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Abstract

Bilateral trade models the problem of intermediating between two rational agents — a seller
and a buyer — both characterized by a private valuation for an item they want to trade. We
study the online learning version of the problem, in which at each time step a new seller and
buyer arrive and the learner has to set prices for them without any knowledge about their
(adversarially generated) valuations.

In this setting, known impossibility results rule out the existence of no-regret algorithms
when budget balanced has to be enforced at each time step. In this paper, we introduce the
notion of global budget balance, which only requires the learner to fulfill budget balance over the
entire time horizon. Under this natural relaxation, we provide the first no-regret algorithms
for adversarial bilateral trade under various feedback models. First, we show that in the
full-feedback model, the learner can guarantee 𝑂̃(√𝑇) regret against the best fixed prices in
hindsight, and that this bound is optimal up to poly-logarithmic terms. Second, we provide a
learning algorithm guaranteeing a 𝑂̃(𝑇3/4) regret upper bound with one-bit feedback, which we
complement with a Ω(𝑇5/7) lower bound that holds even in the two-bit feedback model. Finally,
we introduce and analyze an alternative benchmark that is provably stronger than the best fixed
prices in hindsight and is inspired by the literature on bandits with knapsacks.

*This is the full version of Bernasconi et al. [2024b].
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1 Introduction

Bilateral trade is a classic economic problem where two agents — a seller and a buyer — are
interested in trading a good. Both agents are characterized by a private valuation for the item, and
their goal is to maximize their own utility. Solving this problem requires the design of a mechanism
that intermediates between the two parties, facilitating the trade. Ideally, the mechanism should
maximize efficiency (i.e., trade whenever the buyer’s valuation exceeds the seller’s one) while
ensuring that agents behave according to their true preferences (incentive compatibility), and that
the utility for participating in the mechanism of each agent is non-negative (individual rationality).
These properties ensure favorable outcomes for the agents, yet they do not guarantee the economic
viability of the mechanism. To see this, consider the following mechanismℳ. ℳ asks the agents for
their valuations, 𝑠 for the seller and 𝑏 for the buyer, and makes the trade happen if it is convenient
(i.e., if 𝑠 ≤ 𝑏). In case of a trade,ℳ then charges 𝑠 to the buyer and pays 𝑏 to the buyer. It is not
hard to see thatℳ enforces incentive compatibility and individual rationality, and is efficient by
design. However, it exhibits the major drawback of allowing the intermediary to incur a net loss
when 𝑏 > 𝑠. To avoid such situations, a crucial constraint in bilateral trade is budget balance, which
restricts the mechanism from subsidizing the agents.
As highlighted by the above example, an incentive compatible mechanism maximizing efficiency
for bilateral trade may not be budget balanced. This phenomenon was first observed by Vickrey
[1961]; subsequently Myerson and Satterthwaite [1983], provided a more general impossibility
result by showing the existence of instances where a fully efficient mechanism that satisfies incentive
compatibility, individual rationality, and budget balance does not exist. This result holds even when
probabilistic information on the agents’ valuations is available. To circumvent these impossibility
results, the extensive subsequent research primarily focuses on finding approximately efficient
mechanisms in the Bayesian setting. There, various incentive compatible mechanisms exist that give
a constant-factor approximation to the social welfare (see, e.g., Blumrosen and Dobzinski [2014],
Kang et al. [2022], while more recent works also consider the harder problem of approximating
the gain from trade [McAfee, 2008, Blumrosen and Mizrahi, 2016, Brustle et al., 2017, Deng et al.,
2022, Fei, 2022]. While the Bayesian assumption of having perfect knowledge about the underlying
distributions of valuations is, in some sense, necessary for extracting meaningful approximations to
the social welfare [Dütting et al., 2021], it is important to observe that this assumption is oftentimes
unrealistic.
Following the recent line of work initiated by Cesa-Bianchi et al. [2021], we study this fundamental
mechanism design problem through the lens of regret minimization in a repeated setting where at
each time 𝑡, a new seller/buyer pair arrives. The seller arriving at time 𝑡 has a private valuation 𝑠𝑡
representing the lowest price they are willing to accept for the item. Analogously, the buyer has a
private valuation 𝑏𝑡 representing the highest price they are willing to pay for the item. The learner,
without any knowledge about the private valuations at the current time 𝑡, posts two (possibly
randomized) prices: 𝑝𝑡 to the seller and 𝑞𝑡 to the buyer. A trade happens when both agents agree
to trade, i.e., when 𝑠𝑡 ≤ 𝑝𝑡 and 𝑞𝑡 ≤ 𝑏𝑡 . After posting (𝑝𝑡 , 𝑞𝑡), the learner observes some feedback
about the transaction, and is awarded the gain from trade:

GFT𝑡(𝑝, 𝑞) = I{𝑠𝑡 ≤ 𝑝}I{𝑞 ≤ 𝑏𝑡}(𝑏𝑡 − 𝑠𝑡).
The goal of the learner is to maximize the overall gain from trade or, equivalently, minimize the
regret with respect to the best price in hindsight. Prior research has investigated the impact of
different budget balance notions on the problem’s learnability. When the mechanism is constrained
to enforce per-round strong budget balance (i.e., 𝑝𝑡 = 𝑞𝑡 at each time step 𝑡), it is possible to attain
sublinear regret only when the sequence of valuations is drawn i.i.d. from some fixed unknown
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Type of

Adversary

Budget

Balance

Regret

Upper Bounds

Regret

Lower Bounds

Cesa-Bianchi et al. [2021] stochastic
setting strong • Full: 𝑂̃(𝑇1/2)

• Partial: 𝑂̃(𝑇2/3)∗
• Full: Ω(𝑇1/2)
• Partial: Ω(𝑇2/3)

Azar et al. [2022] adversarial
setting weak • Full: 𝑂̃(𝑇1/2)†

• Partial: 𝑂̃(𝑇3/4)†
• Full: Ω(𝑇1/2)†
• Partial: Ω(𝑇2/3)†

Cesa-Bianchi et al. [2023] 𝜎-smooth
adversary weak • Full: 𝑂̃(𝑇1/2)

• Partial: 𝑂̃(𝑇3/4)
• Full: Ω(𝑇1/2)
• Partial: Ω(𝑇3/4)

This paper

adversarial
setting global

• Full: 𝑂̃(𝑇1/2)
• Partial: 𝑂̃(𝑇3/4)

• Full: Ω(𝑇1/2)
• Partial: Ω(𝑇5/7≈0.714)

Table 1: Comparison of prior results on bilateral trade. The positive result for a stochastic adversary
in the partial feedback, marked with an asterisk (∗), holds under the assumption that the seller and
buyer valuations are drawn independently from smooth distributions. All the bounds in the second
row (Azar et al. [2022]), marked with a dagger (†), apply to 2-regret.

distribution, and the learner has either full feedback, or some stringent assumptions regarding the
sequence of valuations are enforced. Specifically, in partial feedback regime, valuations have to be
drawn i.i.d. from a smooth distribution, independently for the seller and the buyer [Cesa-Bianchi
et al., 2021, Cesa-Bianchi et al., 2024]. If the learner is only required to enforce (step-wise) weak

budget balance (i.e., 𝑝𝑡 ≤ 𝑞𝑡 for each 𝑡), then Azar et al. [2022] provide a learning algorithm achieving
sublinear 2-regret when the sequence of valuation is generated by an oblivious adversary.1 They
also show that this result is tight: no algorithm can achieve sublinear (2− 𝜀)-regret in the adversarial
case, for any constant 𝜀 > 0. In an attempt to overcome this barrier, Cesa-Bianchi et al. [2023] show
that sublinear regret can be achieved beyond the i.i.d. stochastic setting, under the assumption
that the adversary is constrained to choose randomized (possibly non-stationary) sequences of
valuations that are not “too concentrated” (i.e., under a 𝜎-smooth adversary model). Inspired by
the positive results obtained in the literature by transitioning from strong to weak budget balance,
we investigate the following natural open question:

Is it possible to achieve sublinear regret against an oblivious adversary in the repeated bilateral trade problem

under a realistic notion of budget balance?

We answer this question positively by introducing global budget balance, where the learner is required
to maintain budget balance only “overall”. The idea behind global budget balance is to allow the
learner to reinvest the profit gained in previous rounds (obtained by posting a lower price for the
seller compared to the buyer), with the constraint that the learner cannot subsidize the market over

the whole time horizon. Formally, a learning algorithm that posts prices (𝑝1 , 𝑞1), (𝑝2 , 𝑞2), . . . is global
budget balanced if the following inequality holds almost surely:

∑𝑇
𝑡=1 Profit𝑡(𝑝𝑡 , 𝑞𝑡) ≥ 0. The profit

Profit𝑡(𝑝𝑡 , 𝑞𝑡) = I{𝑠𝑡 ≤ 𝑝𝑡}I{𝑞𝑡 ≤ 𝑏𝑡}(𝑞𝑡 − 𝑝𝑡) is non-negative when 𝑝𝑡 ≤ 𝑞𝑡 , and may drop below
zero only by posting prices that are not step-wise budget balanced, i.e., 𝑝𝑡 > 𝑞𝑡 . We argue that this
constraint is more realistic than the restrictive notions of per-round budget balance. For instance, in
contexts like ride-hailing platforms (such as Uber and Lyft), the platform might opt to forego some
short-term profit to enhance other metrics, like the overall welfare of the system.

1The 𝛼-regret measures the difference between the gain from trade of the best fixed price in hindsight and 𝛼 times
that of the algorithm (see e.g., Kakade et al. [2009]).
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1.1 Overview of Our Results

We report here an overview of our results, we also refer to Table 1 for a comparison with the state of
the art. In this paper we introduce the notion of global budget balance for the repeated bilateral
trade problem, and provide the following results in terms of regret with respect to the best fixed
price in hindsight in the adversarial case:

• In the full feedback model, when the learner observes seller and buyer valuations after
posting prices, we design a learning algorithm characterized by a 𝑂̃(𝑇1/2) regret upper bound
(Theorem 4.2). We also prove that no learning algorithm can improve this bound by more
than a poly-log𝑇 factor (Theorem 4.4).

• In the one-bit feedback model, where the learner can observe only whether the trade happened
or not, we show that it is possible to guarantee a 𝑂̃(𝑇3/4) regret upper bound (Theorem 5.4).
Then, we provide an Ω(𝑇 5

7≈0.714) lower bound, which holds even in the two-bit feedback model,
where the learner can observe which agent accepted and who declined the offered prices
(Theorem 5.5).

These results demonstrate how the notion of global budget balance enables online learnability,
allowing us to provide the first no-regret algorithms for repeated bilateral trade within an oblivious
adversary framework, in contrast to the per-round approaches considered in previous works.
Furthermore, the regret rates separate full feedback and the two partial feedback models (one or
two bits). In partial feedback, the surprising lower bound of Ω(𝑇5/7), together with the 𝑂(𝑇3/4)
upper bound, mark a clear separation between this problem and other partial feedback models
(e.g., partial monitoring [Bartók et al., 2014] and online learning with feedback graph [Alon et al.,
2017], where the minimax regret have been characterized to fall in one of three admissible rates:

√
𝑇,

𝑇2/3 and 𝑇). This separation had already been hinted at in the special case of 𝜎-smooth adversary by
Cesa-Bianchi et al. [2023].
Finally, inspired by work on bandits with knapsacks (see Section 1.3 for detailed references), we
introduce a stronger learning benchmark: the best fixed feasible distribution over prices. Such
benchmark is allowed to post prices that are not per-round budget balanced, but is global budget
balanced in “expectation”.

• We show that there exists a constant 𝜀0 > 0 such that it is impossible to achieve sublinear
𝛼-regret against this benchmark for any 𝛼 ∈ [1, 1 + 𝜀0) (Theorem 6.2).

• We prove that the best feasible distribution over prices collects at most twice the gain from
trade extracted by the best fixed price in hindsight (Theorem 6.3). This implies the existence
of algorithms with sublinear 2-regret against this new benchmark.

• We show that the multiplicative gap of 2 between the gain from trade attainable by the two
different benchmarks is tight (Theorem 6.5).

First, we observe that the task of learning the best feasible distribution over prices is reminiscent of
the problem of bandits with knapsacks in the presence of replenishment [Kumar and Kleinberg,
2022, Slivkins et al., 2023, Bernasconi et al., 2024a]. In contrast to previous work, we consider the
more challenging adversarial setting and provide learning algorithms with a competitive ratio
that is an absolute constant. In the adversarial bandits with knapsacks literature, the only setting
where sublinear Θ(1)-regret can be achieved is when the available budget is Ω(𝑇) [Castiglioni
et al., 2022], while in general the competitive ratio is 𝑂(log𝑇) [Immorlica et al., 2022]. Second, the
tight multiplicative gap of 2 between the two benchmarks suggests that to design a better learning
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algorithm with sublinear 𝛼-regret with respect to the best feasible distribution (for 𝛼 ∈ (1 + 𝜀0 , 2)),
a more direct approach is needed.

1.2 Challenges and Techniques

The key aspects that distinguish bilateral trade from standard online learning models with full or
bandit feedback can be identified in two main features: the action space and the challenging partial
feedback structure. The applicability of previous results to our model is significantly limited due to
adversarial input sequences and the need to handle the global budget balance constraint effectively.

Action space. The action space is continuous and bidimensional (prices belong to [0, 1]2), and
neither the gain from trade nor the profit functions are continuous in the prices posted. This makes
it challenging to discretize the space with a finite grid 𝐺 such that the best prices in 𝐺 perform
similarly to the best prices in [0, 1]2, and such that grid 𝐺 is small enough that it is possible to
learn in an online way its best pair of prices. In the absence of any probabilistic or smoothness
assumption on the adversary, we cannot rely on a “smoothing trick” to induce regularity on the
expected gain from trade, as in previous works [Cesa-Bianchi et al., 2023].

Partial Feedback. Partial feedback models for bilateral trade are inherently challenging. The
one-bit feedback model only informs the learner on whether the trade happened or not, which is
significantly less informative than the traditional bandit feedback model, since the learner cannot
even reconstruct the gain from trade received for the specific prices it posted. For example, if the
learner posts price 1/2 to both agents, and they accept the trade, there is no way of distinguishing
between the case in which the gain from trade is constant (e.g., valuations are (0, 1)) from the case in
which the gain from trade is arbitrarily small (e.g., valuations are (1/2 − 𝜀, 1/2 + 𝜀) for some small 𝜀).
On the other hand, if one of the two agents rejects the trade, then the learner can only infer loose
bounds on the valuations.

Gain from Trade vs. Profit trade-off. Global budget balance requires that the cumulative sum of
profits at the end of the time horizon must be greater than or equal to 0. Therefore, the learner has
to maximize its cumulative gain from trade, while accumulating enough profit to enforce global
budget balance. Balancing this trade-off is a complex task due to the different nature of the two
objectives: gain from trade is maximized by setting identical prices for both agents, whereas profit
is maximized by selecting prices that are “far from each other”. To see this, consider an instance
where valuations are either (𝑠𝑡 , 𝑏𝑡) = (0, 1) or (𝑠𝑡 , 𝑏𝑡) = (1/2 − 𝜀, 1/2 + 𝜀) with equal probability, for
some small 𝜀 > 0. To achieve maximum expected profit, the learner would always set the price at 0
for the seller and 1 for the buyer. On the other hand, to maximize the expected gain from trade, the
learner would always offer 1/2 to both agents.

Our Two-Phase Approach. Our learning algorithms follow a two-phase approach, initially focusing
on maximizing profit through a carefully designed multiplicative grid 𝐹𝐾 of candidate prices and
then switching to maximizing gain from trade on a different (additive) grid 𝐻𝐾 of non-budget-
balanced prices. At a high level, the first phase is used to collect budget, which can be subsequently
reinvested in the second phase. This poses several challenges due to the non-stationary nature of
the adversary. The pairs of prices in 𝐻𝐾 , which are not per-round budget balanced, enable the
algorithm to circumvent the negative results that hinder discretization in scenarios with per-round
budget balance (see, e.g., , the “needle in a haystack” phenomenon in Theorem 7 of Cesa-Bianchi
et al. [2024]). The multiplicative nature of the grid 𝐹𝐾 is crucial in ensuring that the gain from trade
accrued by the algorithm during the first phase does not yield too much regret. This last result is
surprising since, in the first phase, the learning algorithm is maximizing profit, an objective that
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is inherently orthogonal to the gain from trade. Finally, the scarcity of feedback in the one-bit
feedback model is addressed via a carefully designed estimation technique that allows the learner
to estimate the gain from trade in one point of the grid 𝐻𝐾 posting two different prices. In contrast
to the technique by Azar et al. [2022], our procedure is “asymmetric” in how it deals with the seller
and buyer, and it provides biased estimates.

Lower bounds. Besides the typical challenges in proving lower bounds for repeated bilateral trade
with respect to the best fixed price in hindsight, in our model the agent is allowed to post prices
that are not per-round budget balanced (i.e., it may be the case that 𝑝𝑡 > 𝑞𝑡). This considerably
complicates the construction of the hard instances, as any algorithm could sacrifice temporarily
some profit by posting prices with 𝑝𝑡 > 𝑞𝑡 to extract a large gain from trade (that the fixed price
benchmark may not be able to obtain). To deter this kind of behavior, we incorporate into the hard
instances certain unfavorable trade opportunities that dissuade the learner from setting prices that
are not budget balanced. This additional complication comes at some cost: in the partial (two-bit)
feedback model we recover a lower bound of Ω(𝑇5/7), whereas the corresponding lower bound by
Cesa-Bianchi et al. [2023] is Ω(𝑇3/4).

1.3 Further Related Works

Online Learning and Economics. Regret minimization techniques have found applications across
different domains motivated by economics, with the goal of overcoming unrealistic assumptions.
For example, they have been applied to one-sided pricing [Kleinberg and Leighton, 2003, Feldman
et al., 2016], auctions [Morgenstern and Roughgarden, 2015, Cesa-Bianchi et al., 2015, Lykouris
et al., 2016, Weed et al., 2016, Balseiro and Gur, 2019, Nedelec et al., 2022, Daskalakis and Syrgkanis,
2022, Cesa-Bianchi et al., 2024], contract design [Ho et al., 2016, Zhu et al., 2023, Duetting et al.,
2023], brokerage [Bolić et al., 2024], and Bayesian persuasion [Castiglioni et al., 2020, Zu et al., 2021,
Castiglioni et al., 2023, Bernasconi et al., 2023].

Partial feedback. Repeated bilateral trade naturally involves challenges due to partial feedback.
Therefore, our work aligns with the research that explores online learning with feedback models
beyond the conventional full feedback and bandit models. Our one- and two-bit feedback models
share similarities with graph-structured feedback [Alon et al., 2017] and with the partial monitoring

framework [Cesa-Bianchi et al., 2006, Bartók et al., 2014].

