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A B S T R A C T   

This work considers the three-dimensional descent path of a space vehicle, from periselenium of its operational 
orbit to the lunar surface. The trajectory is split in two arcs: (1) descent path, up to an altitude of 50 m, and (2) 
terminal approach and soft touchdown. For phase 1, a new, three-dimensional locally-flat near-optimal guidance 
is introduced that is based on the local projection of the position and velocity variables. A minimum-time 
problem is defined using the locally flat coordinates of position and velocity. This leads to identifying closed- 
form functions of time for the two thrust angles, which identify the commanded thrust direction. During ter
minal approach (phase 2), correct vertical alignment, modest velocity, and negligible angular rate at touchdown 
are pursued. With this intent, a predictive bang-off-bang guidance algorithm is proposed that is capable of 
guaranteeing the desired final conditions. In both phases, the attitude control system has the objective of aligning 
the actual thrust direction with the commanded one, provided by the guidance algorithm. The resulting reduced- 
attitude control problem is addressed through the use of a new quaternion-based nonlinear control algorithm, 
which is proven to enjoy asymptotic stability properties. The attitude actuation system is composed of 12 
monopropellant thrusters, ignited using pulse width modulation. Monte Carlo simulations are run, assuming 
significant displacements from the nominal initial conditions and including several harmonics of the selenopo
tential. The numerical results unequivocally prove that the guidance and control architecture proposed in this 
study is effective to achieve lunar descent and safe touchdown in nonnominal flight conditions.   

1. Introduction 

In recent years, human and robotic missions to the Moon are 
attracting a renewed interest by the scientific community, and some 
lunar missions are planned in this decade. The development of a safe and 
reliable guidance and control architecture for autonomous lunar descent 
and soft touchdown represents a challenging and crucial issue for 
enabling in situ operations, with the perspective of establishing a per
manent lunar settlement. The bulk of the work on lunar landing dates 
back to the early years of the Apollo missions [1], with the original work 
by Klumpp, who implemented an explicit guidance, known as the 
E-guidance [2]. Significant advances in the computational capabilities 
occurred since the conclusion of the Apollo program, and allowed 
adapting Apollo-class guidance to autonomous real-time operations [3, 
4]. Recent contributions on the study of guidance and control techniques 
tailored to lunar descent and touchdown are due to Chomel and Bishop 

[5], who proposed a targeting algorithm based on generating a 
two-dimensional trajectory, used as a reference for three-dimensional 
guidance. Later, Azimov and Bishop [6] developed an on-board guid
ance and targeting algorithm based on the closed-form analytical solu
tion for the touchdown phase assuming constant thrust. These 
algorithms are characterized by a large propellant usage, which could 
limit their implementation. Related to this issue, Lee [7] assumed a 
continuous time-varying thrust profile and referred to a nominal tra
jectory similar to that used in the Apollo 11 mission, capable of guar
anteeing safe touchdown conditions, together with acceptable fuel 
consumption. Reynolds and Mesbahi [8] further investigated the pow
ered descent problem, assuming a maneuver that evolves onto an iner
tially fixed plane, with the inclusion of the effects of an independent 
torque input and constraints on the thrust magnitude. Other publica
tions focused on descent paths, obtained by means of either artificial 
intelligence techniques [9] or shooting methods [10]. In particular, Hull 
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[10] investigated optimal guidance for quasi-planar lunar descent with 
thrust throttling over a flat Moon. Zhang and Duan [11] developed an 
integrated translational and rotational strategy, formulated as a 
filter-based backstepping control, and implemented some effective so
lutions to overcome numerical singularities. Ma et al. [12] investigated 
the translational dynamics in the three-dimensional descent problem, 
and proposed fuel-optimal solutions through dynamic optimization 
based on mesh refinement. Mathavaraj et al. [13] studied the 
three-dimensional descent problem as well, while neglecting attitude 
dynamics, and solved it by using the Legendre pseudospectral method. 
Cortés-Martínez et al. [14] identified a solution for three-dimensional 
lunar descent, using a six-degree-of-freedom model for a spacecraft 
equipped with a gimballed thruster and designing a feedback law with 
optimal control gains. Zhukov et al. [15] proposed a proportional 
guidance descent-control algorithm, based on the free-fall braking ma
neuver, which allows selecting the landing place on the lunar surface 
and the touchdown velocity, whereas Andrew et al. [16] extended the 
use of convex optimization to lunar landing with several constraints. In 
the majority of works focused on lunar descent, the design of guidance 
and control algorithms is carried out separately, by exploiting time scale 
separation. A possible different approach is executing an integrated 
guidance and control design as in Refs. [17,18], focused on atmospheric 
entry. Finally, some mission-oriented works dealt with effective 
terrain-relative navigation techniques [19,20], able to provide the 
measurements needed for successful touchdown and (eventually) haz
ard detection and avoidance [21–23]. 

This research considers the three-dimensional descent path of a 
spacecraft, from periselenium of its operational orbit to the lunar sur
face. The gravitational model includes several relevant harmonics of the 
selenopotential. The landing vehicle is equipped with a main propulsion 
system, for trajectory control, accompanied by 12 monopropellant 
thrusters, equally distributed into three mutually orthogonal planes and 
mainly dedicated to attitude maneuvering. The trajectory is split in two 
arcs: (1) descent trajectory, up to an altitude of 50 m, and (2) terminal 
approach and soft touchdown. For phase 1, a new, three-dimensional 
locally-flat near-optimal guidance is introduced that is based on the 
local projection of the position and velocity variables. A minimum-time 
problem is defined using the locally flat coordinates of position and 
velocity. During terminal approach (phase 2), correct vertical align
ment, modest velocity, and negligible angular rate at touchdown are 
pursued. With this intent, a predictive bang-off-bang guidance algorithm 
is proposed, aimed at guaranteeing the desired final conditions, while 
providing the proper allocation of side jet ignitions. In both phases 1 and 
2, the attitude control system has the objective of aligning the actual 
thrust direction, which is fixed with respect to the spacecraft, with the 
commanded one, provided by the guidance algorithm. Thus, for the 
problem at hand, attitude control must pursue single-axis alignment, 
which is also known in the literature as reduced-attitude control. Sig
nificant contributions on reduced-attitude control can be found in 
Ref. [24], focused on pointing control with respect to an inertially fixed 
direction, and in Refs. [25,26], which consider 
reduced-attitude-tracking, corresponding to the more general situation 
of a desired time-varying pointing direction. The latter two works 
describe feedback laws that enjoy asymptotic convergence properties. 
This work presents and applies a new quaternion-based nonlinear 
reduced-attitude control algorithm, which is intended to pursue a 
time-varying direction. The attitude actuation system consists of 12 
monopropellant thrusters, equally distributed into three mutually 
orthogonal planes. They are ignited using pulse width modulation 
[27–29]. This study represents a considerable extension of previous 
research by the same authors [30], focused on planar descent and 
touchdown. In fact, this work considers perturbed three-dimensional 
trajectories, which is a more realistic description of the actual mission 
scenario with respect to perturbed planar paths (assumed in Ref. [30]). 
This circumstance leads to the following major novelties with respect to 
previous research [30]. First, the guidance algorithms in phases 1 and 2 

extend the preceding schemes developed for planar descent paths. Sec
ond, attitude control employs a completely different, original, 
quaternion-based feedback law, aimed at aligning the spacecraft longi
tudinal axis with a desired time-varying direction. Third, actuation is 
achieved using a more complex system that includes 12 side jets. 

In short, the primary objectives of this research are (i) the intro
duction and description of two original guidance techniques for the two 
phases of the three-dimensional descent path, (ii) the definition and 
stability analysis of a novel quaternion-based nonlinear reduced-attitude 
control algorithm, capable of identifying a feedback attitude control 
law, (iii) the implementation of a guidance, control, and actuation ar
chitecture that includes pulse width modulation for igniting the side jet 
thrusters, and (iv) the numerical testing of the previously mentioned 
guidance, control, and actuation architecture, in the presence of non
nominal flight conditions. 

2. Spacecraft dynamics 

The Peregrine lander, whose design is described in Ref. [31], is 
selected as the prototypical vehicle model. Although its geometry is 
more complex, it can be modeled as a cylinder, with diameter D of 2 m 
and height of 2 m. Its initial mass and principal inertia moments with 
respect to the center of mass equal m0 = 1283 kg, Ixx,0 = 1827kg m2, 
and Iyy,0 = Izz,0 = 819kg m2. The space vehicle at hand is assumed to be 
equipped with a main thruster, aligned with the longitudinal axis, and 
12 side jets, in the configuration illustrated in Fig. 1. The main thruster 
provides a constant thrust with magnitude T = 4730 N. Each mono
propellant side jet supplies a thrust whose magnitude Ftot equals 200 N at 
the initial time ti, and decreases exponentially due to pressurant 
depletion [32], i.e. Ftot(t) = Ftot(ti)exp[ − (t − ti)/tcar], where tcar equals to 
7027 s. The time constant tcar is a characteristic parameter that depends 
on the tank volume, the pressurization system, and the fluid properties 
[33]. 

