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Abstract: Recycling of agro-industrial waste is one of the major issues addressed in recent years
aimed at obtaining products with high added value as a future alternative to traditional ones in the
per-spective of a bio-based and circular economy. One of the most produced wastes is rice husk and
it is particularly interesting because it is very rich in silica, a material with a high intrinsic value. In
the present study, a method to extract silica from rice husk ash (RHA) and to use it as a carrier for
the immobilization of laccase from Trametes versicolor was developed. The obtained mesoporous
nano-silica was characterized by X-ray diffraction (XRD), ATR-FTIR spectroscopy, Scanning Elec-tron
Microscopy (SEM), and Energy Dispersive X-ray spectroscopy (EDS). A nano-silica purity of about
100% was found. Nano-silica was then introduced in a cross-linked chitosan/alginate scaffold to
make it more easily recoverable after reuse. To favor laccase immobilization into the composite
scaffold, functionalization of the nano-silica with (γ-aminopropyl) triethoxysilane (APTES) was
performed. The APTES/RHA nano-silica/chitosan/alginate (ARCA) composite al-lowed to obtain
under mild conditions (pH 7, room temperature, 1.5 h reaction time) a robust and easily reusable
solid biocatalyst with 3.8 U/g of immobilized enzyme which maintained 50% of its activity after six
reuses. The biocatalytic system, tested for syringic acid bioremediation, was able to totally oxidize
the contaminant in 24 h.

Keywords: rice-husk ash; nano-silica; immobilized laccase; composite; APTES; syringic acid removal

1. Introduction

Enzymatic immobilization is currently a technique of great novelty and interest in the
scientific community since it can highly increase the economic convenience of a biotechno-
logical process by improving the pH and temperature stability of enzymes and permitting
biocatalyst recovery and reuse [1]. Several enzymes find extensive use in enzyme immobi-
lization, depending on the specific application, but the most commonly employed include
lipases and laccases [2]. To date, laccases have shown high potential in the degradation
of several organic pollutants [3–9], and their use is considered an eco-friendly approach
to protect the environment and an alternative method to existing technologies. For this
reason, the possibility of improving the performance of laccases through immobilization
is an extremely appealing area, and its investigation continues to be crucial for novel
biotechnological developments and industrial applications.

In recent years, many efforts have been made to diversify immobilization methods,
especially by developing new types of inexpensive and eco-friendly support that have the
characteristics necessary for good immobilization (high porosity and affinity to enzymes,
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presence of reactive functionality, recyclability, thermal stability or possibility to work
in organic solvents, etc.) [10]. For this purpose, research has focused on the use of bio-
compatible polymers, such as collagen, gelatin, chitin, hyaluronic acid, cellulose, dextran,
glycosaminoglycans, and many others [11], thanks to their easily modulable chemical-
physical properties and the possibility of modeling them in different shapes able to allow
a high interaction between the biocatalyst and the support (particles, membranes, nano-
fibers, hydrogels, scaffolds). Among these natural polymers, chitosan has gained significant
attention in the last two decades [12,13]. This interest derives from its ease of processing,
which allows obtaining porous structures simply and economically, and its biocompatibility,
biodegradability, and low immunogenicity. Most of these peculiar properties derive from
the presence of amino groups along the chitosan backbone, which also makes it suitable
for being derivatized for any application [14]. However, being a polysaccharide, chitosan
needs to be cross-linked with a plethora of different molecules [15–18] to allow dimensional
stability to be achieved in an aqueous environment, which is fundamental in the reusing
process of the solid biocatalyst. Among them alginate, a linear unbranched polymer con-
taining β-(1Õ4)-linked D-mannuronic acid and α-(1Õ4)-linked L-guluronic acid [19], is
one of the most used [20,21]. Anyway, even when cross-linked, natural polymers can be
prone to swelling and degradation, especially under harsh operating conditions, which
may lead to the loss of enzyme activity and reduced lifespan of the immobilized enzymes.
For this reason, an in-depth study of this type of support is still necessary, and careful
characterization, modification, and optimization are necessary to guarantee good stability
and a high surface area to ensure their successful application in enzyme immobilization.

One method to improve the features of natural polymeric supports can be the addition
of a filler such as silicon carbide, aluminum oxide, zinc oxide, graphite, zeolite, calcium
carbonate, and many others [22]. For enzyme immobilization, nano-silica seems to be
the ideal filler as it presents the advantages of having small pores, large specific surface
area, strong surface adsorption, and good dispersion [23]. However, the traditional silica
extraction methods are reported to be hazardous to the environment as they involve the
intensive use of chemicals, energy, and nonrenewable resources [24]. For this reason,
attempts have recently been made to find alternative feedstocks for its production [25]. In
this context, the exploitation of a lignocellulosic waste such as rice husk (RH) for nano-
silica synthesis holds significant importance because it brings many advantages, such as
the reduction in pollution and cost management related to the waste disposal and the
minimization of the environmental impact of silica extraction. RH disposal management is
a serious problem that needs to be addressed as about 150 million tons of this waste are
generated annually [26]. Furthermore, its uncontrolled incineration and disposal in open
fields or landfills may create both environmental and human health problems due to the
low density of the ashes (2.22 g/cm3) [27]. In addition, the use of RH for silica extraction
is a largely favorable process, as among the various lignocellulosic wastes, it is certainly
among those with the highest percentage of ash [28]. RH ash (RHA) is the byproduct of RH
incineration and is particularly rich in silica (up to 95%) [29]. From this waste is possible
obtaining three types of silica depending on the RH incineration temperature: amorphous
(T < 600 ◦C), crystalline (T > 800 ◦C), and semi-crystalline silica [30]. For this reason, RH
is a suitable candidate as feedstock of a certain industrial interest also considering the
advantage of its low cost. RHA is currently used in industries associated with ceramics,
electronics, catalysis, pharmaceutics, and other materials [31,32], but considering a circular
economy approach, the recovery and reuse of RHA requires continuous and in-depth
investigation of novel potential applications such as enzyme immobilization.