Bandits with knapsacks. Another related line of work is that of online learning under long-term
constraints. Some works study the case of static constraints and develop projection-free algorithms
with sublinear regret and constraint violations [Mahdavi et al., 2012, Jenatton et al., 2016], while
others study the case of time-varying constraints [Mannor et al., 2009, Yu et al., 2017, Sun et al., 2017].
Badanidiyuru et al. [2018] introduced and solved the (stochastic) bandits with knapsacks (BwK)
framework, in which they consider bandit feedback and stochastic objective and cost functions. In
this model, the learner’s objective is to maximize utility while guaranteeing that, for each of the
𝑚 available resources, cumulative costs are below a certain budget 𝐵. Other optimal algorithms
for stochastic BwK were proposed by Agrawal and Devanur [2019], Immorlica et al. [2022]. The
setting with adversarial inputs was first studied in Immorlica et al. [2022], where the baseline
considered is the best fixed distribution over arms. Achieving no-regret is not possible under this
baseline and, therefore, they provide no-𝛼-regret guarantees for their algorithm. If we denote by
𝜌 the per-iteration budget of the learner, the best-known guarantees on the competitive ratio 𝛼
are 1/𝜌 in the case in which 𝐵 = Ω(𝑇) [Castiglioni et al., 2022], and 𝑂(log𝑚 log𝑇) in the general
case [Kesselheim and Singla, 2020]. When considering a benchmark similar to the adversarial BwK
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Learning Protocol of Repeated Bilateral Trade

1 Initial budget 𝐵0 = 0
2 for 𝑡 = 1, 2, . . . do

3 The adversary privately chooses (𝑠𝑡 , 𝑏𝑡) in [0, 1]2
4 The learner posts prices (𝑝𝑡 , 𝑞𝑡) ∈ [0, 1]2 such that 𝑝𝑡 − 𝑞𝑡 ≤ 𝐵𝑡
5 The learner receives a (hidden) reward GFT𝑡(𝑝𝑡 , 𝑞𝑡) ∈ [−1, 1]
6 The budget of the learner is updated 𝐵𝑡 ← 𝐵𝑡−1 + Profit𝑡(𝑝𝑡 , 𝑞𝑡)
7 Feedback 𝑧𝑡 is revealed to the learner

scenario, we show that our algorithm ensures a 𝛼 = 2 guarantee. Kumar and Kleinberg [2022]
recently proposed a generalization of the stochastic BwK model in which resource consumption
can be non-monotonic; that is, resources can be replenished or renewed over time. Our model
also admits replenishment. It should be noted that, in our setting, directly utilizing techniques
from BwK is not feasible due to the complex continuous action space and the limited availability of
feedback, which is less informative compared to traditional bandit feedback.

2 Repeated Bilateral Trade

We study repeated bilateral trade problem in an online learning setting, where the learner has
to enforce global budget balance and the sequence of valuations is generated by an oblivious
adversary.

The learning protocol. The learner repeatedly interacts with the environment according to the
following protocol (see also pseudocode). At each time step 𝑡, a new pair of buyer and seller arrives,
characterized by valuations 𝑏𝑡 ∈ [0, 1] and 𝑠𝑡 ∈ [0, 1], respectively. Without knowing 𝑠𝑡 and 𝑏𝑡 , the
learner posts two prices: 𝑝𝑡 ∈ [0, 1] to the seller, and 𝑞𝑡 ∈ [0, 1] to the buyer. If both the seller and
the buyer accept (i.e., 𝑠𝑡 ≤ 𝑝𝑡 and 𝑞𝑡 ≤ 𝑏𝑡), then the learner is awarded the gain from trade

GFT𝑡(𝑝𝑡 , 𝑞𝑡) = I{𝑠𝑡 ≤ 𝑝𝑡}I{𝑞𝑡 ≤ 𝑏𝑡}(𝑏𝑡 − 𝑠𝑡),
that corresponds to the increase in social welfare generated by the trade. To simplify the notation,
we omit the second argument of GFT𝑡 (and of Profit𝑡) when the same price is posted to both agents.
After posting the prices, the learner does not observe directly the gain from trade or the valuations,
but receives some feedback 𝑧𝑡 .

Global budget balance. For each time step 𝑡, the notion of profit of the learner is naturally defined:
if the agents accept prices 𝑝𝑡 and 𝑞𝑡 , then the learner receives a net profit of 𝑞𝑡 − 𝑝𝑡 ∈ [−1, 1]. Unlike
the case of the gain from trade, the learner naturally knows its profit at the end of each time step, as
it sets the prices and always observes whether the trade occurred. The learner maintains a budget
𝐵𝑡 , which is initially 0 (𝐵0 = 0) and is updated at each time step according to the profit generated
or consumed: 𝐵𝑡 ← 𝐵𝑡−1 + Profit𝑡(𝑝𝑡 , 𝑞𝑡). We restrict the learner to enforce a global budget balance

property which states that the final budget 𝐵𝑇 has to be non-negative with probability 1. In practice,
we require the learner to always post prices 𝑝𝑡 , 𝑞𝑡 such that (𝑝𝑡 − 𝑞𝑡) ≤ 𝐵𝑡−1.2

Feedback models. In this paper, we study three feedback models, that we list here in increasing
order of intricacy:

2In fact, this condition is not just sufficient, but also necessary. Indeed, if 𝑝𝑡 − 𝑞𝑡 > 𝐵𝑡 , the adversary might select
valuations (𝑠𝑡 , 𝑏𝑡 ) such that Profit𝑡 (𝑝𝑡 , 𝑞𝑡 ) < −𝐵𝑡−1 and thus 𝐵𝑡 < 0. After that, the adversary might select valuations
(𝑠𝜏 , 𝑏𝜏) = (0, 0) for all 𝜏 ≥ 𝑡 + 1, thereby forcing 𝐵𝑇 = 𝐵𝑡 < 0.
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• Full feedback: at the end of each round, the agents reveal their valuations (i.e., 𝑧𝑡 = (𝑠𝑡 , 𝑏𝑡)).
• Two-bit feedback: the agents only reveal their willingness to accept the prices offered by the

learner (i.e., 𝑧𝑡 is composed by the two bits (I{𝑠𝑡 ≤ 𝑝𝑡}, I{𝑞𝑡 ≤ 𝑏𝑡}))
• One-bit feedback: the learner only observes whether the trade happened or not (i.e., 𝑧𝑡 =

I{𝑠𝑡 ≤ 𝑝𝑡} · I{𝑞𝑡 ≤ 𝑏𝑡}).
These feedback models are not only interesting from the theoretical learning perspective, but they
are also well motivated in terms of practical applications. The full-feedback model can be used to
describe sealed-bid-type auctions, while the two partial feedback settings (one- and two-bit) enforce
the desirable property (for the agents) of revealing a minimal amount of information to the learner.

Regret with respect to the best fixed price. The goal is to maximize the total gain from trade on a
fixed and known time horizon 𝑇 while enforcing the global budget balance condition. Following
the literature on repeated bilateral trade [Cesa-Bianchi et al., 2021], we measure the performance of
a learning algorithm in terms of its regret with respect to the best fixed price(s) in hindsight. For
any learning algorithm A and sequence of valuations 𝒮 = {(𝑠𝑡 , 𝑏𝑡)}𝑇𝑡=1 we define:

𝑅𝑇(A,𝒮) = max
(𝑝,𝑞)∈[0,1]2

𝑝≤𝑞

𝑇∑
𝑡=1

GFT𝑡(𝑝, 𝑞) − E
[
𝑇∑
𝑡=1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
, (1)

where the sequence 𝒮 induces the GFT𝑡 functions and the expectation is with respect to (possibly)
randomized prices 𝑝𝑡 and 𝑞𝑡 generated by the learning algorithm A. One simple property that
follows immediately by definition is that, for any sequence of valuations, there exists a fixed pair of
identical prices that maximizes the gain from trade. This means that the notion of “best price in
hindsight” is well defined, and confirms the intuition that posting two different prices only helps
during learning, but does not impact the maximization of gain from trade in hindsight. Finally, we
define the regret of an algorithm A (without the dependence on a specific sequence of valuations) as
its worst-case performance: 𝑅𝑇(A) = sup𝒮 𝑅𝑇(A,𝒮), where the sup is over the set of all the possible
sequences of 𝑇 pairs of valuations.

A stronger benchmark: the best feasible distribution over prices. In this paper we also introduce
a new (stronger) benchmark for the study of repeated bilateral trade: the best fixed budget-feasible
distribution over prices. This benchmark captures the flexibility of the global budget balance
condition, and it arises naturally from the literature on bandits with knapsacks. Before proceeding
with the definition, let Δ([0, 1]2) be the family of all the probability measures over the measurable
space ([0, 1]2 ,ℬ([0, 1]2)), where ℬ denotes the Borel 𝜎-algebra.

Definition 2.1 (Best feasible distribution). For any sequence 𝒮 of seller’s and buyer’s valuations, we
define the best fixed budget-feasible distribution over prices as the solution of:

sup
𝛾∈Δ([0,1]2)

E
(𝑝,𝑞)∼𝛾

[
𝑇∑
𝑡=1

GFT𝑡(𝑝, 𝑞)
]

(2)

s.t. E
(𝑝,𝑞)∼𝛾

[
𝑇∑
𝑡=1

Profit𝑡(𝑝, 𝑞)
]
≥ 0,

where E(𝑝,𝑞)∼𝛾 denotes that the expectation is with respect to prices (𝑝, 𝑞) sampled according to 𝛾.

This definition is well posed and there exist optimal distributions whose support contains either one
or two pairs of prices. For a formal proof of this fact we refer to Proposition A.3 in Appendix A.1.
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3 Price Discretizations and Two-Phase Algorithm

In this section we present our two-phase meta algorithm, preceeded by two key results on how
to discretize the price space in a way that ensures certain essential properties about profit and
gain from trade. First, in Section 3.1 we prove that the gain from trade of the best fixed price in
hindsight is close to that of the best pair of (non-budget-balanced) prices on a suitable “additive”
grid. Second, in Section 3.2 we construct an hybrid “multiplicative-additive” grid in which each
interval of a one-dimensional additive grid is further divided into sub-intervals with geometrically
decreasing length. This grid has the surprising property that the profit of the best fixed pair of
prices on it is close to the gain from trade generated by the best fixed price in the [0, 1] interval, up
to a poly-logarithmic multiplicative factor. Finally, we introduce our two-phase learning via the
meta-algorithm GFT-Max.

3.1 Additive Grid for Gain from Trade

For any integer 𝐾, we denote by 𝐺𝐾 = {0, 1/𝐾, 2/𝐾, . . . , 1 − 1/𝐾, 1} the 𝐾-uniform grid over [0, 1].
Similarly, we denote with 𝐻𝐾 = {(𝑖+1/𝐾, 𝑖/𝐾) : 𝑖 ∈ {0, 1, . . . , 𝐾 − 1}} the set of pairs formed by
contiguous points in the 𝐾-uniform grid such that the first element of the pair is greater than the
second. This latter grid can be proved to enjoy the desirable property of well-approximating the
gain from trade of the best fixed price, while violating the global budget balance condition by a
small amount. The argument behind the approximation guarantee is simple: if 𝑝∗ is the best fixed
price in hindsight, then the pair of prices ((𝑖+1)/𝐾, 𝑖/𝐾) such that 𝑝∗ belongs to the interval [𝑖/𝐾, (𝑖+1)/𝐾]
are nearly as good as 𝑝∗. We have the following result.

Proposition 3.1. For any 𝐾 and sequence of valuations, we have:

max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) ≤ max
(𝑝,𝑞)∈𝐻𝐾

𝑇∑
𝑡=1

GFT𝑡(𝑝, 𝑞) + 𝑇𝐾 .

For any (𝑝, 𝑞) ∈ 𝐻𝐾 , total profit

∑𝑇
𝑡=1 Profit𝑡(𝑝, 𝑞) is at least −𝑇/𝐾.

Proof. The optimal price in hindsight 𝑝∗ is contained in some interval [𝑖∗/𝐾, (𝑖∗+1)/𝐾]. For any time 𝑡
we have the following cases:

(𝑖) If GFT𝑡(𝑝∗) = 0, then the gain from trade of ((𝑖∗+1)/𝐾, 𝑖∗/𝐾) is at least −1/𝐾 (when the valuation of
the seller is (𝑖∗+1)/𝐾, and that of the buyer is 𝑖∗/𝐾).

(𝑖𝑖) If GFT𝑡(𝑝∗) > 0, then posting the pair of prices ((𝑖∗+1)/𝐾, 𝑖∗/𝐾) makes the trade happen, and
guarantees the same gain from trade.

Then, by summing up the gain from trade obtained by posting ((𝑖∗+1)/𝐾, 𝑖∗/𝐾), we immediately obtain
the first part of the statement by applying at each 𝑡 either case (𝑖) or (𝑖𝑖). The second part of the
statement follows from the observation that the per-round deficit for posting prices ((𝑖∗+1)/𝐾, 𝑖∗/𝐾) is
at most 1/𝐾. This concludes the proof. □

A simple calculation shows that GFT𝑡((𝑖+1)/𝐾, 𝑖/𝐾) is bounded by the sum of GFT𝑡(𝑖/𝐾) and GFT𝑡((𝑖+1)/𝐾).
Therefore, we obtain the following known result as a Corollary to Proposition 3.1.

Corollary 3.2 (Claim 1 of Azar et al. [2022]). For any 𝐾 and sequence of valuations, we have:

max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) ≤ 2 ·max
𝑝∈𝐺𝐾

𝑇∑
𝑡=1

GFT𝑡(𝑝) + 𝑇𝐾 .
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𝑝

𝑝

𝑝 + 2−𝑖

𝑝

𝑝

𝑝−2−𝑖

Figure 1: 𝐹+𝐾 (left) and 𝐹−𝐾 (right) for 𝐾 = 8, 𝑇 = 32, 𝑖 = 3.

3.2 Multiplicative Grid for Profit

For any𝐾, we construct the two-dimensional grid 𝐹𝐾 starting from the points on the one-dimensional
grid 𝐺𝐾 . For each 𝑝 ∈ 𝐺𝐾 , we add to 𝐹𝐾 points of the form (𝑝 − 2−𝑖 , 𝑝) and (𝑝, 𝑝 + 2−𝑖), for
𝑖 = 0, 1, . . . , ⌈log𝑇⌉ so that they define intervals of geometrically decreasing length to the left and
upward of (𝑝, 𝑝). Formally, we define 𝐹𝐾 as the union of 𝐹−𝐾 and 𝐹+𝐾 (see also Figure 1):

𝐹−𝐾 =
{(𝑝 − 2−𝑖 , 𝑝) : 𝑝 ∈ 𝐺𝐾 and 𝑖 ∈ {0, 1, . . . , ⌈log𝑇⌉}} ∩ [0, 1]2 ,

𝐹+𝐾 =
{(𝑝, 𝑝 + 2−𝑖) : 𝑝 ∈ 𝐺𝐾 and 𝑖 ∈ {0, 1, . . . , ⌈log𝑇⌉}} ∩ [0, 1]2.

The additive-multiplicative nature of 𝐹𝐾 endows it with two crucial properties: (i) its cardinality is
𝑂(𝐾 log𝑇) an thus only depends linearly in 𝐾 and (ii) the profit of the best prices in 𝐹𝐾 is at least a
𝑂(log𝑇) fraction of the GFT at the best fixed price in [0, 1], up to an additive factor of 𝑂(𝑇/𝐾).
Proposition 3.3. For any 𝐾 and sequence of valuations, we have:

max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) ≤ 12 log𝑇 · max
(𝑝,𝑞)∈𝐹𝐾

𝑇∑
𝑡=1

Profit𝑡(𝑝, 𝑞) + 5𝑇
𝐾
.

Proof. Fix the sequence 𝒮 of valuations and let 𝑝∗ be the price maximizing the gain from trade in
𝐺𝐾 . We have the following chain of inequalities:

max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) ≤ 2
𝑇∑
𝑡=1
(𝑏𝑡 − 𝑠𝑡)I{𝑠𝑡 ≤ 𝑝∗ ≤ 𝑏𝑡} + 𝑇𝐾 (by Corollary 3.2)

= 2
𝑇∑
𝑡=1
(𝑏𝑡 − 𝑝∗)I{𝑠𝑡 ≤ 𝑝∗ ≤ 𝑏𝑡} + 2

𝑇∑
𝑡=1
(𝑝∗ − 𝑠𝑡)I{𝑠𝑡 ≤ 𝑝∗ ≤ 𝑏𝑡} + 𝑇𝐾 . (3)

We bound separately the first and second term of the right-hand side of the inequality. Starting
with (𝑏𝑡 − 𝑝∗)I{𝑠𝑡 ≤ 𝑝∗ ≤ 𝑏𝑡}, we can rewrite the expression through a case analysis depending on
the interval of the discretization in which 𝑏𝑡 is located. For each time step 𝑡, we have

(𝑏𝑡 − 𝑝∗)I{𝑠𝑡 ≤ 𝑝∗ ≤ 𝑏𝑡} ≤
⌈log𝑇⌉∑
𝑖=0
(𝑏𝑡 − 𝑝∗)I{𝑠𝑡 ≤ 𝑝∗}I

{
𝑝∗ + 2−𝑖 ≤ 𝑏𝑡 < 𝑝∗ + 2−𝑖+1} + 1

𝑇
,
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where we used the fact that 𝑏𝑡 − 𝑝∗ ≤ 1/𝑇 if 𝑏𝑡 belongs to [𝑝∗𝑡 , 𝑝∗𝑡 + 1/𝑇]. This yields

(𝑏𝑡 − 𝑝∗)I{𝑠𝑡 ≤ 𝑝∗ ≤ 𝑏𝑡} ≤ 2 ·
⌈log𝑇⌉∑
𝑖=0

2−𝑖I{𝑠𝑡 ≤ 𝑝∗}I
{
𝑝∗ + 2−𝑖 ≤ 𝑏𝑡 < 𝑝∗ + 2−𝑖+1} + 1

𝑇
. (4)

Let 𝑛𝑖 be the number of time steps satisfying the condition {𝑠𝑡 ≤ 𝑝∗ , 𝑝∗ + 2−𝑖 ≤ 𝑏𝑡 < 𝑝∗ + 2−𝑖+1}.
Summing up Equation (4) for 𝑡 = 1, 2, . . . 𝑇 we get

𝑇∑
𝑡=1
(𝑏𝑡 − 𝑝∗)I{𝑠𝑡 ≤ 𝑝∗ ≤ 𝑏𝑡} ≤ 2 ·

⌈log𝑇⌉∑
𝑖=0

𝑛𝑖
2𝑖
+ 𝑇
𝑇
≤ 3 log𝑇 · max

𝑖∈{0,...,log𝑇}
𝑛𝑖
2𝑖
+ 1

≤ 3 log𝑇 · max
(𝑝,𝑞)∈𝐹𝐾

𝑇∑
𝑡=1

Profit𝑡(𝑝, 𝑞) + 1. (5)

To obtain Equation (5) we use that, for any 𝑖 ∈ {0, . . . , ⌈log𝑇⌉}, if 𝑛𝑖 > 0 then it must be the case
that 𝑝∗ + 2−𝑖 ∈ [0, 1]. Therefore, for any 𝑖, it it possible to obtain a profit of 2−𝑖 by posting the pair
(𝑝∗ , 𝑝∗+ 2−𝑖), which is guaranteed to belong to 𝐹𝐾 since 𝑝∗ ∈ 𝐺𝐾 by construction, and 𝑝∗+ 2−𝑖 ∈ [0, 1].
A similar argument can be carried over for the other term of Equation (3), yielding:

𝑇∑
𝑡=1
(𝑝∗ − 𝑠𝑡)I{𝑠𝑡 ≤ 𝑝∗ ≤ 𝑏𝑡} ≤ 3 log𝑇 · max

(𝑝,𝑞)∈𝐹𝐾

𝑇∑
𝑡=1

Profit𝑡(𝑝, 𝑞) + 1. (6)

Finally, we plug Equations (5) and (6) into Equation (3), and use 𝐾 ≤ 𝑇 to conclude the proof. □

3.3 Our Two-Phase Meta-Algorithm: GFT-Max

We describe our two-phase learning approach by presenting the meta-algorithm GFT-Max. For
details we refer to the pseudocode. The algorithm takes in input a budget threshold 𝛽 and an integer
𝐾 (which induces the two grids 𝐹𝐾 and 𝐻𝐾), and employs two regret minimizers—AP for the profit
and AG for the gain from trade—as internal routines. In the first phase (Line 1), the algorithm uses
function Profit-Max to maximize profit until the collected budget reaches a given threshold 𝛽. This
is achieved by running a regret minimizer AP over the set 𝐹𝐾 of pairs of prices (see Section 3.2)
using profit as objective. Then, in the second phase (from Line 2 onward), the algorithm exploits a
regret minimizer AG to maximize the gain from trade over the grid 𝐻𝐾 , whose prices which are
“almost budget-balanced” and consume only a small fraction of the previously acquired budget (see
Proposition 3.1). In Section 4 and Section 5 we provide regret upper bounds for this meta-algorithm
in the full and one-bit feedback model, respectively. The budget threshold 𝛽, the regret minimizers,
and the grid parameter 𝐾 are tuned according to the specific case considered.

