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Abstract
Understanding the glassy nature of neural networks is pivotal both for theoretical and com-
putational advances in Machine Learning and Theoretical Artificial Intelligence. Keeping
the focus on dense associative Hebbian neural networks (i.e. Hopfield networks with poly-
nomial interactions of even degree P > 2), the purpose of this paper is twofold: at first
we develop rigorous mathematical approaches to address properly a statistical mechanical
picture of the phenomenon of replica symmetry breaking (RSB) in these networks, then—
deepening results stemmed via these routes—we aim to inspect the glassiness that they hide.
In particular, regarding the methodology, we provide two techniques: the former (closer to
mathematical physics in spirit) is an adaptation of the transport PDE to this case, while
the latter (more probabilistic in its nature) is an extension of Guerra’s interpolation break-
through. Beyond coherence among the results, either in replica symmetric and in the one-step
replica symmetry breaking level of description, we prove the Gardner’s picture (heuristically
achieved through the replica trick) and we identify themaximal storage capacity by a ground-
state analysis in the Baldi-Venkatesh high-storage regime. In the second part of the paper we
investigate the glassy structure of these networks: at difference with the replica symmetric
scenario (RS), RSB actually stabilizes the spin-glass phase. We report huge differences w.r.t.
the standard pairwise Hopfield limit: in particular, it is known that it is possible to express the
free energy of the Hopfield neural network (and, in a cascade fashion, all its properties) as a
linear combination of the free energies of a hard spin glass (i.e. the Sherrington–Kirkpatrick
model) and a soft spin glass (the Gaussian or ”spherical” model).While this continues to hold
also in the first step of RSB for the Hopfieldmodel, this is no longer true when interactions are
more than pairwise (whatever the level of description, RS or RSB). For dense networks solely
the free energy of the hard spin glass survives. As the Sherrington–Kirkpatrick spin glass is
full-RSB (i.e. Parisi theory holds for that model), while the Gaussian spin-glass is replica
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symmetric, these different representation theorems prove a huge diversity in the underlying
glassiness of associative neural networks.

Keywords Hebbian neural networks · Replica symmetry breaking · Pattern recognition

Introduction

As the raise of Artificial Intelligence (AI) keeps spreading neural networks and learning algo-
rithms in countless meanders of society and scientific research, a rationale behind such an
empirical progress continues to be a urgent priority in the agendas of theoreticiansworldwide:
en route towards a Theory for AI (where all the spontaneous information processing skills
that neural networks and learningmachines enjoy would be somehow expected and no longer
surprising) statistical mechanics of complex systems (namely, Parisi spin glass theory) is a
longstanding pillar. Glassy statistical mechanics has been indeed the main methodological
approach allowing a post-winter pioneering—but exhaustive—picture of the Hopfield asso-
ciative memory, achieved by Amit–Gutfreund–Sompolinksy (AGS) in the eighties [13, 14]:
since the AGS milestone, it became evident that spin glasses and neural networks were inti-
mately related and progresses in computer science arose from this relation quickly enlarged
to computational complexity [52], machine learning [1], combinatorial optimization [53],
error correcting codes [46] and much more (see e.g. [54, 55]).

Glassy statistical mechanics is thus the methodological leitmotif of the paper, while the
subject of the investigation are dense Hebbian networks, i.e. generalizations of the Hopfield
model where neurons—rather than interacting pairwisely—interact in P-ples (such that when
P = 2 the Hopfield reference is recovered). Indeed, dense neural networks [48] are now
taking hold, due to the fact that they have excellent properties of pattern recognition and
image detection, remaining robust against adversarial attacks [21, 49, 68].

As it is clearly emerging in these years by a plethora of investigations (see e.g. [18, 45,
56, 58, 63]), Replica Symmetry Breaking (RSB) is by far a crucial mechanism that should
be better understood in modern information processing networks: despite working under the
Parisi’s replica symmetry breaking (RSB) scheme is notoriously challenging [67], due to a
series of breakthroughs that Guerra obtained in his mathematical treatment in the past two
decades (see e.g. [43]), times are ripe for such investigations, at least at the first step of RSB
(that is the solely addressed here).

Before we start reporting our results, we highlight that there are two—rather different—
storage scalings (that results in manifestly different operational regimes) that these networks
can hold: the Baldi and Venkatesh high storage regime [19] and a new high resolution regime
discovered in 2020 [8].
• Regarding the former, since the pioneering analyses by Baldi and Venkatesh [19], Bovier

and Niederhauser [33] and Elisabeth Gardner [41], it became clear that the maximal
storage capacity for these systems satisfy the following scaling: calling K the amount of
patterns to store and N the neurons in the network P-wisely interacting, at most these
network face a storage K = γ N P−1—for some positive γ (indeed, for the Hopfield
model—that is recovered when P = 2-AGS theory predicts that K ≤ γcN 1, with
γc ∼ 0.138). In this high storage regime—that we call the Baldi and Venkatesh regime—
dense networks perform standard signal-to-noise detection, namely if the pattern to be
retrieved has magnitude O(1), the noise can not be larger than the signal.

• Regarding the latter, in 2020 the existence of a completely different operational mode
has been proved for these networks [8]: these can sacrifice memory storage to lower their
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threshold for signal detection. For instance, a dense network whose neurons interact 4-
wisely (hence P = 4)—forced to store just K ∝ N 1 patterns (hence far from the Baldi
and Venkatesh regime K ∝ N 3)—can detect a pattern whose intensity is O(1) even
when corrupted by a noise O(

√
N ) in the large N limit [10, 12].

We will deepen replica symmetry breaking in this high-resolution regime in a forthcoming
paper, while in the present one we focus on dense networks solely in the high-storage regime.

The paper is structured as follows and presents the following results.
Once introduced these networks, we adapt two mathematical methods for tackling their

statistical mechanics description at the first step of replica symmetry breaking. At first, fram-
ing the present research within the plethora of methodologies that are raising as alternatives
to the celebrated replica trick [57] (see e.g. [2–4, 15–17, 20, 23, 30–32, 40, 45, 47, 51, 59,
60, 64, 65]), driven by calculus and analysis, in Sect. 2 we work out a PDE-based theory
where it is possible to obtain the phase diagrams of these models by solving suitable transport
equations in the space of the control parameters, then, grabbing from probability theory, in
Sect. 3 we adapt the celebrated Guerra’s broken-replica interpolation [43] to the case. Beyond
coherence among the results, we also re-obtain both the Gardner picture and the Baldi and
Venkatesh scaling, beyond a number of new results useful for understanding the glassy nature
of these neural networks, that we inspect in the second part of the paper.

By a straight comparison of the replica symmetric and broken replica symmetry phase
diagrams, while the critical storage is mildly affected by the RSB phenomenon, the glassy
region—that shrinks close to disappearing in the replica symmetric description—gets actually
stable by a step of replica symmetry breaking: this is discussed in Sect. 4. Further, in Sect.
5, we prove a series of representation theorems, that allow to decompose Hebbian networks
into combinations of pure spin glasses, whose significance can be summarized as follows:
• at the replica symmetric (RS) level, the standard (P = 2) Hopfield model (technically

speaking its free energy) can be described as a linear combination of (the free energies
of) two spin-glasses, the former a standard Sherrington–Kirkpatrick spin glass (that is
full-RSB andwhere Parisi theory is exact [43, 66]), the latter is a Gaussian (or “spherical”
[33, 34]) spin glass (that is solely replica symmetric in the pairwise case [27, 37]).

• at one step of replica symmetry breaking (1-RSB), the standard (P = 2) Hopfield model
(technically speaking its free energy) can still be described by the above decomposition
in terms of a hard and a soft spin glass.

• at the replica symmetric level (RS), the dense (P > 2) Hebbian network (technically
speaking its free energy) is no longer a linear combination of (the free energies of) two
spin glasses, rather solely the hard part survives, namely that pertaining to a Sherrington–
Kirkpatrick model with P-wise interactions.

• at one step of replica symmetry breaking (1-RSB), the dense (P > 2) Hebbian network
(technically speaking its free energy) is still no longer a linear combination of (the free
energies of) two spin glasses and solely the hard part survives.

The whole contribute is to highlight the different glassy nature of neural networks that, in
turn, helps understanding the structure and organization of the valleys in the free energy
landscape where information is stored by the Hebbian mechanism (that ultimately implies a
better understanding of information processing by these networks).

1 Generalities

In this sectionweprovide details on the neural networkswe aim to study.We focus onHebbian
networks whose N binary neurons (i.e. Ising spins) lie on the nodes of a fully connected
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network and interact P-wisely via a suitable tensorial generalization of the standard Hebbian
storing rule, where K patterns ξμ, μ ∈ (1, . . . , K )—all of the same length N , are stored.

Definition 1 Set γ ∈ R
+, a ∈ N, P ∈ N even and let σ ∈ {−1,+1}N be a configuration of

N binary neurons. Given K = γ Na random patterns {ξμ}μ=1,...,K , each made of N P/2 i.i.d.
binary entries drawn from probability P(ξ

μ
i1 ··· iP/2

= +1) = P(ξ
μ
i1 ··· iP/2

= −1) = 1/2, for

i = 1, . . . , N , the cost-function (or Hamiltonian to preserve a physical jargon) of the dense
Hebbian network (DHN) is defined as

H (P)
N (σ |ξ) := − 1

P! N P−1

K∑

μ=1

⎛

⎝
N ,...,N∑

i1,...,iP/2=1

ξ
μ
i1 ···iP/2

σi · · · σiP/2

⎞

⎠
2

− γ

P! N
a+1−P/2.

(1.1)

Note that the last term at the r.h.s. is due to the subtraction of the diagonal term (as we wrote
the summations without restrictions in the cost function itself). The normalization factor
1/N P−1 ensures the linear extensivity of the Hamiltonian, in the volume of the network N ,
as expected.

Note that we select the Hebbian structure for the tensor accounting for the synaptic cou-
plings in the factorized form ξ1i ≡ ξ1i1 · · · ξ1iP/2

.
Now it is useful to define two control parameters β and γ , where

⎧
⎪⎨

⎪⎩

β = 1

T
γ = lim

N→∞
K

N P−1 .
(1.2)

β ∈ R
+ (i.e. the inverse of the temperature T in Physics) tunes the fast noise in the network

such that, while for β → 0 the neural dynamics of the network becomes an uncorrelated
random walk in the configuration space, for β → ∞ it approaches a steepest descent to the
closest minimum of the cost function, that plays as a Lyapounov function in this limit (and
the probability distribution P(σ |ξ) drifts from a uniform distribution in the first case to be
sharply peaked at the minima of the energy function (1.1) in the opposite noiseless limit).

Definition 2 The partition function related to the Hamiltonian of the DHN given by (1.1)
reads as

ZN (β, ξ) :=
2N∑

σ

exp
[
−β

(
H (P)
N (σ |ξ)

)]

=
∑

σ

exp

⎡

⎢⎣
β

P! N P−1

K∑

μ=1

⎛

⎝
N ,··· ,N∑

i1,··· ,iP/2=1

ξ
μ
i1 ···iP/2

σi · · · σiP/2

⎞

⎠
2

− βγ

P! N
a−P/2

⎤

⎥⎦ .

(1.3)

For an arbitrary observable O(σ ), we introduce the Boltzmann average induced by the
partition function (1.3), denoted with ωξ , defined as

ωξ (O(σ )) :=
∑

σ O(σ )e−βHN (σ |ξ)

ZN (β, ξ)
. (1.4)
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This can be further averaged over the realization of the ξ
μ
i ’s (also referred to as quenched

average) to get

〈O(σ )〉ξ := Eωξ (O(σ )). (1.5)

From this moment we omit the ξ dependence in quenched average.

Definition 3 The intensive quenched statistical pressure of the DHN (1.1) is defined as

AN (β, γ ) := 1

N
E lnZN (β, ξ), (1.6)

and its thermodynamic limit, assuming its existence, is referred to as A(β, γ ) :=
limN→∞ AN (β, γ ).