To sum up, the main aim of this study was to synthesize a robust, cheap, and biocom-
patible support suitable for the immobilization of laccase from Trametes versicolor based on
a natural polymeric composite reinforced with nano-silica derived from a recycled source.
In particular, a chitosan/alginate polyelectrolyte complex was cross-linked with CaCl2 to
obtain a macro-porous three-dimensional (3D) solid scaffold. RHA-derived nano-silica
was then introduced in the scaffold to improve its thermal and mechanical properties and
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functionalized with (γ-aminopropyl) triethoxysilane (APTES). The functionalization with
APTES was aimed at improving the immobilization efficiency by increasing ionic and
hydrogen interactions between the enzyme and support through the introduced amino
groups. The use of a 3D structure based on silica-reinforced polymers instead was aimed
at guaranteeing easier handling of the biocatalyst, larger active surfaces necessary for a
greater enzymatic load, as well as better stability of the solid biocatalyst under varying ex-
perimental conditions. Finally, to verify its possible use for wastewater treatment, the solid
biocatalyst was tested in the degradation of syringic acid, a chemical marker of biomass
combustion.

2. Materials and Methods
2.1. Materials

The rice husk used in this study was provided by Riseria Roncaia Romano snc, Man-
tova, Italy. Commercial silica (Nucleosil, 100 Å-5 micron) was purchased from Macherey-
Nagel (Düren, Germany). Laccase from Trametes versicolor with a nominal activity of
136 U/mg protein, 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonicacid) diammonium salt
(ABTS), chitosan (medium molecular weight, 75–85% deacetylated), sodium alginate (vis-
cosity 5–40 cps) and salts for buffer solutions were purchased from Sigma-Aldrich (Milan,
Italy). All the other chemicals including hydrochloric acid (HCl, 37%), NaOH, Na2CO3,
(γ-aminopropyl) triethoxysilane (APTES) were provided by Merck Life Science Private Ltd.
(Darmstadt, Germany).

2.2. Purification and Calcination of Rice Husk

Generally, RHA nano-silica includes several mineral impurities such as K, P, Fe, Mn,
Mg, Cu, Zn, Na, Al, Cl, and S. Therefore, it is necessary to remove these compounds
to obtain pure nano-silica [33,34]. RH was washed several times with distilled water to
remove possible impurities and dried at 60 ◦C for 3 h. Then, 10 g of dried RH was treated
with 1 M HCl at 75 ◦C for 1 h to remove metals, minerals, and pigments. Afterward, it was
washed with deionized water and dried at 60 ◦C for 3 h. Finally, the purified rice husk was
pyrolyzed in a muffle furnace at 550 ◦C for 5 h using a ramp rate of 15 ◦C/min to obtain
rice-husk ash (RHA).

2.3. Silica Extraction from Rice Husk Ash

Nano-silica extraction from RHA was carried out following the procedure reported
by Nayak and Datta [34]. Briefly, 5 g of RHA was treated with 30 mL of 0.5 M Na2CO3
in a water bath at 90 ◦C for 2 h under continuous stirring. Then, the sample was cooled
and neutralized with 1 M HCl (pH value was monitored with a Crison pHmeter) and left
to settle for 24 h at 4 ◦C. The chemical reaction of the nano-silica extraction is reported in
Figure 1.
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The sample was then washed with a suitable amount of water and centrifuged several
times at 5000 rpm for 15 min to recover the nano-silica extracted. The nano-silica was
finally dried at 80 ◦C for 3 h. The whole recovery procedure was carried out in triplicate to
calculate, using Equation (1), the recovery percentage of nano-silica from RHA.

Nano-silica recovery (%) =
mass of the obtained silica

RHA initial mass
× 100 (1)
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2.4. Chitosan/Alginate (CA) Scaffold Preparation

The scaffolds were synthesized by forming an electrolytic complex with the two
natural polymers, chitosan and alginate, cross-linked with CaCl2 to ensure the stability
of the structure in an aqueous medium and to improve the mechanical properties of the
3D scaffold. To prepare the chitosan/alginate (CA) scaffold, 0.6 g of chitosan and 1.2 g of
sodium alginate were dissolved in 20 mL of 1 M acetic acid (2% v/v) and 30 mL of 1 M
NaOH, respectively. The two solutions were mixed and maintained under continuous
stirring for 24 h to obtain an electrolytic complex of 3% chitosan and 4% alginate. The pH
of the chitosan/alginate solution was adjusted to 7.4 by adding 2 M acetic acid dropwise,
avoiding the dialysis step. The mixture was then frozen for 24 h and lyophilized. Afterward,
the tridimensional system (scaffold) was cross-linked with a 3% (w:v) CaCl2 solution
for 1 h. Subsequently, the scaffold was washed several times and then immersed for
20 min in deionized water to remove the unbound CaCl2. Finally, the sample was dried in
a freeze-dryer.