4 Full Feedback

We start by studying the full feedback input model where the agents reveal their valuations (𝑠𝑡 , 𝑏𝑡) at
the end of each time step 𝑡. Here, the learner has counterfactual information regarding all the prices
they could have posted, independently of the pair of prices actually posted at time 𝑡. In Section 4.1,
we first present a two-phase learning algorithm (GFT-Max) which guarantees 𝑂̃(√𝑇) regret with
respect to the best fixed price in hindsight. In Section 4.2 we complement this result by proving that
this is tight, up to poly-logarithmic terms.
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Algorithm 1: GFT-Max
Input: • budget threshold 𝛽

• integer 𝐾 and price-grids 𝐹𝐾 and 𝐻𝐾

• regret minimizers AP and AG
1 Run Profit-Max (𝛽, 𝐹𝐾 ,AP) /* Phase I */
2 if Profit-Max terminated at time step 𝜏 < 𝑇 then

3 Initialize AG on 𝐻𝐾 /* Phase II */
4 for 𝑡 = 𝜏 + 1, 2, . . . , 𝑇 do

5 Receive from AG the prices (𝑝𝑡 , 𝑞𝑡)
6 Post prices (𝑝𝑡 , 𝑞𝑡) and observe feedback 𝑧𝑡
7 Feed feedback 𝑧𝑡 to AG

8 function Profit-Max (𝛽, 𝐹𝐾 ,AP)

Input: • budget threshold 𝛽
• grid 𝐹𝐾 of pairs of prices
• regret minimizer AP

9 Initialize AP on |𝐹𝐾 | actions, one for each (𝑝̂ , 𝑞̂) ∈ 𝐹𝐾 , and set 𝐵0 ← 0
10 for 𝑡 = 1, 2, . . . , 𝑇 do

11 Receive from AP the prices (𝑝𝑡 , 𝑞𝑡)
12 Post prices (𝑝𝑡 , 𝑞𝑡) and observe feedback 𝑧𝑡
13 Feed feedback 𝑧𝑡 to AP
14 Update 𝐵𝑡 ← 𝐵𝑡−1 + Profit𝑡(𝑝𝑡 , 𝑞𝑡)
15 if 𝐵𝑡 ≥ 𝛽 then Terminate the algorithm

4.1 𝑂̃(√𝑇) Upper Bound with Full Feedback

We start the analysis by looking at the first phase of GFT-Max, Profit-Max (reported as a function
in the pseudocode of GFT-Max). We employ the Hedge algorithm (see, e.g., Section 5.3 of Slivkins
[2019]) as the regret minimizer AP, which is used on the action space of the prices in 𝐹𝐾 . As a first
step, we note that the gain from trade of any fixed price in the first phase (which terminates at the
stopping time 𝜏) is not too large.

Lemma 4.1. Consider Profit-Max with budget threshold 𝛽, grid 𝐹𝐾 , and learning algorithm Hedge as AP.

Then, with probability at least 1 − 1/𝑇, we have

max
𝑝∈[0,1]

𝜏∑
𝑡=1

GFT𝑡(𝑝) ≤ 8(𝛽 + 1) log𝑇 + 5𝑇
𝐾
+ 32 log𝑇

√
𝑇 log(𝑇 |𝐹𝐾 |).

Proof. We start by observing that, by Proposition 3.3, there exists a pair of prices (𝑝∗ , 𝑞∗) ∈ 𝐹𝐾 such
that

max
𝑝∈[0,1]

𝜏∑
𝑡=1

GFT𝑡(𝑝) ≤ 8 log𝑇 ·
𝜏∑
𝑡=1

Profit𝑡(𝑝∗ , 𝑞∗) + 5𝑇
𝐾
.

Hedge maintains a distribution 𝛾𝑡 ∈ Δ(𝐹𝐾) at each 𝑡 ∈ [𝑇], and such distributions guarantees that
the expected regret is 𝑂(√𝑇 log(|𝐹𝐾 |)) [Slivkins, 2019]. In particular, given 𝑠 ∈ [𝑇], we have

𝑠∑
𝑡=1

Profit𝑡(𝑝∗ , 𝑞∗) ≤
𝑠∑
𝑡=1

E
(𝑝,𝑞)∼𝛾𝑡

[Profit𝑡(𝑝, 𝑞)] + 2
√
𝑇 log(|𝐹𝐾 |).
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By applying the Azuma-Hoeffding inequality for each round 𝑠 ∈ [𝑇], and union bounding over the
possible stopping times, we get that with probability at least 1− 1/𝑇, we can write the following also
for the stopping time 𝜏:

𝜏∑
𝑡=1

Profit𝑡(𝑝∗ , 𝑞∗) ≤
𝜏∑
𝑡=1

Profit𝑡(𝑝𝑡 , 𝑞𝑡) + 2
√
𝑇 log(|𝐹𝐾 |) + 4

√
𝑇 log(𝑇).

This yields the following chain of inequalities

max
𝑝∈[0,1]

𝜏∑
𝑡=1

GFT𝑡(𝑝) ≤ 8 log𝑇 ·
𝜏∑
𝑡=1

Profit𝑡(𝑝∗ , 𝑞∗) + 5𝑇
𝐾

≤ 8 log𝑇 ·
𝜏∑
𝑡=1

Profit𝑡(𝑝𝑡 , 𝑞𝑡) + 5𝑇
𝐾
+ 16 log𝑇

√
𝑇 log(|𝐹𝐾 |) + 32 log𝑇

√
𝑇 log(𝑇)

≤ 8 log𝑇 · 𝐵𝜏 + 5𝑇
𝐾
+ 32 log𝑇

√
𝑇 log(𝑇 |𝐹𝐾 |)

≤ 8 log𝑇 · (𝛽 + 1) + 5𝑇
𝐾
+ +5𝑇

𝐾
+ 32 log𝑇

√
𝑇 log(𝑇 |𝐹𝐾 |)

This concludes the proof. □

Lemma 4.1 helps us bounding the regret of GFT-Max up to the (random) time step 𝜏, when the
algorithm switches from profit to gain from trade maximization. Setting 𝛽 =

√
𝑇 and 𝐾 =

√
𝑇, and

using Hedge as regret minimizer also in the second phase, yields the following result.

Theorem 4.2. Consider the repeated bilateral trade problem in the full feedback model. There exists a learning

algorithm A that respects global budget balance and whose regret with respect to the best fixed price in

hindsight verifies

𝑅𝑇(A) ≤ 92 log3/2(𝑇)
√
𝑇.

Proof. We prove that algorithm GFT-Max with the proper choice of budget 𝛽, grids 𝐹𝐾 and 𝐻𝐾 , and
algorithms AP and AG achieves the desired regret bound, while enforcing global budget balance.
First, we show that the algorithm enforces global budget balance for any value of the stopping time
𝜏 ∈ [𝑇]. By construction, the profit at time 𝜏 (i.e., right after the end of first phase in which we
employ the subroutine Profit-Max) is at least 𝛽. Moreover, in each round 𝑡 ∈ {𝜏 + 1, . . . , 𝑇} of the
second phase, the profit is at least −1/𝐾. Hence, the cumulative profit at time 𝑇 is at least

𝛽 − (𝑇 − 𝜏) 1
𝐾
≥
√
𝑇 − 𝑇 1√

𝑇
= 0.

Then, we prove the upper bound on the cumulative regret. We start by considering the regret
accumulated in the interval {𝜏 + 1, . . . , 𝑇}. In particular, for any 𝜏 ∈ [𝑇], we have

max
𝑝∈[0,1]

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝) ≤ max
(𝑝,𝑞)∈𝐻𝐾

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝, 𝑞) + 𝑇𝐾

≤ E
(𝑝𝑡 ,𝑞𝑡 )∼𝛾𝑡

[
𝑇∑

𝑡=𝜏+1
GFT𝑡(𝑝𝑡 , 𝑞𝑡)

]
+ 𝑇
𝐾
+ 4

√
𝑇 log(|𝐻𝐾 |), (7)
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where the first inequality follows from Proposition 3.1, and the second inequality follows from
the regret bound of Hedge when the range of the rewards is [−1/𝐾, 1] and 𝛾𝑡 is the probability
distribution over the action set maintained by Hedge (instantiated to maximize gain from trade in
the second phase).
Then, assume that the bound in Lemma 4.1 holds, which happens with probability at least 1 − 1/𝑇.
By employing Equation (7) and Lemma 4.1 we can show that, with probability at least 1 − 1/𝑇,

max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) ≤ max
𝑝∈[0,1]

𝜏∑
𝑡=1

GFT𝑡(𝑝) + max
𝑝∈[0,1]

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝)

≤ 8 log𝑇(𝛽 + 1) + 5𝑇
𝐾
+ 32 log𝑇

√
𝑇 log(𝑇 |𝐹𝐾 |) + max

𝑝∈[0,1]

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝)

≤ E
[

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
+ 8 log𝑇(𝛽 + 1) + 6𝑇

𝐾
+ 32 log𝑇

√
𝑇 log(𝑇 |𝐹𝐾 |) + 4

√
𝑇 log(|𝐻𝐾 |),

where the second inequality follows from Lemma 4.1, and the third one from Equation (7).
Then, by substituting 𝛽 = 𝐾 =

√
𝑇 we can conclude that

max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) ≤ E
[

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
+ 8 log𝑇(

√
𝑇 + 1) + 6

√
𝑇

+ 32 log𝑇
√
𝑇 log

(
2𝑇3/2 (log𝑇 + 1

) ) + 4
√
𝑇 log(

√
𝑇)

≤ E
[

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
+ 90 log3/2(𝑇)

√
𝑇,

By rearranging we have that, with probability at least 1 − 1/𝑇, it holds

max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) − E
[
𝑇∑
𝑡=1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
≤ max

𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) − E
[

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]

≤ 90 log3/2(𝑇)
√
𝑇,

where the first inequality follows from the fact that the gain from trade is always non-negative.
Finally, we can conclude that the expected regret is at most

𝑅𝑇(GFT-Max) ≤
(
1 − 1

𝑇

) (
90 log

3
2 (𝑇)
√
𝑇
)
+ 1
𝑇
· 2𝑇 ≤ 92 log

3
2 (𝑇)
√
𝑇.

This concludes the proof. □

4.2 Ω(√𝑇) Lower Bound with Full Feedback

We present a lower bound that shows how the regret rate in Theorem 4.2 is optimal up to poly-
logarithmic factors. The lower bound is based on the following stochastic sequence: at each time
step 𝑡 the pair (𝑠𝑡 , 𝑏𝑡) is drawn uniformly at random between 3 pairs of valuations: (0, 1/4), (3/4, 1)
and (3/4, 1/4). These three points naturally partition the [0, 1]2 square into four regions (see Figure 2).
Crucially, prices in the [3/4, 1] × [0, 1/3] region (green in Figure 2) incur in negative expected gain
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Figure 2: Partition of [0, 1]2 as in the proof of Theorem 4.4.

from trade, while prices in the [0, 3/4) × (1/3, 1] region (white in Figure 2) miss all trades. Therefore,
the only reasonable option for any learner is to post prices in the two remaining regions (orange in
Figure 2), with an expected gain from trade of 1/12. This allows for a reduction to an expert problem
with 2 available actions (one for each of the two orange regions). This construction highlights a
key difficulty if compared to lower bounds for per-round budget balanced algorithms: we need to
disincentivize the learner from choosing non budget balanced prices below the diagonal. We have
the following Theorem, which is preceded by a preliminary Lemma.

Lemma 4.3. Let 𝑆𝑛 be a symmetric random walk on the line after 𝑛 steps, starting from 0. Then, for 𝑛 large

enough, it holds that E[|𝑆𝑛 |] ≥ 2/3√𝑛.
Proof. It is well known that the expected distance of a random walk from the origin grows like
Θ(√𝑛). Formally, the following asymptotic result holds (see, e.g., Palacios [2008]):

lim
𝑛→∞

E[|𝑆𝑛 |]√
𝑛

=

√
2
𝜋
.

Observe that
√

2/𝜋 > 2/3. Then, there exists a finite 𝑛0 such that E[|𝑆𝑛 |] ≥ 2/3√𝑛 for all 𝑛 ≥ 𝑛0. □

Theorem 4.4. Consider the repeated bilateral trade problem in the full feedback model. Any learning

algorithm that satisfies global budget balance suffers at least Ω(√𝑇) regret with respect to the best fixed price

in hindsight.

Proof. We prove this result via Yao’s principle [Yao, 1977]. We apply the easy direction of the
theorem, which reads (using our terminology) as follows: the regret 𝑅𝑇(A) of a randomized learner
A against the worst-case valuations sequence is at least the regret of the optimal deterministic
learner 𝐴 against a stochastic sequence of valuations 𝒮. Formally,

𝑅𝑇(A) ≥ sup
𝐴
E

[
max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) −
𝑇∑
𝑡=1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
,

where the expectation is with respect to the stochastic valuation sequence 𝒮, while 𝐴 denotes
deterministic learner that posts the (𝑝𝑡 , 𝑞𝑡) prices. In particular, we construct a randomized instance
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𝒮 such that any deterministic learning algorithm must suffer, in expectation with respect to the
randomness of 𝒮, at least 𝑐

√
𝑇 regret for some constant 𝑐.

The randomized instance is constructed as follows: at each time step 𝑡 ∈ [𝑇] the adversary selects
uniformly and independently at random one of the following three points (0, 1/4), (3/4, 1) and (3/4, 1/4).
We first compute a lower bound on the expected gain from trade achieved by the best fixed price in
hindsight, and then we provide an upper bound on the expected gain from trade which can be
attained by any deterministic learning algorithm. Combining these two intermediate results will
yield the statement via Yao’s principle.
Let 𝑁0 be a random variable denoting the number of times that (3/4, 1/4) is realized. Analogously,
let 𝑁1 (resp., 𝑁2), be the number of times in which (0, 1/4) (resp., (3/4, 1)) is realized. Clearly,
𝑁0 + 𝑁1 + 𝑁2 = 𝑇, and E[𝑁𝑖] = 𝑇/3 for any 𝑖 = 0, 1, 2. Conditioning on 𝑁0, the remaining 𝑇 − 𝑁0
valuations are either (0, 1/4) or (3/4, 1), sampled uniformly and independently at random.
Then, we have that

E

[
max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝)
����� 𝑁0

]
≥ E

[
max

𝑝∈{1/4,3/4}

𝑇∑
𝑡=1

GFT𝑡(𝑝)
����� 𝑁0

]
= E

[
max

𝑝∈{1/4,3/4}

𝑇∑
𝑡=1

1
4 I{𝑠𝑡 ≤ 𝑝 ≤ 𝑏𝑡}

����� 𝑁0

]
=

1
4 E[max {𝑁1 , 𝑇 − 𝑁0 − 𝑁1} | 𝑁0] (Definitions of 𝑁𝑖)

=
1
8 (𝑇 − 𝑁0) + 1

8E[max {2𝑁1 − 𝑇 + 𝑁0 , 𝑇 − 𝑁0 − 2𝑁1} | 𝑁0]

=
1
8 (𝑇 − 𝑁0) + 1

8E[max {𝑁1 − 𝑁2 , 𝑁2 − 𝑁1} | 𝑁0]

=
1
8 (𝑇 − 𝑁0) + 1

8E[|𝑆𝑇−𝑁0 | | 𝑁0] (8)

≥ 1
8 (𝑇 − 𝑁0) +

√
𝑇 − 𝑁0

12 , (Lemma 4.3)

where Equation (8) follows by considering a symmetric random walk on a line on 𝑇 − 𝑁0 steps
that goes left when (𝑠𝑡 , 𝑏𝑡) = (0, 1/4), and goes right when (𝑠𝑡 , 𝑏𝑡) = (3/4, 1). Now, we can take the
expectation (with respect to 𝑁0) on the first and last term of the previous chain of inequalities to get

E

[
max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝)
]
= E

[
E

[
max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝)
����� 𝑁0

] ]
(Conditional expectation)

≥ 1
12𝑇 +

1
12E

[√
𝑇 − 𝑁0

]
(E[𝑁0] = 𝑇/3)

≥ 1
12𝑇 +

√
𝑇

24 P(𝑁0 ≤ 3/4𝑇) (Conditioning on 𝑁0 ≤ 3/4𝑇)

≥ 1
12𝑇 +

5
√
𝑇

216 , (9)

where the last line follows from Markov’s inequality.
Now, we construct an upper bound on the gain from trade achievable by any deterministic learning
algorithm (even without the constraint of enforcing global budget balance). Consider what
happens at each fixed time steps 𝑡: the history of the realized valuations up to that point induce
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deterministically the pair of prices (𝑝𝑡 , 𝑞𝑡) posted by the learning algorithm. We prove now that no
matter (𝑝𝑡 , 𝑞𝑡) chosen, the learner does not achieve more than an expected gain from trade of 1/12.
To see this we study separately four cases:

• If (𝑝𝑡 , 𝑞𝑡) ∈ [0, 3/4) × (1/4, 1], then GFT𝑡(𝑝𝑡 , 𝑞𝑡) = 0 with probability 1 because it misses all the
possible trades.

