for different values of d.
Referring to the different definitions of F r(X,Y ,d)(x), according to the value of d, we have that

VaRα(r(X, Y ,d)) =
⎧⎨⎩ 100 if 0 ≤ d < 100,

d if 100 ≤ d < 1000,
1000 if d ≥ 1000.

Thus we get that

EP [Z(X, Y ,d)] =

⎧⎪⎪⎨⎪⎪⎩
(

0.088
0.93 − 0.08

)
d +

(
3.12
0.93 − 9.2

)
if 0 ≤ d < 100,(

− 0.0348
0.93 − 0.032

)
d +

(
15.4
0.93 − 14

)
if 100 ≤ d < 1000,

− 19.4
0.93 − 46 if d ≥ 1000.

It is immediate to verify that EP [Z(X, Y , d)], seen as a function of d, has a global maximum at d∗ = 100.
In the precise case, that is taking p1 = p2 = p, the optimal retention level d∗ is 100 for p ∈ [0.8, 0.9) and 0 for p = 0.9. 
Thus, the optimal retention level in the imprecise case is greater than or equal to that in the precise case.

11
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Fig. 1. Graph of F r(X,Y ,d)(x): d = 0 in blue; 0 < d < 100 in red; d = 100 in green; 100 < d < 1000 in orange; d ≥ 1000 in magenta. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Despite using P and the associated lower expectation functional EP , we can consider the D2-optimal X-preserving 
outer DS-approximation Beloo of P together with the corresponding Choquet expectation functional CBeloo . The use of Beloo

and CBeloo in place of P and EP , is motivated by the good computational properties of the Choquet expectation recalled 
in Section 2.

By virtue of Proposition 3 the premium is

πoo
R (d) = (1 + θ)CBeloo [X − r(X, Y ,d)]

= (1 + θ)
(
EP X [X] +CBeloo [−r(X, Y ,d)]) , (14)

and the risk measure becomes

VaRoo
α (r(X, Y ,d)) := inf{x : F oo

r(X,Y ,d)(x) ≥ α}, (15)

where F oo
r(X,Y ,d)

(x) := Beloo(r(X, Y , d) ≤ x). The choice of this ambiguous version of value-at-risk, computed with respect to 
the lower cumulative distribution function F oo

r(X,Y ,d)
(x), serves to favor a comparison with the original model that refers 

to P .
The insurer’s annual profit under reinsurance is then changed in

Zoo(X, Y ,d) = π(X) − πoo
R (d)

1 − rcoc
− r(X, Y ,d) − rcoc

1 − rcoc
VaRoo

α (r(X, Y ,d)),

thus we get

CBeloo [Zoo(X, Y ,d)] = π(X) − πoo
R (d)

1 − rcoc
+CBeloo [−r(X, Y ,d)]

− rcoc

1 − rcoc
VaRoo

α (r(X, Y ,d)). (16)

The issue is to maximize CBeloo [Zoo(X, Y , d)] seen as a function of d. Analogously, we define π i
R (d), VaRi

α and Z i(X, Y , d)

when we use Beli and CBeli .
The following theorem shows that CBeloo [−r(X, Y , d)] actually coincides with EP [−r(X, Y , d)].

Theorem 3. Let X = {x1, . . . , xt}, d ≥ 0 and denote by k(d) the maximum index in {1, . . . , t} such that xk(d) ≤ d. The following 
statement holds:

CBeloo [−r(X, Y ,d)] = EP [−r(X, Y ,d)]
= −EP X [X] +

∑
j>k(d)

(x j − d)P X (x j)P Y (1),
= −EP X [X] + (1 − F X (xk(d)))EP X [X − d|X > xk(d)]P Y (1),

12
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where, in the last two equalities, the second term of the sum vanishes if k(d) = t.

Proof. Let moo be the Möbius inverse of Beloo . By Theorem 1, we have that

CBeloo [−r(X, Y ,d)] = −
k(d)∑
j=1

x j P X (x j) −
∑

j>k(d)

d · moo({(x j,1)})

−
∑

j>k(d)

x j(m
oo({(x j,0)}) + moo({x j} ×Y))

= −EP X [X] +
∑

j>k(d)

(x j − d)moo({(x j,1)})

= −EP X [X] +
∑

j>k(d)

(x j − d)P X (x j)P Y (1).