Focusing on pure state retrieval, we assume without loss of generality [9, 12, 42] that the
candidate pattern to be retrieved—say ξ1—is a Boolean vector, while, due to the universality
of quenched noise,1 ξμ, μ = 2, . . . , K are real vectors whose entries are drawn from i.i.d.
standard Gaussians. Accordingly, the average E acts as a Boolean average over ξ1 and as a
Gaussian average over ξ2 · · · ξ K .

Definition 4 The order parameters required to describe the macroscopic behavior of the
model are the standard ones [12, 13, 23, 38], namely, the Mattis magnetization

m := 1

N

N∑

i=1

ξ1i σi (1.7)

necessary to quantify the retrieval capabilities of the network and the two-replica overlap in
the σ ’s variables

q12 := 1

N

N∑

i=1

σ
(1)
i σ

(2)
i (1.8)

required to quantify the level of slow noise the network must cope with (when perform-
ing pattern recognition). Further, as an additional set of variables {τμ}μ=1,...,P−1 shall be
introduced (vide infra), we accordingly define their related two-replica overlaps

p11 := 1

P

P∑

μ=1

τ (1)
μ τ (1)

μ , p12 := 1

P

P∑

μ=1

τ (1)
μ τ (2)

μ (1.9)

for mathematical convenience.

2 First Approach: Transport PDE

As stated in the introduction, a purpose of our investigation is to paint phase diagrams for
the networks in the space of the tunable parameters, en route towards an Optimized AI: to
reach this goal the prescription is to obtain an explicit expression of the quenched statistical

1 In a nutshell,Universality-in spin glass Literature-established for the SKharmonic oscillator [35] and already
extended to work on neural networks ad bipartite spin glasses too [42]—allows to substitute binary entries i.i.d.
±1 of the quenched noise with standard Gaussian variables ∼ N (0; 1). This, in turn, allows implementing
Wick-like techniques to mathematically handle the slow noise in the network.
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pressure in terms of the order parameters and than extremize the former over the latter. This
procedure returns a system of coupled self-consistent equations that trace the evolution of the
order parameters in the space of the control parameters, whose inspection ultimately allows
such a desired painting.We approach this picture by providing twomathematical alternatives,
the former based on mathematical physics methods—as we deepen hereafter—and the latter
more grounded on a probabilistic setting (as we will see in the next section). For both the
approaches we work out in full detail both the replica symmetric and the first-step of replica
symmetry breaking scenarios and compare their findings.

In this section—at work with PDE theory—the strategy is to introduce an interpolating
pressure A(P)

N (r, t) living in an enlarged fictitious space-time (r, t) that actually reduces to

the intensive quenched statistical pressureA(P)
N of the originalmodel in a specific point of this

space-time (namely for (r = 0, t = 1), i.e.A(P)
N (r, t) = A(P)

N (β, γ )) the plan is thus to work
out explicitly the derivative of the interpolating pressure w.r.t. the space-time and to show
that they fulfills a transport PDE in such a way that the solution of the statistical mechanical
problem is recast in the solution of a partial differential equation, converting a problem of
statistical mechanics of neural networks into a typical problem of mathematical physics. The
purpose of next two subsections (one for the RS and the other for the RSB) is thus to solve
for the quenched free energies (or quenched statistical pressures) of these dense associative
network through transport equation’s method (whose idea has been already introduced in
[9] for the replica symmetric scenario and in [6] for the broken replica symmetry scenario
dealing just with the classic Hopfield network).

2.1 RS Approximation

In this section we solve for the quenched statistical pressure of the dense associative network
at the replica symmetric level of description.

Assumption 1 Under the replica-symmetry assumption, in the thermodynamic limit the order
parameters self-average around their mean values (denoted with a bar), i.e., their distributions
get delta-peaked, independently of the replica considered, namely

lim
N→∞〈(m − m̄)2〉 = 0 ⇒ lim

N→∞〈m〉 = m̄ (2.1)

lim
N→∞〈(q12 − q̄)2〉 = 0 ⇒ lim

N→∞〈q12〉 = q̄ (2.2)

lim
N→∞〈(p12 − p̄)2〉 = 0 ⇒ lim

N→∞〈p12〉 = p̄. (2.3)

Note that, for the generic order parameter X , the concentration can be rewritten as

〈(�X)2〉 N→∞−→ 0, where

�X := X − X̄ ,

and, clearly, the RS approximation also implies that, in the thermodynamic limit, 〈�X�Y 〉 =
0 for any generic pair of order parameters X , Y as well as 〈(�X)k〉 → 0 for k ≥ 2.
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Definition 5 Given the interpolating parameter t, x, y, z, w, and Ji , J̃ μ ∼ N (0, 1) standard
i.i.d. Gaussian variables, the partition function in its integral representation is given by

Z(P)
N (t, r) :=

∑

{σ }

∫
Dτ exp

[
t
β ′ N
2

mP (σ ) + wN m(σ ) + √
t

√
β ′

N P−1

K∑

μ>1

⎛

⎜⎝
N ,...,N∑

i1,...,iP/2 =1

ξ
μ
i1 ...,iP/2

σi1 · · · σiP/2

⎞

⎟⎠ τμ

+√
N 1−P/2x

K∑

μ>1

J̃μτμ + √
y

N∑

i=1

Jiσi + zN 1−P/2

2

K∑

μ>1

τ 2μ − β ′γ
2

Na−P/2
]

,

(2.4)

where, for anyμ = 1, . . . , K , τμ ∼ N [0, 1] andDτ :=
K∏

μ=1

e−τ2μ/2√
2π

dτμ is the relatedmeasure

and we set β ′ = 2β/P!.
Definition 6 The interpolating pressure for theDenseHebbianNetwork (DHN) (1.1), at finite
N , is introduced as

A(P)
N (t, r) := 1

N
E

[
lnZ(P)

N (t, r)
]
, (2.5)

where the expectation E is now meant over ξ , J , and J̃ and, in the thermodynamic limit,

A(P)(t, r) := lim
N→∞A(P)

N (t, r). (2.6)

By setting t = 1 and r = 0 the interpolating pressure recovers the original one (1.6), that is
A(P)

N (β, γ ) = A(P)
N (t = 1, r = 0).

Remark 1 The interpolating structure implies an interpolating measure, whose related Boltz-
mann factor reads as

B(σ , τ ; t, r) := exp [βH(σ , τ ; t, r)] ; (2.7)

In this way ZN (t, r) = ∫ Dτ
∑

σ B(σ , τ ; t, r) and a generalized average is coupled to this
generalized measure as

ωt,r(O(σ , τ )) :=
∫

Dτ
∑

σ

O(σ , τ )B(σ , τ ; t) (2.8)

and

〈O(σ , τ )〉t,r := E[ωt,r (O(σ , τ ))]. (2.9)

Of course, when t = 1 the standard Boltzmann measure and related averages are recovered.
Hereafter, in order to lighten the notation, we drop the sub-indices t, r .

Lemma 1 The partial derivatives of the interpolating pressure (2.5) w.r.t. t, x, y, z, w give
the following expectation values:

∂A(P)
N

∂t
= β ′

2
〈mP 〉 + β ′

2N P/2 K
(
〈p11〉 − 〈p12qP/2

12 〉
)
, (2.10)

∂A(P)
N

∂x
= K

2N P/2

(
〈p11〉 − 〈p12〉

)
, (2.11)

∂A(P)
N

∂ y
= 1

2

(
1 − 〈q12〉

)
, (2.12)
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∂A(P)
N

∂z
= K

2N P/2 〈p11〉, (2.13)

∂A(P)
N

∂w
= 〈m〉. (2.14)

Proof Since the procedures for the derivatives w.r.t. each parameter are analogous, we prove
only the derivative w.r.t. t . The partial derivative of the interpolating quenched pressure with
respect to t reads as

∂A(P)
N

∂t
= 1

N
E

[
β ′N
2

ω(mP )

]
+ 1

2N
√
t

√
β ′

N P−1

∑
μ

∑
i
E

[
ξ

μ
i1...,iP/2

ω(σi1 · · · σiP/2τμ)
]

.

(2.15)

Now, on standard Gaussian variable ξ
μ>1
i we apply the Stein’s lemma (also known asWick’s

theorem), namely

E (J f (J )) = E

(
∂ f (J )

∂ J

)
(2.16)

to compute the derivative w.r.t. t as

∂A(P)
N

∂t
= β ′

2
〈mP 〉 + β ′K

2N P/2

∑
i1,...,iP/2

∑
μ

(
E
[
ω((σi1 · · · σiP/2τμ)2)

]− E
[
ω(σi1 · · · σiP/2τμ)2

])

∂AN

∂t
= β ′

2
〈mP 〉 + β ′K

2N P/2

(
〈p11〉 − 〈p12qP/2

12 〉
)

.

(2.17)

��
Remark 2 In the next computations, we can use the following relations

〈mP
1 〉 =

P∑

k=2

(
P
k

)
〈(m1 − m̄)k〉m̄ P−k + m̄ P (1 − P) + Pm̄P−1〈m1〉 , (2.18)

〈p12qP/2
12 〉 =

P/2∑

k=1

(
P
2
k

)
q̄ P/2−k〈(p12 − p̄)(q12 − q̄)k〉 +

P/2∑

k=2

(
P
2
k

)
q̄ P/2−k p̄〈(q12 − q̄)k〉+

= +q̄ P/2〈p12〉 + P

2
q̄ P/2−1 p̄〈q12〉 − P

2
q̄ P/2 p̄ , (2.19)

which can be proved trivially by brute force.

Proposition 1 The interpolating pressure (2.4) at finite size N obeys the following transport-
like partial differential equation:

dA(P)
N

dt
= ∂A(P)

N

∂t
+ ẋ

∂A(P)
N

∂x
+ ẏ

∂A(P)
N

∂ y
+ ż

∂A(P)
N

∂z
+ ẇ

∂A(P)
N

∂w
= S(t, r) + VN (t, r),

(2.20)

where we set

ẋ = −β ′q̄ P/2 , ẏ = − P

2
β ′γ p̄q̄ P/2−1 ,

ż = −β ′(1 − q̄ P/2) , ẇ = − P

2
β ′m̄ P−1

(2.21)
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and the source S(t, r) and the potential VN (t, r) read (respectively) as

S(t, r) := − P − 1

2
β ′m̄ P − β ′γ P

4
p̄q̄ P/2−1(1 − q̄), (2.22)

VN (t, r) := β ′

2

P∑

k=2

(
P
k

)
m̄ P−k〈(�m)k〉 − β ′γ

2N P/2−a

P/2∑

k=2

(
P
2
k

)
p̄q̄ P/2−k〈(�q)k〉+

− β ′γ
2N P/2−a

P/2∑

k=2

(
P
2
k

)
q̄ P/2−k〈�p(�q)k〉.

(2.23)

Proof Starting to evaluate explicitly ∂
∂tA

(P)
N by using (2.10)–(2.11) and (2.18)–(2.19), we

write

∂

∂t
A(P)

N = β ′
2

⎛

⎝
P∑

k=2

(
P
k

)
〈(m1 − m̄)k 〉m̄ P−k + m̄ P (1 − P) + Pm̄P−1〈m1〉

⎞

⎠

+ β ′
2N P/2

K
(
〈p11〉

)
− β ′

2N P/2
K
(
q̄ P/2〈p12〉 + P

2
q̄ P/2−1 p̄〈q12〉 − P

2
q̄ P/2 p̄

)

− β ′
2N P/2

K
( P/2∑

k=1

( P
2
k

)
q̄ P/2−k 〈(p12 − p̄)(q12 − q̄)k 〉 +

P/2∑

k=2

( P
2
k

)
q̄ P/2−k p̄〈(q12 − q̄)k 〉

)

= VN (t, r) + S(t, r) + β ′γ P

4
(N

a−P/2
p̄)q̄ P/2−1 + β ′

2
Pm̄P−1〈m1〉

+β ′γ Na−P/2

2
〈p11〉 − β ′γ Na−P/2

2

(
q̄ P/2〈p12〉 + P

2
q̄ P/2−1 p̄〈q12〉

)

= VN (t, r) + S(t, r) + β ′
2
Pm̄P−1

(
∂A(P)

N
∂w

)
+ β ′(1 − q̄ P/2)

(
∂A(P)

N
∂z

)
+

+β ′q̄ P/2
(

∂A(P)
N

∂x

)
+ β ′γ P Na−P/2

2
p̄q̄ P/2−1

(
∂A(P)

N
∂ y

)

(2.24)

Thus, by placing ṙ = (ẋ, ẏ, ż, ẇ) as in (2.21) and Na−P/2 p̄ as p̄, we reach the thesis.