Besides thrust, the descent vehicle is assumed to be subject only to 
the gravitational attraction of the Moon. The mass ratio, denoted with 
x7 = m/m0, obeys 

ẋ7 = −
nT

cM
−

nSJ

cSJ
(1)  

where nT := T/m0 and nSJ := Ftot/m0; cM (= 3 km/sec) and 
cSJ (= 2.158 km/sec) are the effective exhaust velocities of the main 
thruster and the side jets, respectively. While nT is constant, nSJ reduces 
due to decrease of Ftot. Trajectory and attitude equations, reported in the 
next subsections, govern the spacecraft dynamics. 

2.1. Trajectory 

The descent trajectory is described in an inertial reference frame, 
associated with the right-hand sequence of unit vectors (ĉ1, ĉ2, ĉ3). Its 
origin is located at the center of the Moon, and the initial elliptic orbit 
lies on the (ĉ1, ĉ2)-plane, with periselenium aligned with ĉ1. The posi
tion can be identified by the following three variables: radius r right 
ascension ξ, and declination φ, portrayed in Fig. 2(a). The spacecraft 
velocity can be projected into the rotating frame (̂r, t̂, n̂), where r̂ is 
aligned with the position vector r

→
and ̂t is parallel to the (ĉ1, ĉ2)-plane 

(and in the direction of the spacecraft motion, cf. Fig. 2(a)). The related 
components are denoted with (vr, vt, vn) and termed respectively radial, 
transverse, and normal velocity component. The lander trajectory is 
controlled through the thrust direction, defined by the in-plane angle α 
and the out-of-plane angle β, both illustrated in Fig. 2(b) (in which T̂ is 
aligned with the thrust direction). 

The trajectory equations govern the time evolution of x7 (cf. Eq. (1)) 
and (r, ξ,φ,vr,vt,vn), 

ṙ = vr (2) 
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ξ̇ =
vt

r cos φ
(3)  

φ̇ =
vn

r
(4)  

v̇r = −
μ
r2 +

v2
t + v2

n

r
+ aT sin α cos β + aP,r (5)  

v̇t =
vt

r
(vn tan φ − vr) + aT cos α cos β + aP,t (6)  

v̇n = −
v2

t

r
tan φ −

vrvn

r
+ aT sin β + aP,n (7)  

where aT (= nT/x7) is the instantaneous thrust acceleration, μ (=

4903 km3/sec2) is the lunar gravitational parameter, whereas (aP,r, aP,t,

aP,n) represent the three components of the perturbing acceleration. In 
this research, all the zonal harmonics of the selenopotential with |Jl| >

10− 6 are included, i.e. J2, J3, J4, J6, J7, J8, J9, J11, J12, J17, J28, and J29, taken 
from the Lunar Prospector LPE100K model. Moreover, the (ĉ1, ĉ2)-plane 
is assumed to coincide with the lunar equatorial plane. As a result, the 
transverse and normal components (of velocity and acceleration) are 
identical to the respective East and North components. 

2.2. Attitude 

The spacecraft is modeled as a rigid body and its instantaneous 
orientation is associated with the body frame. Its axes are aligned with 

the right-hand sequence of unit vectors (̂ι, ĵ, k̂), with ̂ι pointing toward 
the longitudinal axis of the lander. Vectrix B is composed of (̂ι, ĵ, k̂), i.e. 
B := [ ι̂ ĵ k̂ ]; similarly, the right-hand sequence (ĉ1, ĉ2, ĉ3), corre
sponding to the inertial frame, forms vectrix N := [ ĉ1 ĉ2 ĉ3 ]. 

In this research, the instantaneous attitude is referred to N and is 
described through Euler parameters (quaternions), denoted with {q0,q}, 
where q0 is the scalar part, whereas q is the (3× 1)-vector part. If N ω̅̅

→
B 

denotes the vector angular rate of B with respect to N ω̅̅
→

B, the attitude 

kinematics equations are [34] 

q̇0 = −
1
2
qTω (8)  

q̇ =
1
2
[q0I3×3 + q̃]ω (9)  

where ω denotes the (3× 1)-vector that contains the three components 
of N ω̅̅

→
B in B, i.e. N ω̅̅

→
B = Bω, q̃ is the skew-symmetric matrix 

associated with q, and I3×3 is the (3 × 3) identity matrix. 
Under the (approximating) assumption that the mass center C is a 

fixed point inside the spacecraft during the entire time of flight, the 
attitude dynamics equations are decoupled from the trajectory equa
tions, and involve the spacecraft angular momentum with respect to C, 
H
→

C. If HC denotes the (3× 1)-vector that includes the three components 

of H
→

C in B, then [34] 

ḢC = − ω̃HC + MC + TC (10) 

Fig. 1. Illustrative sketch of the lander and the 12-side-jet arrangement: (a) 3-d view (b) top view.  

Fig. 2. Reference frames (a) and thrust angles α and β (b).  
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where ω̃ denotes the skew-symmetric matrix associated with ω, whereas 
MC and TC are (3× 1)-vectors that include respectively the components 
(in B) of the external torque and the control torque (supplied by the side 

jets). Let J(B)C denote the spacecraft inertia matrix with respect to C, 
resolved in B. Because HC = J(B)C ω, Eq. (10) becomes 

ω̇ =
[
J(B)

C

]− 1(
− ω̃J(B)

C ω − J̇(B)
C ω + MC + TC

)
(11)  

In Eq. (11), J̇(B)C is the time derivative of the inertia matrix, which is 
nonzero due to propellant consumption. In this research, homogeneous 

mass depletion is assumed to obtain J̇(B)
C . External disturbing torques, 

such as that due to gravity gradient, are modest if compared to the 
control torque provided by the side jets (in fact, they differ by several 
orders of magnitude). This circumstance justifies the assumption that 
MC is negligible for the problem at hand. Thus, MC = 0 hence forward. 
In the end, the nonlinear differential system composed of Eqs. (8), (9) 
and (11) govern the instantaneous attitude and angular rate of the 
spacecraft. The torque components of TC represent the control input. 

3. Phase 1. locally-flat near-optimal guidance 

The descent path is split into two arcs: (1) approach phase, starting 
from periselenium of the lunar orbit and ending with zero velocity at a 
specified altitude hi (hi = 50 m, in this study), and (2) final descent and 
touchdown, from altitude hi to the lunar surface. The junction condition 
corresponds to hovering at modest altitude. This allows checking the 
spacecraft instrumentation and instantaneous flight conditions, and fa
cilitates the design of an abort maneuver, in the presence of unfavorable 
contingencies. Phase 1 is much longer than arc 2; nevertheless, phase 2 
is crucial for the purpose of attaining the desired conditions at touch
down, i.e. vertical velocity magnitude not exceeding a limiting value (set 
to 1 m/s), zero horizontal velocity, longitudinal axis aligned with the 
vertical direction, and zero angular velocity. In particular, the preceding 
limiting value for the vertical velocity is half of the nominal vertical 
velocity of the Apollo modules [35]. Two distinct algorithms are pro
posed in this work for the two trajectory arcs. This section is focused on 
phase 1. 