• If (𝑝𝑡 , 𝑞𝑡) ∈ [0, 3/4)× [0, 1/4], then the learner gets 1/4 gain from trade only when (𝑠𝑡 , 𝑏𝑡) = (0, 1/4)
is realized and 0 otherwise, for an expected gain from trade of 1/12

• Similarly, if (𝑝𝑡 , 𝑞𝑡) ∈ (3/4, 1] × (1/4, 1], then the learner gets 1/4 gain from trade only when
(𝑠𝑡 , 𝑏𝑡) = (3/4, 1) is realized and 0 otherwise, for an expected gain from trade of 1/12

• Finally. if (𝑝𝑡 , 𝑞𝑡) ∈ [3/4, 1] × [0, 1/4], then the learner always observes a trade, but the expected
gain from trade it achieves is 0 (1/4 with probability 2/3 and−1/2 with the remaining probability).

Therefore, no matter what the learner does, it gets expected gain from trade at most 𝑇/12:

E

[
𝑇∑
𝑡=1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
≤ 𝑇

12 . (10)

We can conclude the proof of the Theorem by combining Equation (9) and Equation (10) to get:

E

[
max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) −
𝑇∑
𝑡=1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
≥

(
1
12𝑇 +

5
√
𝑇

216

)
− 𝑇

12 =
5
√
𝑇

216 ,

where that the randomness is with respect to the sequence generated by the randomized adversary.
This concludes the proof. □

5 Partial Feedback

In this section, we study the more challenging partial feedback models. In Section 5.1, we provide a
positive result for the case of one-bit feedback (𝑧𝑡 = I{𝑠𝑡 ≤ 𝑝𝑡} · I{𝑞𝑡 ≤ 𝑏𝑡}), where the learner only
observes whether the trade happened or not. In particular, we show that GFT-Max, with a suitable
initialization, achieves a regret of the order 𝑂̃(𝑇3/4). Differently from the full-information setting,
the design of a no-regret algorithm for the gain from trade (i.e., AG) is particularly challenging as
we need to build an estimator for the gain from trade by only playing non-budget balanced prices
in 𝐻𝐾 .
In Section 5.2 we complement the regret upper bound by proving that every algorithm has regret
at least Ω(𝑇5/7), even with two-bit feedback (𝑧𝑡 = (I{𝑠𝑡 ≤ 𝑝𝑡}, I{𝑞𝑡 ≤ 𝑏𝑡})), i.e., where each agent
separately reveal their willingness to accept the prices posted. One of the main challenges posed
by such a lower bound resides in handling non-budget balanced prices, as any algorithm could
temporarily sacrifice some profit while collecting large GFT.

5.1 𝑂̃(𝑇3/4) Upper Bound with One-Bit Feedback

We show how to employ GFT-Max with a suitable choice of parameters 𝛽 and 𝐾, and regret
minimizers AP and AG to achieve the desired regret bound. Section 5.1.1 presents a regret-
minimizing algorithm that can be employed as AP, while Section 5.1.2 provides a suitable regret
minimizer to be employed as AG. Finally, in Section 5.1.3, we present the final regret upper bound.
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5.1.1 Regret Minimizer for Profit under Partial Feedback

As in the full-information setting, we exploit Profit-Max to maximize the profit until the accrued
budget is at least a given threshold 𝛽. In particular, we instantiate the subroutine Profit-Max with
EXP3.P [Auer et al., 2002] as regret minimizer AP and grid 𝐹𝐾 . The following lemma shows that the
gain from trade of any fixed price 𝑝 in the first phase is small enough up to the stopping time 𝜏 that
terminates the first phase.
Lemma 5.1. Consider Profit-Max with budget threshold 𝛽, grid 𝐹𝐾 , and learning algorithm EXP3.P as AP.

Then with probability at least 1 − 1/𝑇, we have that max𝑝∈[0,1]
∑𝜏
𝑡=1GFT𝑡(𝑝) is at most 8(𝛽 + 1) log𝑇 + 5𝑇

𝐾 +
256 log𝑇

√|𝐹𝐾 |𝑇 log(|𝐹𝐾 |𝑇).
Proof. First, note that by Proposition 3.3 there exists a pair of prices (𝑝∗ , 𝑞∗) ∈ 𝐹𝐾 such that

max
𝑝∈[0,1]

𝜏∑
𝑡=1

GFT𝑡(𝑝) ≤ 8 log𝑇 ·
𝜏∑
𝑡=1

Profit𝑡(𝑝∗ , 𝑞∗) + 5𝑇
𝐾
.

Moreover, EXP.P guarantees that, with probability at least 1 − 1/𝑇, it holds
𝜏∑
𝑡=1

Profit𝑡(𝑝∗ , 𝑞∗) ≤
𝜏∑
𝑡=1

Profit𝑡(𝑝𝑡 , 𝑞𝑡) + 32
√
|𝐹𝐾 |𝑇 log(|𝐹𝐾 |𝑇).

Then,

max
𝑝∈[0,1]

𝜏∑
𝑡=1

GFT𝑡(𝑝) ≤ 8 log𝑇 ·
𝜏∑
𝑡=1

Profit𝑡(𝑝∗ , 𝑞∗) + 5𝑇
𝐾

≤ 8 log𝑇 ·
𝜏∑
𝑡=1

Profit𝑡(𝑝𝑡 , 𝑞𝑡) + 5𝑇
𝐾
+ 256 log𝑇

√
|𝐹𝐾 |𝑇 log(|𝐹𝐾 |𝑇)

≤ 8 log𝑇𝐵𝜏 + 5𝑇
𝐾
+ 256 log𝑇

√
|𝐹𝐾 |𝑇 log(|𝐹𝐾 |𝑇)

≤ 8 log𝑇(𝛽 + 1) + 5𝑇
𝐾
+ 256 log𝑇

√
|𝐹𝐾 |𝑇 log(|𝐹𝐾 |𝑇).

This concludes the proof. □

5.1.2 Regret Minimizer for Gain from Trade under Partial Feedback

A crucial ingredient we need is an estimation procedure capable of extracting quantitative infor-
mation from the gain from trade, having only access to one bit of feedback. More precisely, we
need an estimation procedure of the gain from trade function 𝐻𝐾 ∋ (𝑝, 𝑞) ↦→ GFT𝑡(𝑝, 𝑞). A similar
challenge is faced in Azar et al. [2022], where the action set consists of a discretization of a single
price (i.e., their estimation procedure posts 𝑝 to both seller and buyer). However, in our scenario,
such symmetry no longer applies. Here, we must consider the grid 𝐻𝐾 , which employs distinct
prices for the seller and the buyer (𝑝 + 1/𝐾 and 𝑝, respectively). Thus, our estimation procedure
GFT-Est has an asymmetric structure (see the pseudocode, in particular Lines 17 and 20).
First, GFT-Est draws a sample from a Bernoulli distribution with parameter (𝑝𝐾+1)/(𝐾+1) (Line 15).
If the result is 1, it posts price 𝑝 to the buyer, and the seller receives a price drawn uniformly at
random from [0, 𝑝 + 1/𝐾] (Line 17). Otherwise, if the result is 0, GFT-Est posts price 𝑝 to the seller,
and the buyer’s price is drawn uniformly at random from [𝑝, 1]. We denote the final estimate at 𝑡 by
ĜFT𝑡(𝑝 + 1/𝐾, 𝑝) (Line 20). Overall, our estimator has a small bias, as formalized in the following
Lemma.
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Algorithm 2: Block-Decomposition
Input: • Number of rounds 𝑇 and number of blocks 𝑁

• Set of prices 𝐻𝐾

1 Initialize Hedge over action space 𝐻𝐾 and time horizon 𝑁
2 Initialize random mappings ℎ 𝑗 for all 𝑗 ∈ {0, . . . , 𝑁 − 1}
3 ℬ𝑗 ← { 𝑗 𝑇𝑁 + 1, . . . , (𝑗 + 1) 𝑇𝑁 } for all 𝑗 ∈ {0, . . . , 𝑁 − 1}
4 for 𝑗 ∈ {0, . . . , 𝑁 − 1} do

5 Receive from A the distribution over pair of prices x𝑗
6 for 𝑡 ∈ ℬ𝑗 do

7 if 𝑡 ∉ 𝑆 𝑗 then

8 Play (𝑝, 𝑞) ∼ x𝑗 and observe I{𝑠𝑡 ≤ 𝑝 ∧ 𝑞 ≤ 𝑏𝑡}
9 else

10 Select prices (𝑝, 𝑞) such that ℎ 𝑗(𝑝, 𝑞) = 𝑡
11 Compute ĜFT𝑡(𝑝, 𝑞) through GFT-Est
12 r̂𝑗(𝑝, 𝑞) ← ĜFT𝑡(𝑝, 𝑞)
13 Update A with reward vector r̂𝑗

14 function GFT-Est

Input: prices (𝑝 + 1/𝐾, 𝑝) ∈ 𝐻𝐾

15 Sample 𝑍 from a Bernoulli with parameter 𝑝𝐾+1
𝐾+1

16 if 𝑍 = 1 then

17 Post price (𝑝̃ , 𝑝), with 𝑝̃ ∼ 𝑈[0, 𝑝 + 1/𝐾]
18 ĜFT𝑡(𝑝 + 1/𝐾, 𝑝) ← I{𝑠𝑡 ≤ 𝑝̃}I{𝑝 ≤ 𝑏𝑡}
19 else

20 Post price (𝑝, 𝑝̃), with 𝑝̃ ∼ 𝑈[𝑝, 1]
21 ĜFT𝑡(𝑝 + 1/𝐾, 𝑝) ← I{𝑠𝑡 ≤ 𝑝}I{𝑝̃ ≤ 𝑏𝑡}
22 return ĜFT𝑡(𝑝 + 1/𝐾, 𝑝)

Lemma 5.2. For every (𝑝 + 1/𝐾, 𝑝) ∈ 𝐻𝐾 , the random variable ĜFT𝑡(𝑝 + 1/𝐾, 𝑝) is an 1/𝐾-biased estimate of

𝐺𝐹𝑇𝑡(𝑝 + 1/𝐾, 𝑝), i.e., ���GFT𝑡
(
𝑝 + 1

𝐾 , 𝑝
) − E [

ĜFT𝑡
(
𝑝 + 1

𝐾 , 𝑝
) ] ��� ≤ 2

𝐾
.

Proof. First, we observe that for 𝑝̃ ∼ 𝑈[0, 𝑝 + 1/𝐾] (i.e., drawn independently from the uniform
distribution over the𝑈[0, 𝑝 + 1/𝐾] interval) we have that

E[I{𝑠𝑡 ≤ 𝑝̃}] = I{𝑠𝑡 ≤ 𝑝 + 1/𝐾}
(
1 − 𝑠𝑡

𝑝 + 1/𝐾
)
,

and for 𝑝̃ ∼ 𝑈[𝑝, 1]we have

E[I{𝑝̃ ≤ 𝑏𝑡}] = I{𝑝 ≤ 𝑏𝑡}
(
𝑏𝑡 − 𝑝
1 − 𝑝

)
.

Using these two equations, we can compute the expected value of the random variable returned by
GFT-Est. Indeed, by the law of total expectation, we have
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E

[
ĜFT𝑡

(
𝑝 + 1

𝐾
, 𝑝

)]
=
𝑝𝐾 + 1
𝐾 + 1 I{𝑝 ≤ 𝑏𝑡} P

𝑝̃∼𝑈[0,𝑝+ 1
𝐾 ]
[𝑠𝑡 ≤ 𝑝̃] + 1 − 𝑝

1 + 1/𝐾 I{𝑠𝑡 ≤ 𝑝 + 1/𝐾} P
𝑝̃∼𝑈[𝑝,1]

[𝑝̃ ≤ 𝑏𝑡)]

=
𝑝𝐾 + 1
𝐾 + 1 I{𝑝 ≤ 𝑏𝑡} I{𝑠𝑡 ≤ 𝑝 + 1/𝐾}

(
1 − 𝑠𝑡

𝑝 + 1/𝐾
)
+ 1 − 𝑝

1 + 1/𝐾 I{𝑠𝑡 ≤ 𝑝 + 1/𝐾}I{𝑝 ≤ 𝑏𝑡} 𝑏𝑡 − 𝑝1 − 𝑝
=

𝐾
𝐾 + 1 (𝑏𝑡 − 𝑠𝑡 + 1/𝐾) I{𝑠𝑡 ≤ 𝑝 + 1/𝐾}I{𝑝 ≤ 𝑏𝑡}

We can thus conclude the proof by observing that:����GFT𝑡
(
𝑝 + 1

𝐾
, 𝑝

)
− E

[
ĜFT𝑡

(
𝑝 + 1

𝐾
, 𝑝

)] ���� = �����I{𝑠𝑡 ≤ 𝑝 + 1
𝐾

}
I{𝑝 ≤ 𝑏𝑡}

(
𝑏𝑡 − 𝑠𝑡 −

𝑏𝑡 − 𝑠𝑡 + 1
𝐾

1 + 1
𝐾

)����� ≤ 2
𝐾
,

where the last inequality holds since
��𝑎 − 𝑎+𝜀

1+𝜀
�� ≤ 2𝜀 for all 𝑎 ∈ [−1, 1] and 𝜀 < 1. □

Given the estimation procedure GFT-Est, it is possible to turn any no-regret algorithm for the
full-feedback setting into a regret minimizer for the partial feedback setting by the standard block
decomposition technique (see, e.g., Chapter 4 of Nisan et al. [2007]). The procedure, which we
call Block-Decomposition is described in the pseudocode. We assume to employ Hedge as the
full-feedback regret minimizer A.
Block-Decomposition works by subdividing the time horizon 𝑇 into 𝑁 blocks ℬ1 , . . . ,ℬ𝑁 of equal
size and contiguous, that is ℬ𝑗 = { 𝑗𝑇/𝑁 + 1, . . . , (𝑗 + 1)𝑇/𝑁} for any 𝑗 ∈ {0, 1, . . . , 𝑁 − 1}. In each
block we select uniformly at random 𝐾 time steps (i.e., one for each pair in 𝐻𝐾), and we randomly
assign each of such time steps to one pair of prices in 𝐻𝐾 . Formally, for each block 𝑗, we have a
one-to-one map ℎ 𝑗 : ℬ𝑗 → 𝐻𝐾 which is a uniform random map from prices in 𝐻𝐾 to rounds in
block ℬ𝑗 . We call the image of ℎ 𝑗 the exploration rounds, and we denote the set of such rounds by 𝑆 𝑗 .
For any block 𝑗, the algorithm builds a vector r̂𝑗 such that the entry r̂𝑗(𝑝, 𝑞) is an estimation of the
reward of the pair (𝑝, 𝑞) ∈ 𝐻𝐾 in block ℬ𝑗 . To do that, for any block 𝑗 and pair of prices (𝑝, 𝑞) ∈ 𝐻𝐾 ,
we let r̂𝑗(𝑝, 𝑞) = ĜFT𝑡(𝑝, 𝑞), where 𝑡 = ℎ 𝑗(𝑝, 𝑞) and ĜFT𝑡(𝑝, 𝑞) is computed through the estimation
procedure GFT-Est with prices (𝑝, 𝑞) (Lines 10 and 11). For any block 𝑗, exploration rounds in 𝑆 𝑗
are used to build r̂𝑗 . In all the other rounds in ℬ𝑗 \ 𝑆 𝑗 the algorithm plays according to the strategy
x𝑗 ∈ Δ(𝐻𝐾) (Line 8) computed by A at the beginning of block 𝑗 (Line 5). At the end of each block 𝑗,
the full-information subroutine A is updated using r̂𝑗 (Line 13).
Let GFT𝑗(𝑝, 𝑞) =

∑
𝑡∈ℬ𝑗 GFT𝑡(𝑝, 𝑞)/|ℬ𝑗 | be the average GFT over block ℬ𝑗 . Since we choose

exploration rounds uniformly at random throughout block ℬ𝑗 we have that, for any (𝑝, 𝑞) ∈ 𝐻𝐾 ,

��E[r̂𝑗(𝑝, 𝑞)] −GFT𝑗(𝑝, 𝑞)
�� = ������∑𝑡∈ℬ𝑗 1

|ℬ𝑗 |
(
E
[
ĜFT𝑡(𝑝, 𝑞)

]
−GFT𝑡(𝑝, 𝑞)

)������
≤

∑
𝑡∈ℬ𝑗

1
|ℬ𝑗 |

���E[ĜFT𝑡(𝑝, 𝑞)
]
−GFT𝑡(𝑝, 𝑞)

���
≤ 2
𝐾
,
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where the last equality follows from Lemma 5.2. This yields the following guarantees on the regret
of Block-Decomposition. Let x𝑡 be the distribution over 𝐻𝐾 employed to sample (𝑝, 𝑞) at time 𝑡. At
time 𝑡, 𝑡 ∈ ℬ𝑗 , we have

x𝑡 =

{
x𝑗 if 𝑡 ∉ 𝑆 𝑗 (Line 8)

play (𝑝, 𝑞) s.t. ℎ 𝑗(𝑝, 𝑞) = 𝑡 otherwise (Line 11)

where x𝑗 is the distribution computed by Hedge for block 𝑗. The following lemma states precisely
the guarantees provided by Block-Decomposition.

Lemma 5.3. Block-Decomposition with 𝐾 = 𝑇1/4
and 𝑁 = 𝑇1/2

guarantees:

sup
(𝑝,𝑞)∈𝐻𝐾

𝑇∑
𝑡=1

GFT𝑡(𝑝, 𝑞) −
𝑇∑
𝑡=1

E
(𝑝,𝑞)∼x𝑡

[GFT𝑡(𝑝, 𝑞)] ≤ 5
2 𝑇

3/4
√

log(𝑇).