Remark 3 In the thermodynamic limit and under the assumption of replica symmetry the
potential VN (t, r) → 0 (this simplifies considerably the resolution of the transport equation).

Theorem 1 In the thermodynamic limit and under the assumption of replica symmetry, the
maximum storage that the network can handle is K ∝ N P−1—namely the Baldi-Vekatesh
storage [19]—that is achieved for

a = P − 1. (2.25)

In this regime the quenched statistical pressure for P ≥ 4 of the DHN becomes

A(P)(γ, β) := ln 2 +
〈
ln cosh

[
P

2
β ′m̄ P−1 + Y

√
β ′γ P

2
p̄q̄ P/2−1

]〉

Y

− P − 1

2
β ′m̄ P

−β ′γ P

4
p̄q̄ P/2−1(1 − q̄) + 1

4
γβ ′2 (1 − q̄ P

)
.

(2.26)

where Y is a Gaussian variable and 〈·〉Y is the quenched average on Y as defined in (1.5).
To obtain this result, one must also maximise this expression with respect to the order

parameters i.e.

x̄ = sup
x

A(P)(γ, β|x) (2.27)
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where x̄ = (m̄, q̄, p̄) must fulfill the following self-consistency equations

m̄ =
〈
tanh

[
P

2
β ′m̄ P−1 + Y

√
β ′γ P

2 p̄q̄ P/2−1

]〉

Y
,

q̄ =
〈
tanh 2

[
P

2
β ′m̄ P−1 + Y

√
β ′γ P

2 p̄q̄ P/2−1

]〉

Y
,

p̄ = β ′q̄ P/2
.

(2.28)

Remark 4 We stress that using P = 2 and a = 1 in the quenched pressure (A.5) we recover
the AGS picture [14].

Remark 5 We highlight that the self-consistence equations obtained through our method are
the same obtained by Gardner in [41] via heuristic techniques (i.e. the replica trick).

Remark 6 Note that the above equations are rather different w.r.t. those of theHopfieldmodel,
in particular the equation for the overlap q̄ does not have a denominator at the r.h.s. (as typical
for pairwisemodels asAGS theory revealed).Actually the self-consistency for the two-replica
overlap in the DHN coincides with the self-consistency of the two-replica overlap in the hard
P-spin-glass: this suggests that the glassy structure of the dense neural networks is different
w.r.t. the glassy structure of the Hopfield model. We will deepen the glassy nature of these
networks in the second part of the paper (see Sect. 5).

By the inspection of the self-consistency, we can find regions in the space of the control
parameters β and γ—as P is varied—where the networks is ergodic (e.g. when both m̄ = 0
and q̄ = 0), where the network is a pure spin glass (e.g. when m̄ = 0 but q̄ ∼ 1) and, the most
important, where the network works as an associative memory and performs spontaneously
pattern recognition (e.g. when both m̄ ∼ 1 and q̄ ∼ 1): these phase diagrams are shown in
Fig. 1 and deepened in Fig. 2. In particular, if we visually follow the red line (the boundary
of the retrieval region) starting from above, we see that the curve has a point of inflection at a
value of γ that we call γmax (and then recesses to smaller critical values for γ ): that flex is the
point where replica symmetry gets unstable. We can quantify the evolution of this instability
as P grows by plotting 1 − γ (β→∞)

γmax
(see Fig. 2, left panel). It is interesting to note that, for

larger and larger values of P , the instability regions gets smaller and smaller suggesting a
milder role for RSB in very dense networks: this is further corroborated by the inspection of
the values of the magnetization at γc that approach one as P → ∞ (see Fig. 2, right panel)
and justifies why we investigated solely the first step of RSB in the following subsection.

2.2 1-RSB Approximation

In this subsection we turn to the solution of the quenched statistical pressure of the dense
associative networks under the first step of replica symmetry breaking (1-RSB).

In the 1-RSB setting the probability distributions of the two overlaps q and p (see Eqs.
(2.29) and (2.30) respectively) display an analogous multi-modal structure as captured by
the next

Assumption 2 In the first step of replica-symmetry breaking (1-RSB), the distribution of the
two-replica overlap q , in the thermodynamic limit, displays two delta-peaks at the equilibrium
values, referred to as q̄1, q̄2, and the concentration on the two values is ruled by θ ∈ [0, 1],
namely

lim
N→+∞ P ′

N (q) = θδ(q − q̄1) + (1 − θ)δ(q − q̄2). (2.29)
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Fig. 1 Replica symmetric (RS) phase diagram of the dense associative network at different values of P . The
red curve identifies the phase transition splitting the retrieval region (on the left) from the spin glass phase
(on the right), while the green curve identifies the boundary of the spin glass region (down) from the ergodic
region (above). We stress that as P grows the spin glass region shrinks, as quantified in Fig. 2 (left), further
the pure spin glass solution—within the retrieval region—is always unstable and it is depicted by the dotted
green curve: we call this region instability region and we inspect its evolution with P in in Fig. 2 (right) (Color
figure online)
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Fig. 2 Left: Instability region w.r.t. P; we notice a strong reduction when P increases. Right: Values of
magnetization m̄ w.r.t. P when we consider the critical capacity γc; we show that m̄ reaches 1 as P increases.
For sake of clarity, in both panels, we represent also a numerical fit with a solid black line

Similarly, for the overlap p, denoting with p̄1, p̄2 the equilibrium values, we have

lim
N→+∞ P ′′

N (p) = θδ(p − p̄1) + (1 − θ)δ(p − p̄2). (2.30)

The Mattis magnetization m still self-averages at m̄ as in (2.1).

Note that, strictly speaking, the above ansatz for the overlaps is not the original Parisi one
(that holds for pure spin glasses, e.g. the Sherrington–Kirkpatrick model [43, 66]), but its
straightforward generalization, named ziqqurat ansatz for obvious reasons in [24, 61].

Following the same route pursued in the previous sections, we need an interpolating
partition function Z and an interpolating quenched pressureA(P), that are defined hereafter.
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Definition 7 Given the interpolating parameters r = (x (1), x (2), y(1), y(2), w, z), t and the
i.i.d. auxiliary fields {J (1)

i , J (2)
i }i=1,...,N , with J (1,2)

i ∼ N (0, 1) for i = 1, . . . , N and

{ J̃ (1)
μ , J̃ (2)

μ }μ=2,...,P , with J (1,2)
μ ∼ N (0, 1) for μ = 2, . . . , P , we can write the 1-RSB

interpolating partition function ZN (t, r) for the dense associative network (1.1) recursively,
starting by

Z(P)
2 (t, r) :=

∑

{σ }

∫
Dτ exp

[
t
β ′ N
2

mP (σ ) + wNψ m(σ )

+√
t

√
β ′

N P−1

K∑

μ>1

⎛

⎜⎝
N ,...,N∑

i1,...,iP/2=1

ξ
μ
i1...,iP/2

σi1 · · · σP/2

⎞

⎟⎠ τμ − β ′γ
2

Na−P/2

+
2∑

a=1

⎛

⎝
√
N 1−P/2 x (a)

K∑

μ>1

J̃
(a)

μ τμ +
√
y(a)

N∑

i=1

J (a)
i σi

⎞

⎠+ zN 1−P/2

2

K∑

μ>1

τ 2μ

]
,

(2.31)

where the ξ
μ
i1...,iP/2

’s are i.i.d. standard Gaussians. Averaging out the fields recursively, we

define

Z(P)
1 (t, r) :=E2

[
Z(P)
2 (t, r)θ

]1/θ
(2.32)

Z(P)
0 (t, r) := expE1

[
lnZ(P)

1 (t, r)
]

(2.33)

Z(P)
N (t, r) :=Z(P)

0 (t, r), (2.34)

where with Ea we mean the average over the variables J (a)
i ’s and J̃ (a)

μ ’s, for a = 1, 2, and
with E0 we shall denote the average over the variables ξ

μ
i1...,iP

’s.

Definition 8 The 1-RSB interpolating pressure of the DHN, at finite volume N , is introduced
as

A(P)
N (t) := 1

N
E0
[
lnZ(P)

0 (t)
]
, (2.35)

and, in the thermodynamic limit A(P)(t) := limN→∞ A(P)
N (t).

Note that by setting t = 1, the interpolating pressure recovers the standard pressure (1.6),
that is, AN (β, γ ) = A(P)

N (t = 1).

Remark 7 In order to lighten the notation, hereafter we use the following

〈m〉 =E0E1E2

[
W2

1

N

N∑

i=1

ω(ξiσi )

]
(2.36)

〈p11〉 =E0E1E2

⎡

⎣W2
1

P

P∑

μ=1

ω(τ 2μ)

⎤

⎦ (2.37)

〈p12〉1 =E0E1

⎡

⎣ 1

P

P∑

μ=1

(
E2
[W2ω(τμ)

])2
⎤

⎦ (2.38)

〈p12〉2 =E0E1E2

⎡

⎣W2
1

P

P∑

μ=1

ω(τμ)2

⎤

⎦ (2.39)
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〈q12〉1 =E0E1

[
1

N

N∑

i=1

(E2 [W2ω(σi )])
2

]
(2.40)

〈q12〉2 =E0E1E2

[
W2

1

N

N∑

i=1

ω(σi )
2

]
(2.41)

where the weight W2 is defined as

W2 := Z(P)
2

θ

E2

[
Z(P)
2

θ
] . (2.42)

Furthermore, we define the Boltzmann factor B(σ , τ ; t, r) similarly to RS assumption.