3.1. Local projection of position and velocity 

For the approach phase 1, this research proposes a near-optimal 
guidance scheme based on local projection of the spacecraft position 
and velocity. The guidance algorithm is run repeatedly and starts at 
equally-spaced discrete times {tk}k=0,…,N− 1. The symbol ΔtS denotes the 
sampling time interval, i.e. ΔtS = tk+1 − tk (k = 1, …, N − 2); the last 
interval is shorter, because the guidance and control algorithm stops 
when the desired conditions are reached with satisfactory accuracy. At 
time tk, the spacecraft position and velocity r

→
and v

→
are denoted with 

r
→

k and v
→

k, and are associated with (rk, ξk,φk, vr,k, vt,k, vn,k) and (̂rk, t̂k,

n̂k) (i.e., (̂r, t̂, n̂) at tk, cf. Fig. 2(b)). Let (x̂k, ŷk, ẑk) denote three unit 
vectors obtained from (̂rk, t̂k, n̂k) through a counterclockwise rotation 
about axis 2 b y angle φk. Vectors r

→
k and v

→
k are projected along (x̂k, ŷk,

ẑk), 

r
→

k = rk[ cos φk 0 sin φk ][ x̂k ŷk ẑk ]
T (12)  

v
→

k = [ vr,k vt,k vn,k ]R2(− φk)

⎡

⎣
x̂k
ŷk
ẑk

⎤

⎦ =

⎡

⎣
vr,k cos φk − vn,k sin φk

vt,k
vr,k sin φk + vn,k cos φk

⎤

⎦

T⎡

⎣
x̂k
ŷk
ẑk

⎤

⎦

(13)  

Then, the locally flat variables (x, y, z, vx, vy, vz) are introduced, with 

values at tk corresponding to the components of r
→

k and v
→

k along (x̂k,

ŷk, ẑk), i.e. 

xk = rk cos φk yk = 0 zk = rk sin φk (14)  

vx,k = vr,k cos φk − vn,k sin φk
vy,k = vt,k

vz,k = vr,k sin φk + vn,k cos φk

(15) 

The locally flat variables are governed by the following equations of 
motion [36]: 

ẋ = vx ẏ = vy ż = vz (16)  

v̇x = ãT sin θ1 cos θ2 − g
v̇y = ãT cos θ1 cos θ2

v̇z = ãT sin θ2

(17)  

where angles (θ1, θ2) identify the thrust direction in (x̂k, ŷk, ẑk), g denotes 
the (local) gravitational acceleration, and ãT is the thrust acceleration. 
Angles (θ1, θ2) are defined in the following intervals − π < θ1 ≤ π and −
π/2 < θ2 ≤ π/2. When locally flat coordinates are used, thrust acceler
ation is denoted with symbol ãT instead of aT (= nT/x7), because the 
thrust acceleration is assumed constant, to simplify the subsequent 
analytical developments. Using (x,y,z,vx,vy,vz), the desired conditions at 
the end of phase 1 are 

xf = RM + hi zf = 0 vx,f = 0 vy,f = ωMRM vz,f = 0 (18)  

where ωM and RM denote resepcively the lunar rotation rate and radius. 
The final condition on vy,f considers the modest inertial velocity of a 
point on the lunar surface (at equator). 

It is worth remarking that these projected variables are used only in 
the context of the guidance algorithm, and allow a sufficiently accurate 
approximate description of the spacecraft trajectory, provided that the 
time of flight is short. In the scientific literature, alternative sets of 
variables were used for spacecraft reentry problems, leading to different 
governing equations for the vehicle trajectory. In particular, Mease et al. 
[37] addressed atmospheric entry using spherical coordinates, while 
adopting the great arc approximation to obtain the time evolution of a 
subset of state variables. Instead, Arslantaş et al. [38] employed tra
jectory governing equations projected onto an inertial frame, and used 
three Cartesian components to define the spacecraft position, in the 
context of a lunar descent problem. These two different coordinate sets 
do not require an iterative projection of variables, unlike locally flat 
coordinates, introduced in this subsection. Nevertheless, the latter var
iables allow expressing the related governing equations in the form of 
Eqs. (16) and (17), and this circumstance plays a crucial role for the 
iterative (closed-form) solution of the optimal control problem 
addressed in the next subsection. 

3.2. Optimal control 

In general, the numerical solution of spacecraft trajectory optimi
zation problems is an offline task, which cannot be achieved using on
board guidance algorithms. In this study, the projected variables, in 
conjunction with the related governing equations (16) and (17) and 
boundary conditions (18), are employed for the purpose of identifying 
the optimal thrust direction that minimizes the time of flight. Let x =
[

x y z vx vy vz
]T and u = [ θ1 θ2 ]

T represent respectively the 
state and control vector. The following optimal control problem is 
introduced: 

u*(t) = argmin
u

tf (19)  

subject to Eqs. (16)-(18),where the star denotes the optimal value of the 
related vector. 

The problem at hand admits an analytical solution that depends on 
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the initial values of the adjoint vector conjugate to the state equations 
(16) and (17), if ̃aT and g are assumed constant in Eq. (17). To prove this, 
a Hamiltonian H and the auxiliary function Φ are introduced, 

H = λ1vx + λ2vy + λ3vz + λ4(ãT cos θ2 sin θ1 − g) + λ5ãT cos θ2 cos θ1

+ λ6ãT sin θ2

(20)  

Φ = tf + υ1
[
xf − (RM + hi)

]
+ υ2zf + υ3vx,f + υ4

(
vy,f − ωMRM

)
+ υ5vz,f

(21)  

where {λj}j=1,…,6 and {υj}j=1,…,5 are respectvely the adjoint variables 
conjugate to the state equations (16) and (17) and to the boundary 
conditions (18). The necessary conditions for optimality include the 
boundary conditions for the adjoint variables [39], 

λ1,f = υ1 λ2,f = 0 λ3,f = υ2
λ4,f = υ3 λ5,f = υ4 λ6,f = υ5

(22)  

accompanied by the adjoint equations 

λ̇1 = −
∂H
∂x

= 0 ⇒ λ1 = λ1,0 (23)  

λ̇2 = −
∂H
∂y

= 0 ⇒ λ2 = λ2,0 = λ2,f = 0 (24)  

λ̇3 = −
∂H
∂z

= 0 ⇒ λ3 = λ3,0 (25)  

λ̇4 = −
∂H
∂vx

= − λ1 ⇒ λ4 = λ4,0 − λ1,0t (26)  

λ̇5 = −
∂H
∂vy

= − λ2 ⇒ λ5 = λ5,0 − λ2,0t = λ5,0 (27)  

λ̇6 = −
∂H
∂vz

= − λ3 ⇒ λ6 = λ6,0 − λ3,0t (28)  

where subscript 0 denotes the value of the corresponding variable at the 
initial time t0. The Pontryagin minimum principle leads to expressing 
the control angles in terms of the adjoint variables, 

u* = argmin
u

H ⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ1 = −
λ4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
4 + λ2

5

√ cos θ1 = −
λ5

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
4 + λ2

5

√

θ2 = − arcsin
λ6

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
4 + λ2

5 + λ2
6

√

(29)  

The condition λ5,0 = 0 leads to θ1 = ±π/2, which implies violation of 
the final conditions, therefore λ5,0 ∕= 0. Hence, the closed-form expres
sions of {λ1, λ3, λ4, λ5, λ6} can be scaled by λ5,0, to yield 

sin θ1 = −
λ̃4,0 − λ̃1,0t

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
λ̃4,0 − λ̃1,0t

]2
+ 1

√ cos θ1 = ∓
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
λ̃4,0 − λ̃1,0t

]2
+ 1

√ (30)  

θ2 = − arcsin
λ̃6,0 − λ̃3,0t

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
λ̃4,0 − λ̃1,0t

]2
+ 1 +

[
λ̃6,0 − λ̃3,0t

]2
√ (31)  

where ̃λj,0 = λj,0/λ5,0 (j = 1, 3, 4,6). These quantities are collected in λ0 :

= [ λ̃1,0 λ̃3,0 λ̃4,0 λ̃6,0 ]
T. In Eq. (30), the choice between + and − is 

related to the sign of λ5,0, i.e. + is to be selected if λ5,0 < 0, whereas − is 
chosen if λ5,0 > 0. However, at the initial time the thrust direction must 
certainly reduce component vy of the spacecraft velocity, and this means 
that ãT cos θ1 cos θ2 < 0 (cf. Eq. (17)), i.e. at the initial time cos θ1 < 0 
(because − π/2 < θ2 ≤ π/2). Hence, in the second relation of Eq. (30) 

the sign – is chosen. The analytical expressions (30)–(31) are used in 
Eqs. (16) and (17) and lead to obtaining closed-form solutions for all of 
the state variables, 

x = f1(λ0, t), y = f2(λ0, t), z = f3(λ0, t)
vx = f4(λ0, t), vy = f5(λ0, t), vz = f6(λ0, t) (32)  

where {fj}j=1,…,6 are nonlinear functions of (λ0, t). The explicit expres
sions for {fj}j=1,…,6, written in terms of elementary functions, are re
ported in Appendix. The preceding solutions for {x, z, vx, vy, vz} are 
evaluated at tf and inserted in the boundary conditions (18), 

f1
(
λ0, tf

)
− (RM + hi) = 0, f3

(
λ0, tf

)
= 0, f4

(
λ0, tf

)
= 0

f5(λ0, t) − ωMRM = 0, f6
(
λ0, tf

)
= 0 (33)  