Proof. Let 𝑅𝐻𝑁 be the regret accumulated by Hedge over 𝑁 rounds when it observes utilities in
[0, 1] and plays over 𝐾 actions. Each exploration round can cost at most 1 with respect to playing
according to x𝑗 , and there are 𝑁𝐾 such rounds. Then, we have that

𝑇∑
𝑡=1

∑
(𝑝,𝑞)∈𝐻𝐾

GFT𝑡(𝑝, 𝑞)x𝑡(𝑝, 𝑞) ≥
∑
𝑗∈[𝑁]

∑
(𝑝,𝑞)∈𝐻𝐾

𝑇
𝑁
· GFT𝑗(𝑝, 𝑞)x𝑗(𝑝, 𝑞) − 𝑁𝐾

≥
∑
𝑗∈[𝑁]

∑
(𝑝,𝑞)∈𝐻𝐾

𝑇
𝑁
·
(
E
[
r̂𝑗(𝑝, 𝑞)

] − 2
𝐾

)
x𝑗(𝑝, 𝑞) − 𝑁𝐾

= E


∑
𝑗∈[𝑁]

∑
(𝑝,𝑞)∈𝐻𝐾

𝑇
𝑁

r̂𝑗(𝑝, 𝑞)x𝑗(𝑝, 𝑞)
 − 2𝑇

𝐾
− 𝑁𝐾

≥ E
 sup
(𝑝,𝑞)∈𝐻𝐾

∑
𝑗∈[𝑁]

𝑇
𝑁

r̂𝑗(𝑝, 𝑞)
 − 𝑇𝑁 𝑅𝐻𝑁 − 2𝑇

𝐾
− 𝑁𝐾

≥ sup
(𝑝,𝑞)∈𝐻𝐾

E


∑
𝑗∈[𝑁]

𝑇
𝑁

r̂𝑗(𝑝, 𝑞)
 − 𝑇𝑁 𝑅𝐻𝑁 − 2𝑇

𝐾
− 𝑁𝐾

≥ sup
(𝑝,𝑞)∈𝐻𝐾

∑
𝑗∈[𝑁]

𝑇
𝑁

GFT𝑗(𝑝, 𝑞) − 𝑇𝑁 𝑅
𝐻
𝑁 −

2𝑇
𝐾
− 𝑁𝐾

= sup
(𝑝,𝑞)∈𝐻𝐾

𝑇∑
𝑡=1

GFT𝑡(𝑝, 𝑞) − 𝑇𝑁 𝑅
𝐻
𝑁 −

2𝑇
𝐾
− 𝑁𝐾.

By rearranging we obtain that

sup
(𝑝,𝑞)∈𝐻𝐾

𝑇∑
𝑡=1

GFT𝑡(𝑝, 𝑞) −
𝑇∑
𝑡=1

∑
(𝑝,𝑞)∈𝐻𝐾

GFT𝑡(𝑝, 𝑞)x𝑡(𝑝, 𝑞) ≤ 𝑇
𝑁
𝑅𝐻𝑁 +

2𝑇
𝐾
+ 𝑁𝐾.
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It is known that 𝑅𝐻𝑁 ≤ 4
√
𝑁 log𝐾 (see, e.g., Slivkins [2019]). Then, by setting 𝐾 = 𝑇1/4 and 𝑁 = 𝑇1/2

we obtain

sup
(𝑝,𝑞)∈𝐻𝐾

𝑇∑
𝑡=1

GFT𝑡(𝑝, 𝑞) −
𝑇∑
𝑡=1

∑
(𝑝,𝑞)∈𝐻𝐾

GFT𝑡(𝑝, 𝑞)x𝑡(𝑝, 𝑞) ≤ 𝑇3/4
(
3 + 4

√
log(𝑇1/4)

)
≤ 16 · 𝑇3/4

√
log(𝑇1/4),

where the last inequality holds for all 𝑇 ≥ 2. This concludes the proof. □

5.1.3 Putting Everything Together

GFT-Max with the two regret minimizers described in Sections 5.1.1 and 5.1.2 guarantees a 𝑂(𝑇3/4)
bound on the regret.

Theorem 5.4. Consider the repeated bilateral trade problem in the one-bit feedback model. There exists a

learning algorithm A that respects global budget balance and whose regret with respect to the best fixed price

in hindsight verifies:

𝑅𝑇(A) ≤ 1282 · 𝑇3/4 log2 𝑇.

Proof. The proof follows the same structure of Theorem 4.2. In this case, we set 𝛽 = 𝑇3/4 and 𝐾 = 𝑇1/4,
and consider GFT-Max with EXP3.P [Auer et al., 2002] instantiated over set 𝐹𝐾 (see Section 5.1.1) as
the regret minimizer AP, and Block-Decomposition instantiated over 𝐻𝐾 (see Section 5.1.2) as the
regret minimizer AG.
By construction of Profit-Max, for any stopping time 𝜏 the profit is at least 𝛽, and in rounds
𝜏 + 1, . . . , 𝑇 the budget spent is at most −1/𝐾. Therefore, the global budget balance condition is
satisfied because the cumulative profit at 𝑇 is at least

𝛽 − (𝑇 − 𝜏) 1
𝐾
≥ 𝑇3/4 − 𝑇 1

𝑇1/4 = 0.

Now we prove the regret upper bound. For rounds up to 𝜏 we can exploit Lemma 5.1. On the other
hand, for any 𝜏, on rounds in 𝜏 + 1, . . . , 𝑇 we have

max
𝑝∈[0,1]

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝) ≤ max
(𝑝,𝑞)∈𝐻𝐾

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝, 𝑞) + 𝑇𝐾 (11)

≤ E
(𝑝𝑡 ,𝑞𝑡 )∼x𝑡

[
𝑇∑

𝑡=𝜏+1
GFT𝑡(𝑝𝑡 , 𝑞𝑡)

]
+ 𝑇
𝐾
+ 5𝑇3/4

√
log(𝑇1/4)

where the first inequality follows from Proposition 3.1, and the second follows by Lemma 5.3 by
replacing 𝑇 with 𝑇 − 𝜏. Then, assume that the regret bound Lemma 5.1 holds, which happens
with probability at least 1 − 1/𝑇. By summing Equation (11) and Lemma 5.1 we have that, with
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probability at least 1 − 1/𝑇,

max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) ≤ max
𝑝∈[0,1]

𝜏∑
𝑡=1

GFT𝑡(𝑝) + max
𝑝∈[0,1]

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝)

≤ 8 log𝑇(𝛽 + 1) + 5𝑇
𝐾
+ 256 log𝑇

√
|𝐹𝐾 |𝑇 log(|𝐹𝐾 |𝑇) + max

𝑝∈[0,1]

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝)

≤ E
[

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
+ 8 log𝑇(𝛽 + 1) + 6𝑇

𝐾
+ 256 log𝑇

√
|𝐹𝐾 |𝑇 log(|𝐹𝐾 |𝑇) + 5𝑇3/4

√
log(𝑇1/4),

where the second inequality follows from Lemma 5.1 and the third one from Lemma 5.3.
Then, by substituting 𝛽 = 𝑇3/4 and 𝐾 = 𝑇1/4 we obtain

max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) ≤ E
[

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
+ 8 log𝑇(𝑇3/4 + 1) + 6𝑇3/4

+ 256 · log𝑇
√
(2𝑇1/4(log𝑇 + 1))𝑇 log((2𝑇1/4(log𝑇 + 1))𝑇) + 5𝑇3/4

√
log(𝑇1/4)

≤ E
[

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
+ 1280 · 𝑇3/4 log2 𝑇.

Then, by rearranging, with probability at least 1 − 1/𝑇 it holds

max
𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) − E
[
𝑇∑
𝑡=1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
≤ max

𝑝∈[0,1]

𝑇∑
𝑡=1

GFT𝑡(𝑝) − E
[

𝑇∑
𝑡=𝜏+1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]

≤ 1280 · 𝑇3/4 log2 𝑇,

where the first inequality follows from the fact that the gain from trade is always non-negative.
Finally, the expected regret is at most

𝑅𝑇(GFT-Max) ≤
(
1 − 1

𝑇

) (
1280 · 𝑇3/4 log2 𝑇

)
+ 1
𝑇
· 2𝑇 ≤ 1282 · 𝑇3/4 log2 𝑇.

This concludes the proof. □

5.2 Ω(𝑇5/7) Lower Bound with Two-Bit Feedback

In this section, we provide a lower bound for learning the best price against any oblivious adversary,
with global budget balance constraints and two-bit feedback. Our construction builds upon the one
by Cesa-Bianchi et al. [2023], but exhibits two key differences. First, we are not constrained to use
smooth value distributions. This allows us to simplify the construction, avoiding the reduction to
online learning with feedback graphs. Second, we only require algorithms to be globally budget
balanced (instead of per-round weakly budget balanced); looser budget balance constraints enhance
the capabilities of the learning algorithm. All in all, we derive a lower bound that is slightly looser
𝑇5/7 ≈ 𝑇0.714 compared to the Ω(𝑇3/4). We further elaborate on this comparison at the end of the
Section.
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Theorem 5.5. Consider the problem of repeated bilateral trade in the two-bit feedback model. Any learning

algorithm that satisfies global budget balance suffers regret at least Ω(𝑇5/7).
The rest of the Section is devoted to the proof of Theorem 5.5; for the missing details, we refer to
Appendix A.2. Our lower bound construction is based on 𝑁 stochastic sequences of valuations.
Each one of these sequences is sampled in an i.i.d. way from distributions of valuations with two key
properties: (i) they are close with respect to some statistical measure of distance (see Lemma 5.11)
and (ii) ensure that any pair of prices that reveals information on the underlying instance is highly
suboptimal in terms of GFT (i.e., gathering information is “costly”, see Lemma 5.8). We proceed in
5 steps.

i) Building a set of hard instances. We start by introducing a set of 𝑁 = 𝑁(𝑇), to be specified later,
hard instances of the bilateral trade problem. Our goal is to show that any learning algorithm has
regret at least Ω(𝑇5/7) in at least one of the 𝑁 instances. We define a distribution 𝜇𝑘 ∈ Δ([0, 1]2)
of valuations (𝑠, 𝑏) over [0, 1]2 for each 𝑘 ∈ {0, . . . , 𝑁 − 1}, where we have 𝑁 − 1 “perturbed”
distributions corresponding to indices 𝑘 ∈ {1, . . . , 𝑁 − 1}, and a “base” distribution corresponding
to 𝑘 = 0.
Let ℓ = 1/12 and let Δ = ℓ/(𝑁−1), and 𝛿 = Δ/2. Then, for any instance 𝑘 ∈ {0, . . . , 𝑁 − 1}, the
distributions 𝜇𝑘 are supported on the same set𝒲 of finitely many valuations. We describe the
set𝒲 by partitioning it into six different sets. An illustration of the valuations set can be found
in Figure 3a. First, we define the two sets𝒲1 and𝒲2 (respectively red and blue in Figure 3a) as
follows:

𝒲1 =
{
𝑤 𝑖

1 =
( 1−ℓ

2 + 𝑖Δ, 1 − ℓ
)

: 𝑖 = 0, . . . , 𝑁 − 1
}

and
𝒲2 =

{
𝑤 𝑖

2 =

(
1−𝑙
2 + 𝑖Δ, 1 − ℓ − 𝜌

)
: 𝑖 = 0, . . . , 𝑁 − 1

}
,

where 𝜌 = 1/32. These valuations are “balanced out” by the 𝑁 valuations in𝒲3 (green in Figure 3a):

𝒲3 =
{
𝑤 𝑖

3 =
(
0, 1−ℓ

2 − 𝛿 + 𝑖Δ)
: 𝑖 = 0, . . . , 𝑁 − 1

}
.

Moreover, we have a set𝒲4 of “deficit-generating” valuations (brown in Figure 3a)

𝒲4 =
{
𝑤 𝑖

4 =
( 1−ℓ

2 + 𝑖Δ, 1−ℓ
2 − 𝛿 + 𝑖Δ)

: 𝑖 = 0, . . . , 𝑁 − 1
}
,

and a single valuation belonging to𝒲5 (orange in Figure 3a)

𝒲5 =
{(

0, 1−ℓ
2

)}
.

We conclude by defining the set𝒲6 (purple in Figure 3a) of the four “extremal” valuations (in
practise, they are needed for Lemma 5.11 to hold):

𝒲6 = {(0, 0), (0, 1), (1, 1), (1, 0)} .
We assign different probabilities to the valuations in each set𝒲𝑗 depending on the instance. In
particular, for any instance 𝑘 ∈ {1, . . . , 𝑁 − 1} with distribution 𝜇𝑘 , we have that

𝜇𝑘(𝑤 𝑖
𝑗) =

1
64𝑁2 = 𝛾1 , ∀𝑗 ∈ {1, 2}, 𝑖 ∉ {𝑘, 𝑘 + 1}, (12)

while we perturb by 𝜀 the probability of the following valuations:

𝜇𝑘(𝑤𝑘
1) = 𝛾1 + 𝜀, 𝜇𝑘(𝑤𝑘+1

1 ) = 𝛾1 − 𝜀, 𝜇𝑘(𝑤𝑘
2) = 𝛾1 − 𝜀, 𝜇𝑘(𝑤𝑘+1

2 ) = 𝛾1 + 𝜀. (13)
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𝒲1𝒲2𝒲3𝒲4𝒲5𝒲6
1+𝑙
2

1+𝑙
2

1−𝑙
2

1+𝑙
2 − 𝛿

1−𝑙
2 − 𝛿

1 − 𝑙 − 𝜌
1 − 𝑙

(a)

1+𝑙
2 1−𝑙−𝜌 1−𝑙 1𝑝∗𝑘

𝑐1

𝑐2

𝑐3

𝑐4

𝜌 · 𝜖

E𝑘[𝐺𝐹𝑇(𝑝, 𝑝 + 𝛿, 𝑠 , 𝑏)]

𝒢𝑠𝒲

𝛾5
1−𝑙
2

(b)

Figure 3: Figure 3a represents the valuations support𝒲 of the instances distributions 𝜇𝑘 , while Figure 3b
represents the value of posting the same price to the seller and the buyer in instance 𝜇𝑘 .

Conversely, for the base instance 𝜇0, we place equal probability 𝜇0(𝑤) = 𝛾1 on all the valuations
𝑤 ∈ 𝒲1 ∪ 𝒲2, and hence all these valuations have the same probability. For each instance
𝑘 ∈ {0, . . . , 𝑁 − 1} with distribution 𝜇𝑘 , the probability of valuations 𝑤 𝑖

3, with 𝑖 ∈ {0, . . . , 𝑁 − 1}, is
set as

𝜇𝑘(𝑤 𝑖
3) = 𝛾1 · 1 − ℓ − 𝜌 − 2𝑖Δ

1−ℓ
2 − 𝛿 + 𝑖Δ ∈ (0, 2𝛾1) .

Let 𝛾tot
3 =

∑
𝑤∈𝒲3 𝜇𝑘(𝑤) < 2𝛾1𝑁 be the total probability assigned to valuations in𝒲3. Moreover,

for any instance 𝑘 ∈ {1, . . . , 𝑁 − 1} with distribution 𝜇𝑘 , we assign to every point in𝒲4 probability
𝛾4 = 4𝛾1(13𝑁 − 14), i.e.,

𝜇𝑘(𝑤) = 4𝛾1(13𝑁 − 14), ∀𝑤 ∈ 𝒲4. (14)

Then, for any instance 𝑘 ∈ {1, . . . , 𝑁 − 1} with distribution 𝜇𝑘 , we assign probability 𝛾5 to the
single valuation in𝒲5, i.e., 𝜇𝑘(0, (1−ℓ )/2) = 𝛾5 = 1/64. Finally, all the remaining probability is equally
divided into the 4 extremal points in𝒲6, i.e.,

𝜇𝑘(𝑤) =
1 − (

2𝛾1𝑁 + 𝛾tot
3 + 4𝛾1𝑁(13𝑁 − 14) + 𝛾5

)
4 = 𝛾6 , ∀𝑤 ∈ 𝒲6.

In Appendix A.2, Lemma A.5 shows that this probabilities are positive and, therefore, 𝜇𝑘 defines a
probability distribution for every 𝑘.
Now, we define 𝒢𝒲 as the grid generated by such valuations. Formally:

𝒢𝑠𝒲 = {𝑠 : ∃ (𝑠, ·) ∈ 𝒲}, 𝒢𝑏𝒲 = {𝑏 : ∃ (·, 𝑏) ∈ 𝒲}, and 𝒢𝒲 =
{(𝑠, 𝑏) : 𝑠 ∈ 𝒢𝑠𝒲 and 𝑏 ∈ 𝒢𝑏𝒲

}
.