On the other hand, it holds that

EP [−r(X, Y ,d)] = min
i=1,2

⎧⎨⎩−
k(d)∑
j=1

x j P X (x j) −
∑

j>k(d)

d · P X (x j) · P pi
Y (1)

−
∑

j>k(d)

x j · P X (x j) · P pi
Y (1)

⎫⎬⎭
= −EP X [X] + min

i=1,2

⎧⎨⎩ ∑
j>k(d)

(x j − d) · P X (x j) · P pi
Y (1)

⎫⎬⎭
= −EP X [X] +

∑
j>k(d)

(x j − d)P X (x j)P Y (1),

therefore, the statement follows since 
∑

j>k(d)

(x j − d)P X (x j)P Y (1) can be written as

(1 − F X (xk(d)))EP X [X − d|X > xk(d)]P Y (1). �
The following theorem shows that also F oo

r(X,Y ,d)
(x) and F r(X,Y ,d)(x) coincide, i.e., the outer approximation on the left 

tails coincides with the original lower probability.

Theorem 4. The following statement holds:

F oo
r(X,Y ,d)(x) = F r(X,Y ,d)(x)

=

⎧⎪⎨⎪⎩
∑

x j≤x
P X (x j) if 0 ≤ x < d,∑

x j≤x
P X (x j) + ∑

x j>x
P X (x j)P Y (1) if x ≥ d,

=
{

F X (x) if 0 ≤ x < d,

F X (x) + (1 − F X (x))P Y (1) if x ≥ d,

where, in the last two equalities, the first branch vanishes if d = 0.

Proof. For 0 ≤ x < d, it holds that

{r(X, Y ,d) ≤ x} =
⋃

x j≤x

({x j} ×Y),

therefore, since both Beloo and P preserve the marginal on X , we get

Beloo(r(X, Y ,d) ≤ x) = P (r(X, Y ,d) ≤ x) =
∑

P X (x j) = F X (x).

x j≤x

13
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For x > d, it holds that

{r(X, Y ,d) ≤ x} =
⋃

x j≤x

({x j} ×Y) ∪
⋃

x j>x

({x j} × {1}).

Let moo be the Möbius inverse of Beloo . By Theorem 1 we get that

Beloo(r(X, Y ,d) ≤ x) =
∑
x j≤x

P X (x j) +
∑
x j>x

moo({x j} × {1})

=
∑
x j≤x

P X (x j) +
∑
x j>x

P X (x j)P Y (1)

= F X (x) + (1 − F X (x))P Y (1).

On the other hand, it holds that

P (r(X, Y ,d) ≤ x) =
∑
x j≤x

P X (x j) + min
i=1,2

⎧⎨⎩∑
x j>x

P X (x j)P pi
Y (1)

⎫⎬⎭
=
∑
x j≤x

P X (x j) +
∑
x j>x

P X (x j)P Y (1)

= F X (x) + (1 − F X (x))P Y (1),

therefore, the statement follows. �
Remark 2. In analogy to Remark 1, the lower cumulative distribution function F oo

r(X,Y ,d)
(x) can be associated with an upper 

cumulative distribution function, defined as F
oo
r(X,Y ,d)(x) := 1 − Beloo(r(X, Y , d) > x). Proceeding as in the proof of Theorem 4, 

it is easy to prove that

F
oo
r(X,Y ,d)(x) = F r(X,Y ,d)(x) =

{
1 − F X (x) if 0 ≤ x < d,

1 − (1 − F X (x))P Y (0) if x ≥ d,

where the first branch vanishes if d = 0. Hence, we get that the p-boxes (F r(X,Y ,d), F r(X,Y ,d)) and (F oo
r(X,Y ,d)

, F oo
r(X,Y ,d)) coin-

cide though P and Beloo are different.

The following proposition shows that F oo
r(X,Y ,d)

(x) can be formally regarded as a cumulative distribution function.

Proposition 4. The function F oo
r(X,Y ,d)

(x) satisfies the following properties:

(i) it is non-decreasing;
(ii) it is right-continuous;

(iii) it is piece-wise constant;
(iv) lim

x→+∞ F oo
r(X,Y ,d)

(x) = 1.