Equation (33) contains a system of 5 nonlinear equations in 5 unknowns, 
i.e. tf and the 4 components of λ0. Numerical solvers (such as the 
embedded routine fsolve in Matlab) can be employed to find the nu
merical solution of this system in extremely short times (of order of 0.01 
s), provided that a proper guess is supplied. To do this, the analysis 
described in Ref. [36] can be used. In fact, for planar trajectories, cor
responding to z = 0 and vz = 0, a suitable first-attempt solution is 
proven to be [36] 

tf =
vy,f − vy,0

ãT

tan θ(G)

1,0 − tan θ(G)

1,f

asinh
(

tan θ(G)

1,f

)
− asinh

(
tan θ(G)

1,0

)

λ̃
(G)

1,0 =
tan θ(G)

1,0 − tan θ(G)

1,f

tf
λ̃
(G)

4,0 = tan θ(G)

1,0

(34)  

where θ(G)

1,0 and θ(G)

1,f are two guess values for the thrust angle θ1 at t0 and 

tf , respectively; in this work, θ(G)

1,0 = 180 deg and θ(G)

1,f = 120 deg. The first 
value corresponds to thrust direction pointing against the instantaneous 
velocity (at t0). The second value is such that cos θ(G)

1,f = − 1/2, i.e. the 
thrust component aimed at reducing vy is assumed to reduce to half of 
the thrust magnitude at the beginning of phase 1. The remaining two 

guess values, for λ̃
(G)

3,0 and λ̃
(G)

6,0 , are both set to 0. 
The guidance algorithm repeats the preceding solution process at 

each sampling time tk, which becomes the initial time t0 of the optimal 
control problem. The final time tf can be regarded as the time-to-go, and 
will be denoted with tgo hence forward. However, constant values of g 
and ̃aT are needed in each guidance interval, which has duration ΔtS. For 
the gravitational acceleration, the initial value is chosen, i.e. g = μ/r2

k . 
Instead, for the thrust acceleration, the average value of ̃aT in [tk, tk+1] is 
employed. Let nk denote the thrust acceleration at tk; in [tk, tk+1] the 
thrust acceleration equals nkc/[c − nk(t − tk)]. Hence, ̃aT is set to 

ãT =
1

ΔtS

∫tk+1

tk

nkc
c − nk(t − tk)

dt = −
c

ΔtS
ln
(

1 −
nk

c
ΔtS

)
(35) 

It is worth noticing that Eq. (29) resembles the linear tangent 
steering law [40–42]. However, preceding formulations of this 
well-consolidated guidance technique introduce approximate assump
tions [40] or employ complicated geometric analyses [40] to solve the 
problem. Instead, the three-dimensional guidance approach proposed in 
this work is based on the real-time numerical solution of the 
minimum-time problem formulated in flat coordinates, through 
enforcement of all the necessary conditions of optimality and without 
any further approximation or arbitrary assumption on the initial thrust 
angles θ1 and θ2. 

3.3. Commanded attitude 

The real-time numerical solution of the preceding optimal control 
problem provides the thrust angles (θ1, θ2), which identify the desired 
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thrust direction in (x̂k, ŷk, ẑk). The latter sequence is obtained from (ĉ1,

ĉ2, ĉ3) through a single counterclockwise elementary rotation about axis 

3 b y angle ξk. Therefore, the commanded thrust direction T̂
(C)

is given 
by 

T̂
(C)

= [ cos θ2 sin θ1 cos θ2 cos θ1 sin θ2 ][ ⋅̂k ŷk ẑk ]
T

= [ cos θ2 sin θ1 cos θ2 cos θ1 sin θ2 ]R3(ξk)[ ĉ1 ĉ2 ĉ3 ]
T (36)  

Under the assumption that the thrust is aligned with the spacecraft 

longitudinal axis, unit vector T̂
(C)

identifies the commanded direction 
ι̂(C). The actual body axis ι̂ must be driven toward ι̂(C) by the attitude 

control system. The remaining two commanded body axes, ̂j
(C)

and k̂
(C)

, 
are defined as 

k̂
(C)

:=
ĉ3 × ι̂(C)

|ĉ3 × ι̂(C)|
and ĵ

(C)
:= k̂

(C)
× ι̂(C) (37)  

These three unit vectors form vectrix C, i.e. C :=
[

ι̂(C) ĵ
(C)

k̂
(C) ]. 

Because closed-form expressions are available for (θ1, θ2), the compo

nents of ̂ι(C) (cf. Eq. (36)), ̂j
(C)

, and k̂
(C)

can be written in closed form, as 
well as the rotation matrix that relates C to N, i.e. R

C←N 
defined by N =

C R
C←N

. Using the kinematics equation that governs the time evolution of 

rotation matrices, it is straightforward to obtain the commanded angular 
velocity. In fact, 

Ṙ
C←N

= − ω̃C R
C←N

⇒ ω̃C = − Ṙ
C←N

RT
C←N

(38) 

Because analytical expressions are available for both R
C←N 

and Ṙ
C←N

, 

matrix ω̃C contains the closed-form expressions of the three components 

of the commanded angular rate 
N

→
ω

C
(
= CωC

)
along (̂ι(C), ĵ

(C)
, k̂

(C)
). The 

time derivative of ωC supplies ω̇C, which is necessary for nonlinear 
attitude control (cf. Section 5). However, the preceding relations are 
used to identify only components ωC,2 and ωC,3 of ωC. Instead, compo
nent ωC,1 (as well as its time derivative) is set to 0, because the existence 
of a component of the angular velocity along axis 1 is irrelevant for the 
purpose of correcting the thrust alignment, and is even undesired at 
touchdown. 

3.4. Guidance algorithm 

The guidance algorithm is intended to provide the commanded 
orientation and angular rate to the attitude control system. Therefore, 
the guidance algorithm has 

Input : rk, ξk,φk, vr,k, vt,k, vn,k, nk (at tk) → 
Output : tgo and R

C←N
,ωC, ω̇C (in [tk, tk+1]) (39) 

In summary, the following steps are completed at each sampling time 
tk:  

(1) the spherical coordinates are converted into locally flat variables 
(cf. Eqs. (12) and (13)),  

(2) the guess solution for the optimal control problem is identified 
(cf. Eq. (34)),  

(3) the equation system (33) is solved numerically, and  
(4) tgo and the closed-form expressions for θ1, θ2, R

C←N
, ωC, and ω̇C in 

[tk, tk+1] are obtained. 

The last guidance interval occurs when tgo ≤ ΔtS. 
It is worth stressing that the guidance approach at hand requires no 

interpolation or finite-difference method for finding Ṙ
C←N 

and ω̇C, thanks 

to the availability of analytical expressions for the previously mentioned 
variables. 

4. Phase 2. predictive bang-off-bang guidance 

Phase 2 starts at the end of arc 1, and is aimed at reaching the lunar 
surface with modest vertical velocity, zero horizontal velocity and 
angular rate. The threshold (lower) value for vr, denoted with vr,th, is set 
to − 1 m/s. This means that the radial velocity at touchdown is con
strained the interval [ − 1, 0[ m/s. Instead, the horizontal velocity 
magnitude at touchdown must not exceed 0.1 m/s (and this maximum 
value is denoted with v(max)

hor , i.e. v(max)
hor = 0.1 m/sec). The main thruster is 

responsible for decelerating the spacecraft. However, especially at the 
very beginning of phase 2, the spacecraft has incorrect alignment, 
therefore it is convenient to use the main thruster for reducing the 
horizontal velocity relative to the (rotating) lunar surface, given by 
(

v
→

− ωMRM t̂
)

. Thus, the main thruster is ignited only if 

ι̂⋅
(

v
→

− ωMRM t̂
)

< 0. Instead, the side jets are used mainly for attitude 

maneuvering. Yet, when the correct alignment is attained, they can be 
ignited in pairs (on the same side of the descent vehicle, in continuous 
mode), to reduce the relative horizontal velocity. Vertical alignment is 
described by r11 := cos(̂ι⋅̂r), and two threshold values for r11 are intro
duced: (a) r(L)11 , set to 0.9, and (b) r(U)

11 , set to 0.999. Three cases can occur: 
(i) r11 < r(L)11 , (ii) r(L)11 ≤ r11 ≤ r(U)

11 , and (iii) r11 > r(U)

11 . In case (i), the side 
jets are used for attitude maneuvering only. In case (ii), correct align
ment is close but not yet reached, and the side jets are used both for 
horizontal velocity correction and for attitude corrections. In case (iii), 
correct alignment is reached to a satisfactory accuracy, and the side jets 
are used for trajectory corrections only, i.e. to reduce the horizontal 
velocity, if the latter exceeds the limiting value v(max)

hor . 
The following steps, repeated iteratively at each sampling time tk, 

form the predictive bang-off-bang guidance scheme, aimed at identi
fying the ignition times for both the main thruster and the side jets:  