Thus, 𝒢𝑠𝒲 and 𝒢𝑏𝒲 represent the projections of 𝒢𝒲 onto its first (seller) and second (buyer)
component, respectively.

ii) Analysis of the gain from trade. As a first step, we argue that we can focus on algorithms that
play only actions in 𝒢𝒲 , without loss of generality. Consider infact any instance 𝑘 ∈ {1, . . . , 𝑁} and
any algorithm A. Similarly to the proof of Proposition A.3 (more specifically Claim A.4 therein),
one can easily prove that there exists an equivalent algorithm A′ (in terms of both feedback, GFT,
and profit), that only has distribution supported on the grid 𝒢𝒲 generated by the valuations𝒲.
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Next, for any 𝑝 ∈ 𝒢𝑠𝒲 , we characterize the value of posting the pair of prices (𝑝, 𝑝 + 𝛿) under
distribution 𝜇𝑘 , with 𝑘 ∈ {0, . . . , 𝑁 − 1}. Note that posting the pair (𝑝, 𝑝 + 𝛿) ∈ 𝒢𝒲 under any
instance 𝜇𝑘 , is equivalent to posting a single price 𝑝 ∈ 𝒢𝑠𝒲 to both the seller and the buyer, with
the only difference that (𝑝, 𝑝) ∉ 𝒢𝒲 , while (𝑝, 𝑝 + 𝛿) ∈ 𝒢𝒲 . Then, for any 𝑝 ∈ 𝒢𝑠𝒲 , we relate the
GFT obtained by posting a pair (𝑝, 𝑝+ 𝛿) under valuations sampled from 𝜇𝑘 , with 𝑘 ∈ {1, . . . , 𝑁 −1},
and under the base distribution 𝜇0. For every 𝑘 ∈ {0, . . . , 𝑁−1}, letE𝑘 and P𝑘 denote the expectation
and the probability measure under instance 𝜇𝑘 , respectively. Direct calculations shows that, for all
𝑝 ∈ 𝒢𝑠𝒲 and 𝑘 ∈ {1, . . . , 𝑁 − 1}, it holds

E𝑘[GFT(𝑝, 𝑝 + 𝛿, 𝑠 , 𝑏)] = E0[GFT(𝑝, 𝑝 + 𝛿, 𝑠 , 𝑏)] + 𝜌𝜀I
{
𝑝 = 𝑝∗𝑘

}
,

where GFT(𝑝, 𝑝 + 𝛿, 𝑠 , 𝑏) is simply the gain from trade when the prices posted are (𝑝, 𝑝 + 𝛿) and
valuations (𝑠, 𝑏), and 𝑝∗𝑘 =

1−ℓ
2 + 𝑘Δ. Moreover, for all 𝑝 ∈ 𝒢𝑠𝒲 it holds:

E0[GFT(𝑝, 𝑝 + 𝛿, 𝑠 , 𝑏)] =


𝑐1 = 𝛾5

1+ℓ
2 + 𝜇0(0, 1) + 𝛾1

77
96𝑁 = if 𝑝 ∈ [0, 1+ℓ

2 ]
𝑐2 = 𝜇0(0, 1) + 𝛾1

77
96𝑁 if 𝑝 ∈ (1+ℓ2 , 1 − ℓ − 𝑐]

𝑐3 = 𝜇0(0, 1) + 𝛾1
5
12𝑁 if 𝑝 ∈ (1 − ℓ − 𝑐, 1 − ℓ ]

𝑐4 = 𝜇0(0, 1) if 𝑝 ∈ (1 − ℓ , 1]
Figure 3b gives a representation of E𝑘[GFT(𝑝, 𝑝 + 𝛿, 𝑠 , 𝑏)]. From these calculations, we show that in
an instance 𝑘 ∈ {1, . . . , 𝑁 − 1} the pair that maximizes the expected gain from trade is (𝑝∗𝑘 , 𝑝∗𝑘 + 𝛿).
Lemma 5.6. For any instance 𝑘 ∈ {1, . . . , 𝑁 − 1}, we have that:

max
(𝑝,𝑞)∈[0,1]2 , 𝑝≤𝑞

E𝑘[GFT(𝑝, 𝑞, 𝑠, 𝑏)] = E𝑘[GFT(𝑝∗𝑘 , 𝑝∗𝑘 + 𝛿, 𝑠 , 𝑏)] = 𝑐1 + 𝜌 · 𝜀.

The previous lemma characterizes the optimal fixed budget balanced price. Then, we show that all
the strategies that are not budget balanced are dominated. Indeed, one of the main challenges of
our reduction is that, in general, a globally budget balanced algorithm could get a larger GFT by
temporarily sacrificing some profit and posting prices (𝑝, 𝑞) with 𝑞 < 𝑝. In the following lemma
we show that our instances are built in such a way that these strategies are dominated and thus
can be discarded. Intuitively, every tuple of prices 𝑝, 𝑞 that tries to gain higher GFT than the one
obtained by playing on the diagonal must win also trades in𝒲4. Then, since trades in𝒲4 have
negative GFT and happen with sufficiently high probability 𝛾4, we have that posting prices 𝑞 < 𝑝 is
dominated.

Lemma 5.7. For every pair of posted prices (𝑝, 𝑞) ∈ 𝒢𝒲 ∩ {(𝑝, 𝑞) ∈ [0, 1]2 | 𝑝 < 𝑞}, (𝑝′, 𝑞′) ∈ 𝒢𝒲 ∩
{(𝑝, 𝑞) ∈ [0, 1]2 | 𝑝 ≥ 𝑞}, and instance 𝑘 ∈ {0, . . . , 𝑁 − 1}, we have that

E𝑘[GFT(𝑝, 𝑞, 𝑠, 𝑏)] ≤ E𝑘[GFT(𝑝′, 𝑞′, 𝑠 , 𝑏)] ≤ 𝑐1 + 𝜌 𝜀 I
{(𝑝′, 𝑞′) = (𝑝∗𝑘 , 𝑝∗𝑘 + 𝛿)}.

We complete this section by showing that also strategies that propose a high price to the buyer are
dominated in every instance. In particular, we show that when the algorithm places prices (𝑝, 𝑞)
with 𝑞 > (1+ℓ )/2, it looses a constant GFT with respect to choosing a smaller 𝑞. This is because the
learner cannot induce the trade𝒲5 which guarantees expected GFT of Θ(𝛾5). Formally,

Lemma 5.8. For any instance 𝑘 ∈ {0, . . . , 𝑁 −1}, price 𝑝 ∈ 𝒲𝑠
𝒢∩

[ 1−ℓ
2 , 1+ℓ

2
]
, and price 𝑞 ∈ ( 1+ℓ

2 , 1
] ∩𝒢𝑏𝒲

we have that

E𝑘[GFT(𝑝, 𝑝 + 𝛿)] ≥ E𝑘[GFT(𝑝, 𝑞)] + 𝛾5

3 .
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Intuitively, the previous lemma shows that exploring is costly. Indeed, as we show in the following
paragraph, the algorithm must post 𝑞 ≥ (1+ℓ )/2 to gain information on the instance, i.e., on the 𝑘 that
determines the instance.

iii) Analysis of the feedback. In the two-bit feedback model, for a valuation (𝑠, 𝑏) we have that
posting prices (𝑝, 𝑞) generates the feedback (I{𝑠 ≤ 𝑝}, I{𝑞 ≤ 𝑏}). Now, we show that for any instance
𝜇𝑘 and any posted prices (𝑝, 𝑞), the distribution of the feedback is independent on the instance
almost everywhere. Specifically, the feedback distribution depends on the instance 𝑘 only within a
“small” and instance-dependent region of prices. For every instance 𝑘 ∈ {1, . . . , 𝑁 − 1}, let

ℱ𝑘 =
[ 1−ℓ

2 + (𝑘 − 1)Δ, 1−ℓ
2 + 𝑘Δ

) × (1 − ℓ − 𝑐, 1 − ℓ ].
It is a simple exercise to see that, for each pair of prices outside the sets ℱ𝑘 , the feedback received by
the learner is independent of the specific instance that is generating the valuations (see [Cesa-Bianchi
et al., 2023, Claim 2] for a similar result).

Lemma 5.9. For all (𝑝, 𝑞) ∈ [0, 1]2 \⋃𝑘′∈{1,...,𝑁−1} ℱ𝑘′ it holds:

P𝑘[(I{𝑠 ≤ 𝑝}, I{𝑞 ≤ 𝑏}) = 𝑧] = P𝑗[(I{𝑠 ≤ 𝑝}, I{𝑞 ≤ 𝑏}) = 𝑧], ∀𝑧 ∈ {0, 1}2 ,∀𝑗 , 𝑘 ∈ {0, . . . , 𝑁 − 1}.

iv) Price regions. The properties uncovered so far naturally partition the square [0, 1]2 into the
following three regions:

• Exploration regions. We have the 𝑁 − 1 regions ℱ𝑘 . These are the regions in which the
probability of observing a certain two-bit feedback depends on the instance 𝜇𝑘 from which
the valuations are sampled.

• Exploitation regions. We define the regions ℰ𝑘 for any 𝑘 ∈ {1, . . . , 𝑁 − 1} as follows

ℰ𝑘 =
{
(𝑝, 𝑞) ∈ [0, 1]2

��� 𝑞 ≥ 𝑝, 𝑞 ≤ 1+ℓ
2 , 𝑝 ∈ [ 1−ℓ

2 + (𝑘 − 1)Δ, 1−ℓ
2 + 𝑘Δ

)}
.

All these regions are such that the GFT collected by posting (𝑝, 𝑞) ∈ ℰ𝑘 is close (and smaller
than or equal to) to the optimal GFT, i.e., the one obtained by posting (𝑝∗𝑘 , 𝑝∗𝑘 + 𝛿).

• Dominated regions. We define𝒟 as the remaining set of possible valuations, that is

𝒟 = [0, 1]2 \ (∪𝑘(ℱ𝑘 ∪ ℰ𝑘)) .
It’s easy to verify that by posting (𝑝, 𝑞) ∈ 𝒟 one obtains a GFT that is at most 𝑐1.

Figure 4 shows the partition of the square [0, 1]2 into exploration, exploitation and dominated
figures, which are depicted in red, orange and green, respectively. Next, we define

𝒩𝑘 = ∑
𝑡∈[𝑇] I{(𝑝𝑡 , 𝑞𝑡) ∈ ℱ𝑘}, ℳ𝑘 =

∑
𝑡∈[𝑇] I{(𝑝𝑡 , 𝑞𝑡) ∈ ℰ𝑘}, 𝒪 =

∑
𝑡∈[𝑇] I{(𝑝𝑡 , 𝑞𝑡) ∈ 𝒟},

which are the number of times an algorithm plays in the exploration, exploitation and dominated
regions, respectively. Then, we can upper bound the gain from trade of an algorithm A considering
only the number of times A plays in each region. In particular, it holds that in any instance 𝑘:

• Cost of exploration: the GFT collected by posting prices in ℱ𝑗 is at most 𝑐2 for all 𝑗 (Lemma 5.8);

• Exploitation: the GFT collected by posting prices in ℰ 𝑗 is at most 𝑐1+𝜌 · 𝜀I{ 𝑗 = 𝑘} (Lemma 5.7);
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𝒲1𝒲2𝒲3𝒲4𝒲5𝒲6
1+𝑙
2

1+𝑙
2

1−𝑙
2

1+𝑙
2 − 𝛿

1−𝑙
2 − 𝛿

1 − 𝑙 − 𝜌
1 − 𝑙

ℰ𝑘
ℱ𝑘
𝒟

Figure 4: Partition of [0, 1]2 in exploration regions ℱ𝑘 , exploitation regions ℰ𝑘 , and dominated regions𝒟.

• Cost of domination: the GFT collected by posting prices in𝒟 is at most 𝑐1 (Lemma 5.7).

Formally, these observations lead to the following upper bound.

Lemma 5.10. Let {(𝑝𝑡 , 𝑞𝑡)}𝑡∈[𝑇] be the sequences of prices posted by any algorithm A. Then

𝑇∑
𝑡=1
E𝑘[GFT(𝑝𝑡 , 𝑞𝑡 , 𝑠 , 𝑏)] ≤ E𝑘

[
𝜌𝜀 · ℳ𝑘 +

𝑁−1∑
𝑘=1

(
𝑐1ℳ 𝑗 + 𝑐2𝒩𝑗 + 𝑐1𝒪

) ]
.

v) Relating the algorithm behavior on different instances. Now we relate the expected number
of exploitation roundsℳ𝑘 in different instances 𝑘. This difference depends on the probability
measures P𝑘 and P0 through the Pinsker’s inequality on a suitably defined multinomial random
variable that encodes the four possible feedback observed when playing in the exploration regions
ℰ𝑘 .
Lemma 5.11. For all 𝑘 ∈ {1, . . . , 𝑁 − 1} we have that

E𝑘[ℳ𝑘] − E0[ℳ𝑘] ≤ 𝑇𝜀
√

2
𝛾6
E0[𝒩𝑘].

vi) Lower bounding the regret.

We define the expected regret of an algorithm under instance 𝑘 ∈ {0, . . . , 𝑁 − 1} as:

𝑅𝑘𝑇 = max
(𝑝,𝑞)∈[0,1]2 ,𝑝≥𝑞

E𝑘

[
𝑇∑
𝑡=1

GFT𝑡(𝑝, 𝑞) −
𝑇∑
𝑡=1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
.

Then, combining all the previous results leads to the following lemma which gives a lower bound
in terms of 𝜀, 𝑁 , and 𝑇.

Lemma 5.12. There is an instance 𝑘 ∈ {0, . . . , 𝑁 − 1} and an absolute constant 𝑐 ∈ (0, 1) such that:

𝑅𝑘𝑇 ≥ 𝑐 ·min
(
𝑁
𝜀2 , 𝜀𝑇

)
.
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7

Figure 5: Order of 𝛼 and 𝛽 reachable by Cesa-Bianchi et al. [2023] (red) and this work (blue).

By using Lemma 5.12 we can readily conclude the proof of Theorem 5.5 as follows. Let 𝜀 = 𝑇−𝛼
and 𝑁 = 𝑇𝛽, with 𝛼, 𝛽 > 0. Now we simply have to optimize over the choice of parameters 𝛼
and 𝛽. In doing so, we need to take into account the additional constraints necessary to have
well-defined instance distributions 𝜇𝑘 . In particular, we have that 𝜀 ≤ 𝛾1 from Equation (13),
and 2𝑁𝛾1 < 1 from Equation (12). Moreover, we also need to impose 𝛾4𝑁 < 1 by Equation (14).
Since 𝛾4 = 4𝛾1(14𝑁 − 13), this also implies that 𝛾1 < 1/4𝑁(13𝑁−14) < 1/𝑁2 for 𝑁 > 2. Therefore,
the constraint 𝜀 < 𝛾1 implies: 𝜀 = 𝑇−𝛼 ≤ 1/𝑇2𝛽 = 1/𝑁2 which yields that 𝛼 ≥ 2𝛽. Note that this
dominates the constraint 𝜀 < 1/𝑁 (or equivalently written as 𝛼 ≥ 𝛽) that would have been implied
by Equation (13) alone.
The lower bound of is maximized when 𝛼 and 𝛽 are solution of the following program:

max
𝛼≥0
(1 − 𝛼)

s.t. 𝛼 ≥ 2𝛽 , 1 − 𝛼 = 𝛽 + 2𝛼

which gives as solution the values 𝛼 = 2/7 and 𝛽 = 1/7. This implies a Ω(𝑇5/7) lower bound.

Connection with the Ω(𝑇3/4) lower bound of Cesa-Bianchi et al. [2023]. While our result and the
one of Cesa-Bianchi et al. [2023] build on a similar constructions (at least conceptually), we obtain
a weaker lower bound. The main reason is that the learner in Cesa-Bianchi et al. [2023] is weak
budget balanced, while in our work the learner has only a global budget balance constraint. To
preclude this option to the learner, we penalize the GFT of prices in the lower triangle by adding
the set of valuations𝒲4. If 𝛾4 is large enough w.r.t. 𝛾1, then posting prices in the lower triangle
is dominated. In particular, we must choose 𝛾4 = Θ(𝛾1𝑁) as we prove in Lemma 5.7. Once we
prove that the lower triangle is dominated, we can conceptually reduce our problem to the one of
Cesa-Bianchi et al. [2023]. However, the choice of 𝛾4 = Θ(𝛾1𝑁) imposes the additional constraint
𝛼 ≥ 2𝛽, which is not needed in the original construction. Hence, they can set 𝛼 = 𝛽 = 1/4, and get a
bound of Ω(𝑇3/4). This difference is depicted in Figure 5.

6 Best Feasible Distribution of Prices

In this section, we analyse the regret with respect to the best fixed distribution over prices which
satisfies global budget balance on average. First, we present a negative result that clearly separates
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this new benchmark from the best fixed price in hindsight: in Theorem 6.2, we prove that it is
impossible to achieve sublinear (1 + 𝜀)-regret with respect to the best feasible distribution, even
in the full feedback setting. On the positive side, we show that the two benchmarks are only a
multiplicative factor 2 apart (Theorem 6.3). This implies that any learning algorithm that exhibits
sublinear regret with respect to the best fixed price in hindsight automatically achieves sublinear
2-regret with respect to the best feasible distribution. Finally, we complement this positive result by
proving that this multiplicative gap of 2 is tight (Theorem 6.5).

6.1 Linear Lower Bound

The best feasible distribution has a crucial advantage with respect to any budget balanced learner:
it has the possibility to “run some deficit” in a preliminary phase of the sequence as it knows it
will be possible to extract enough profit to ensure global budget balance in some later stages. For
instance, consider a half-sequence where (𝑠𝑡 , 𝑏𝑡) is either (0, 1/3) or (2/3, 1), for 𝑡 ≤ 𝑇/2. Any learning
algorithm has to enforce budget balance at time 𝑇/2 (to be protected about the possibility that
(𝑠𝑡 , 𝑏𝑡) = 0 for all future 𝑡), while the randomized benchmark, which knows the future, may run
a deficit and collect more gain from trade by posting the budget unbalanced prices (2/3, 1/3)with
some probability. Inspired by this example, we state the following Lemma.

Lemma 6.1. For any algorithm A that enforces global budget balance, there exists a deterministic sequence

of valuations 𝒮1 with the following properties: (𝑖) the expected gain from trade of A is at most 𝑇/9; (𝑖𝑖) the

valuations (𝑠𝑡 , 𝑏𝑡) are either (0, 1/3) or (2/3, 1) for all 𝑡 ≤ 𝑇/2; (𝑖𝑖𝑖) the valuations (𝑠𝑡 , 𝑏𝑡) are equal to (0, 0)
for all 𝑡 > 𝑇/2.
Proof. Consider the following randomized instance: (𝑠𝑡 , 𝑏𝑡) = (0, 0) for 𝑡 > 𝑇/2, while for the other
time steps the valuations are either (0, 1/3) or (2/3, 1), independently and uniformly at random. Each
realized instance of such randomized sequence clearly satisfies requirements (𝑖𝑖) and (𝑖𝑖𝑖). Finally,
we show that in expectation (with respect to the randomization of the algorithm and of the instance),
the total gain from trade of A is at most 𝑇/9. Then the existence of an instance 𝒮1 with the desired
properties follows by an averaging argument.
Focus on the first 𝑇/2 time steps, and let 𝑁1 be the random variable that counts the number of time
steps in which A posts prices 𝑞𝑡 ≤ 1/3 and 𝑝𝑡 ≥ 2/3. Moreover, let 𝑁2 = 𝑇/2 − 𝑁1, and 𝑛𝑖 = E[𝑁𝑖]
for 𝑖 ∈ {1, 2}. By assumption, Algorithm A is global budget balanced, which this means that

−𝑛1
3 +

𝑛2
6 ≥ 0.

The first term of the inequality follows from the fact that every time the learner posts 𝑞𝑡 ≤ 1/3
and 𝑝𝑡 ≥ 2/3, it loses at least 1/3 revenue. The second term follows from the fact that, by posting
other pairs of prices, the learner can extract at most a revenue of 1/6 (i.e., the trade happens with
probability 1/2, and the learner receives 1/3 revenue). On the other hand, 𝑛1 is directly proportional
to the final gain from trade of A, thus the best possible gain from trade is achieved for 𝑛1 = 𝑇/6 and
𝑛2 = 𝑇/3, which yields an expected gain from trade of at least

𝑛1
3 +

𝑛2
6 =

𝑇
9 .