The next step is building a transport equation for the interpolating quenched pressure, for
which we preliminary need to evaluate the related partial derivatives, as discussed in the next

Lemma 2 The partial derivative of the interpolating quenched pressure with respect to a
generic variable ρ reads as

∂

∂ρ
A(P)

N (t, r) = 1

N
E0E1E2

[W2ω
(
∂ρB(σ , τ ; t, r))] . (2.43)

In particular,

∂

∂t
A(P)

N =β
′

2
〈mP

1 〉 + β
′
K

2N P/2

(〈p11〉 − (1 − θ)〈p12qP/2
12 〉2 − θ〈p12qP/2

12 〉1
)
, (2.44)

∂

∂x (1)
A(P)

N = K

2N P/2

(〈p11〉 − (1 − θ)〈p12〉2 − θ〈p12〉1
)
, (2.45)

∂

∂x (2)
A(P)

N = K

2N P/2

(〈p11〉 − (1 − θ)〈p12〉2
)
, (2.46)

∂

∂ y(1)
A(P)

N =1

2

(
1 − (1 − θ)〈q12〉2 − θ〈q12〉1

)
, (2.47)

∂

∂ y(2)
A(P)

N =1

2

(
1 − (1 − θ)〈p12〉2

)
, (2.48)

∂

∂z
A(P)

N = K

2N P/2 〈p11〉, (2.49)

∂

∂w
A(P)

N =〈m1〉. (2.50)

Proof The proof is pretty lengthy and basically requires just standard calculations, so it is
left for the Appendix D. Here we just prove that, in complete generality

∂

∂ρ
A(P)

N (t, r) = 1

N
E0E1

[
∂ρ lnZ(P)

1

]

= 1

N
E0E1

[
1

θ

1

Z(P)
1

[Z(P)
2

θ ]1/θ−1
E2
[
∂ρZ(P)

2
θ ]]

= 1

N
E0E1E2

[ Z(P)
2

θ

E2Z(P)
2

θ

∂ρZ(P)
2

Z(P)
2

]
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= 1

N
E0E1E2

[
W2

∂ρZ(P)
2

Z(P)
2

]
. (2.51)

Remark 8 As in replica symmetric case, in the next computations we can use the following
relations for a = 1, 2

〈mP
1 〉 =

P∑

k=2

(
P
k

)
〈(m1 − m̄)k〉m̄ P−k + m̄ P (1 − P) + Pm̄P−1〈m1〉 , (2.52)

〈p12qP/2
12 〉a =

P/2∑

k=1

( P
2
k

)
q̄ P/2−k
a 〈(p12 − p̄a)(q12 − q̄a)

k〉a +
P/2∑

k=2

( P
2
k

)
q̄ P/2−k
a p̄a〈(q12 − q̄a)

k〉a+

= + q̄ P/2
a 〈p12〉a + P

2
q̄ P/2−1
a p̄a〈q12〉a − P

2
q̄ P/2
a p̄a ; (2.53)

Proposition 2 The t-streaming of the 1-RSB interpolating pressure obeys, at finite volume
N, a standard transport equation, that reads as

dA(P)

dt
=∂tA(P) + ẋ (1)∂x1A(P) + ẋ (2)∂x2A(P) + ẏ(1)∂y1A(P) + ẏ(2)∂y2A(P)

+ ż∂zA(P) + ẇ∂wA(P) = S(t, r) + VN (t, r), (2.54)

where the source S(t, r) and the potential VN (t, r) read as

S(t, r) :=β
′
m̄ P (1 − P)

2
− β

′
γ (θ − 1)

P

2
p̄2q̄

P/2
2 + β

′
γ θ

P

2
p̄1q̄

P/2
1 − β

′
γ
P

2
p̄2q̄

P/2−1
2 (2.55)

VN (t, r) := β
′
K

2N P/2

⎧
⎨

⎩(θ − 1)

⎡

⎣
P/2∑

k=2

(
P/2

k

)
q̄ P/2−k
2 〈(p12 − p̄2)(q12 − q̄2)

k 〉2+

+
P/2∑

k=2

(
P/2

k

)
q̄ P/2−k
2 p̄2〈(q12 − q̄2)

k 〉2
⎤

⎦− θ

⎡

⎣
P/2∑

k=2

(
P/2

k

)
q̄ P/2−k
1 〈(p12 − p̄1)(q12 − q̄1)

k 〉1

+
P/2∑

k=2

(
P/2

k

)
q̄ P/2−k
1 p̄1〈(q12 − q̄1)

k 〉1
⎤

⎦

⎫
⎬

⎭+ β
′

2

P∑

k=2

(
P

k

)
〈(m1 − m̄)k 〉 (2.56)

The proof of the Proposition is provided in Appendix B.

Remark 9 In the thermodynamic limit, in the 1-RSB scenario, we have

lim
N→∞〈(m − m̄)2〉 =0 (2.57)

lim
N→∞〈(q12 − q̄i )

2〉i =0; i = 1, 2 (2.58)

lim
N→∞〈(p12 − p̄i )

2〉i =0; i = 1, 2 (2.59)

Similar to theRSapproximation, in the thermodynamic limitwehave that the centralmoments
greater than two tend to zero such that

lim
N→∞ VN (t, r) = 0. (2.60)

Similar to Theorem 1, we have the following

Theorem 2 In the thermodynamic limit, under one-step of replica symmetry breaking, the
maximum storage of the dense Hebbian network scales as K ∝ N P−1, i.e. a = P − 1.

123



Replica Symmetry Breaking in Dense Hebbian Neural Networks Page 15 of 41 24

In this regime of maximal storage, i.e. in the Baldi-Venkatesh limit, the quenched statistical
pressure for even P ≥ 4 becomes

A(P) = ln 2 + 1

θ
E1 lnE2 cosh

θ g(J, m̄) − γβ
′

4
q̄ P/2−1
2 p̄2

(
P − (P − 1)q̄2

)

+ β
′

2
m̄ P (1 − P) − θ(P − 1)

β
′
γ

4

(
q̄ P/2
2 p̄2 − q̄ P/2

1 p̄1
)

+ 1

4
β

′2
γ (2.61)

where

g(J, m̄) = β
′
P

2
m̄ P−1 + J (1)

√
β

′

2
γ p̄1Pq̄

P/2−1
1 + J (2)

√
β

′

2
Pγ

[
p̄2q̄

P/2−1
2 − p̄1q̄

P/2−1
1

]
.

(2.62)

To obtain this result, one must also maximise this expression with respect to the order param-
eters i.e.

x̄ = sup
x

A(P)(γ, β|x) (2.63)

where x̄ = (m̄, q̄1, q̄2, p̄1, p̄2) must fulfill the following self-consistency equations

m̄ = E1

[
E2 coshθ g(J, m̄) tanh g(J, m̄)

E2 coshθ g(J, m̄)

]
, (2.64)

p̄1 = β
′
q̄ P/2
1 , (2.65)

p̄2 = β
′
q̄ P/2
2 , (2.66)

q̄1 = E1

[
E2 coshθ g(J, m̄) tanh g(J, m̄)

E2 coshθ g(J, m̄)

]2
, (2.67)

q̄2 = E1

[
E2 coshθ g(J, m̄) tanh2 g(J, m̄)

E2 coshθ g(J, m̄)

]
. (2.68)

The proof is provided in Appendix C (Fig. 3).

Remark 10 The above 1-RSB quenched statistical pressure, with P = 2 and a = 1 in (C.2)—
namely the solution of standard Hopfieldmodel under one step of replica symmetry breaking,
coincides with that predicted heuristically by Crisanti et al. [6, 36].

Now we turn to the other mathematical technique, namely in the next section we obtain
the above formulas for the quenched statistical pressure (both at the RS and 1-RSB level
of approximation) via an adaptation of the Guerra’s interpolation technique (Fig. 5). Once
these mathematical techniques will be exposed, we turn to understanding the information
processing capabilities of these dense networks in the second part of the paper.

3 Second Approach: Guerra’s Interpolation Technique

As stated, in this sectionwe re-obtain the results achieved by the transport equation technique,
this time through a suitable generalization of Guerra’s interpolation technique, either in RS
and in 1-RSB assumptions.
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Fig. 3 Broken replica symmetry (1-RSB) phase diagram of the dense associative network as different values
of P . The dark blue phase transition identifies the retrieval region, while the light blue identifies the spin-glass
region. We stress that—outside the retrieval region—as P grows the spin-glass region gets stable in the RSB
picture (while it shrinks to zero in the RS scenario). Inside the retrieval region the pure spin glass solutin is
always unstable and it is detached by a light blue dotted line (Color figure online)
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Fig. 4 Left: Super-position of phase diagrams in P = 10 case for RS (red) and 1RSB (blue) assumption. We
highlight the fading of instability region in 1RSB case. Right: Values of magnetization m̄ w.r.t. P when we
consider the critical capacity γc; we note that the values of the magnetization in the RS and 1-RSB regimes
coincide and as P increases, suggesting that the smaller the P the stronger the effect of RSB in the network.
Moreover, we represent with a solid black line the numerical fit (Color figure online)

3.1 RS Approximation

The definition of RS assumption for the order parameters is the same as Assumption 1.

Definition 9 Given the interpolating parameter t ∈ [0, 1], A, B, C, ψ ∈ R and Ji , J̃μ ∼
N (0, 1) for i = 1, . . . , N and μ = 1, . . . , K standard Gaussian variables i.i.d., the partition
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Fig. 5 Monte Carlo numerical checks for a dense network with P = 10: we highlight the agreement among
simulations (colored lines report different simulation sizes, to facilitate a visual finize size scaling) and theory
(reported as a vertical dashed bar). Left: Mattis magnetization. Right: Susceptibility (as a response function
in γ ) (Color figure online)

function is given as

Z(P)
N (t) :=

∑

{σ }

∫
Dτ exp

[
t
β ′ N
2

mP (σ ) + (1 − t)Nψ m(σ )+

+√
t

√
β ′

N P−1

K∑

μ>1

⎛

⎜⎝
N ,...,N∑

i1,...,iP/2=1

ξ
μ
i1...,iP/2

σi1 · · · σP/2

⎞

⎟⎠ τμ+

+√
1 − t

⎛

⎝A
K∑

μ>1

J̃μτμ + B
N∑

i=1

Jiσi

⎞

⎠+ 1 − t

2
C

K∑

μ>1

τ 2μ − β ′γ
2

Na−P/2
]

,

(3.1)

where, for any μ = 2, . . . , K , τμ ∼ N [0, 1] and Dτ :=
K∏

μ=1

e−τ2μ/2√
2π

is the related measure

and we set β ′ = 2β/P!.
Similar to RS transport equation method, we can define the interpolating pressure, the

Boltzmann factor and the generalized measure.

Lemma 3 The t derivative of interpolating pressure is given by

dA(P)(t)

dt
:= β ′

2
〈mP

1 〉 − ψ〈m1〉 − 1

2
B2 + 〈p11〉 K

2N

(
β

′

N P/2 − A2 − C

)
+

:= − β ′

2N

K

N P/2−1

[
〈p12qP/2

12 〉 − N P/2−1

β ′ A2〈p12〉 − N P/2

β ′K
B2〈q12〉

]
.

(3.2)

In particular if we fix the four constants as

ψ = P

2
β ′m̄ P−1

, A2 = β ′

N P/2−1 q̄
P/2

,

B2 = β ′γ N
a−P/2 P

2
p̄q̄

P/2−1
, C = β ′

N P/2−1 (1 − q̄
P/2

) ,

(3.3)

keeping in mind Assumption 1, the (3.2) at finite size N is

dA(P)(t)

dt
= − P − 1

2
β ′m̄ P − β ′γ

4
P p̄q̄ P/2−1(1 − q̄) + β

′

2

P∑

k=2

(
P
k

)
〈(m1 − m̄)k〉m̄ P−k
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− β
′
K

2N P/2

P/2∑

k=1

(
P
2
k

)
q̄ P/2−k〈(p12 − p̄)(q12 − q̄)k〉. (3.4)

Since the computation is similar to that of derivative w.r.t. interpolating parameters of
transport equation, we omit it.

Applying the Fundamental Theorem of Calculus we claim the following

Proposition 3 At finite size and under RS assumption applying the Fundamental Theorem of
Calculus and using the suitable values of A, B,C, ψ , we find the quenched pressure for the
P spin Hopfield model as

A(P) = ln 2 − β ′γ
2

Na−P/2 +
〈
ln cosh

[
P

2
β ′m̄ P−1 + Y

√
β ′γ P

2
p̄q̄ P/2−1

]〉

Y

− γ N
a−1

2
ln
(
1 − β ′N 1−P/2

(
1 − q̄

P/2
))

+ γ Na−P/2

2

β ′q̄ P/2

1 − β ′N 1−P/2 (1 − q̄ P/2)

− P − 1

2
β ′m̄ P − β ′γ

4
P p̄q̄ P/2−1(1 − q̄) + β

′

2

∫ 1

0

[
P∑

k=2

(
P
k

)
〈(m1 − m̄)k〉m̄ P−k

]

t=s

ds

− β
′
K

2N P/2

P/2∑

k=1

∫ 1

0

[( P
2
k

)
q̄ P/2−k〈(p12 − p̄)(q12 − q̄)k〉

]

t=s

ds (3.5)

where Y is a Gaussian variable and 〈·〉Y is the quenched average on Y as defined in (1.5).