Proof. The proof is an immediate consequence of Theorem 4 and the properties of F X . �
We finally derive the following corollary, stating that the optimal retention level selection problems under P and Beloo

coincide.

Corollary 1. The following statements hold:

(i) VaRoo
α (r(X, Y , d)) = VaRα(r(X, Y , d));

(ii) CBeloo [Zoo(X, Y , d)] =EP [Z(X, Y , d)].

Proof. Theorems 3 and 4 imply (i) and, so, Zoo(X, Y , d) = Z(X, Y , d). Hence, by (13) and (16) we immediately derive the 

validity of (ii). �
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The following example shows that the random variables Z i(X, Y , d) and Zoo(X, Y , d) = Z(X, Y , d) are generally different, 
thus CBeli [Z i(X, Y , d)] and CBeloo [Zoo(X, Y , d)] = EP [Z(X, Y , d)] lead to two different optimization problems. In particu-
lar, since no containment relation holds between core(Beli) and P , in general, no dominance relation can be established 
between CBeli [Z i(X, Y , d)] and CBeloo [Zoo(X, Y , d)] =EP [Z(X, Y , d)]: this makes Beli unsuitable in our reinsurance appli-
cation.

Example 6. Let X , Y , P , α, θ , rcoc , π(X) as in Example 5. Denote

X ×Y = {(0,1)︸ ︷︷ ︸
=a1

, (0,0)︸ ︷︷ ︸
=a2

, (100,1)︸ ︷︷ ︸
=a3

, (100,0)︸ ︷︷ ︸
=a4

, (1000,1)︸ ︷︷ ︸
=a5

, (1000,0)︸ ︷︷ ︸
=a6

},

and let Ai1···ik = {ai1 , . . . , aik }.
The D2-optimal X-preserving outer DS-approximation Beloo of P has Möbius inverse moo such that

moo(A1) = 720
1000 , moo(A2) = 90

1000 , moo(A12) = 90
1000 ,

moo(A3) = 48
1000 , moo(A4) = 6

1000 , moo(A34) = 6
1000 ,

moo(A5) = 32
1000 , moo(A6) = 4

1000 , moo(A56) = 4
1000 ,

and zero elsewhere. Moreover, by Corollary 1 and Example 5 it follows that d∗ = 100 is the optimal retention level.
We point out that switching to the D2-optimal inner DS-approximation of P leads, in general, to a different optimization 

problem. Indeed, the D2-optimal inner DS-approximation Beli of P has Möbius inverse mi such that

mi(A1) = 725
1000 , mi(A2) = 95

1000 , mi(A12) = 80
1000 ,

mi(A3) = 51
1000 , mi(A4) = 9

1000 ,

mi(A5) = 34
1000 , mi(A6) = 6

1000 ,

and zero elsewhere. A straightforward computation shows that

CBeli [−r(X, Y ,d)] =

⎧⎪⎨⎪⎩
−0.085d − 6.9 if 0 ≤ d < 100,

−0.034d − 12 if 100 ≤ d < 1000,

−46 if d ≥ 1000,

therefore, we get

π i
R(d) =

⎧⎪⎨⎪⎩
−0.0935d + 43.01 if 0 ≤ d < 100,

−0.0374d + 37.4 if 100 ≤ d < 1000,

0 if d ≥ 1000.

Moreover, F i
r(X,Y ,d)

(x) has the following definitions, according to the value of d

d = 0

F i
r(X,Y ,d)

(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < 0,
0.985 if 0 ≤ x < 100,
0.994 if 100 ≤ x < 1000,
1 if x ≥ 1000,

0 < d < 100

F i
r(X,Y ,d)

(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x < 0,
0.9 if 0 ≤ x < d,
0.985 if d ≤ x < 100,
0.994 if 100 ≤ x < 1000,
1 if x ≥ 1000,

d = 100

F i
r(X,Y ,d)

(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < 0,
0.9 if 0 ≤ x < 100,
0.994 if 100 ≤ x < 100,
1 if x ≥ 1000,

100 < d < 1000

F i
r(X,Y ,d)