2.5. RHA Nano-Silica/Chitosan/Alginate (RCA) Scaffold Preparation

An interesting approach for the preparation of new materials is to combine polymers
with inorganic components to synthesize composite scaffolds. Following this current, RHA
nano-silica was introduced into the scaffold by imbibition method: 5 mL of silica suspension
(18 mg/mL) was inserted into a tube containing the CA scaffold (13 mm diameter × 12 mm
height) to completely cover the scaffold and to obtain an RHA nano-silica/scaffold ratio of
2:1 (w:w). The system was kept for 1 h at room temperature under gentle stirring to ensure
the silica diffusion into the pores of the scaffold. The scaffold was then rinsed several times
with a water/ethanol solution for 20 min to remove unbound silica. Finally, the composite
scaffold (RCA) was frozen and then lyophilized for 24 h.

The RHA nano-silica presence in the RCA scaffold was verified by comparing the
intensities of the IR bands around 1050 (Si–O–Si stretching) and 800 cm−1 (Si–O stretching)
of the imbibed scaffolds (1:1 and 2:1 nano-silica:scaffold ratios (w:w)) with those of the
CA scaffold.

2.6. Functionalization of RHA Nano-Silica/Chitosan/Alginate (RCA) Scaffold with APTES

The APTES is a reagent generally used to promote adhesion between silica-based
substrates and organic or metallic compounds in the development of advanced materi-
als [35–37]. To determine the optimal APTES amount needed for the subsequent enzyme
immobilization reaction, preliminary experiments were carried out on the filler alone
(RHA nano-silica) before its introduction into the scaffold. Different APTES:RHA nano-
silica ratios (1:2; 1:1; 2:1; 5:1, 10:1 (w:w)) were examined. The protocol is described as
follows: 40 mg of RHA nano-silica was added to 1 mL of ethanol containing from 0.084 to
0.42 mL of APTES to obtain the desired APTES:RHA nano-silica ratio. The reaction was
carried out under stirring for 3 h at room temperature. The resultant product was firstly
washed and centrifuged for 10 min at 4000 rpm with water and then ethanol to eliminate
the unbound APTES. Finally, the aminated RHA nano-silica (APTES/RHA nano-silica)
was dried at 70 ◦C for 3 h and then stored in a desiccator with silica as a dried agent.
ATR-FTIR and SEM-EDS analysis showed that the optimal ratio APTES:RHA-nano-silica
was 5:1 (w:w).

Once the preliminary study was completed and the optimal ratio was determined, the
scaffold was prepared with the same procedure described in Section 2.5. However, in this
case, the amination step with APTES was performed after the RHA nano-silica imbibition.
Finally, the APTES/RHA nano-silica/chitosan/alginate (ARCA) scaffold was frozen and
then lyophilized for 24 h.
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2.7. Samples Characterization
2.7.1. Elemental and ATR-FTIR Spectroscopy Analysis

The elemental composition of the materials (C%, H%, N%) was determined using
the EA 1110 CHNS-O analyzer (CE Instruments, Milano, Italy). Furthermore, they were
also analyzed by Fourier-transform infrared spectroscopy (FTIR) before and after every
synthesis step to identify the functional groups present on the surface. The spectra were
obtained using attenuated total reflection (ATR) by a Nicolet 6700 (Thermo Fisher Scientific,
Waltham, MA, USA) equipped with a Golden Gate single-reflection diamond ATR accessory
at a resolution of 2 cm−1 and co-adding 200 scans.

2.7.2. Scanning Electron Microscopy (SEM) Analysis

To characterize the morphological structure of untreated RHA, RHA nano-silica,
APTES/nano-silica, as well as that of the scaffolds with or without imbibed RHA nano-silica,
a scanning electron microscope (SEM; LEO 1450 VP; Carl Zeiss, Oberkochen, Germany) was
used. All the samples were dried and chromium coated to make their surfaces conductive
before the analysis. The micrographs obtained were taken at different magnifications
(1–50 KX), 14 mm as working distance, 15 kV as accelerating voltage, and DISS as digital
image recording.

2.7.3. Powder X-ray Diffraction (XRD), BET Analysis, and Porosity Determination

The RHA nano-silica obtained was characterized by powder X-ray diffraction using
a D8 Advance Diffractometer (Bruker, Karlsruhe, Germany) with the molybdenum Kα1
radiation (λ = 0.7071 Å). The XRD patterns were measured at room temperature with a step
size of 0.01◦ in the small-angle range.

The surface area of RHA nano-silica, determined by the Brunauer–Emmett–Teller
(BET) multipoint method and textural analysis, was obtained by N2 adsorption/desorption
measurements at liquid nitrogen temperature (77 K), using a 3-Flex analyzer (Micromeritics,
Norcross, GA, USA). Before analysis, the samples were pre-treated under vacuum at 200 ◦C
for 2 h. The pore distribution was determined from the adsorption curve by the Barret–
Joyner–Halenda (BJH) method [38] and from the analysis of the mesopore isotherm by the
t-test considering the curve of Harkins and Jura. The total pore volume was determined by
the Gurvitsch rule.