Theorem 3 The derivative w.r.t. t in the thermodynamical limit is

dA(P)(t)

dt
= − P − 1

2
β ′m̄ P − β ′γ

4
P p̄q̄ P/2−1(1 − q̄). (3.6)

Thus, in the thermodynamic limit and under the assumption of replica symmetry, we reach
the same results we computed via transport equation’s interpolation (see Eq. 2.26), namely
the quenched statistical pressure for P ≥ 4 of the DHN becomes

A(P)(γ, β) := ln 2 +
〈
ln cosh

[
P

2
β ′m̄ P−1 + Y

√
β ′γ P

2
p̄q̄ P/2−1

]〉

Y

− P − 1

2
β ′m̄ P

−β ′γ P

4
p̄q̄ P/2−1(1 − q̄) + 1

4
γβ ′2 (1 − q̄ P

)
.

(3.7)

where Y is a Gaussian variable and 〈·〉Y is the quenched average on Y as defined in (1.5).

Proof Thanks to replica symmetry assumption Definition 1 we have 〈�p12�qk12〉 → 0 and
〈�mk〉 → 0 for k ≥ 2, so the derivative w.r.t. t becomes as in (3.6).

If we apply the Fundamental Theorem in the thermodynamical limit with (3.6) we recover

A(P)(γ, β) := ln 2 − β ′γ
2

Na−P/2 +
〈
ln cosh

[
P

2
β ′m̄ P−1 + Y

√
β ′γ P

2
p̄q̄ P/2−1

]〉

Y

− P − 1

2
β ′m̄ P − β ′γ

4
P p̄q̄ P/2−1(1 − q̄) − γ N

a−1

2
ln
(
1 − β ′N 1−P/2

(
1 − q̄

P/2
))

+ γ Na−P/2

2

β ′q̄ P/2

1 − β ′N 1−P/2 (1 − q̄ P/2 ) .

(3.8)
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which is the same expression in (A.5) and Y is a Gaussian variable with 〈·〉Y is the quenched
average on Y as defined in (1.5). The proof proceeds similarly to that of transport equation’s
interpolation.

3.2 1-RSB Approximation

The ansatz for the concentration of the two-replica overlap distributions (for both p and q)
is the same as in the Assumption 2 and the Mattis magnetization still self-averages around
its mean m̄, hence we can directly write the next

Definition 10 Given the interpolating parameter t and the i.i.d. auxiliary fields {J (1)
i , J (2)

i }
i=1,...,N , with J (1,2)

i ∼ N (0, 1) for i = 1, . . . , N and { J̃ (1)
μ , J̃ (2)

μ }μ=2,...,P , with J (1,2)
μ ∼

N (0, 1) for μ = 2, . . . , P , we can write the 1-RSB interpolating partition function Z(P)
N (t)

for the P spin Hopfield model (1.1) recursively, starting by

Z(P)
2 (t) :=

∑

{σ }

∫
Dτ exp

[
t
β ′ N
2

mP (σ ) + (1 − t)Nψ m(σ )

+√
t

√
β ′

N P−1

K∑

μ>1

⎛

⎜⎝
N ,...,N∑

i1,...,iP/2=1

ξ
μ
i1...,iP/2

σi1 · · · σP/2

⎞

⎟⎠ τμ

+√
1 − t

2∑

a=1

⎛

⎝A(a)
K∑

μ>1

J̃
(a)
μ τμ + B(a)

N∑

i=1

J (a)
i σi

⎞

⎠+ 1 − t

2
C

K∑

μ>1

τ2μ − β ′γ
2

Na−P/2
]

,

(3.9)

where the ξ
μ
i1...,iP/2

’s are i.i.d. standard Gaussians. The values of the real-valued constants

A1, A2, B1, B2,C will be set a fortiori (see Lemma 4).
Averaging out the fields recursively, we define

Z(P)
1 (t) :=E2

[
Z(P)
2 (t)θ

]1/θ
(3.10)

Z(P)
0 (t) := expE1

[
lnZ(P)

1 (t)
]

(3.11)

Z(P)
N (t) :=Z(P)

0 (t), (3.12)

where with Ea we mean the average over the variables J (a)
i ’s and J̃ (a)

μ ’s, for a = 1, 2, and
with E0 we shall denote the average over the variables ξ

μ
i1...,iP/2

’s.

The definition of 1-RSB interpolating pressure at finite volume N and in the thermody-
namic limit is the same as transport equation technique, see Definition (8) as well as the
relative notation for the generalized averages.

Now the next step is computing the t-derivative of the interpolating pressure. In this way
we can apply the fundamental theorem of calculus and find the solution of the original model,
as standard in this type of approach [44].

Lemma 4 The derivative w.r.t. t of interpolating pressure can be written as

dA(P)
N

dt
= β

′

2
〈mP

1 〉 + β
′
K

2N P/2

[
〈p11〉 + (θ − 1)〈p12qP/2

12 〉2 − θ〈p12qP/2
12 〉1

]

−
{
C

K

2N
〈p11〉 + ψ〈m1〉 + K A1

2N
[〈p11〉 − (1 − θ)〈p12〉2 − θ〈p12〉1]
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+K A2

2N
[〈p11〉 − (1 − θ)〈p12〉2]

+ B1

2
[1 − (1 − θ)〈q12〉2 − θ〈q12〉1] + B2

2
[1 − (1 − θ)〈q12〉2]

}
(3.13)

In particular, following the 1-RSB ansatz 2, if we fix the costants in the recursive partition
function (3.9) as

ψ = β
′

2
Pm̄P−1, A2

1 = β
′

N P/2−1 q̄
P/2
1 , (3.14)

A2
2 = β

′

N P/2−1 (q̄ P/2
2 − q̄ P/2

1 ), B2
1 = β

′
K

N P/2 P p̄1q̄
P/2−1
1 , (3.15)

B2
2 = β

′
K

N P/2 P( p̄2q̄
P/2−1
2 − p̄1q̄

P/2−1
1 ), C = β

′

N P/2−1 (1 − q̄ P/2
2 ). (3.16)

we compute the derivative w.r.t. t at finite size as

dA(P)
N

dt
=
{

β
′

2

[
P∑

k=2

(
P
k

)
〈(m1 − m̄)k 〉m̄ P−k + m̄ P (1 − P)

]
− β

′
γ (θ − 1)

P

2
q̄ P/2
2 p̄2

+ β
′
K

2N P/2 (θ − 1)

⎡

⎣
P/2∑

k=1

( P
2
k

)
q̄ P/2−k
2 〈(p12 − p̄2)(q12 − q̄2)

k 〉2 +
P/2∑

k=2

( P
2
k

)
q̄ P/2−k
2 p̄2〈(q12 − q̄2)

k 〉2
⎤

⎦

− β
′
K

2N P/2 θ

⎡

⎣
P/2∑

k=1

( P
2
k

)
q̄ P/2−k
1 〈(p12 − p̄1)(q12 − q̄1)

k 〉1 +
P/2∑

k=2

( P
2
k

)
q̄ P/2−k
1 p̄1〈(q12 − q̄1)

k 〉1
⎤

⎦

+β
′
γ θ

P

2
q̄ P/2
1 p̄1

}
. (3.17)

Since the proof is rather lengthy but similar to that of the t-streaming of the transport
equation approach, we omit it for the sake of simplicity.

Applying the Fundamental Theorem of Calculus and computing the one-body term, we
have the following

Proposition 4 At finite size N and under the first step of replica symmetry breaking, we can
write the quenched statistical pressure of the dense Hebbian network as

A(P) = γ Na−1

2
ln(1 − β

′
N 1−P/2(1 − q̄ P/2

2 )) + 1

θ
E1

{
lnE2 cosh

θ

(
ψ +

2∑

a=1

B(a) J (a)

)}
+ ln 2

+ γβ
′
Na−P/2q̄ P/2

1

2(1 − β
′ N 1−P/2(1 − q̄ P/2

2 ) − θβ
′ N 1−P/2(q̄ P/2

2 − q̄ P/2
1 ))

+ γ Na−1

2θ
ln

(
1 − β

′
N 1−P/2(1 − q̄ P/2

2 )

1 − β
′ N 1−P/2(1 − q̄ P/2

2 ) − θβ
′ N 1−P/2(q̄ P/2

2 − q̄ P/2
1 ))

)
− β ′γ

2
Na−P/2

+
{

β
′

2

[
P∑

k=2

(
P

k

)
〈(m1 − m̄)k 〉m̄ P−k + m̄ P (1 − P)

]
− β

′
γ (θ − 1)

P

2
q̄ P/2
2 p̄2

+ β
′
γ Na−P/2

2
(θ − 1)

∫ 1

0

⎡

⎣
P/2∑

k=1

(
P
2

k

)
q̄ P/2−k
2 〈(p12 − p̄2)(q12 − q̄2)

k 〉2 +
P/2∑

k=2

(
P
2

k

)
q̄ P/2−k
2 p̄2〈(q12 − q̄2)

k 〉2
⎤

⎦

t=s

ds

− β
′
γ Na−P/2

2
θ

∫ 1

0

⎡

⎣
P/2∑

k=1

(
P
2

k

)
q̄ P/2−k
1 〈(p12 − p̄1)(q12 − q̄1)

k 〉1 +
P/2∑

k=2

(
P
2

k

)
q̄ P/2−k
1 p̄1〈(q12 − q̄1)

k 〉1
⎤

⎦

t=s

ds

+β
′
γ θ

P

2
q̄ P/2
1 p̄1

}
(3.18)
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Theorem 4 The derivative w.r.t. t in the thermodynamical limit is

dA(P)(t)

dt
= m̄ P (1 − P) − β

′
γ (θ − 1)

P

2
q̄ P/2
2 p̄2 + β

′
γ θ

P

2
q̄ P/2
1 p̄1. (3.19)

Thus, in the thermodynamic limit and under the assumption of first step of replica symmetry
breaking, we reach the same results we computed via transport equation’s interpolation (see
Eq. 3.20), namely the quenched statistical pressure for P ≥ 4 of the DHN becomes

A(P) = ln 2 + 1

θ
E1 lnE2 cosh

θ g(J, m̄) − γβ
′

4
q̄ P/2−1
2 p̄2

(
P − (P − 1)q̄2

)

+ β
′

2
m̄ P (1 − P) − θ(P − 1)

β
′
γ

4
(q̄ P/2

2 p̄2 − q̄ P/2
1 p̄1) + γβ ′ 2

4
(3.20)

where

g(J, m̄) = β
′
P

2
m̄ P−1 + J (1)

√
β

′

2
γ p̄1Pq̄

P/2−1
1 + J (2)

√
β

′

2
Pγ

[
p̄2q̄

P/2−1
2 − p̄1q̄

P/2−1
1

]
.

(3.21)

The proof is similar via transport equation’s interpolation (see Appendix C), since we
omit it.

Remark 11 Note that the above expression sharply coincides with (C.4), hence from now
on the results obtained trough the first approach automatically translate also in this setting
and it is pointless to repeat the calculations: the scenario painted trough the transport-PDE
approach is meticulously confirmed.

4 Ground State Analysis of theMaximal Storage

Once set the net in the Baldi-Venkatesh regime of operation (the maximal storage scaling
allowed to the network, i.e. K = γ N P−1), in this section we perform fine tuning, namely
we search the numerical value γc that sets the maximal achievable storage: this is done in
the β → ∞ limit of zero temperature of course (where no fast noise is present) and we
inspect as γ grows, the behavior of the Mattis magnetization: as long as that observable is
∼ 1 the network is in the retrieval operation mode—i.e., it is performing pattern recognition
and associative memory—but when the magnetization suddenly drops to zero, this defines
the critical capacity γc: beyond that value, it is pointless to add more patterns to the network
because its associative properties are lost and it behaves as a pure spin-glass with no retrieval
skills (the network has a phase transitions: it escapes the retrieval region and enters the pure
spin glass region).