(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x < 0,
0.9 if 0 ≤ x < 100,
0.96 if 100 ≤ x < d,
0.994 if d ≤ x < 1000,
1 if x ≥ 1000,

d ≥ 1000

F i
r(X,Y ,d)

(x) =

⎧⎪⎪⎨⎪⎪
0 if x < 0,
0.9 if 0 ≤ x < 100,
0.96 if 100 ≤ x < 1000,
⎩ 1 if x ≥ 1000.
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Fig. 2. Graph of F i
r(X,Y ,d)

(x): d = 0 in blue; 0 < d < 100 in red; d = 100 in green; 100 < d < 1000 in orange; d ≥ 1000 in magenta.

Fig. 2 shows the graph of F i
r(X,Y ,d)

(x) for different values of d.

Though the definitions of F i
r(X,Y ,d)

(x) differ from F oo
r(X,Y ,d)

(x), it holds that VaRi
α(r(X, Y , d)) = VaRoo

α (r(X, Y , d)) =
VaRα(r(X, Y , d)), thus we get that

CBeli [Z i(X, Y ,d)] =

⎧⎪⎪⎨⎪⎪⎩
(

0.0935
0.93 − 0.085

)
d +

(
0.59
0.93 − 6.9

)
if 0 ≤ d < 100,(

− 0.0326
0.93 − 0.034

)
d +

(
13.2
0.93 − 12

)
if 100 ≤ d < 1000,

− 19.4
0.93 − 46 if d ≥ 1000.

From Fig. 3 it is easily seen that both CBeloo [Zoo(X, Y , d)] =EP [Z(X, Y , d)] and CBeli [Z i(X, Y , d)] have a global maximum 
at d∗ = 100.

Nevertheless, the maximum Choquet expected profits computed with respect to Beloo and Beli differ, as CBeloo [Zoo(X, Y ,

d∗)] =EP [Z(X, Y , d∗)] ≈ −4.38 and CBeli [Z i(X, Y , d∗)] ≈ −4.71.

5. Characterization of the optimal retention level d∗

The absence of containment relationships between P and core(Beli) impairs the use of Beli in our reinsurance applica-
tion, hence, we will focus on Beloo only. In this section we present the study of the optimization problem

max
d≥0

CBeloo [Zoo(X, Y ,d)], (17)

where CBeloo [Zoo(X, Y , d)] is defined as in (16).
First of all, we have to determine the expression of VaRoo

α (r(X, Y , d)) that, according to (15), can be computed through 
the generalized inverse (see [16]) of F oo

r(X,Y ,d)
(x), that is

VaRoo
α (r(X, Y ,d)) = (F oo

r(X,Y ,d))
−1(α).

Since F oo
r(X,Y ,d)

(x) is non-decreasing, right-continuous and piece-wise constant by Proposition 4, its generalized inverse 
(F oo

r(X,Y ,d)
)−1(α) is non-decreasing, left-continuous and piece-wise constant, and ranges in X for α ∈ (0, 1).

We first notice that for 0 < α ≤ F X (0), then VaRoo
α (r(X, Y , d)) = 0, thus we can limit to consider α ∈ (F X (0), 1). The 

following proposition expresses VaRoo
α (r(X, Y , d)) as a function of d ≥ 0, for a fixed value of α.

Proposition 5. For α ∈ (F X (0), 1), the following statements hold:

(i) if P Y (1) = 0, then
VaRoo
α (r(X, Y ,d)) = F −1

X (α);
16
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Fig. 3. Graph of CBeloo [Zoo(X, Y ,d)] =EP [Z(X, Y ,d)] and CBeli [Z i(X, Y ,d)] as functions of d (upper plot for d ∈ [0,1100], lower plot for d ∈ [0,300]).

(ii) if 0 < P Y (1) < α, then

VaRoo
α (r(X, Y ,d)) =

⎧⎪⎪⎨⎪⎪⎩
F −1

X

(
α−P Y (1)

1−P Y (1)

)
if 0 ≤ d < F −1

X

(
α−P Y (1)

1−P Y (1)

)
,

d if F −1
X

(
α−P Y (1)

1−P Y (1)

)
≤ d < F −1

X (α),

F −1
X (α) if d ≥ F −1

X (α);
(iii) if α ≤ P Y (1) ≤ 1, then

VaRoo
α (r(X, Y ,d)) =

{
d if 0 ≤ d < F −1

X (α),

F −1
X (α) if d ≥ F −1

X (α),

where F −1
X (·) denotes the generalized inverse of F X(·).