As a BET analysis of the whole scaffolds could not be obtained without causing
damage to their structure; to have information about the porosity of the scaffolds, the liquid
displacement method was used [39,40]. The scaffold of interest, with a certain initial weight
(W0) and volume (V0), was dipped in 10 mL of ethanol for 30 min (ρEtOH = 0.789 g/cm3 at
20 ◦C). Ethanol was chosen as it is a non-solvent of chitosan and therefore does not involve
swelling of the polysaccharide. After 30 min, the scaffold was removed from the solvent
and weighed (W1). The porosity (p%) was calculated through the following Equation (2):

p% =

(
W1 − W0

ρEtOH × V0

)
(2)

2.7.4. Mechanical Testing and Thermal Stability of the Scaffolds

The compressive mechanical strength and modulus of cylindrical scaffolds with or
without imbibed RHA nano-silica (13 mm diameter × 12 mm height) were determined by
using an Instron 4505 mechanical tester (Instron Corp., Canton, MA, USA) with 2 kN load
cells following the guidelines described in the ASTM D5024-95a method. The crosshead
speed of the Instron tester was set at 0.4 mm/min, and the scaffold was compressed to
approximately 30% of its original thickness.

Perkin Elmer TGS-2 Analyzer (PerkinElmer, Waltham, MA, USA) was used to obtain
the thermal decomposition profile of the scaffolds. Approximately 2 mg of the sample was
heated until 800 ◦C inside a platinum pan connected to an electrical microbalance. The
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heating was performed with a 10 ◦C/min ramp in O2 atmosphere and the weight loss was
measured as a function of the temperature.

2.8. Laccase Immobilization on APTES/RHA Nano-Silica/Chitosan/Alginate (ARCA) Scaffold

To optimize the immobilization reaction conditions, laccase solutions with different
free activity (U) were added to various amounts of ARCA scaffolds to obtain 0.17, 0.44, 0.75,
and 0.77 U/mg ratios. A laccase solution was prepared in 1 mL 0.05 M phosphate buffer
(PBS) at pH 7 making sure that the concentration was enough to have 0.77 U of laccase per
mg of scaffold. Then the system was left to react for 1.5 h at 25 ◦C to allow the physical
immobilization. After, the scaffold was removed from the reaction medium and washed
several times with 0.05 M PBS at pH 7.

2.9. Free and Immobilized Activity Determination

The activity of the immobilized enzyme was evaluated by spectrophotometric assay
employing ABTS as substrate. The analysis was performed by adding 2 mL of ABTS
(0.18 mM) and 0.7 mL of a 0.1 M citrate/0.2 M PBS at pH 3 solution to 10 mg of the
solid biocatalyst (Vtot = 2.7 mL). The reaction was followed by monitoring every 30 s
for 5 min the oxidation of ABTS to its radical cation ABTS (molar extinction coefficient,
ε = 36,000 L mol−1 cm−1) at 420 nm employing a Model T60 UV-Vis spectrophotometer
(PG Instrument Limited, Leicester, UK). The same procedure was employed to determine
the free enzyme activity using 10 µL of laccase solution instead of 10 mg of the biocatalyst.
One activity unit was defined as the amount of enzyme needed to oxidize 1 µmol of ABTS
per minute at 30 ◦C and pH 3 (0.1 M citrate/0.2 M PBS). The biocatalyst activity was
calculated using the following Equations:

Free laccase activity (U/mL) =
∆Amin Vtot

ε Vw
106 (3)

Immobilized activity (U/g) =
∆Amin Vtot

εm
106 (4)

where ∆Amin is obtained following the ABTS formation; Vtot is the total reaction volume
during the activity determination (2.7 mL); Vw is the volume withdrawn from the sample
(10 µL); m is the weight of the carrier (10 mg); and 106 is a dimensional factor.

2.10. Evaluation of the Immobilized Biocatalysts

As reported by Sheldon et al. and Boudrant et al. [41,42], two parameters were
employed to evaluate the immobilization procedure success: immobilized activity (U/g)
and immobilization efficiency (%). The first parameter was calculated as described in
Equation (4), while for determination of the other was used the following Equation:

Efficiency (E%) =
Ui

U0 − Uf
× 100 (5)

where U0 and Uf are, respectively, the initial and the residual free enzyme activity utilized
in the reaction mixture, and Ui is the immobilized enzyme activity on the carrier. All
the above terms were calculated using total activity units (i.e., µmol/min) and not using
specific activities (i.e., U/L, U/g).