Before starting the calculationswe just point out that, as the proofs of the next two theorems
are short but somehow cumbersome, we prefer to keep them in the main text.

4.1 RS Approximation

As standard also for the classic Hopfield model [13], to get the ground state solution
(namely the self-consistencies for β

′ → ∞) for the case of P > 2, we now assume that
lim

β
′→∞ β

′
(1 − q̄) is finite. This gives rise to the following.
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Theorem 5 Assuming that lim
β

′→∞ β
′
(1− q̄) is finite, the zero-temperature self-consistency

equation for the Mattis magnetization reads as

m̄ := erf

[
1

2

√
P

γ
m̄ P−1

]
. (4.1)

where erf is the error function.

Proof We adapt the computation from [13]. As a first step we introduce an additional term
β

′
y in the argument of the hyperbolic tangent appearing in the self-consistency equations

(2.28):

m̄ =
〈
tanh

[
β

′
(
P

2
m̄ P−1 + x

√
γ P

2 q̄
P−1 + y

)]〉

x
,

q̄ =
〈
tanh 2

[
β

′
(
P

2
m̄ P−1 + x

√
γ P

2 q̄
P−1 + y

)]〉

x
.

(4.2)

We also recognize that as β
′ → ∞ we have q̄ → 1, therefore in order to perform the limit

we will introduce the reparametrization

q̄ = 1 − δq̄

β
′ as β

′ → ∞ . (4.3)

In this way we obtain

m̄ =
〈
tanh

⎡

⎣β
′
⎛

⎝ P

2
m̄ P−1 + x

√

γ P
2

(
1 − δq̄

β
′

)P−1

+ y

⎞

⎠

⎤

⎦
〉

x

,

1 − δq̄

β
′ =

〈
tanh 2

⎡

⎣β
′
⎛

⎝ P

2
m̄ P−1 + x

√

γ P
2

(
1 − δq̄

β
′

)P−1

+ y

⎞

⎠

⎤

⎦
〉

x

.

(4.4)

Using the new parameter y we can recast the last equation in δq̄ as a derivative of the
magnetization

∂m̄

∂ y
= β

′
[
1 −

(
1 − δq̄

β
′

)]
= δq̄. (4.5)

Thanks to this correspondence between m̄ and q̄, we can proceed without worrying about q̄

m̄ =
〈
sign

[
P

2
m̄ P−1 + x

√
γ P

2 + y

]〉

x
,

δq̄ = ∂m̄

∂ y
.

(4.6)

These equations can be simplified by evaluating the Gaussian integral in x , via the relation:

〈sign[Ax + B]〉x = erf

(
B√
2 A

)
, (4.7)

to get

m̄ = erf

[
P
2 m̄

P−1 + y√
γ P

]
,

δq̄ = 2√
γπ P

exp

⎧
⎨

⎩−
[

P
2 m̄

P−1 + y√
γ P

]2⎫⎬

⎭ .

(4.8)
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Setting y = 0 we close the proof.

Corollary 1 As conjectured by Gardner via the replica trick [41], in the limit P → ∞, γc is
a divergent function of P of the form

γc ∼ P

log P
. (4.9)

Proof As numerically for P → ∞ we have found that the value of the magnetization for
γ ≤ γc is always m̄ = 1 and decays to 0 for γ > γc, to find the trend of γc as a function of
P , from the (4.1), we have to impose the following condition

∣∣∣∣∣erf
[
1

2

√
P

γ

]
− 1

∣∣∣∣∣ < ε (4.10)

solving this equation for P/γc within the limit of small values of ε, we have the approximate
solution

P

γc
= 4 log

[
1

ε

]
− 2 log

[
π

2
log

[
2

πε2

]]
+ O(ε2) (4.11)

thus, as ε → 0 the ratio P/γc must be a divergent function of the form

P

γc
∼ 4 log

[
1

ε

]
(4.12)

choosing ε = 1/P , or any other natural power of 1/P since only the coefficient 4 would
change for the property of logarithm, this condition allows γc to be a divergent function of
P of the form in (4.9).

4.2 1-RSB Approximation

Theorem 6 The zero-temperature self-consistency equations for the Mattis magnetization
(and, technically required, also for �q̄ = q̄2 − q̄1), in the 1-RSB scenario, read as

m̄ = 1 − 2E1

{
1

1 + e2�(A1+A2 J (1))F(A)

}
,

�q̄ = q̄2 − q̄1 = 4E1

⎧
⎪⎨

⎪⎩
e2�(A1+A2 J (1))F(A)

[
1 + e2�(A1+A2 J (1))F(A)

]2

⎫
⎪⎬

⎪⎭
,

(4.13)

where

F(A) =
1 + erf

[
K+

]

1 + erf
[
K−

] with K± = � A2
3±(A1+A2 J (1))

A3
√
2

(4.14)

and

A1 = P

2
m̄ P−1 , A2 =

√
γ P

2
, A3 =

√
γ P(P − 1)

2
�q̄ . (4.15)
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Proof Following the same steps presented in the RS assumption, we introduce the additional
term β

′
y in the expression of g(J, m̄), the self consistent equations in Theorem 2 read as

m̄ = E1

[
E2 coshθ g(J, m̄) tanh g(J, m̄)

E2 coshθ g(J, m̄)

]
, (4.16)

q̄1 = E1

[
E2 coshθ g(J, m̄) tanh g(J, m̄)

E2 coshθ g(J, m̄)

]2
, (4.17)

q̄2 = E1

[
E2 coshθ g(J, m̄) tanh2 g(J, m̄)

E2 coshθ g(J, m̄)

]
, (4.18)

where

g(J, m̄) = β
′
⎛

⎝ P

2
m̄ P−1 +

√
γ Pq̄ P−1

1

2
J (1) +

√
γ P(q̄ P−1

2 − q̄ P−1
1 )

2
J (2) + y

⎞

⎠ .(4.19)

We recognize that as β
′ → ∞, we have q̄2 → 1, therefore in order to perform the limit we

will introduce the reparametrization

q̄2 = 1 − δq̄2
β

′ as β
′ → ∞ (4.20)

Using the new parameter y, we can recast the equation for q̄2 as a derivative of the magneti-
zation

∂m̄

∂ y
= δq̄2 − ��q̄ �⇒ δq̄2 = ∂m̄

∂ y
+ ��q̄ (4.21)

where we have used �q̄ = q̄2 − q̄1 and, as β
′ → ∞, β

′
θ → � ∈ R. Thus, in the zero

temperature limit the previous equations become

m̄ → E1

{
E2
[
sign[g(J, m̄)] e�|g(J,m̄)| ]

E2
[
e�|g(J,m̄)|]

}

�q̄ → 1 − E1

{
E2
[
sign[g(J, m̄)] e�|g(J,m̄)| ]

E2
[
e�|g(J,m̄)|]

}2

q̄2 → 1

(4.22)

Now, if we suppose �q̄ � 1 the (4.19) reduces to

g(J, m̄) = β
′ [

A1 + A2 J
(1) + A3 J

(2) + O(�q̄)
]

(4.23)

where

A1 = P

2
m̄ P−1 , A2 =

√
γ P

2
, A3 =

√
γ P(P − 1)

2
�q̄ . (4.24)

Performing the integral over J (2) we get the proof.

Remark 12 Note that, as �q̄ → 0, the whole above construction collapses to the replica
symmetric picture as it should.
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Fig. 6 Left: γc as a function of P; we note that—for all values of P—the RSB maximal capacity is sys-
tematically larger than its replica symmetric counterpart. Right: Superposition of the RS and 1-RSB phase
diagrams for a given P—i.e. P = 10, the same of the Monte Carlo runs reported in Fig. 4—to facilitate
visual comparison of the various regions: we note that the spin-glass phase is systematically larger in the
RSB scenario (light blue) rather than in the RS counterpart (green). Within the retrieval region the spin glass
solution is always unstable, both in the RS and in the 1-RSB approximations (Color figure online)

Proof For �q̄ → 0 from (4.23) and (4.24), we have

g(J, m̄) → β
′
[
P

2
m̄ P−1 +

√
γ P

2
J (1)

]
(4.25)

and so

m̄ → E1

[
sign

(
P

2
m̄ P−1 +

√
γ P

2
J (1)

)]
,

�q̄ → 0,
q̄1 → q̄2 → 1,

(4.26)

which are the equations in the zero-temperature limit of RS assumption.

Remark 13 We checked numerically the behavior of critical capacity, both in the RS and 1-
RSB assumptions, and—as reported in the plots of Fig. 6, we can appreciate that their trends
are similar, almost identical: also in the 1-RSB scenario γc is a divergent function of P of the
form P

log P and, as expected, in these regards replica symmetry breaking plays a minor role.

5 The Structure of the Glassiness

In blue we report P = 2 (standard Hopfield), in red P = 4 and in green P = 8. It shines
that in dense networks minima are more profound w.r.t. the shallow limit and energy barrier
are higher (hence trapping in spurious states become less probable for dense networks) (Fig.
7). Note that Hopfield has a parabolic shape as expected being a quadratic Hamiltonian (see
also [5, 50]).

Selected a network (i.e. selected a color in the plot), as the storage grows we see that the
maxima of these curves—that happen on the mixture of ξ1 and ξ2—the contribution of the
quenched noise increases and the corresponding energy of the maximum gets lower. Further,
whatever the storage, we highlight that the basin of attractions of the minima gets steeper as
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0.0 0.2 0.4 0.6 0.8 1.0
p = nflip/N

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

H
(σ
)/

|H
(ξ

1
)|

K ∼ γN

N=100, K=2
N=100, K=10
N=100, K=25

0.0 0.2 0.4 0.6 0.8 1.0
p = nflip/N

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

H
(σ
)/

|H
(ξ

1
)|

K >> γN

N=100, K=50
N=100, K=150
N=100, K=450

Fig. 7 Comparison of the structure of the landscape in the high resolution regime [8] (left) and in the high
storage regime (right). In the vertical axes we plot the ratio where in the denominator there is the Hamitonian
evaluated in the minimum corresponding to the pattern ξ1—and it is fixed—and in the numerator we plot the
value of the Hamiltonian where we perform ground state spin flips to step away from ξ1 toward ξ2. In the
horizontal axes we plot the number of spin flips required to move from ξ1 to ξ2

P grows, suggesting both a higher critical storage value as well as their flat structure (see
also [18]).

In order to deepen the glassy structure of these neural networks it is instructive to start with
a glance at the pairwise reference. Remembering that the Hamiltonian of the Sherrington–
Kirkpatrick (SK) spin glass reads as

HSK = −1√
N

N ,N∑

i< j

Ji jσiσ j ,

with Ji j quenched random couplings i.i.d. accordingly toN [0, 1], if we consider the standard
Hopfield limit (i.e. we set P = 2 in the dense Hebbian network), we can write the related
Hamiltonian and partition function as

HHop f ield(σ |ξ) = −1

N

N ,N∑

i< j

K∑

μ=1

ξ
μ
i ξ

μ
j σiσ j , (5.1)

ZHop f ield =
2N∑

σ

exp
(−βHHop f ield(σ |ξ)

)
. (5.2)

In turn, these can be rewritten, after minimal manipulations—i.e., for the former splitting the
signal (i.e. the pattern to be retrieved, say μ = 1) from the quenched noise (i.e. all the other
patterns) and for the latter using its integral representation á la Hubbard-Stratonovich, as

HHop f ield(σ |ξ) = −m2
1

2
− 1√

N

N ,N∑

i< j

Ji jσiσ j ,with Ji j = (
1√
N

K∑

μ=1

ξ
μ
i ξ

μ
j ) (5.3)

ZHop f ield =
2N∑

σ

eβm2
1

∫ +∞

−∞

P∏

μ=2

dzμe
−z2/2 exp

⎛

⎝ 1√
N

N ,P∑

i,μ

ξ
μ
i σi zμ

⎞

⎠ , (5.4)

hence, it shines that, if naively we send N → ∞ in Eq. (5.3) we note that Ji j → N [0, 1]—
as in the Sherrington–Kirkpatrick model—and, correspondingly, the normalization of the
Hopfield Hamiltonian turns to the Sherrington–Kirkpatrick one (i.e.