Proof. We first determine (F oo
r(X,Y ,d)

(x))−1(α) as a function of α. Set

G(x) := F X (x) + (1 − F X (x))P Y (1).
17
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Since for x ≥ d it holds that

G(x) ≥ α ⇐⇒ F X (x)(1 − P Y (1)) ≥ α − P Y (1) ⇐⇒ F X (x) ≥ α − P Y (1)

(1 − P Y (1))

we obtain

(F oo
r(X,Y ,d)(x))−1(α) =

⎧⎪⎪⎨⎪⎪⎩
G−1(α) if α ∈ [G(d),1),

d if α ∈ [F X (d), G(d)),

F −1
X (α) if α ∈ (F X (0), F X (d)),

=

⎧⎪⎪⎨⎪⎪⎩
F −1

X

(
α−P Y (1)

1−P Y (1)

)
if α ∈ [G(d),1),

d if α ∈ [F X (d), G(d)),

F −1
X (α) if α ∈ (F X (0), F X (d)).

Next we express VaRoo
α (r(X, Y , d)) = (F oo

r(X,Y ,d)
(x))−1(α) as a function of d, taking α ∈ (F X (0), 1) as a fixed constant.

We first notice that if P Y (1) = 0, then F oo
r(X,Y ,d)

≡ F X , therefore statement (i) follows.

Hence, suppose P Y (1) ∈ (0, 1]. In this case, considering the above expression of (F oo
r(X,Y ,d)

(x))−1(α), we have that

0 <
α − P Y (1)

1 − P Y (1)
< 1 ⇐⇒ P Y (1) < α,

and also

α > G(d) ⇐⇒ d ≤ F −1
X

(
α − P Y (1)

1 − P Y (1)

)
,

and hence statements (ii) and (iii) follow. �
Now, we are ready to characterize the optimal retention level d∗ . Taking into account equations (14), (16) and Theorem 3, 

for d < xt , we derive that

CBeloo [Zoo(X, Y ,d)] = π(X)
1−rcoc

−EP X [X]
− rcoc

1−rcoc

[
η(1 − F X (xk(d)))EP X [X − d|X > xk(d)] + VaRoo

α (r(X, Y ,d))
]
,

(18)

where

η :=
(

1 + θ

rcoc

)
P Y (1),

and xk(d) is defined as in Theorem 3. Note that η vanishes if and only if P Y (1) = 0.
Hence, defining

g(d) := η(1 − F X (xk(d)))EP X [X − d|X > xk(d)] + VaRoo
α (r(X, Y ,d)), (19)

we get that the optimization problem (17) is equivalent to

min
d≥0

g(d). (20)

Let us notice that, for d ≥ xt we have that r(X, Y , d) ≡ X , which implies that g(d) = F −1
X (α). Thus, the optimization 

problem (20) can actually be solved for 0 ≤ d ≤ xt , and an optimal retention level d∗ = xt can be interpreted as if no 
reinsurance takes place. In particular, g(d) is easily seen to be a piece-wise linear continuous function on the compact set 
[0, xt], which always admits a global minimum by Weierstrass theorem.

We know that, for 0 < α ≤ F X (0), we have that VaRoo
α (r(X, Y , d)) = 0, and this implies that g(d) is minimized for d∗ = xt . 

Therefore, in what follows we assume that α ∈ (F X (0), 1).

Theorem 5. Let d∗ be the retention level maximizing CBeloo [Zoo(X, Y , d)], defined as in equation (18). For α ∈ (F X (0), 1), let k and k
be the indexes in {1, . . . , t} such that xk = F −1

X

(
α−P Y (1)

1−P Y (1)

)
if P Y (1) < 1 and k = 1 otherwise, while xk = F −1

X (α). Then, the following 
statements hold:
(i) if P Y (1) = 0, then d∗ = xt ;

18
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(ii) if P Y (1) > 0, then
(a) xk = xk or η−1 < 1 − F X (xk−1) implies d∗ = xt ;

(b) η−1 ≥ 1 − F X (xk−1) implies

d∗ =
{

xi∗ if g(xi∗) ≤ xk,

xt otherwise;
with i∗ = min{i ∈ {k, . . . , k − 1} : η−1 ≥ 1 − F X (xi)} and g(d) is defined as in equation (19).