(1) evaluate the expected radial velocity at tk+1, v(E)
r,k+1, assuming 

vertical descent and no propulsion in [tk, tk+1];  
(2) evaluate the expected radial velocity at touchdown, v(E)

r,f , 
assuming vertical descent from time tk+1 and thrust always on and 
directed vertically; if touchdown does not occur and the altitude 
starts increasing, set v(E)r,f to infinity;  

(3) evaluate r11;  

(4) evaluate ηM := ι̂k⋅
(

v
→

k − ωMRM t̂k

)

;  

(5) evaluate the horizontal velocity relative to the lunar surface, i.e. 
v
→

hor,k := v
→

k − ωMRM t̂k − vr,k r̂k; 

(6) allocate the side jets (for either attitude maneuvering or hori
zontal velocity correction):  

a. If (r11 < r(L)11 ) or
(⃒
⃒
⃒ v
→

hor,k

⃒
⃒
⃒ < v(max)

hor

)

, then ignite the side jets for 

attitude maneuvering;  

b. If (r11 > r(U)

11 ) and
(⃒
⃒
⃒ v
→

hor,k

⃒
⃒
⃒ > v(max)

hor

)

, then ignite the side jets 

for horizontal velocity correction;  

c. If (r(L)11 ≤ r11 ≤ r(U)

11 ) and
(⃒
⃒
⃒ v
→

hor,k

⃒
⃒
⃒ > v(max)

hor

)

, then allocate a 

fraction of the sampling time interval to attitude maneuvering, 
and the rest to horizontal velocity correction; the lengths of 
the two partitions of the sampling time interval depend on r11;  

d. If (r11 > r(U)

11 ) and
(⃒
⃒
⃒ v
→

hor,k

⃒
⃒
⃒ ≤ v(max)

hor

)

, then switch off the side 

jets; 
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(7) define the ignition of the main engine in [tk,tk+1], on the basis of a 
hysteretic scheme:  
a. If (thrust was off in [tk− 1, tk] and vr,th ≤ v(E)

r,f ≤ 0) or 

((r11 < r(L)11 ) and (ηM ≥ 0)), then the main engine is off in [tk,
tk+1];  

b. If (thrust was on in [tk− 1, tk] and vr,th ≤ v(E)r,f ≤ 0) or 

((r11 < r(L)11 ) and (ηM < 0)), then the main engine is on in [tk,
tk+1];  

c. If (v(E)r,f < vr,th) and (r11 ≥ r(L)11 ), then the main engine is on in [tk,
tk+1];  

d. If (v(E)r,f > 0) and (r11 < r(L)11 ), then the main engine is off in [tk,
tk+1]. 

The previous conditions in steps (6) and (7) are checked sequentially, 
e.g. if condition (7 b) is fulfilled, then the main engine is ignited in [tk,
tk+1], and conditions (7c) and (7 d) need not to be checked. To clarify the 
possible outcomes of step (7), Table 1 reports all the possible combi
nations of conditions, with the related outcome in the last column, i.e. 
either ignition or shutdown of the main engine. The preceding scheme 
yields a bang-off-bang sequence of ignitions for the main thruster and 
the side jets. When the latter are employed for attitude maneuvering, the 
attitude control algorithm, in conjunction with pulse modulation, 
identifies the actual ignition times in the time interval [tk, tk+1]. More
over, the desired pointing direction of the longitudinal axis of the 
spacecraft is aligned with ̂rk, and this identifies the commanded single- 
axis attitude. 

5. Quaternion-based nonlinear reduced-attitude control 

The guidance algorithm provides the desired orientation and angular 
rates, which must be pursued by the attitude control system. However, 
only the alignment of the longitudinal axis ̂ι with ̂ ι(C) is crucial for the 
purpose of pointing the thrust toward the correct direction. A reduced- 
attitude-tracking algorithm, which aims at pursuing the desired align
ment for a single axis, represents a suitable solution to the problem of 
interest. This section addresses a new feedback quaternion-based 
reduced-attitude-tracking algorithm. 

5.1. Relative attitude kinematics 

As a preliminary step, the commanded Euler parameters (quater
nions) are obtained from R

C←N 
and denoted with {q(C)

0 ,q(C)}. The actual 

body axes are aligned with the unit vectors that form B. The rotation 
matrix that relates B and C, associated with the commanded body axes, 

can be written in terms of the error quaternion {q(E)0 ,q(E)} [34], 

R
B←C

= R
B←N

RT
C←N

=
{[

q(E)
0

]2
−
[
q(E)]Tq(E)

}
I3×3 + 2q(E)[q(E)]T

− 2q(E)
0 q̃(E)

(40)  

The first row of matrix R
B←C 

contains the components of axis ̂ι in C and is 

given by 

⎡

⎢
⎢
⎢
⎣

[
q(E)

0

]2
+
[
q(E)

1

]2
−
[
q(E)

2

]2
−
[
q(E)

3

]2

2
[
q(E)

1 q(E)
2 +q(E)

0 q(E)
3

]

2
[
q(E)

1 q(E)
3 − q(E)

0 q(E)
2

]

⎤

⎥
⎥
⎥
⎦

T

(41)  

where subscripts 1, 2, and 3 refer to the components of q(E). It is 
apparent that correct alignment of ̂ι and ̂ι(C), i.e. ̂ι ≡ ι̂(C), corresponds to 
[
q(E)

2

]2
+
[
q(E)

3

]2
= 0 (42) 

Moreover, the kinematics equations for {q(E)
0 ,q(E)} are [43] 

q̇(E)
0 = −

1
2
[
q(E)]TωE (43)  

q̇(E)
=

1
2

[
q(E)

0 I3×3 + q̃(E)
]
ωE (44)  

where ωE := ω − R
B←C

ωC. The time evolution of the rotation matrix R
B←C 

is 

governed by the following equation [43]: 

Ṙ
B←C

= − ω̃E R
B←C

(45)  

5.2. Feedback control law and stability analysis 

The target set for the attitude tracking problem is 
[
q(E)

2

]2
+
[
q(E)

3

]2
= 0 and ωE = 0 (46)  

and corresponds to achieving ωE = 0 and the correct alignment of axis 1, 
while the commanded orientation of the remaining two axes is not 
tracked. 

Proposition 1. For the torque vector TC, the following feedback con
trol law is introduced: 

TC = ω̃J(B)
C ω + J̇(B)

C ω + J(B)
C

[

R
B←C

ω̇C − ω̃E R
B←C

ωC

]

− J(B)
C A− 1

[
BωE

+ f
(

q(E)
0 ,q(E)

)]
(47)  

where 

f
(

q(E)
0 , q(E)

)
:=

⎡

⎢
⎢
⎣

0
q(E)

0 q(E)
2 + q(E)

1 q(E)
3

q(E)
0 q(E)

3 − q(E)
1 q(E)

2

⎤

⎥
⎥
⎦

T

(48)  

and A and B are two constant positive definite matrices; A is also sym
metric. The control law (47) drives the dynamical system described by 
Eqs. (11) and (43)-(44) toward the invariant set composed of  

(1) ωE = 0 and [q(E)
2 ]

2
+ [q(E)3 ]

2
= 0  

(2) ωE = 0 and [q(E)
1 ]

2
+ [q(E)0 ]

2
= 0 

Table 1 
Decision table for ignition of the main engine.  

v(E)r,f 
r11 ηM Thrust in [tk− 1, tk] Thrust in [tk, tk+1]

v(E)r,f < vr,th < r(L)11 
≥ 0 ON or OFF OFF (7a) 

v(E)r,f < vr,th < r(L)11 
< 0 ON or OFF ON (7 b) 

v(E)r,f < vr,th ≥ r(L)11 
≥ 0 ON or OFF ON (7c) 

v(E)r,f < vr,th ≥ r(L)11 
< 0 ON or OFF ON (7c) 

vr,th ≤ v(E)r,f ≤ 0 < r(L)11 
≥ 0 ON or OFF OFF (7a) 

vr,th ≤ v(E)r,f ≤ 0 < r(L)11 
< 0 ON or OFF ON (7 b) 

vr,th ≤ v(E)r,f ≤ 0 ≥ r(L)11 
≥ 0 OFF OFF (7a) 

vr,th ≤ v(E)r,f ≤ 0 ≥ r(L)11 
≥ 0 ON ON (7 b) 

vr,th ≤ v(E)r,f ≤ 0 ≥ r(L)11 
< 0 OFF OFF (7a) 

vr,th ≤ v(E)r,f ≤ 0 ≥ r(L)11 
< 0 ON ON (7 b) 

v(E)r,f > 0 < r(L)11 
≥ 0 ON or OFF OFF (7a) 

v(E)r,f > 0 < r(L)11 
< 0 ON or OFF ON (7 b) 

v(E)r,f > 0 ≥ r(L)11 
≥ 0 ON or OFF OFF (7 d) 

v(E)r,f > 0 ≥ r(L)11 
≥ 0 ON or OFF OFF (7 d)  
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Proof. As a first step, the following candidate Lyapunov function is 
introduced: 