2.11. Operational Stability and Syringic Acid Oxidation

The operational stability (or reuse) of the solid biocatalyst was evaluated by performing
various cycles of ABTS oxidation as described in Section 2.8, always using the same
biocatalyst and a total volume of 2.7 mL. After each cycle, the reaction solution was
removed with a pipette and the biocatalyst was washed with 0.05 M PBS at pH 7. The
relative activity of the biocatalyst was calculated for each cycle, assuming a 100% relative
activity for the first cycle.
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The phenol bio-removal study was carried out by adding 2 mL of a syringic acid
standard solution (50 mg L−1) in 0.1 M citrate/0.2 M PBS (pH 5) to the solid biocatalyst
(total immobilized activity 0.013 U). The syringic acid oxidation was monitored for 24 h
both by spectrophotometric measurements (250–450 nm range) and HPLC-DAD system
(Shimadzu, Milan, Italy). The HPLC system included a C18 column (15 cm × 4.6 mm) and
H2O:MeOH (70:30 v:v) with a flow rate of 1 mL/min as mobile phase.

3. Results and Discussion
3.1. Characterization of RHA Nano-Silica

Since the RHA calcination time can influence the purity of the extracted nano-silica,
this parameter was investigated. The optimal conditions were chosen considering the
lowest values of N%, C%, and S% detected by elemental analysis measurements of the
nano-silica samples calcined at different times: the lower these values, the higher the loss
of impurities. The better purity of the nano-silica is also underlined by the increase in
the whiteness of the material when lower values of C, H, and S are reached. The results,
reported in Table 1, highlight that 5 h at 550 ◦C was a sufficient time to degrade almost all
the organic matter.

Table 1. Elemental analysis of rice husk (RH) and rice-husk ash (RHA) at different calcination times
(T = 550 ◦C).

Element (%) 0 h 2 h 3 h 4 h 5 h

C 38.70 3.80 1.18 0.40 0.04
H 6.00 0.44 0.49 0.29 0.38
N 0.45 0.37 0.11 0 0

To determine the purity of the extracted nano-silica, EDS analysis was carried out
(Figure 2a). The presence of silicon (29.59 atomic %) and oxygen (69.55 atomic %) in the
mole ratio of about 1:2, the absence of sodium and potassium or other elements, and the
low carbon percentage (<0.1 atomic %) confirmed the purity of nano-silica.
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These results are in accordance with those of Nayak et al. [26], who reported that
when using Na2CO3 in the alkaline treatment, CO2 is generated during the neutralization
step. This gas hinders the formation of a gel network structure that can entrap impurities,
preventing their removal during the washing phase. Additionally, the EDS analysis demon-
strated that 64.96% of the sample weight was attributed to silicon. This result was higher
than the one reported by Dashan and Khadar [43] (48.36 weight % at 400 ◦C), indicating
that 550 ◦C was an optimal temperature value as it permitted to obtain a large amount of
pure nano-silica.
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The RHA nano-silica structure was investigated by XRD analysis employing molyb-
denum as the target material. The absence of any sharp peaks, commonly related to a
crystalline structure, indicated the amorphous nature of the RHA nano-silica synthesized
(Figure 2b). The XRD patterns obtained in this study were similar to those of Bakar et al. [44]
and Rafiee et al. [45], who also produced amorphous nano-silica. In particular, it was ob-
served a broad diffused peak centered at the 2θ value of 10.1◦, corresponding to that of
2θ = 22.3◦ found with copper as the target material, confirming the completely amorphous
nature of the obtained nano-silica as the crystallization of acid-leached silica occurred
above 900 ◦C [44].

The morphological structure of the various materials was investigated by SEM, as
shown in Figure 3, and BET analysis. Before calcination, RH showed a well-organized,
corrugated, and non-porous layered structure with silica localized between the folds of the
layers (Figure 3a,b). On the contrary, RHA nano-silica was characterized by a highly porous
structure (Figure 3c,d) and found to be mesoporous by BET analysis, with an average pore
diameter of about 3.4 nm total pore volume of 0.225 cm3/g and surface area of 111 m2/g.
The particles had a size of 70–100 nm, in agreement with the dimensions reported in the
literature [45,46]. As reported by Fernandes et al. [47], different shapes of the particles
and the presence of some clearly defined aggregates of layered flakes (Figure 3d) can be
observed from SEM images. This last peculiarity was probably due to the considerable
exposition of the hydroxyl (–OH) groups.
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3.2. Characterization of RHA Nano-Silica/Chitosan/Alginate (RCA) Scaffold

Alginate was used for the preparation of chitosan-based composite scaffolds. This type
of matrix was selected as it offers many benefits such as simple and cost-effective prepa-
ration procedures, good robustness, high immobilization capacity, biocompatibility, and
possibility of employment in various biotechnological and biomedical applications [48,49].
The scaffolds were successively imbibed with RHA nano-silica, which was used both as
mechanical reinforcement and as a binding surface for laccase immobilization.