Proof. We minimize g(d) over 0 ≤ d ≤ xt . We first notice that if P Y (1) = 0, then from equation (19) and statement (i) of 
Proposition 5 we get that

g(d) = VaRoo
α (r(X, Y ,d)) = F −1

X (α),

therefore statement (i) follows. Hence, suppose P Y (1) ∈ (0, 1].
Statement (ii). First assume 0 < P Y (1) < α. We have that

g(d) =
{

η(1 − F X (xi))EP X [X − d|X > xi] if d ∈ [xi, xi+1), i = 1, . . . , t − 1,

0 if d = xt ,

+

⎧⎪⎨⎪⎩
xk if 0 ≤ d < xk,

d if xk ≤ d < xk,

xk if xk ≤ d ≤ xt .

If k = k, then g(d) is always decreasing, so d∗ = xt . Thus, suppose k < k. In this case, we have that

g′(d) =
{−η(1 − F X (xi)) + 1 if d ∈ (xi, xi+1), i ∈ {k, . . . ,k − 1},

−η(1 − F X (xi)) if d ∈ (xi, xi+1), i ∈ {1, . . . , t − 1} \ {k, . . . ,k − 1},
so, g(d) can be increasing only for d ∈ (xi, xi+1), i ∈ {k, . . . , k − 1}. If η−1 < 1 − F X (xk−1) then g(d) is always decreasing, 
so d∗ = xt . Thus, suppose there is at least an index i such that η−1 ≥ 1 − F X (xi) and let i∗ be the minimum index in 
{k, . . . , k − 1} with η−1 ≥ 1 − F X (xi∗ ). Notice that, for i = i∗ + 1, . . . , k − 1, it holds that

−η(1 − F X (xi∗)) + 1 < η(1 − F X (xi)) + 1,

thus d∗ = xi∗ if g(xi∗ ) ≤ xk and d∗ = xt otherwise. Hence, conditions (a) and (b) follow.
Now assume α ≤ P Y (1) ≤ 1. We have that

g(d) =
{

η(1 − F X (xi))EP X [X − d|X > xi] if d ∈ [xi, xi+1), i = 1, . . . , t − 1,

0 if d = xt ,

+
{

d if 0 ≤ d ≤ xk,

xk if xk ≤ d ≤ xt .

Analogously to the previous step, we have that

g′(d) =
{−η(1 − F X (xi)) + 1 if d ∈ (xi, xi+1), i ∈ {1, . . . ,k − 1},

−η(1 − F X (xi)) if d ∈ (xi, xi+1), i ∈ {1, . . . , t − 1} \ {1, . . . ,k − 1},
so, g(d) can be increasing only for d ∈ (xi, xi+1), i ∈ {1, . . . , k − 1}. If η−1 < 1 − F X (xk−1) then g(d) is always decreasing, 
so d∗ = xt . Thus, suppose there is at least an index i such that η−1 ≥ 1 − F X (xi) and let i∗ be the minimum index in 
{1, . . . , k − 1} with η−1 ≥ 1 − F X (xi∗ ). Notice that, for i = i∗ + 1, . . . , k − 1, it holds that

−η(1 − F X (xi∗)) + 1 < −η(1 − F X (xi)) + 1,

thus d∗ = xi∗ if g(xi∗ ) ≤ xk and d∗ = xt otherwise. Again conditions (a) and (b) follow. �

The following example shows an application of previous theorem.
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Fig. 4. Graph of function g(d) for α = 0.95, θ = 0.1, rcoc = 0.07.

Fig. 5. Graph of function g(d) for α = 0.95, θ = 0.4, rcoc = 0.07.