√
N rather than N ):
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certainly we are dealing with a spin-glass, we must now study what kind of spin glass it is.
A glance at Eq. (5.4) suggests a bipartite spin-glass made of by one party with N Ising spins
(binary neurons)σi = ±1 and one partywith K Gaussian spins (real valued neurons equipped
with a Gaussian prior). Indeed, in a couple of recent papers [25, 26], Guerra and coworkers
provided—at the replica symmetric level of description only—a representation theorem for
the standardHopfield quenched statistical pressure in terms of the related quenched statistical
pressures of an hard spin glass (i.e. the Sherrington–Kirkpatrick model) and a soft one (i.e.
the Gaussian or spherical model): as the former is full-RSB (it is the archetype of models
where Parisi theory is correct) [28, 43, 66], while the latter is replica symmetric [27, 34], the
interplay among them confers a glassiness to the Hopfield model that is typical of that kind
of neural network and it is not the same nor of the hard spin glass alone neither of the soft
one alone.

Does the glassiness of the Hopfield neural network hold also for dense networks?
A glance at the self-consistencies for the overlap both at the replica symmetric level—see

equation (2.28)—as well as under the first step of RSB—see Eqs. (2.67–2.68)—seems to
suggest that this is no longer the case as the self-consistencies for the overlap are the same
of the standard hard P spin glass (namely the Sherrington–Kirkpatrick model with P-wise
interactions [7, 11]) both in the RS and in the 1-RSB scenarios.

To prove this conjecture, in this section we generalize the Guerra’s representation theorem
in various directions: at first we focus on the standard pairwise Hopfield model to inspect if
such a decomposition holds alsowithin a broken replica framework andwe prove that it keeps
holding. Then we focus on dense networks and we prove that such a decomposition theorem
does not hold, rather these networks have quenched statistical pressures related solely to
those pertaining to the hard spin glasses. The soft part disappears and this turns to be true
both at the replica symmetric and within the first step of replica symmetry breaking: let us
prove these statements and deepen their consequences.

5.1 RS Scenario

5.1.1 Case P = 2 (Standard Hopfield Reference)

For sake of completeness, in this subsection we report the decomposition theorem for P = 2
case, namely standard Hopfield model, proved in [26].

Theorem 7 Fixed at noise level β, β1 and β2 as

β1 =
√

γβ

1 − β(1 − q̄)
(5.5)

β2 = 1 − β(1 − q̄), (5.6)

the replica symmetric approximation of the quenched free energy of the analogical neural
network can be linearly decomposed in terms of the replica symmetric approximation of the
Sherrington–Kirkpatrick quenched free energy, at noise level β1, and the replica symmetric
approximation of the quenched free energy of the Gaussian spin glass, at noise level β2, such
that

ARS
NN (β, γ ) = ARS

SK (β, β1) + γAGauss(β, β2) − 1

4
β2
1 . (5.7)
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5.1.2 Case P > 2 (Dense Hebbian Network)

In this subsection we show that, as long as P > 2, the above representation does not hold
any longer and the decomposition reduces to a simpler version (where solely the hard spin
glass is involved). This is captured by the next

Theorem 8 Let us fix the noise levels β1 and β2 as follow

β1 = β
′√

γ

1 − β
′N 1−P/2(1 − q̄ P/2)

,

β2 = 1 − β
′
N 1−P/2(1 − q̄ P/2) ,

(5.8)

and recall the finite size expressions for the quenched statistical pressures of the Hopfield
model A(P)

NN , the hard P-spin glass A(P)
SK and the soft P-spin glass A(P)

Gauss obtained with
Guerra’s interpolation technique, that read as2

A(P)
NN (β

′
, γ ) = ln 2 − β

′
γ

2
N P/2−1 + γ N P/2−1

2

β
′
q̄ P/2

1 − β
′ N 1−P/2(1 − q̄ P/2)

− γ N P−2

2
ln
[
1 − β

′
N 1−P/2(1 − q̄ P/2)

]

+
〈
ln cosh

[
P

2
β

′
m̄ P−1 + Y

√
β

′
γ
P

2
N P/2−1 p̄q̄ P/2−1

]〉

Y

− P − 1

2
β

′
m̄ P − β

′
γ
P

4
p̄N P/2−1q̄ P/2−1(1 − q̄) + V (NN )

N , (5.9)

A(P)
SK (β

′
, β1) = ln 2 +

〈
ln cosh

[
P

2
β

′
m̄ P−1 + Y

√
P

2
β2
1 q̄

P−1

SK

]〉

Y

− P − 1

2
β

′
m̄ P

+ 1

4
β2
1

(
1 − Pq̄ P−1

SK + (P − 1)q̄ P
SK

)
+ V (SK )

N , (5.10)

A(P)
Gauss (λ, β2) = 1

2

β2
2

P
2 q̄

P−1
G

1 − λ + β2
2

P
2 q̄

P−1
G

− 1

2
ln

[
1 − λ + β2

2
P

2
q̄ P−1
G

]
+ (P − 1)

β2
2

4
q̄ P
G + V (Gauss)

N (5.11)

where we used

V (NN )
N =

∫ 1

0

⎧
⎨

⎩
β

′

2

P∑

k=2

(
P
k

)
〈(�m)k 〉m̄ P−k − β

′
γ N P/2−1

2

⎡

⎣
P/2∑

k=1

( P
2
k

)
〈�p(�q)k 〉q̄ P/2−k

+
P/2∑

k=2

( P
2
k

)
〈(�q)k 〉 p̄q̄ P/2−k

⎤

⎦

⎫
⎬

⎭
t=s

ds ,

V (SK )
N =

∫ 1

0

⎡

⎣β
′

2

P∑

k=2

(
P
k

)
〈(�m)k 〉m̄ P−k − β2

1
4

P∑

k=2

(
P
k

)
〈(�qSK )k 〉q̄ P−k

SK

⎤

⎦

t=s

ds ,

V (Gauss)
N =

∫ 1

0

⎡

⎣−β2
2
4

P∑

k=2

(
P
k

)
〈(�qG )k 〉q̄ P−k

G

⎤

⎦

t=s

ds .

(5.12)

We can write the following decomposition of the finite size quenched statistical pressure
of the dense Hebbian network in terms of the replica symmetric quenched pressures of the
Sherrington–Kirkpatrick P-spin glass, at noise level β1, and the replica symmetric quenched
statistical pressure of the Gaussian P-spin glass, at noise level β2:

A(P)
NN (β

′
, γ ) := A(P)

SK (β
′
, β1) − β

′
γ

2
N

P/2−1 − 1

4
β2
1 + γ N P−2A(P)

Gauss(β
′
, β2)

2 While extensive statistical mechanical treatments of both the hard and soft P-spin glass are extensively
available in the Literature [7, 29, 37, 43, 62], in [11] we re-obtained sharply the expressions (5.10) and (5.11)
via the two techniques developed in this paper.
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+γ N P−2 2 − P

4P

(
β2 − (1 − N

1−P/2
β

′
)

β2

)2

−
(
V (SK )
N + γ N P−2V (Gauss)

N − V (NN )
N

)
,

(5.13)

Proof The proof for P = 2 is presented in [26]. The generalization to P > 2 is obtained
following the same steps but taking care of using the new definitions of the noise in (5.8).

Remark 14 Note that, in the thermodynamic limit, in the replica symmetric framework,
V (NN )
N , V (SK )

N and V (Gauss)
N presented in (5.12) vanish.

Corollary 2 In the thermodynamic limit, for the case of P > 2 the glassy nature of the dense
Hebbian network is equivalent to that of a P-spin Sherrington–Kirkpatrick model with a
noise level β

′√
γ :

A(P)
NN (β

′
, γ ) = A(P)

SK (β
′
, β

′√
γ ) (5.14)

Proof As we set P > 2, in the thermodynamic limit (N → ∞), the definitions (5.8) reads
as

β1 = β
′√

γ , β2 = 1 . (5.15)

Using Remark 14, from the replica symmetric expression of the quenched statistical pressure
of P-spin Sherrington–Kirkpatrick model presented in (5.10) with the new noise (5.15),
the self consistent equation for q̄SK in the SK P-spin model, in the thermodynamic limit,
coincides with the one for q̄ in the dense Hebbian network:

q̄SK =
〈
tanh 2

[
P

2
β

′
m̄ P−1 + Yβ1

√
P

2
q̄

P−1

SK

]〉

Y

= q̄ . (5.16)

Similarly, we can verify that, with the new noise (5.15), the self equation for q̄G in Spherical
P-spin glass coincides with the one for p̄ in the dense Hebbian network

q̄G = p̄ = β
′
q̄ P/2 . (5.17)

where, we scaled N P/2−1 p̄ as p̄. It can also be shown that in the thermodynamic limit for
P > 2 the Spherical P-spin glass model reduces to

γ N P−2AGauss(β, β2) − γβ
′

2
N P/2−1 − 1

4
β2
1

N→∞−−−−−→
P>2

1

4
γβ ′ 2q̄ P − 1

2P
γβ ′ 2q̄ P .(5.18)

Moreover, the last term of (5.13) becomes

γ N P−2 2 − P

4P

(
β2 − (1 − N

1−P/2
β

′
)

β2

)2
N→∞−−−−−→
P>2

1

2P
γβ ′ 2q̄ P − 1

4
γβ ′ 2q̄ P . (5.19)

So putting all together in relation (5.13), for P > 2 in the thermodynamic limit, we have

A(P)
NN (β

′
, γ ) = A(P)

SK (β
′
, β

′√
γ ) . (5.20)

Remark 15 This corollary is also verified by a direct calculation of the quenched statistical
pressure in the replica symmetric scenario of the dense Hebbian network in (2.26), that
perfectly coincides with the replica symmetric one of the Sherrington–Kirkpatrick P-spin
glass presented in (5.10) if we set β1 = β

′√
γ .
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5.2 1-RSB Scenario

Do the above representations generalize to a broken replica picture? Yes, in the next sub-
sections we prove that these theorems can be generalized to the 1-RSB scenario: we show
separately the P = 2 (standard Hopfield in the broken replica regime) and even P > 2 case
(dense networks in the same broken replica regime).