In Figure 4A, the ATR-FTIR spectra of the scaffolds containing RHA nano-silica at two
nano-silica:scaffold ratios, 1:1 and 2:1 (w:w), in comparison with those of CA and pristine
nano-silica were reported. In the spectrum of the CA scaffold can be highlighted an intense
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band in the range 3600–3000 cm−1 attributed to the stretching of the –OH groups of the
two polysaccharides, and two peaks at 1604 and 1545 cm−1 assigned to the carboxylic
groups of the alginate which interact with chitosan (–COO− antisymmetric stretching
and antisymmetric bending of the protonated amine and amide I, at 1604 cm−1) and to
the amino groups of chitosan which interact with alginate (N-H amine bending, amide
II and symmetric –NH3

+ bending, at 1545 cm−1). The carboxylic groups of the alginate
also showed a symmetric stretching at 1410 cm−1. Finally, in the range 1180–800 cm−1, the
C–O–C, C–O, and C–O–H stretching bands due to the pyranose rings were evidenced. After
introduction of RHA nano-silica, some changes were observed in the spectra of the modified
scaffold. First of all, the peaks attributed to the antisymmetric and symmetric stretching
of the Si–O–Si group were evident at 1040 and 800 cm−1, respectively. Furthermore, the
remarkable intensity decrease in the bands at 1410 cm−1 and 1545 cm−1, with the peak
at 1545 cm−1 becoming a shoulder of the band at 1604 cm−1 (see magnification shown
in Figure 4B), confirmed the hydrogen bonding interactions between the SiOH groups
and carbonyl and amino groups of the CA scaffold. In particular, the decrease in the
band intensity at 1545 cm−1 results correlated to the nano-silica content in the structure
(scaffold with a nano-silica:scaffold ratio of 2:1) demonstrating an increase in the number
of hydrogen bonds established between the SiOH and amino groups of chitosan with an
increase in the filler.

Polymers 2023, 15, 3127 9 of 17 
 

 

and possibility of employment in various biotechnological and biomedical applications 
[48,49]. The scaffolds were successively imbibed with RHA nano-silica, which was used 
both as mechanical reinforcement and as a binding surface for laccase immobilization. 

In Figure 4A, the ATR-FTIR spectra of the scaffolds containing RHA nano-silica at 
two nano-silica:scaffold ratios, 1:1 and 2:1 (w:w), in comparison with those of CA and 
pristine nano-silica were reported. In the spectrum of the CA scaffold can be highlighted 
an intense band in the range 3600–3000 cm−1 attributed to the stretching of the –OH groups 
of the two polysaccharides, and two peaks at 1604 and 1545 cm−1 assigned to the carboxylic 
groups of the alginate which interact with chitosan (–COO− antisymmetric stretching and 
antisymmetric bending of the protonated amine and amide I, at 1604 cm−1) and to the 
amino groups of chitosan which interact with alginate (N-H amine bending, amide II and 
symmetric –NH3+ bending, at 1545 cm−1). The carboxylic groups of the alginate also 
showed a symmetric stretching at 1410 cm−1. Finally, in the range 1180–800 cm−1, the C-O-
C, C–O, and C–O–H stretching bands due to the pyranose rings were evidenced. After 
introduction of RHA nano-silica, some changes were observed in the spectra of the 
modified scaffold. First of all, the peaks attributed to the antisymmetric and symmetric 
stretching of the Si–O–Si group were evident at 1040 and 800 cm−1, respectively. 
Furthermore, the remarkable intensity decrease in the bands at 1410 cm−1 and 1545 cm−1, 
with the peak at 1545 cm−1 becoming a shoulder of the band at 1604 cm−1 (see magnification 
shown in Figure 4B), confirmed the hydrogen bonding interactions between the SiOH 
groups and carbonyl and amino groups of the CA scaffold. In particular, the decrease in 
the band intensity at 1545 cm−1 results correlated to the nano-silica content in the structure 
(scaffold with a nano-silica:scaffold ratio of 2:1) demonstrating an increase in the number 
of hydrogen bonds established between the SiOH and amino groups of chitosan with an 
increase in the filler. 

 
Figure 4. ATR-FTIR spectra (A) of chitosan/alginate scaffold (CA) (a), RHA nano-
silica/chitosan/alginate (RCA) scaffolds with nano-silica:scaffold ratio of 1:1 (w:w) (b) and 2:1 (w:w) 
(c), and RHA nano-silica (d) and their magnification (B). 

By comparing TGA thermograms, it was possible to observe that RHA nano-silica is 
able to make the scaffolds more thermally stable (Figure 5), probably due to interactions 
between its –OH groups and the ones of the polymers (–OH, –NH, and –CO). The thermal 
degradation of every scaffold occurred in three stages: (i) dehydration of the polymers at 
about 100 °C, (ii) degradation of non-cross-linked alginate and chitosan chains, and (iii) 
degradation of the Ca2+-cross-linked chains. It is interesting to note that in the second 
stage, the degradation temperatures of the polyelectrolytic complexes were lower (220 °C) 
than the ones reported by Zhao et al. [50] (270 °C). This was probably due to the presence 
of Ca2+ ions, which interacting with –COOH groups of alginate, decreased the thermal 
stability. However, it was noted a significant increase in the total thermal stability, 