This concludes the proof of the claim. □

The lemma is crucial in proving the impossibility result in the following Theorem, which holds
even under full feedback.
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Theorem 6.2. Fix any constant 𝛼 ∈ [1, 36/35), and any globally budget balanced learning algorithm A with

full-feedback. Then there exists a sequence of valuations such that

𝑇∑
𝑡=1

E
(𝑝,𝑞)∼𝛾∗

GFT𝑡(𝑝, 𝑞) − 𝛼 ·
𝑇∑
𝑡=1
E[GFT𝑡(𝑝𝑡 , 𝑞𝑡)] ≥ 5

18
( 36

35 − 𝛼
)
𝑇,

where distribution 𝛾∗ is the optimal feasible distribution.

Proof. Fix any 𝛼 ∈ [1, 36/35) and any learning algorithmA. Starting from sequence𝒮1 as in Lemma 6.1,
construct a second sequence of valuations 𝒮2 which coincides with 𝒮1 for the first half of the time
horizon. In the second half we set (𝑠𝑡 , 𝑏𝑡) = (𝑠, 𝑏) for all 𝑡 > 𝑇/2, where (𝑠, 𝑏) is the most frequent
value in the first half of 𝒮1. We compare the total gain from trade collected by A on 𝒮2 with that of
the best fixed distribution of prices over 𝒮2, whose gain from trade we denote OPT. The expected
gain from trade of A on 𝒮2 is at most 𝑇/9 in the first half (Claim 6.1) and 𝑇/6 in the second half (as
it can extract at most 1/3 gain from trade in each one of 𝑇/2 time steps). Therefore, A extracts at
most a total of 5𝑇/18 expected gain from trade. On the other hand, the best feasible distribution 𝛾∗

must perform at least as well as the feasible distribution 𝛾, under which the prices are (𝑠, 𝑏)with
probability 4/7, and (2/3, 1/3)with the remaining probability. First, we argue that distribution 𝛾 is
indeed budget-feasible:

𝑇∑
𝑡=1

E
(𝑝,𝑞)∼𝛾

[Profit𝑡(𝑝, 𝑞)] ≥ 3
7
(−𝑇3 ) + 4

7
( 1

3 · 3𝑇
4
)
= 0,

where we used that prices (2/3, 1/3) are posted with probability 3/7 and always induces a negative
profit of 1/3 and that, by construction, there are at least 3𝑇/4 time steps where (𝑠𝑡 , 𝑏𝑡) = (𝑠, 𝑏). To
conclude the proof, we analyze in a similar way the total gain from trade achieved by 𝛾:

𝑇∑
𝑡=1

E
(𝑝,𝑞)∼𝛾

[GFT𝑡(𝑝, 𝑞)] ≥ 3
7
(𝑇

3
) + 4

7
( 1

3 · 3𝑇
4
)
= 2

7𝑇.

All in all, we have constructed an instance, 𝒮2 where A exhibits an expected gain from trade of at
most 5𝑇/18, while OPT is at least 2𝑇/7. This means that A suffers at least the following 𝛼-regret

OPT − 𝛼 ·
𝑇∑
𝑡=1
E[GFT𝑡(𝑝𝑡 , 𝑞𝑡)] ≥

𝑇∑
𝑡=1

E
(𝑝,𝑞)∼𝛾

[GFT𝑡(𝑝, 𝑞)] − 𝛼 ·
𝑇∑
𝑡=1
E[GFT𝑡(𝑝𝑡 , 𝑞𝑡)]

≥ ( 2
7 − 𝛼 5

18
)
𝑇 = 5

18
( 36

35 − 𝛼
)
𝑇. □

6.2 Comparison of the Two Benchmarks

Surprisingly, it holds that the performance of the optimal fixed price is to not far from that of
optimal global budget balanced distribution.

Theorem 6.3. Denote with 𝑝∗, resp. 𝛾∗, the best fixed price, resp. the best feasible distribution. Then, for any

sequence of valuations:

𝑇∑
𝑡=1

E
(𝑝,𝑞)∼𝛾∗

GFT𝑡(𝑝, 𝑞) ≤ 2
𝑇∑
𝑡=1

GFT𝑡(𝑝∗).
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Proof. Fix any sequence of valuations 𝒮, and let 𝑝∗ be as in the statement. By standard analytic
arguments, it is possible to show that there exists an optimal feasible distribution 𝛾∗ whose support
is either one or two points (we refer to Proposition A.3 in Appendix A.1 for a formal proof). We
prove the result using this 𝛾∗ and considering two separate cases, according to the cardinality of the
support of 𝛾∗.If the support of 𝛾∗ consists of only one point (𝑝, 𝑞), and since 𝛾∗ has respect budget
feasibility, then it is safe to assume without loss of generality that such point lies above the diagonal,
i.e., 𝑝 ≤ 𝑞 and that the gain from trade achieved by 𝛾∗ is exactly the same provided by 𝑝∗.
In the second case, the support of 𝛾∗ consists of two different points (𝑝1 , 𝑞1) and (𝑝2 , 𝑞2). If both
prices lie in the upper left diagonal (i.e., 𝑝1 ≤ 𝑞1 and 𝑝2 ≤ 𝑞2), then the total gain from trade is
exactly the same as 𝑝∗, by maximality of 𝑝∗. If one of the two pair of prices is strongly budget
balance, let’s say 𝑝1 = 𝑞1 and 𝑞2 < 𝑝1, then the only possibility (by the budget balance condition) is
that these prices never incur in negative profit, so that their gain from trade is once again at most
that of 𝑝∗. All in all, the only meaningful case to study is when 𝑝1 < 𝑞1 and 𝑝2 > 𝑞2.
Consider then this case, i.e., 𝑝1 < 𝑞1 and 𝑝2 > 𝑞2, let 𝒯0 be the set of time steps in which the trade
is lost by (𝑝2 , 𝑞2), that is 𝒯0 = {𝑡 ∈ [𝑇] | 𝑠𝑡 > 𝑝2 or 𝑏𝑡 < 𝑞2}. For all other 𝑡 ∈ [𝑇] \ 𝒯0, every prices
(𝑝2 , 𝑞2)make the trade happen. We further partition these time steps as follows:

𝒯1 = {𝑡 : (𝑠𝑡 , 𝑏𝑡) ∈ [0, 𝑝2] × (𝑝2 , 1]}, 𝒯2 = {𝑡 : (𝑠𝑡 , 𝑏𝑡) ∈ [0, 𝑞2) × [𝑞2 , 𝑝2]},𝒯3 = {𝑡 : (𝑠𝑡 , 𝑏𝑡) ∈ [𝑞2 , 𝑝2]2}.
The sets 𝒯0 , . . . ,𝒯3 partition the time horizon. Now, for each one of these subset of time steps 𝒯𝑖 it is
possible to define two functions over [0, 1]2:

𝑓𝑖(𝑝, 𝑞) =
∑
𝑡∈𝒯𝑖

GFT𝑡(𝑝, 𝑞), 𝑔𝑖(𝑝, 𝑞) =
∑
𝑡∈𝒯𝑖

Profit𝑡(𝑝, 𝑞).

We adopt the usual convention to omit the second argument if it coincides with the first one. Clearly,
the sum of the 𝑓𝑖 yields the total GFT, while that of the total 𝑔𝑖 the Profit. We relate the value of
functions 𝑓0 , 𝑓1 , 𝑓2 in (𝑝2 , 𝑞2)with the total gain from trade it collects. The trades in 𝒯0 are lost by
(𝑝2 , 𝑞2), so it holds that 𝑓0(𝑝2 , 𝑞2) = 0 and 𝑔0(𝑝2 , 𝑞2) = 0. For 𝒯1 and 𝒯2 these simple bounds hold:

𝑓1(𝑝2 , 𝑞2) + 𝑓2(𝑝2 , 𝑞2) ≤ 𝑓1(𝑝2) + 𝑓2(𝑞2) ≤ 2
𝑇∑
𝑡=1

GFT𝑡(𝑝∗). (15)

We move our attention to 𝑓3, where a more sophisticated argument is needed. As a preliminary
step, we prove that the profit extracted by (𝑝1 , 𝑞1) is at most the optimal gain from trade:

𝑇∑
𝑡=1

Profit𝑡(𝑝1 , 𝑞1) = (𝑞1 − 𝑝1)
𝑇∑
𝑡=1
I{𝑠𝑡 ≤ 𝑝1}I{𝑞1 ≤ 𝑏𝑡}

≤
𝑇∑
𝑡=1
(𝑏𝑡 − 𝑠𝑡)I{𝑠𝑡 ≤ 𝑝1}I{𝑞1 ≤ 𝑏𝑡}

≤
𝑇∑
𝑡=1

GFT𝑡(𝑝1) ≤
𝑇∑
𝑡=1

GFT𝑡(𝑝∗). (16)

Let 𝜋1, respectively 𝜋2, be the probability with which 𝛾∗ draws (𝑝1 , 𝑞1), respectively (𝑝2 , 𝑞2) we
have:

𝑓3(𝑝2 , 𝑞2) ≤ −𝑔3(𝑝2 , 𝑞2) ≤ −
𝑇∑
𝑡=1

Profit𝑡(𝑝2 , 𝑞2) ≤ 𝜋1
𝜋2

𝑇∑
𝑡=1

Profit𝑡(𝑝1 , 𝑞1) ≤ 𝜋1
𝜋2

𝑇∑
𝑡=1

GFT𝑡(𝑝∗), (17)
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where the first inequality follows by the definition of 𝒯3, the second by the fact that the only negative
profit by posting (𝑝2 , 𝑞2) comes from 𝒯3, the third by global budget balance of 𝛾, and the last one by
Equation (16). We finally have all the ingredients to conclude the proof:

𝑇∑
𝑡=1

E
(𝑝,𝑞)∼𝛾∗

[GFT𝑡(𝑝, 𝑞)] = 𝜋1

𝑇∑
𝑡=1

GFT𝑡(𝑝1 , 𝑞1) + 𝜋2
∑

𝑖=0,...,3
𝑓𝑖(𝑝2 , 𝑞2) (linearity of exp.)

≤ 𝜋1

𝑇∑
𝑡=1

GFT𝑡(𝑝1 , 𝑞1) + (𝜋1 + 2𝜋2)
𝑇∑
𝑡=1

GFT𝑡(𝑝∗) (by Eq. 15 and 17)

≤ 2
𝑇∑
𝑡=1

GFT𝑡(𝑝∗),

where the last inequality follows by optimality of 𝑝∗ with respect to the budget balanced prices
(𝑝1 , 𝑞1) and using that 𝜋1 + 𝜋2 = 1. □

As a corollary, we have that any algorithm that achieves sublinear regret with respect to the best
fixed price also guarantees sublinear 2-regret with respect to the best feasible prices distribution.
Corollary 6.4. Let A be a learning algorithm for the repeated bilateral trade problem which guarantees an

upper bound of 𝑓 (𝑇) on the regret with respect to the best fixed price in hindsight. Then, the 2-regret of𝒜
with respect to the best budget feasible distribution over prices is at most 𝑓 (𝑇).
Surprisingly, the factor 2 between the two benchmarks is optimal. This implies that the analysis of
the performance of the algorithms in Corollary 6.4 is essentially tight.
Theorem 6.5. For any 𝜀 > 0, there exists a sequence of valuations such that

𝑇∑
𝑡=1
E(𝑝,𝑞)∼𝛾∗GFT𝑡(𝑝, 𝑞) ≥ (2 − 𝜀)

𝑇∑
𝑡=1

GFT𝑡(𝑝∗),

where 𝑝∗ and 𝛾∗ are the best fixed price and global budget balanced distribution, respectively.

Proof. Fix any 𝜀 > 0, and let 𝛿 be a positive number we set later. Consider the sequence where
(𝑠𝑡 , 𝑏𝑡) = (0, 1/2− 𝛿) if 𝑡 is odd, and (𝑠𝑡 , 𝑏𝑡) = (1/2+ 𝛿, 1) otherwise. Any fixed price can make at most
half of the trades happen, with a total gain from trade of at most 𝑇/2 (1/2 − 𝛿).
Consider now the distribution over prices 𝛾 selecting (𝑝1 , 𝑞1) = (1/2 + 𝛿, 1/2 − 𝛿) with probability
𝛼 = (1−2𝛿)/(1+6𝛿), and (𝑝2 , 𝑞2) = (0, 1/2 − 𝛿) otherwise. We conclude the proof by arguing that 𝛾
satisfies the budget balance constraints, and attains total gain from trade that is roughly twice that
of 𝑝∗. First, we show that 𝛾 is global budget balanced. We have∑

𝑡∈[𝑇]
E

(𝑝,𝑞)∼𝛾
[Profit𝑡(𝑝, 𝑞)] = 𝛼

∑
𝑡∈[𝑇]

Profit𝑡(𝑝1 , 𝑞1) + (1 − 𝛼)
∑
𝑡∈[𝑇]

Profit𝑡(𝑝2 , 𝑞2)

≥ 𝛼 (−2𝛿𝑇) + (1 − 𝛼)𝑇2 (12 − 𝛿) = 0,
where in the last equality we use the definition of 𝛼. We move our attention to the gain from trade:

𝑇∑
𝑡=1
E(𝑝,𝑞)∼𝛾[GFT𝑡(𝑝, 𝑞)] = 𝛼

𝑇∑
𝑡=1

GFT𝑡(𝑝1 , 𝑞1) + (1 − 𝛼)
𝑇∑
𝑡=1

GFT𝑡(𝑝2 , 𝑞2)

≥ 𝛼𝑇
( 1

2 − 𝛿
) + (1 − 𝛼)𝑇2

( 1
2 − 𝛿

)
≥ (1 + 𝛼)

𝑇∑
𝑡=1

GFT𝑡(𝑝∗).
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Plugging in the last formula the definition of 𝛼 and setting 𝛿 = 𝜀/8 yields the desired result. □

7 Final Remarks and Open Problems

In this paper we introduce the notion of global budget balance in the repeated bilateral trade
problem. With this notion, we show for the first time that it is possible to achieve sublinear regret
with respect to the best fixed price in hindsight, without relying on any additional assumption. In
the full feedback model we prove that the minimax regret rate of the learning problem is Θ̃(√𝑇),
while in the partial feedback models, we provide an upper bound on the regret of order 𝑂̃(𝑇3/4),
which is complemented with a Ω(𝑇5/7) lower bound. Our regret results proves a clear separation
between the two feedback models, but leave an open gap between the 𝑇5/7 and 𝑇3/4 rates in partial
feedback.
Inspired by Bandits with Knapsack, we formulated a new benchmark: the best feasible distribution
over prices. Against this harder benchmark we prove that it is possible to achieve sublinear
2-regret, while no algorithm can achieve sublinear (1 + 𝜀0)-regret. We leave as an open question the
characterization of the optimal competitive ratio 𝛼 ∈ [1 + 𝜀0 , 2] obtainable against this benchmark.
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A Appendix

A.1 Well Posedness of the Two Benchmarks

Proposition A.1. For any sequence of valuations 𝒮 there exists a price 𝑝∗ ∈ [0, 1] such that:

𝑅𝑇(A,𝒮) =
𝑇∑
𝑡=1

GFT𝑡(𝑝∗) − E
[
𝑇∑
𝑡=1

GFT𝑡(𝑝𝑡 , 𝑞𝑡)
]
.

Proof. Denote the cumulative gain from trade of a pair of price (𝑝, 𝑞) as follows:

𝑓 (𝑝, 𝑞) =
𝑇∑
𝑡=1

GFT𝑡(𝑝, 𝑞). (18)

This function is upper semi-continuous on the upper left triangle {(𝑝, 𝑞) ∈ [0, 1]2 | 𝑝 ≤ 𝑞} (see
Claim A.2), thus the sup in the definition is indeed a max. For the remaining part of the statement,
let (𝑝̂ , 𝑞̂) be any pair of prices in the arg max of Equation (1). It is easy to see that any price 𝑝∗ ∈ [𝑝̂ , 𝑞̂]
achieves the same total gain from trade, while trivially respecting the budget balance constraint. □

Claim A.2. The function 𝑓 defined in Eq. (18) is upper semi-continuous on {(𝑝, 𝑞) ∈ [0, 1]2 | 𝑝 ≤ 𝑞}.
Proof of Claim A.2. The function 𝑓 is the sum of 𝑇 terms of the following form:

GFT𝑡(𝑝, 𝑞) = I{𝑠𝑡 ≤ 𝑝}I{𝑞 ≤ 𝑏𝑡}(𝑏𝑡 − 𝑠𝑡).
Moreover, for pairs in {(𝑝, 𝑞) ∈ [0, 1]2 | 𝑝 ≤ 𝑞} the gain from trade is non-zero only for steps
𝑡 ∈ [𝑇] such that 𝑠𝑡 ≤ 𝑏𝑡 . This implies that 𝑓 is the sum of at most 𝑇 step-functions that are upper
semi-continuous. □

Proposition A.3. The definition of the best fixed distribution is well-posed. Moreover, there always exists a

feasible distribution 𝛾∗ with support at most two that attains the sup.

Proof. Fix any sequence of valuations {(𝑠𝑡 , 𝑏𝑡)}𝑇𝑡=1, we introduce two auxiliary functions:

𝑓 (𝑝, 𝑞) =
𝑇∑
𝑡=1

GFT𝑡(𝑝, 𝑞) and 𝑔(𝑝, 𝑞) =
𝑇∑
𝑡=1

Profit𝑡(𝑝, 𝑞).

We can rewrite the program in Definition 2.1 as:

sup
𝛾∈Δ([0,1]2)

E
(𝑝,𝑞)∼𝛾

[ 𝑓 (𝑝, 𝑞)]

𝑠.𝑡. E
(𝑝,𝑞)∼𝛾

[𝑔(𝑝, 𝑞)] ≥ 0.