V =
1
2
ωT

EAωE +
[
q(E)

2

]2
+
[
q(E)

3

]2
(49)  

It is apparent that this function is always positive definite and vanishes 
only in the target set. Second, V has continuous partial derivatives. Using 
Eqs. (11), (44) and (45), the time derivative of V equals 

V̇ = ωT
EA

{[
J(B)

C

]− 1(
− ω̃J(B)

C ω − J̇(B)
C ω + TC

)
− R

B←C
ω̇C + ω̃E R

B←C
ωC

}

+
[
q(E)

0 q(E)
2 + q(E)

1 q(E)
3

]
ωE,2 +

[
q(E)

0 q(E)
3 − q(E)

1 q(E)
2

]
ωE,3

(50)  

where ωE,j denotes component j of ωE. Insertion of the feedback law (47) 
leads to 

V̇ = − ωT
EBωE (51)  

which is negative (because B is positive definite), except at ωE = 0, 
where V̇ vanishes. Definitely, V is a positive definite function, with 
continuous partial derivatives and such that V̇ < 0 (unless ωE = 0), 
therefore V is a Lyapunov function [41]. 

Moreover, because V̇ is continuous and negative (except at ωE = 0), 
the condition V(q(E)0 (t),q(E)(t),ωE(t)) ≤ V(q(E)

0 (t0),q(E)(t0),ωE(t0)) de
fines a compact set C. The invariant set, which plays a crucial role in the 
LaSalle’s principle, is to be sought in A ∩ C, i.e. in the portion of the 
attracting set A contained in C. By definition, the invariant set collects all 
the dynamical states (in the attracting set) that remain unaltered. This 
means that once the invariant set is reached, ωE = 0 at future times, 
which implies ω̇E = 0, i.e. 

ω̇E = ω̇ − R
B←C

ω̇C + ω̃E R
B←C

ωC = ω̇ − R
B←C

ω̇C = 0 (52)  

Using Eqs. (11) and (47), the preceding relation simplifies to 

A− 1f
(

q(E)
0 ,q(E)

)
= 0 ⇒ f

(
q(E)

0 , q(E)
)
= 0 (53)  

i.e. 

q(E)
0 q(E)

2 + q(E)
1 q(E)

3 = 0 and q(E)
0 q(E)

3 − q(E)
1 q(E)

2 = 0 (54)  

Let 
{

R
B←C

}

jk 
denote element (j, k) of R

B←C
. Insertion of the two conditions 

(54) in R
B←C

, written in terms of the error quaternion (cf. Eq. (40)), leads 

to obtaining 
{

R
B←C

}

11
= ±1. Thus, the invariant set includes two 

subsets: 

(S) ωE = 0 and 
{

R
B←C

}

11
= 1 or, equivalently, ωE = 0 and [q(E)2 ]

2
+

[q(E)
3 ]

2
= 0, and 

(U) ωE = 0 and 
{

R
B←C

}

11
= − 1 or, equivalently, ωE = 0 and [q(E)1 ]

2
+

[q(E)0 ]
2
= 0. □ 

The preceding proposition identifies the two subsets that form the 
invariant set. Stability of these two subsets is addressed in the following 

Proposition 2. With reference to the dynamical system described by 
Eqs. (11) and (43)-(44), controlled with the feedback law (47), invariant 
subset S enjoys asymptotic stability, whereas invariant subset U is 
unstable. 

Proof. Proposition 2 identifies invariant subsets S and U. This means 

that ωE = 0 at all future times implies either (a) [q(E)2 ]
2
+ [q(E)

3 ]
2
= 0 or (b) 

[q(E)1 ]
2
+ [q(E)0 ]

2
= 0. Violation of both conditions (a) and (b) at a generic 

time t implies ωE ∕= 0 at time (t+ δt), where δt > 0 is an arbitrary small 
time. As a result, V̇ = − ωT

EBωE < 0 if both (a) and (b) are violated. 
In subset U, V̇ = 0 and V = 1. At time t, the following neighborhood 

of subset U can be identified: {ωE = 0, [q(E)2 ]
2
+ [q(E)3 ]

2
= 1 − ε}, where ε 

is an arbitrary small, positive constant. In this neighborhood, V = 1 −

ε < 1. Moreover, at (t + δt) (with δt arbitrarily small and positive), ωE ∕=

0 and V̇ = − ωT
EBωE < 0 as a result. This condition implies that V < 1 at 

all future times, which prevents the dynamical system from converging 
to V = 1, condition associated with subset U. The existence of an un
stable neighborhood of subset U proves that invariant subset U is un
stable. 

In subset S, V̇ = 0 and V = 0 (absolute minimum value of V). At time 
t, in a sufficiently small neighborhood of subset S, either condition (a) or 
equality ωE = 0 is violated. In both cases, at (t+ δt), 0 < V < 1 and 
V̇ < 0. Monotonic decrease of V drives the dynamical system toward the 
global minimum of V, which equals 0 and corresponds to subset S. This 
proves the attractivity of invariant subset S. The Lyapunov theorem [44] 
for invariant sets ensures the stability of subset S. Attractivity and sta
bility imply asymptotic stability. □ 

In short, the invariant set includes two subsets, denoted with S and U. 
It is apparent that subset S is the target set, whereas subset U corre
sponds to the alignment of body axis 1 toward a direction opposite to the 
desired one. While subset U represents an unstable set, the target set is 
asymptocally stable. This circumstance has the remarkable consequence 
that – from the numerical point of view – the dynamical system of in
terest can be expected to enjoy global stability at the desired alignment 
in practical operational conditions, if the feedback law (47) is used. 

5.3. Gain selection 

The feedback control law (47) is defined in terms of two constant, 
positive definite matrices, i.e. A and B. Selection of these matrices affects 
the transient behavior and the convergence time of the actual attitude 
toward the commanded one. In this research, these two matrices are 
selected by assuming that both of them are diagonal and written in terms 
of two positive constants c1 and c2, i.e. 

A− 1 = c1I3×3 and B = c2I3×3 (55)  

For the purpose of preliminary selection of the control gains, in three- 
axial (full-attitude) maneuvers, the rotation is assumed to occur about 
the eigenaxis, and the gains of the quaternion-based nonlinear feedback 
law are found using the second-order equation [43]. 

φ̈E + c1c2φ̇E + c1 sin
φE

2
= 0 (56)  

where φE is the principal angle. If φE is sufficiently small, then 
sin(φE/2) ≈ φE/2, and Eq. (56) assumes the form of a second-order 
linear differential equation, 

φ̈E + 2ζωnφ̇E + ω2
nφE = 0

with c1 = 2ω2
n and c2 =

ζ
ωn

(57) 

The associated second-order system has damping coefficient ζ and 
natural frequency ωn. Selection of these two parameters, which have a 
straightforward interpretation in relation to the transient behavior, 
leads to selecting two proper values of c1 and c2. Although the reduced- 
attitude control algorithm differs to some extent from the full-attitude 
control scheme, this methodology for preliminary selection of A and B 
is adopted and implemented, by setting ωn = 2 s− 1 and ζ = 1. 
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5.4. Pulse-modulated actuation using side jets 

The control torque defined by Eq. (47) is provided by the attitude 
control system, composed of the 12 side-jets represented in Fig. 1. These 
actuators are equally distributed in 3 sets, indicated with subscript i =
1,2,3 and referring to axis ̂ι, ̂j, and k̂. For set i, the side jets are actuated 
in pairs, to provide either a positive or a negative torque component i. As 
an example, in Fig. 1 ignition of jets 2 and 6 (of set 1) yields a positive 
torque component along ι̂. The i-th set of actuators yields a torque 
magntiude T(max)

c,i = 2biFi(t), which depends on the thrust Fi(t) of the side 
jets and their fixed distance bi with respect to the related body axis. As 
the magnitude of Fi(t) cannot be controlled, the only option to tune the 
torque magnitude is operating the side jets in pulse mode, by modulating 
their ignition time tON,i over time intervals named duty cycles (DC). The 
average torque yielded by the modulated actuation over each DC 
approximately equals the desired torque, with accuracy depending on 
the modulator design. 