Figure 4. ATR-FTIR spectra (A) of chitosan/alginate scaffold (CA) (a), RHA nano-
silica/chitosan/alginate (RCA) scaffolds with nano-silica:scaffold ratio of 1:1 (w:w) (b) and 2:1
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By comparing TGA thermograms, it was possible to observe that RHA nano-silica is
able to make the scaffolds more thermally stable (Figure 5), probably due to interactions
between its –OH groups and the ones of the polymers (–OH, –NH, and –CO). The thermal
degradation of every scaffold occurred in three stages: (i) dehydration of the polymers
at about 100 ◦C, (ii) degradation of non-cross-linked alginate and chitosan chains, and
(iii) degradation of the Ca2+-cross-linked chains. It is interesting to note that in the second
stage, the degradation temperatures of the polyelectrolytic complexes were lower (220 ◦C)
than the ones reported by Zhao et al. [50] (270 ◦C). This was probably due to the presence
of Ca2+ ions, which interacting with –COOH groups of alginate, decreased the thermal
stability. However, it was noted a significant increase in the total thermal stability, espe-
cially for the scaffolds imbibed with RHA nano-silica. Considering the shape of the TGA
curves, at 280 ◦C the scaffolds reached approximately 77.8% of their weight, and for higher
temperatures, the behavior started to diverge: at 580 ◦C the CA scaffold showed a notable
loss in weight (about 67%), while better thermal stability was shown for both RCA scaffolds
containing the filler at a 2:1 (w:w) and 1:1 (w:w) nano-silica:scaffold ratio (47.7% and 58%
of weight loss, respectively). Moreover, the liquid displacement method measurements
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revealed only a slight porosity decrease (from 71% to 67%) when RHA nano-silica was
imbibed to the system.
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Finally, to verify the reinforcement effect of RHA nano-silica on the scaffolds, the
compression modules were measured: 194 MPa and 241 MPa for the CA and RCA scaf-
folds were obtained, respectively. Therefore, it can be concluded that RHA nano-silica
positively affected the mechanical and thermal properties of the scaffolds, without affecting
their porosity.

3.3. Functionalization of RHA Nano-Silica/Chitosan/Alginate Scaffold with APTES

In this work, APTES was used to increase the amine group amount on the compos-
ite scaffold to favor the physical binding of the enzyme [51–55]. The RHA nano-silica
amination was confirmed by ATR-FTIR spectra, where it was possible to observe an in-
crease in intensity of the bands at 2919 cm−1 and 2800 cm−1 and the formation of a new
peak at 1310 cm−1 (due to contribution of CH2 stretching and bending of propyl chain
in APTES, respectively) [50]. To estimate the amination yield, the intensity ratio between
the characteristic absorption peaks at 2919 cm−1 (CH2 stretching) and 800 cm−1 (Si–O) in
the ATR-FTIR spectra was used. It was observed that the normalized ratios (A2919/A800)
increased with the increasing the APTES amount and, for ratios above 5:1, the filler was
no longer able to form physical bonds with the reagent having reached saturation. SEM-
EDS analysis also shows an increase in nitrogen and carbon content due to the APTES
amine groups and propyl chains, respectively, when greater APTES amounts were used.
In Figure 6, the EDS spectrum and SEM image of the ARCA scaffold obtained using an
APTES:nano-silica ratio of 5:1 was reported. It was possible to notice how RHA nano-silica
maintained a spherical morphology during the formation of particle aggregates. Such
aggregates caused only a slight decrease in the system porosity as evidenced by liquid
displacement measurements (ε ∼= 65%).

The amination of the RHA nano-silica introduced into the scaffold was also confirmed
by the comparison of ATR-FTIR spectra of the APTES reagent, RCA, and ARCA scaffolds
(Figure 7A,B). An increase in intensity of the bands in the range 2900–2800 cm−1 due to
antisymmetrical and symmetrical stretching vibrations of the aminopropyl groups of the
APTES molecule, a new peak at 1310 cm−1, due to wagging and twisting of methylene
groups, and a weak band at 690 cm−1, attributed to the N–H bending, were evidenced in
the spectrum of the scaffold containing aminated RHA nano-silica [56].
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3.4. Immobilization of Laccase on Silica Functionalized Scaffold

According to the experimental results, the immobilized activity increased with the
increasing enzyme amount until 0.77 U of laccase per mg of scaffold were used. The immo-
bilization was attempted on four different types of supports: CA, APTES/chitosan/alginate
(ACA), RCA, and ARCA scaffolds. The experimental results have shown that the amount
of immobilized laccase was highly affected by the APTES presence on the scaffolds. Indeed,
the ACA scaffold (immobilized activity = 1.9 U/g) and ARCA scaffold (3.8 U/g) were more
active if compared with their precursors without APTES, CA scaffold (0.70 U/g) and RCA
(2.63 U/g). Even in terms of immobilization efficiency (%), the ARCA scaffold proved to be
the best solid biocatalyst, as shown in Table 2. In Table 2 it is also possible to see how the
efficiencies (%) are not very high. Considering that immobilization efficiency represents
the fraction of enzyme activity exhibited by the immobilized enzyme relative to the activity
removed during the immobilization (see Section 2.10), this parameter is strongly influenced
by the possible enzyme inactivation during the immobilization procedure itself. A low
efficiency (%) can be explained in two different ways: (i) inactivation of the enzyme in
the immobilization mixture, and (ii) deactivation of the enzyme after its immobilization
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on the support. The first case may be due to the immobilization conditions (temperature,
stirring, etc.), while in the second case, the various interactions formed may be the cause
as they can modify the protein conformation or lead to protein multilayers which hinders
substrate diffusion [57]. However, immobilization continues to be a very advantageous
practice thanks to the possibility of reuse and the greater stability of the enzyme, which in
any case lead to better performance compared to the soluble biocatalyst.

Table 2. Immobilization parameters of the solid biocatalysts synthesized in the optimal immobiliza-
tion conditions: pH 7, immobilization time = 1.5 h, room temperature and 0.77 U/mg of support.