As a first step, we show that the support of 𝛾 can be restricted to a discrete grid 𝐺. To simplify
the exposition, we sort the sets of valuations {0, 1, 𝑠1 , . . . , 𝑠𝑇} and {0, 1, 𝑏1 , . . . , 𝑏𝑇} in increasing
order. Formally, we define the set {𝑠0 = 0, 𝑠1 , . . . , 𝑠𝑇 , 𝑠𝑇+1 = 1}, where 𝑠 𝑖 ≤ 𝑠 𝑖+1 for each 𝑖, and
{𝑠 𝑖}𝑇+1

𝑖=0 = {𝑠𝑡}𝑇𝑡=1 ∪ {0, 1}. Similarly, we define the set {𝑏0 = 0, 𝑏1 , . . . , 𝑏𝑇 , 𝑏𝑇+1 = 1}, where 𝑏 𝑖 ≤ 𝑏 𝑖+1

for each 𝑖, and {𝑏 𝑖}𝑇+1
𝑖=0 = {𝑏𝑡}𝑇𝑏=1 ∪ {0, 1}.3 The grid 𝐺 contains all the points of the form (𝑠 𝑖 , 𝑏 𝑗)

with 𝑖 , 𝑗 ∈ {0, 1, . . . , 𝑇 + 1}.
3For the sake of clarity, we assume that 𝑠𝑖 ≠ 𝑠 𝑗 and 𝑠𝑖 , 𝑠 𝑗 ∉ {0, 1}, and 𝑏𝑖 ≠ 𝑏 𝑗 and 𝑏𝑖 , 𝑏 𝑗 ∉ {0, 1} for each 𝑖 , 𝑗 ∈ [𝑇]. It is

easy to extend our results to the general setting.
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Now, we assign any point in [0, 1]2 to a point in the grid 𝐺. In particular, we define the map 𝜋𝐺 that
associates each (𝑝, 𝑞) ∈ [0, 1]2 to the upper-most and left-most point in its subset of the partition.
Formally, 𝜋𝐺 : (𝑝, 𝑞) ↦→ (𝑠 𝑖 , 𝑏 𝑗), where 𝑖 is the greatest index such that 𝑠 𝑖 ≤ 𝑝, and 𝑗 is the smallest
index such that 𝑏 𝑗 ≥ 𝑞.
From Claim A.4 we have that in Program (2) we can restrict our attention to distributions 𝛾 that are
supported on 𝐺 and thus are discrete. Hence, we can rewrite Program (2) as the following linear
program:

max
(𝑥1 ,𝑥2)∈𝒞

𝑥1 s.t. 𝑥2 ≥ 0,

where 𝒞 is the convex hull of 𝒳 = {( 𝑓 (𝑝, 𝑞), 𝑔(𝑝, 𝑞)) | (𝑝, 𝑞) ∈ 𝐺}. Consider any optimal solution
(𝑥★1 , 𝑥★2 ) of such linear program. Since (𝑥★1 , 𝑥★2 ) belongs to 𝒞, which is a convex hull of a finite set of
points, by Caratheodory’s Theorem ( see e.g., Theorem 5.1 of Schrĳver [2003]) it can be expressed as
a convex combination of 3 points in 𝒳.
As a direct implication of first-order optimality conditions (i.e., the gradient (1, 0) has to belong to the
normal cone of 𝒞 at (𝑥★1 , 𝑥★2 )) we have that (𝑥★1 , 𝑥★2 )must be on the boundary 𝜕𝒞 of 𝒞. This also yields
the existence of an hyperplane supporting 𝒞 at (𝑥★1 , 𝑥★2 ) [see, e.g., Lemma 4.2.1 of Hiriart-Urruty and
Lemaréchal, 2004]. Since 𝒞 is entirely contained in one of the halfspaces defined by the supporting
hyperplane, and since (𝑥★1 , 𝑥★2 ) ∈ 𝜕𝒞, it must be the case that either (𝑥★1 , 𝑥★2 ) ∈ 𝒳, or we can write
the optimal point as a convex combination two points belonging to 𝒳 (i.e., the two points defining
the face of the polytope containing (𝑥★1 , 𝑥★2 )). Call (𝑝1 , 𝑞1) and (𝑝2 , 𝑞2) the two points that are in the
preimage of the two points generating (𝑥★1 , 𝑥★2 ) according to 𝑓 and 𝑔, respectively. We showed that
there exists an optimal solution whose support consists of the two (possibly coinciding) points
(𝑝1 , 𝑞1) and (𝑝2 , 𝑞2). This concludes the proof. □

Claim A.4. Let 𝛾 ∈ Δ([0, 1]2). There exists a distribution 𝛾𝐺 ∈ Δ([0, 1]2) with the following three

properties:

• E
(𝑝,𝑞)∼𝛾

[ 𝑓 (𝑝, 𝑞)] = E
(𝑝,𝑞)∼𝛾𝐺

[ 𝑓 (𝑝, 𝑞)];
• E
(𝑝,𝑞)∼𝛾

[𝑔(𝑝, 𝑞)] ≥ E
(𝑝,𝑞)∼𝛾𝐺

[𝑔(𝑝, 𝑞)];
• supp(𝛾𝐺) ⊆ 𝐺.

Proof. We define the distribution 𝛾𝐺 on 𝐺 by assigning to each point of the grid (𝑠 𝑖 , 𝑏 𝑗), with
𝑖 ∈ {1, . . . , 𝑇} and 𝑗 ∈ {0, . . . , 𝑇 − 1}, the probability mass which 𝛾 assigns to points in the cell of
the grid {(𝑝, 𝑞) ∈ [0, 1]2 : 𝑠 𝑖−1 ≤ 𝑖 ≤ 𝑠 𝑖 , 𝑏 𝑗 ≤ 𝑞 ≤ 𝑏 𝑗+1}. Formally, the distribution 𝛾𝐺 is such that

P(𝑝,𝑞)∼𝛾𝐺
(
(𝑝, 𝑞) = (𝑠 𝑖 , 𝑏 𝑗)

)
= P(𝑝,𝑞)∼𝛾

(
𝜋𝐺(𝑝, 𝑞) = (𝑠 𝑖 , 𝑏 𝑗)

)
.

The new distribution 𝛾𝐺 is clearly supported on 𝐺 and thus verifies the third point of the claim. We
now prove the remaining two points. First, by construction, the expected gain from trade is not
affected by the change in distribution. Indeed, for each 𝑡, 𝑝, and 𝑞, it holds

GFT𝑡(𝑝, 𝑞) = GFT𝑡(𝜋𝐺(𝑝, 𝑞))
since I{𝑠𝑡 ≤ 𝑝}I{𝑞 ≤ 𝑏𝑡} = 1 if and only if I{𝑠𝑡 ≤ 𝑝′}I{𝑞′ ≤ 𝑏𝑡} = 1, where (𝑝′, 𝑞′) B 𝜋𝐺(𝑝, 𝑞). We
conclude the proof by showing that the profit does not decrease. It is sufficient to prove that for
each 𝑡, 𝑝, and 𝑞, it holds

Profit𝑡(𝑝, 𝑞) ≥ Profit𝑡(𝜋𝐺(𝑝, 𝑞)).
Since (𝑞 − 𝑝) ≤ (𝑞′ − 𝑝′), 𝜋𝐺(𝑝, 𝑞) and (𝑝, 𝑞)make the same trades happen. Then, 𝜋𝐺(𝑝, 𝑞) extracts
at least the same profit of the pair (𝑝, 𝑞). This concludes the proof. □
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A.2 Missing Proofs from Section 5.2

Lemma A.5. The distributions 𝜇𝑘 are well defined for all 𝑘 ∈ {0, . . . , 𝑁 − 1}.
Proof. Since for all 𝑤 ∈ 𝒲1 ∪𝒲2 ∪𝒲3 ∪𝒲4 ∪𝒲5 the weights 𝜇𝑘(𝑤) are positive for all 𝑘 ∈
{0, . . . , 𝑁 − 1} we just need to prove that 𝜇𝑘(𝑤) is positive for all 𝑤 ∈ 𝒲6.
Then, using the upper bound on 𝛾tot

3 < 2𝛾1𝑁 ≤ 1/32𝑁 we get that:

𝛾6 ≥ 1
4

(
1 −

(
1

32𝑁 +
1

32𝑁 +
13𝑁 − 14

16𝑁 + 1
64

))
=

1
4

(
1 −

(
13(𝑁 − 1)

16𝑁 + 1
64

))
≥ 1

32 .

This, together with the fact that 𝛾6 ≤ 1/4, proves that all the probabilities in the instances’
distributions 𝜇𝑘 are well defined. □

Lemma 5.7. For every pair of posted prices (𝑝, 𝑞) ∈ 𝒢𝒲 ∩ {(𝑝, 𝑞) ∈ [0, 1]2 | 𝑝 < 𝑞}, (𝑝′, 𝑞′) ∈ 𝒢𝒲 ∩
{(𝑝, 𝑞) ∈ [0, 1]2 | 𝑝 ≥ 𝑞}, and instance 𝑘 ∈ {0, . . . , 𝑁 − 1}, we have that

E𝑘[GFT(𝑝, 𝑞, 𝑠, 𝑏)] ≤ E𝑘[GFT(𝑝′, 𝑞′, 𝑠 , 𝑏)] ≤ 𝑐1 + 𝜌 𝜀 I
{(𝑝′, 𝑞′) = (𝑝∗𝑘 , 𝑝∗𝑘 + 𝛿)}.

Proof. Consider any point (𝑝1 , 𝑞1) = ( 1−ℓ
2 + 𝑖Δ, 1−ℓ

2 + 𝛿 + 𝑖Δ)
. For any 𝑖 ∈ {0, . . . , 𝑁 − 1} we define

(𝑝1 , 𝑞1′
𝑗 ) =

( 1−ℓ
2 + 𝑖Δ, 1−ℓ

2 − 𝛿 + (𝑖 − 𝑗)Δ)
for each 𝑗 ∈ {0, . . . , 𝑖}. Simple calculations show that:

E𝑘[GFT(𝑝1 , 𝑞1 , 𝑠 , 𝑏) −GFT(𝑝, 𝑞′𝑗 , 𝑠 , 𝑏)] =
𝑖−1∑
𝜄=𝑗

[
𝜇𝑘(𝑤 𝜄

3)
(
1 − ℓ

2 − 𝛿 + 𝜄Δ

)
+ 𝛾4𝛿

]
=

𝑖−1∑
𝜄=𝑗

[
𝛾1 · 1 − ℓ − 𝜌 − 2𝜄Δ

1−ℓ
2 − 𝛿 + 𝜄Δ

(
1 − ℓ

2 − 𝛿 + 𝜄Δ

)
+ 4𝛾1(13𝑁 − 14)𝛿

]
=

𝜄−1∑
𝜄=𝑗

[𝛾1(1 − ℓ − 𝜌 − 2𝜄Δ + 4𝛿(13𝑁 − 14))] ,

which has to hold for all 𝑖 ∈ {0, . . . , 𝑁 − 1}. The worst case is when 𝜄 = 𝑁 − 1. This yields

𝛾1

(
1 − ℓ − 𝜌 − 2ℓ + 2 ℓ

𝑁 − 1 (13𝑁 − 14)
)
> 0, ∀𝑁 > 1

and thus for all 𝑗 we have that:

E𝑘[GFT(𝑝1 , 𝑞1 , 𝑠 , 𝑏) −GFT(𝑝1 , 𝑞1′
𝑗 , 𝑠 , 𝑏)] > 0.

The proof is concluded by noting that, for any (𝑝, 𝑞) ∈ 𝒢𝒲 ∩ {(𝑝, 𝑞) ∈ [0, 1]2 | 𝑝 < 𝑞} in the lower
triangle, the gain from trade is upper bounded by that of some (𝑝1 , 𝑞1′

𝑗 ), that is

E𝑘[GFT(𝑝, 𝑞, 𝑠, 𝑏)] ≤ E𝑘[GFT(𝑝1 , 𝑞1′
𝑗 , 𝑠 , 𝑏)].

On the other hand, for any (𝑝′, 𝑞′) ∈ 𝒢𝒲 ∩ {(𝑝, 𝑞) ∈ [0, 1]2 | 𝑝 ≥ 𝑞} in the upper triangle, the gain
from trade is lower bounded by that of a point (𝑝1 , 𝑞1), that is

E𝑘[GFT(𝑝1 , 𝑞1 , 𝑠 , 𝑏)] ≤ E𝑘[GFT(𝑝′, 𝑞′, 𝑠 , 𝑏)].
This concludes the proof of the lemma. □
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Lemma 5.11. For all 𝑘 ∈ {1, . . . , 𝑁 − 1} we have that

E𝑘[ℳ𝑘] − E0[ℳ𝑘] ≤ 𝑇𝜀
√

2
𝛾6
E0[𝒩𝑘].

Proof. A simple application of the Pinsker’s inequality shows that

E𝑘[ℳ𝑘] − E0[ℳ𝑘] ≤ 𝑇
√

1
2KL(P0 , P𝑘). (20)

By Lemma 5.9 and by the standard KL decomposition theorem of the KL divergence [Cesa-Bianchi
and Lugosi, 2006, Chapter 6], we have that the KL divergence between P0 and P𝑘 only depends on
the expected number of times that exploring actions were played, and on the KL divergence of the
feedback distributions in such regions:

KL(P0 , P𝑘) = E0[𝒩𝑘] · KL(ℋ0 ,ℋ𝑘),
where, for each 𝑘,ℋ𝑘 is a discrete distribution on the 4 possible outcomes of the two-bit feedback.
Formally,

ℋ𝑘(𝑧) =


(𝑘 + 1)𝛾1 + 𝜀I{𝑘 ≠ 0} + 𝛾6 , if 𝑧 = (1, 1)
𝛾1 − 𝜀I{𝑘 ≠ 0} + 𝛾1(𝑁 − 2 − 𝑘) + 𝛾6 , if 𝑧 = (0, 1)
(𝑘 + 1)𝛾1 − 𝜀I{𝑘 ≠ 0} + 𝛾6 + 𝛾5 + 𝛾4(𝑘 + 1) + 𝛾tot

3 , if 𝑧 = (1, 0)
𝛾1 + 𝜀I{𝑘 ≠ 0} + 𝛾1(𝑁 − 2 − 𝑘) + 𝛾6 + 𝛾4(𝑁 − 𝑘 − 1) if 𝑧 = (0, 0)

By upperbounding the KL divergence with the 𝜒2-distance [Lattimore and Szepesvári, 2020,
Chapter 14], we immediately obtain that

KL(ℋ0 ,ℋ𝑘) ≤ 𝜒2(ℋ0 ,ℋ𝑘) =
∑

𝑧∈{0,1}2

(ℋ0(𝑧) − ℋ𝑘(𝑧))2
ℋ0(𝑧) ≤ 𝜀2 4

𝛾6
, (21)

where the last inequality holds sinceℋ0(𝑧) ≥ 𝛾6. □

Lemma 5.12. There is an instance 𝑘 ∈ {0, . . . , 𝑁 − 1} and an absolute constant 𝑐 ∈ (0, 1) such that:

𝑅𝑘𝑇 ≥ 𝑐 ·min
(
𝑁
𝜀2 , 𝜀𝑇

)
.

Proof. By summing over instances 𝑘 ∈ {1, . . . , 𝑁 − 1} the result of Lemma 5.11 and using Jensen’s
inequality, we obtain:

1
𝑁 − 1

𝑁−1∑
𝑘=1
(E𝑘[ℳ𝑘] − E0[ℳ𝑘]) ≤ 𝜀𝑇

√√√
2
𝛾6

1
𝑁 − 1

𝑁−1∑
𝑘=1
E0[𝒩𝑘]. (22)

Then, by rearranging Lemma 5.10 by and substituting 𝑐2 = 𝑐1 − 𝛾5
1−ℓ
2 we obtain:

𝑇∑
𝑡=1
E𝑘[GFT(𝑝𝑡 , 𝑞𝑡 , 𝑠 , 𝑏)] ≤ E𝑘

𝑐1𝑇 + 𝜌 · 𝜀ℳ𝑘 − 𝛾5
1 − ℓ

2

𝑁−1∑
𝑗=1
𝒩𝑗

 ,
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and by summing over 𝑘 ∈ {1, . . . , 𝑁 − 1}, dividing by 𝑁 − 1, and using Equation (22) we get

1
𝑁 − 1

𝑇∑
𝑡=1

𝑁−1∑
𝑘=1
E𝑘[GFT(𝑝𝑡 , 𝑞𝑡 , 𝑠 , 𝑏)] ≤ 𝑐1𝑇 + 𝜌𝜀

1
𝑁 − 1

𝑁−1∑
𝑘=1
E𝑘[ℳ𝑘]

≤ 𝑐1𝑇 + 𝜌𝜀
1

𝑁 − 1

𝑁−1∑
𝑘=1
E0[ℳ𝑘] + 𝜌𝜀2𝑇

√√√
2
𝛾6

1
𝑁 − 1

𝑁−1∑
𝑘=1
E0[𝒩𝑘].

Then, the average of the regret 𝑅𝑘𝑇 over instances 𝑘 ∈ {1, . . . , 𝑁 − 1} can be lower bounded by

1
𝑁 − 1

𝑁−1∑
𝑘=1

𝑅𝑘𝑇 ≥ 𝑇(𝑐1 + 𝜌𝜀) − 1
𝑁 − 1

𝑁−1∑
𝑘=1
E𝑘[GFT(𝑝𝑡 , 𝑞𝑡 , 𝑠 , 𝑏)]

≥ 𝑇(𝑐1 + 𝜌𝜀) − ©­«𝑐1𝑇 + 𝜌𝜀
1

𝑁 − 1

𝑁−1∑
𝑘=1
E0[ℳ𝑘] + 𝜌𝜀2𝑇

√√√
2
𝛾6

1
𝑁 − 1

𝑁−1∑
𝑘=1
E0[𝒩𝑘]ª®¬

≥ 𝜌𝜀𝑇 ©­«1
2 − 𝜀

√√√
2
𝛾6

1
𝑁 − 1

𝑁−1∑
𝑘=1
E0[𝒩𝑘]ª®¬ , (23)

where the first inequality follows by Lemma 5.6 while the last inequality holds for any 𝑁 ≥ 2.
Then, we divide the analysis in two cases. Intuitively, the first one correspond to the cases in which
the algorithm does not explore enough (i.e.,

∑
𝑘 E0[𝒩𝑘] is small) and, therefore, it cannot correctly

identify the instance. In the second case the algorithm spends a large time exploring (i.e.,
∑
𝑘 E0[𝒩𝑘]

is large), and thereby accumulates large regret (by Lemma 5.8).
Formally, if 𝜀

√
2
𝛾6

1
𝑁−1

∑𝑁−1
𝑘=1 E0[𝒩𝑘] ≤ 1

4 then Equation (23) implies that the average regret over
instances 𝑘 ∈ {1, . . . , 𝑁 − 1} is at least

1
𝑁 − 1

𝑁−1∑
𝑘=1

𝑅𝑘𝑇 ≥
1
4𝜌𝜀𝑇 ≥

1
103 𝜀𝑇.

Then, there must exist at least an instance 𝑘 ∈ {1, . . . , 𝑁 − 1} in which 𝑅𝑘𝑇 = Ω(𝜀𝑇).
Otherwise, if 𝜀

√
2
𝛾6

1
𝑁−1

∑𝑁−1
𝑘=1 E0[𝒩𝑘] ≥ 1

4 , then the regret of the base instance can be upper bounded
by

𝑅0
𝑇 ≥

𝛾5

3 E0

[
𝑁−1∑
𝑘=1
𝒩𝑘

]
≥ 𝛾5

3
𝛾6

2

(
1
4𝜀

)2
(𝑁 − 1) ≥ 𝛾5

3
𝛾6

4

(
1
4𝜀

)2
𝑁 ≥ 1

106
𝑁
𝜀2 ,

and hence in the base instance the regret is at least Ω
(
𝑁
𝜀2

)
. □
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