Example 7. Consider X with range X = {0, 500, 1000, 1500, 2000} and take the probability distributions such that P X (0) =
P X (2000) = 5

100 , P X (500) = P X (1500) = 20
100 , P X (1000) = 50

100 , and P p
Y (1) = p, P p

Y (0) = 1 − p, with p ∈
[

8
10 , 9

10

]
, therefore 

P Y (1) = 8
10 .

Taking the parameters α = 0.95, θ = 0.1, rcoc = 0.07, we have that η−1 = 0.5147, xk = 1000 and xk = 1500. Therefore, 
since η−1 ≥ 0.25 = 1 − F X (1000), we get that xi∗ = 1000, moreover, since g(xi∗ ) = 1291.4286 ≤ xk , we conclude that d∗ =
1000, in agreement with condition (ii.b) of Theorem 5. Fig. 4 shows the function g(d) and the optimal retention level d∗ .

On the other hand, if we take the parameters α = 0.95, θ = 0.4, rcoc = 0.07, we have that η−1 = 0.1862, xk = 1000 and 
xk = 1500. Therefore, since η−1 < 0.25 = 1 − F X (1000), we conclude that d∗ = 2000, in agreement with condition (ii.a) of 
Theorem 5. Fig. 5 shows the function g(d) and the optimal retention level d∗ .

Hence, in this example, we see that the optimal retention level is d∗ = 1000 when the safety loading is θ = 0.1, while it 
becomes d∗ = 2000 when θ increases to 0.4, indicating that no reinsurance takes place.

6. Conclusion

This paper introduces ambiguity in the randomized reinsurance stop-loss treaty formalized in [2], limiting to a discrete 

aggregate loss X . Following [2] we require independence between X and Y under P X and any element of PY . The indepen-
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dence assumption is easy to justify when Y is the indicator of an exogenous event, while the justification is weak when Y
is the indicator of a default event.

Given the set P of joint distributions of (X, Y ), we showed that switching to the D2-optimal X-preserving outer ap-
proximation Beloo of P = minP , allows us to relax the independence assumption on P and yet does not introduce spurious 
information in the retention level selection problem. In this concern, Theorem 4 and Corollary 1 are of particular relevance, 
since they show that the independence assumption in the original set P of joint distributions is not too strong as, relaxing 
it, we get the same optimization problem.

The use of Beloo in computing Choquet expectations and the ambiguous value-at-risk VaRoo
α (r(X, Y , d)) implement a 

pessimistic attitude towards ambiguity, that generally leads to a cautious estimate of the optimal retention level d∗ , in 
comparison to the precise case. As highlighted in Remarks 1 and 2, switching to upper expectations and upper cumulative 
distribution functions, an optimistic attitude can be modeled, though the duality with respect to the pessimistic case does 
not hold, in general.

We point out that core(Beloo) naturally leads to consider a coherent risk measure in the sense of [3], in place of the 
ambiguous value-at-risk. In turn, coherent risk measures have been thoroughly analyzed in the setting of imprecise proba-
bilities (see, e.g., [30,40]), so, their use in the present model seems to be an interesting line of future research.

The present model can be extended in two directions, which are meaningful from a reinsurance point of view: (i) by con-
sidering a random variable Y ranging in Y = {0, . . . , n}, endowed with a closed and convex set of probability distributions 
PY ; (ii) by taking a random variable X ranging in X = [0, +∞), endowed with a continuous probability distribution. In the 
case (i), Y expresses one of n + 1 reinsurance scenarios that determine the computation of the retained loss r(X, Y , d): an 
analog of Proposition 1 can be proved, so we still have a closed and convex set of joint probability distributions P , under 
independence of X and Y . In this case, the issue of computing an inner [X-preserving outer] DS-approximation is an open 
problem. On the other hand, the case (ii) can be faced by introducing suitable distortion models that give rise to belief 
functions and by relying on the framework of finitely additive probabilities, in the spirit of [23,24].

Still referring to finite-range X and Y , a more involved situation is met if both X and Y are endowed with closed and 
convex sets of probability distributions PX and PY , respectively. Indeed, even by referring to binary X and Y , it is easy to 
show that the set P of independent products generated by PX and PY may be not convex. In particular, this paves the way 
to the several definitions of independence arising in the context of imprecise probabilities [10,38,41].
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