The pulse width modulation [28] (PWM) is used to convert the 
nominal control torque from Eq. (47) into the three time intervals tON,i, 
one for each torque component. In the PWM the value of DC is constant 
in each phase (cf. Table 2), therefore the values of tON,i are calculated at 
constant time intervals using the following expressions: 

tON,i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DC if
⃒
⃒Tc,i

⃒
⃒ ≥ T(max)

c,i
⃒
⃒Tc,i

⃒
⃒

T(max)
c,i

DC if T(min)
c,i <

⃒
⃒Tc,i

⃒
⃒ < T(max)

c,i

0 if
⃒
⃒Tc,i

⃒
⃒ ≤ T(min)

c,i

(58)  

where DC is a design parameter of the modulator, which must be 
accurately selected during the design process [29], and T(min)

c,i =

T(max)
c,i t(min)

ON /DC is the minimum torque magnitude that can be produced 

by the side jets associated with set i; T(min)
c,i depends on their minimum 

actuation time t(min)
ON , therefore it is a technological constraint [30]. 

The side jets are assumed to be monopropellant thrusters, where the 
propellant is fed by the action of an inert pressurant gas. The reservoir 
pressure of the gas decreases in time due to gas ejection, with conse
quent exponential reduction of the thrust, as specified in Section 2. For 
the numerical analysis discussed in the following section, all the side jets 
are assumed to share the same pressurant gas tank and design specifi
cations, reported in Table 2. 

6. Numerical simulations 

The guidance, control, and actuation architecture proposed in this 
study is tested in the presence of nonnominal flight conditions, namely 
errors in (i) the initial components of position and velocity and (ii) initial 
attitude and angular rate. The sampling time interval is set to 1 s for phase 
1 and 0.1 s for phase 2. Several zonal harmonics of the selenopotential are 
responsible of further deviations from the nominal flight conditions, 
because the guidance algorithm considers only a piecewise constant 
gravitational acceleration. A Monte Carlo (MC) campaign, composed of 
100 simulations, is run, with the intent of testing the methodology at 

hand. Initial stochastic Gaussian displacements on the position and ve
locity variables are assumed, with zero mean and the following standard 
deviations: r(σ)0 = 2 km, φ(σ)

0 = 0.163 deg (corresponding to 5 km in the 
direction normal to the orbital plane), and v(σ)

0 = 50 m/s, where χ(σ)0 

denotes the initial standard deviation of the generic variable χ; v(σ)0 rep
resents the standard deviation on the initial velocity magnitude; the 
random direction of the velocity displacement has uniform distribution 
over the two-dimensional sphere. Similarly, errors on the initial attitude 
angles and rates are introduced. The initial attitude is defined as 

BT(t0) = R1(Φ)R2(Θ)R3(Ψ)NT(t0) (59)  

where angles Ψ, Θ, and Φ have Gaussian distribution, with standard 
deviation of 30 deg and mean values Ψ0 = − 90 deg, Θ0 = 0 deg, and 
Φ0 = 0 deg. The initial attitude rates have Gaussian distribution as well, 
zero mean, and standard deviation equal to 10 deg/s. Moreover, the 
valves are modeled as first-order systems, with time constant set to 3.6 
msec [45]. For the purpose of improving the description of the thrusters 
operational behavior, noise is modeled as well, by assuming the 
following actual torque TC,real(t), supplied by each pair of side jets: 

TC,real(t) = TC,nom(t) + rn(t) (60)  

where TC,nom(t) is the nominal torque, whereas rn(t) is a piecewise linear 
function of time, used to interpolate rn,j (= rn(tj)) stochastic samples. The 
latter are equally spaced, with a time resolution of 1 msec, i.e. tj+1 − tj =

1 msec. The values rn,j have uniform distribution in the range [ −
0.01,0.01]TC,nom,0, where TC,nom,0 is the nominal torque magnitude at 
the initial time; rn,j is set to 0 if TC,nom(tj) = 0. 

For phase 1, Fig. 3 through 8 portray the time histories of altitude, 
declination, radial velocity, relative transverse velocity vR,t, defined as 
vR,t = vt − ωMr cos φ, normal velocity (all from the MC campaign), and 
modulated torque (in a single MC run). For phase 2, Fig. 9 through 17 
depict the time histories of altitude, velocity and angular velocity 
components, misalignment angle φf between the commanded and the 
actual longitudinal axis (all from the MC campaign), and modulated 
torque (in a single MC run). These variables regard the center of mass of 
the vehicle, whose final altitude equals 0.95 m, and takes into account 
its actual position inside the descent vehicle. Fig. 18 portrays a zoom on 
component 3 of the control torque, in the first 2 s of phase 2 (single 
simulation). Exponential time histories at transitions from ignitions and 
shutdowns of the side jets are apparent, as well as noise. The statistics on 
the final values at touchdown regard the velocity components (vr, vR,t,

vn) for both the center of mass and the four pads that touch the lunar 
surface, as well as the values of declination, misalignment angle, com
ponents of the angular velocity, time of flight, and mass. Tables 3 and 4 
report these statistics, which unequivocally testify to the excellent per
formance of the guidance, control, and actuation architecture at hand. 
Finally, Table 5 contains the statistics on runtime, on an Intel core i7 @ 
1.30 GHz, i.e. its average, maximum, minimum value, and standard 

Table 2 
Design parameters of the side jets.  

Parameter Symbol Value Unit 

Initial thrust Fi(t0) 200 N 
Torque arm bi 1 m 
Time constant tcar 7027 sec 
Duty cycle in phase 1 DC 0.2 sec 
Duty cycle in phase 2 DC 0.05 sec 
Minimum acuation time t(min)

ON 
0.02 sec  

Fig. 3. Phase 1: time histories of altitude (MC campaign).  
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deviation, obtained from 100 Monte Carlo simulations, in which 
thrusters noise is omitted. In fact, including the latter increases the 
runtime, because of the longer time needed for the integration the 
spacecraft dynamics, whereas the computation of the guidance and 
control action is substantially unaffected. Consequently, omitting the 
thrusters noise allows obtaining a more meaningful evaluation of the 
computational time required by the guidance and control algorithm 
proposed in this research. 

7. Concluding remarks 

This research considers the three-dimensional descent path of a 

Fig. 4. Phase 1: time histories of declination (MC campaign).  

Fig. 5. Phase 1: time histories of the radial velocity (MC campaign).  

Fig. 6. Phase 1: time histories of the relative transverse velocity 
(MC campaign). 

Fig. 7. Phase 1: time histories of the normal velocity (MC campaign).  

Fig. 8. Phase 1: time histories of the desired torque components yielded by 
PWM (single MC simulation). 

Fig. 9. Phase 2: time histories of altitude (MC campaign).  

Fig. 10. Phase 2: time histories of the radial velocity (MC campaign).  
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spacecraft, from periselenium of its operational orbit to the lunar surface. 
The gravitational model includes several relevant harmonics of the sele
nopotential. The landing vehicle is equipped with a main propulsion sys
tem, for trajectory control, accompanied by 12 monopropellant thrusters, 
equally distributed into three mutually orthogonal planes and mainly 
dedicated to attitude maneuvering. The trajectory is split in two arcs: (1) 
descent trajectory, up to an altitude of 50 m, and (2) terminal approach 
and soft touchdown. For phase 1, a new, three-dimensional locally-flat 
near-optimal guidance is introduced that is based on the local projection of 
the position and velocity variables. A minimum-time problem is defined 
using the locally flat coordinates of position and velocity, and consists in 

Fig. 11. Phase 2: time histories of the relative transverse velocity 
(MC campaign). 

Fig. 12. Phase 2: time histories of the normal velocity (MC campaign).  

Fig. 13. Phase 2: time histories of component 1 of the angular velocity 
(MC campaign). 

Fig. 14. Phase 2: time histories of component 2 of the angular velocity 
(MC campaign). 

Fig. 15. Phase 2: time histories of component 3 of the angular velocity 
(MC campaign). 

Fig. 16. Phase 2: time histories of the misalignment angle (MC campaign).  

Fig. 17. Phase 2: time histories of the desired torque components yielded by 
PWM (single MC simulation). 
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finding the optimal thrust direction that minimizes the time of flight for 
achieving the desired conditions at the beginning of phase 2. The optimal 
control problem at hand is proven to be amenable to an analytical solution. 