Scaffold Immobilized Activity (U/g) Efficiency (%)

Chitosan/Alginate (CA) 0.7 0.9
APTES/Chitosan/Alginate (ACA) 1.9 1.9
RHA/Chitosan/Alginate (RCA) 2.6 3.1

APTES/RHA/Chitosan/Alginate (ARCA) 3.8 5.3

APTES is a bifunctional reagent, and, consequently, it can interact via hydrogen bonds
(siloxane bonds with NH2) and electrostatic interactions (–NH3

+ group). It is therefore
possible to hypothesize that APTES was incorporated into the RCA scaffold by hydrogen
bond-like interactions with the SiOH groups without the involvement of the amino groups,
while, considering the CA scaffold, the ionic interactions with the carboxylic groups of
alginate with –NH2 group of APTES could take place. However, independently of the
interaction nature, APTES presence was fundamental in obtaining a high immobilized
laccase activity.

In addition, to verify if the size of the filler introduced into the scaffold could in-
fluence the activity of the final composites, RHA nano-silica (<0.1 µm, 34 Å pore size)
and commercial micro-silica (<5 µm, 100 Å pore size) were used for the preparation of
APTES/silica scaffolds. The results showed that the smaller the particles, the higher the
immobilized activity (3.8 and 2.7 U/g for the systems containing RHA nano-silica and
micro-silica, respectively). The presence of commercial micro-silica in the scaffold structure
led to a significant decrease (from 71% to 50%) in the porosity of the composite material,
whereas the addition of nano-silica unaffected the native scaffold porosity. This effect,
together with the different pore sizes, may be the cause of the difference in activity, as RHA
nano-silica results in lower diffusional limitations and maximum surface area per unit of
mass, allowing a more effective laccase immobilization.

To evaluate the operational stability of the optimized solid biocatalyst (ARCA scaffold),
its reusability was tested for six cycles of ABTS oxidation reaction. Figure 8 shows that the
activity of the immobilized enzyme decreased by only 10% at the second use and, despite
the more marked decrease in the other cycles, it was possible to carry out another four
reuses of the biocatalyst with an activity of 50% compared to the initial one.

Finally, since immobilized laccases have been widely used for the degradation of
phenols and resistant dyes [8], the catalytic properties of the ARCA scaffold-based solid
biocatalyst were tested using syringic acid as a reducing substrate. The syringic acid
conversion was confirmed by UV-Vis analysis of the reaction medium at different times.
The results (Figure 9) show that initially (0 min, syringic acid standard solution before
reaction with laccase), only a band around 260 nm is visible, which disappears over
time in favor of the formation of two new bands at 290 and 360 nm. The initial band
is related to syringic acid absorption, while the two new bands can be associated with
the quinoid compounds produced by the oxidation reaction such as 2,6-dimethoxy-1,4-
benzoquinone [58]. These results lead to believe that the solid biocatalyst completely
oxidized the phenol after 24 h (1440 min). Furthermore, the formation of the two new well-
defined bands and two isosbestic points at 240 nm and 275 nm observed are in accordance
with data reported by Shin [59].
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with the ARCA scaffold-optimized biocatalyst. Experimental conditions: starting biocatalyst activity
0.013 U, analysis time 24 h (1440 min), syringic acid concentration 50 mg/L, pH 5.

However, since it was difficult to determine the absorbance interference of the product
on that of syringic acid, the conversion % was determined more precisely by HPLC-
DAD. The obtained results showed the absence of the syringic acid chromatographic peak
(4.55 min) after 24 h and the presence of a new peak (7.93 min) (100% conversion after 24 h)
probably due to the quinoid oxidation products [60]. In addition, since no change in the
UV spectra of the control (ARCA scaffold alone) was evidenced, it was possible to confirm
that the total degradation pattern was only related to the enzymatic action.

4. Conclusions

For the first time, a cross-linked chitosan/alginate scaffold containing RHA nano-silica
was successfully used for laccase immobilization to obtain an efficient, cheap, and easy-to-
use solid biocatalyst. Amorphous nano-silica (99.6% purity and 70–100 nm particle size)
was obtained from the agro-industrial waste rice-husk ash (RHA) employing a thermal
treatment at 550 ◦C and alkaline extraction. The introduction of RHA nano-silica in the
CA scaffold significantly increased its thermal and mechanical properties without altering
its porosity. To increase laccase loading, an amination reaction with APTES of the RHA
nano-silica contained in the scaffold was carried out. The enzyme immobilization in
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a conformation favorable for the interaction with the substrate was evidenced by the
good activity of the system (3.8 U/g). Despite the low immobilization efficiency (5.3%), the
excellent performance of the developed biocatalyst was demonstrated by both its reusability
(50% up to the 6th cycle) and the syringic acid’s complete oxidation in 24 h.

In conclusion, our results demonstrated how a composite system based on polysac-
charides and rice-husk-derived nano-silica can be an optimal support for a laccase-based
solid biocatalyst to be used for bioremediation. This new green approach could also make
it possible to recycle a waste that represents an environmental hazard due to its uncon-
trolled disposal using it in the synthesis of a material with enormous added value such as
nano-silica.
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