This circumstance allows translating the minimum-time problem of in
terest into five nonlinear equations in five unknowns. Their numerical 
solution can be performed as a real-time process, because a suitable guess, 
related to intuitive dynamical variables, is available. The method at hand 
yields closed-form functions of time for the two thrust angles, which 
identify the commanded thrust direction. The two fundamental steps of 
the guidance algorithm, i.e. (i) local projection and (ii) numerical solution 
of the nonlinear equation system, are performed iteratively, at equally- 
spaced sampling times. During terminal approach (phase 2), correct ver
tical alignment, modest vertical velocity, and zero angular rate and hori
zontal velocity at touchdown are pursued. With this intent, a hysteretic 
predictive bang-off-bang guidance algorithm is proposed that is capable of 
guaranteeing the desired final conditions, while providing the proper 
allocation of side jet ignitions. In fact, while the main thruster is employed 
for decelerating the landing vehicle, side jets are used for the purpose of 
gaining the correct attitude and simultaneously reducing the residual 
horizontal velocity. In both phases 1 and 2, the attitude control system has 
the objective of aligning the actual thrust direction, which is fixed with 
respect to the spacecraft, with the commanded one, provided by the 
guidance algorithm. Thus, for the problem at hand, attitude control must 
pursue single-axis alignment. This work presents and applies a new 
quaternion-based nonlinear reduced-attitude control algorithm, able to 
pursue a time-varying pointing direction. An effective feedback law 
identifies the required torque. The Lyapunov theorem and the LaSalle’s 
invariance principle provide the theoretical background needed to prove 
that the reduced-attitude-tracking feedback law at hand enjoys asymptotic 
stability properties. The attitude actuation system consists of 12 mono
propellant thrusters, equally distributed into three mutually orthogonal 
planes. They are ignited using pulse width modulation. All the side jets are 
connected to the same propellant supplier and high-pressure tank, whose 
pressure decreases with the system actuation cycles, leading the actual 
torque to decrease with time. This time-varying behavior, the time delay 
associated with side jet switches (i.e., ignitions or shutdowns), and noise 
are all included in the dynamical modeling, as a further effort aimed at the 
accurate prediction of the overall dynamics. For the purpose of testing the 
guidance, control, and actuation architecture at hand, a Monte Carlo 
campaign is run, assuming significant displacements from the nominal 
initial conditions and including the most meaningful harmonics of the 
selenopotential. The numerical results unequivocally prove that the joint 
use of the two explicit guidance schemes, i.e. (a) locally-flat near-optimal 
guidance and (b) predictive bang-off-bang guidance, in conjunction with 
pulse-modulated reduced-attitude control, represents an effective 
approach for lunar descent and safe touchdown. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.  

Appendix. Closed-form solution for the three-dimensional locally-flat guidance 

In this appendix, the optimal control problem defined by Eq. (19) is proven to be amenable to a closed-form solution. As a first step, the optimal 
thrust angles, written in terms of initial adjoint variables, are used in Eq. (17), leading to 

v̇x = − ãT
λ̃4,0 − λ̃1,0t

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
λ̃4,0 − λ̃1,0t

]2
+
[
λ̃6,0 − λ̃3,0t

]2
+ 1

√ − g (61)  

v̇y = − ãT
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
λ̃4,0 − λ̃1,0t

]2
+
[
λ̃6,0 − λ̃3,0t

]2
+ 1

√ (62)  

Fig. 18. Phase 2: zoom on the time history of actual torque component z (single 
MC simulation). 

Table 3 
Statistics on the final values of trajectory and attitude variables, time of flight, 
and final mass.  

Variable Average 
value 

Standard 
deviation 

Variable Average 
value 

Standard 
deviation 

φf (deg) – 7.4 e − 6 6.6 e − 5 φf (deg) 2.47 1.13 
vr,f (m/s) – 0.53 0.20 ωx,f (deg/s) 0.50 2.78 
vR,t,f (m/s) 6.5 e − 2 0.19 ωy,f (deg/s) 8.1 e − 2 1.13 
vn,f (m/s) – 2.5 e − 2 0.20 ωz,f (deg/s) – 8.3 e − 2 0.48 
tf (sec) 377.0 3.8 mf (kg) 647.8 6.6  

Table 4 
Statistics on the final velocity components of the four landing pads.  

Average values Pad 1 Pad 2 Pad 3 Pad 4 

vr,f (m/s) – 0.52 – 0.53 – 0.52 – 0.53 
vR,t,f (m/s) 7.1 e − 2 7.5 e− 2 6.5 e − 2 8.0 e − 2 
vn,f (m/s) – 3.4 e − 2 – 1.8 e − 2 – 2.4 e − 2 – 2.8 e − 2 

Standard deviations Pad 1 Pad 2 Pad 3 Pad 4 

vr,f (m/s) 0.20 0.20 0.20 0.20 
vR,t,f (m/s) 0.19 0.20 0.19 0.19 
vn,f (m/s) 0.21 0.21 0.21 0.22  

Table 5 
Runtime: extremal values, average value, and standard deviation (MC 
campaign).  

Runtime Minimum Maximum Average Standard deviation 

trun (sec) 230.3 269.7 247.2 6.4  
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v̇z = − ãT
λ̃6,0 − λ̃3,0t

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
λ̃4,0 − λ̃1,0t

]2
+
[
λ̃6,0 − λ̃3,0t

]2
+ 1

√ (63) 

where subscript 0 refers to the initial time t0. Because g and ̃aT are constant, the preceding equations are integrable. Letting 

c1 = λ̃
2
1,0 + λ̃

2
3,0, c2 = − 2λ̃1,0λ̃4,0 − 2λ̃3,0λ̃6,0, c3 = λ̃

2
4,0 + λ̃

2
5,0 + λ̃

2
6,0 (64)  

the general solution for Eqs. 61–63 is obtained through the Matlab symbolic toolbox [46], and is expressed in terms of elementary functions as 

vx(t) = vx,0 − g(t − t0) + ãT[m1(t) − m1(t0)] (65)  

vy(t) = vy,0 + ãT[m2(t) − m2(t0)] (66)  

vz(t) = vz,0 + ãT[m3(t) − m3(t0)] (67)  

where 

m1(t) =
λ̃1,0

c1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1t2 + c2t + c3

√
−

c2λ̃1,0 + 2c1λ̃4,0

2c3/2
1

ln

[
c2 + 2c1t

2c1/2
1

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1t2 + c2t + c3

√
]

(68)  

m2(t) = −
1

c1/2
1

ln

[
c2 + 2c1t

2c1/2
1

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1t2 + c2t + c3

√
]

(69)  

m3(t) =
λ̃3,0

c1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1t2 + c2t + c3

√
−

c2λ̃3,0 + 2c1λ̃6,0

2c3/2
1

ln

[
c2 + 2c1t

2c1/2
1

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1t2 + c2t + c3

√
]

(70)  

Then, using the preceding expressions, Eq. (16) is integrated as well, to yield 

x(t) = x0 +
[
vx,0 + gt0 − ãTm1(t0)

]
(t − t0) −

1
2

g(t − t0)
2
+ ãT[n1(t) − n1(t0)] (71)  

y(t) = y0 +
[
vy,0 − ãTm2(t0)

]
(t − t0) + ãT[n2(t) − n2(t0)] (72)  

z(t) = z0 +
[
vz,0 − ãTm3(t0)

]
(t − t0) + ãT[n3(t) − n3(t0)] (73)  

where 

n1(t) =
3λ̃1,0c2 + 4λ̃4,0c1 + 2λ̃1,0c1t

4c2
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1t2 + c2t + c3

√
−

(
λ̃1,0c2 + 2λ̃4,0c1

)
(c2 + 2c1t)

4c5/2
1

ln

[
c2 + 2c1t

2c1/2
1

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1t2 + c2t + c3

√
]

(74)  

n2(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1t2 + c2t + c3

√

c1
−

c2 + 2c1t
2c3/2

1

ln

[
c2 + 2c1t

2c1/2
1

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1t2 + c2t + c3

√
]

(75)  

n3(t) =
3λ̃3,0c2 + 4λ̃6,0c1 + 2λ̃3,0c1t

4c2
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1t2 + c2t + c3

√
−

(
λ̃3,0c2 + 2λ̃6,0c1

)
(c2 + 2c1t)

4c5/2
1

ln

[
c2 + 2c1t

2c1/2
1

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1t2 + c2t + c3

√
]

(76) 

Equations (65)–(67) and (71)-(73), in conjunction with Eqs. (68)–(70) and (74)-(76), provide the time histories of {x,y,z,vx,vy,vz}. They can be 
written in the compact form (32) and evaluated at the final time. In the context of the near optimal locally-flat guidance, the initial time t0 is the instant 
tk when the sampling interval [tk, tk+1] begins. 
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