5.2.1 Case P = 2 (Standard Hopfield Reference)

We claim the following

Theorem 9 If we set

β
(1)
G = 1 − (1 − q̄2)β − θβ(q̄2 − q̄1) , β

(1)
SK = β

√
γ

β
(1)
G

,

β
(2)
G = β

(1)
G

√√√√ 1 − β
′
(1 − q̄2)

β
(1)
G + θβ

′ q̄1(1 − q̄1
q̄2

)
, β

(2)
SK = β

√
γ

β
(2)
G

,

(5.21)

recalling the 1RSB expressions (see e.g. [6]) of Hopfield, SK and Spherical model, that read
as

A(1RSB)
NN (β, γ ) = ln 2 + 1

θ
E1
[
lnE2 cosh

θ g(J, m̄)
]− β

m̄2

2
+ γβ

2

q̄1
1 − (1 − q̄2)β − θβ(q̄2 − q̄1)

− γβ

2
p̄2(1 − q̄2)

− γβ

2
θ( p̄2q̄2 − p̄1q̄1) + γ

2θ
ln

[
1 + θ

β(q̄2 − q̄1)

1 − (1 − q̄2)β − θβ(q̄2 − q̄1)

]
− γ

2
ln [1 − (1 − q̄2)β] ,

(5.22)

A(1RSB)
SK (β

′
, β

(1)
SK , β

(2)
SK ) = ln 2 + 1

θ
E1
[
lnE2 cosh

θ gSK (J, m̄)
]− β

′

2
m̄2 +

(
β

(2)
SK

)2

4
−
(
β

(2)
SK

)2

2
q̄(2)
SK + 4

+θ

(
β

(1)
SK q̄

(1)
SK

)2

+ (1 − θ)

(
β

(2)
SK q̄

(2)
SK

)2

4
,

(5.23)

A(1RSB)
Gauss (β

(1)
G , β

(2)
G ) = −θ

(
β

(2)
G q̄(2)

G

)2

4
+ θ

(
β

(1)
G q̄(1)

G

)2

4
+
(
β

(2)
G q̄(2)

G

)2

4
− 1

2
ln

[
1 − λ +

(
β

(2)
G

)2
q̄(2)
G

]

+ 1

2θ
ln

⎡

⎢⎣1 + θ

(
β

(2)
G

)2
p̄(2)
G −

(
β

(1)
G

)2
q̄(1)
G

1 − λ +
(
β

(2)
G

)2
q̄(2)
G − θ

(
β

(2)
G

)2
q̄(2)
G + θ

(
β

(1)
G

)2
q̄(1)
G

⎤

⎥⎦

+ 1

2

(
β

(1)
G

)2
q̄(1)
G

1 − λ +
(
β

(2)
G

)2
q̄(2)
G − θ

(
β

(2)
G

)2
q̄(2)
G + θ

(
β

(1)
G

)2
q̄(1)
G

,

(5.24)

where we used

gNN (J, m̄) = βm̄ + J (1)β

√
γ q̄1

1 − (1 − q̄2)β − θβ(q̄2 − q̄1)

+J (2)β

√
γ (q̄2 − q̄1)

[1 − (1 − q̄2)β − θβ(q̄2 − q̄1)][1 − (1 − q̄2)β] ,

gSK (J, m̄) = β
′
m̄ + J (1)

√(
β

(1)
SK

)2
q̄(1)
SK + J (2)

√[(
β

(2)
SK

)2
q̄(2)
SK −

(
β

(1)
SK

)2
q̄(1)
SK

]
.

(5.25)
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We can have the following representation of the broken replica quenched statistical pressure
of the Hopfield neural network:

A(1RSB)
NN (β

′
, γ ) = A(1RSB)

SK (β
′
, β

(1)
SK , β

(2)
SK ) + γA(1RSB)

Gauss (β
′
, β

(1)
G , β

(2)
G ) −

(
β

(2)
SK

)2

4
.

(5.26)

Proof Starting with the 1-RSB SK model with the two noise level β
(1)
SK and β

(2)
SK defined in

(5.23), using the definitions (5.21), we can verify the following relations
(
β

(1)
SK

)2
q̄(1)
SK = γβ

′
p̄1 ,

(
β

(2)
SK

)2
q̄(2)
SK = γβ

′
p̄2 . (5.27)

Putting these equations into (5.23), we get

A(1RSB)
SK (β

′
, β

(1)
SK , β

(2)
SK ) = ln 2 + 1

θ
E1

[
lnE2 coshθ g

(NN )
(J, m̄)

]
+
(
β

(2)
SK

)2

4
− β

′

2
m̄2 − β

′
γ

2
p̄2

+(1 − θ)
β

′
γ

4
p̄2q̄2 + θ

β
′
γ

4
p̄1q̄1.

(5.28)

Now using the 1-RSB quenched pressure for the soft model with the two noise β
(1)
G and β

(2)
G

(Eq. 5.24), if we set λ = β
′
, using the definition (5.21) we can verify the following relations
(
β

(1)
G

)2
q̄(1)
G = β

′
q̄1

(
β

(2)
G

)2
q̄(2)
G = β

′
q̄2 (5.29)

so the expression (5.24) for the soft model quenched pressure becomes

A(1RSB)
Gauss (β) = −θ

β
′

4
q̄2 p̄2 + θ

β
′

4
q̄1 p̄1 + β

′

4
q̄2 p̄2 + 1

2

β
′
q̄1

1 − β
′
(1 − q̄2) − θβ

′
( p̄2 − p̄1)

+ 1

2θ
ln

[
1 + θ

β
′
(q̄2 − q̄1)

1 − β
′
(1 − q̄2) − θβ

′
( p̄2 − p̄1)

]
− 1

2
ln
[
1 − β

′
(1 − q̄2)

]
.

(5.30)

Now, using the equations (5.28) and (5.30), if we compute A(1RSB)
SK + γA(1RSB)

Gauss −
(
β

(2)
SK

)2

4
we get the proof. ��

5.2.2 Case P > 2 (Dense Hebbian Network)

We claim the following

Theorem 10 If we set

β
(1)
G = 1 − (1 − q̄ P/2

2 )β
′
N1−P/2 − θβ

′
N1−P/2(q̄ P/2

2 − q̄ P/2
1 ) , β

(1)
SK = β

√
γ

β
(1)
G

,

β
(2)
G = β

(1)
G

√√√√√√√

1 − β
′
N1−P/2(1 − q̄ P/2

2 )

β
(1)
G + θβ

′ N1−P/2

(
1 − q̄ P/2

1

q̄ P/2
2

) , β
(2)
SK = β

√
γ

β
(2)
G

,
(5.31)

recalling the finite size Guerra’s expression for the 1RSB quenched statistical pressure of the
Hopfield, hard P-spin glass and soft P-spin glass model, that read as

A(P)(1RSB)
NN (β

′
, γ ) = ln 2 − β ′γ

2
N P/2−1 + 1

θ
E1
[
lnE2 cosh

θ gNN (J, m̄)
]− (P − 1)

β
′

2
m̄ P
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−β
′
γ

4
P p̄2q̄

P/2−1
2 + γβ

′

2

N P/2−1q̄ P/2
1

1 − β
′ N 1−P/2(1 − q̄ P/2

2 ) − θβ
′ N 1−P/2(q̄ P/2

2 − q̄ P/2
1 )

+ γ N P−2

2
ln
[
1 − β

′
N 1−P/2(1 − q̄ P/2

2 )
]

+ γ N P−2

2θ
ln

[
1 − β

′
N 1−P/2(1 − q̄ P/2

2 )

1 − β
′ N 1−P/2(1 − q̄ P/2

2 ) − θβ
′ N 1−P/2(q̄ P/2

2 − q̄ P/2
1 )

]

−β
′
γ (θ − 1)

P

4
q̄ P/2
2 p̄2 + β

′
γ θ

P

4
q̄ P/2
1 p̄1 + V (NN )(1RSB)

N , (5.32)

A(P)(1RSB)
SK (β

′
, β

(1)
SK , β

(2)
SK ) = ln 2 + 1

θ
E1
[
lnE2 cosh

θ gSK (J, m̄)
]− β

′ P − 1

2
m̄ P +

(
β

(2)
SK

)2

4

+θ(P − 1)

(
β

(1)
SK

)2

4

(
q̄(1)
SK

)P − P

(
β

(2)
SK

)2

4

(
q̄(2)
SK

)P−1

+(1 − θ)(P − 1)

(
β

(2)
SK

)2

4

(
q̄(2)
SK

)P + V (SK )(1RSB)
N , (5.33)

A(P)(1RSB)
Gauss (λ, β

(1)
G , β

(2)
G ) = 1

2θ
log

⎡

⎢⎣
1 − λ + (β

′
)
2 P
2

(
q̄(2)
G

)P−1

1 − λ +
(
β

(2)
G

)2
P
2

(
q̄(2)
G

)P−1
(1 − θ) +

(
β

(1)
G

)2
P
2

(
q̄(1)
G

)P−1

⎤

⎥⎦

+
β

′ 2 P
4

(
q̄(1)
G

)P−1

1 − λ +
(
β

(2)
G

)2
P
2

(
q̄(2)
G

)P−1
(1 − θ) +

(
β

(1)
G

)2
P
2

(
q̄(1)
G

)P−1

− 1

2
log

(
1 − λ +

(
β

(2)
G

)2 P

2

(
q̄(2)
G

)P−1
)

+(1 − θ)
P − 1

4

(
β

(2)
G

)2 (
q̄(2)
G

)P + θ
P − 1

4

(
β

(1)
G

)2 (
q̄(1)
G

)P + V (Gauss)(1RSB)
N ,

(5.34)

where we scaled N P/2−1 p̄ → p̄ and we used

gNN (J, m̄) = β
′
P

2
m̄ P−1 + J (1)

√
β

′

2
γ p̄1Pq̄

P/2−1
1 + J (2)

√
β

′

2
Pγ

[
p̄2q̄

P/2−1
2 − p̄1q̄

P/2−1
1

]
,

gSK (J, m̄) = β
′ P

2
m̄ P−1 + J (1)

√(
β

(1)
SK

)2 P

2

(
q̄(1)
SK

)P−1

+J (2)

√
P

2

[(
β

(2)
SK

)2 (
q̄(2)
SK

)P−1 −
(
β

(1)
SK

)2 (
q̄(1)
SK

)P−1
]

.

(5.35)

We can have the following finite size representation of the broken replica quenched statistical
pressure of the dense Hebbian network:

A(P)(1RSB)
NN (β

′
, γ ) = A(P)(1RSB)

SK (β
′
, β

(1)
SK .β

(2)
SK ) −

(
β

(2)
SK

)2

4

+γ N P−2A(P)(1RSB)
Gauss (β

′
, β

(1)
G , β

(2)
G )

+γβ
′ 2 − P

4P

[
p̄2q̄

P/2
2 − θ

(
p̄2q̄

P/2
2 − p̄1q̄

P/2
1

)]

−
(
V (SK )(1RSB)
N + γ N P−2V (Gauss)(1RSB)

N − V (NN )(1RSB)
N

)

(5.36)
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where the 1-RSB quenched pressure at finite size for P ≥ 2 of Hopfield, SK and Gaussian
spin glass models are indicated respectively with A(P)(1RSB)

NN , A(P)(1RSB)
SK and A(P)(1RSB)

Gauss ,
and we scaled N P/2−1 p̄1/2 as p̄1/2.

Proof The generalization to P > 2 is obtained following the same steps presented in the
proof for P = 2 in Theorem 9, but taking care of using the new definitions of the noise in
(5.31).

Corollary 3 In the thermodynamic limit, for the case of P > 2, also in a broken replica sym-
metry framework, the dense Hebbian network’s quenched statistical pressure is equivalent
to that of the hard P-spin glass model.

Proof To simplify the notation in this proof, since all the formulas will refer to the 1-RSB
assumption, from now on we will omit the label 1-RSB for the sake of clearness.

First of all, we can verify that, as P > 2 in the thermodynamic limit, from the definitions
of noise (5.31), we get

β
(1)
SK → β

′√
γ , β

(2)
SK → β

′√
γ . (5.37)

From the quenched pressure, in the 1-RSB assumption, of the SK model with P spin inter-
actions presented in (5.33)–(5.35), if we scaled, as usual, N P/2−1 p̄1/2 as p̄1/2, we can find
the relations

(
β

(1)
SK

)2 (
q̄(1)
SK

)P−1 = γβ
′
p̄1q̄

P/2−1
1 ,

(
β

(2)
SK

)2 (
q̄(2)
SK

)P−1 = γβ
′
p̄2q̄

P/2−1
2 . (5.38)

Thus, (remembering that, in the thermodynamic limit, V (NN )
N , V (SK )

N and V (Gauss)
N will

vanish) for the 1-RSB assumption the SK quenched pressure reads as

A(P)
SK (β

′
, β

′√
γ , β

′√
γ ) = ln 2 + 1

θ
E1

[
lnE2 coshθ gNN (J, m̄)

]
− γβ

′

4
q̄ P/2−1
2 p̄2

(
P − (P − 1)q̄2

)

−β
′ P − 1

2
m̄ P − θ(P − 1)

β
′
γ

4
(q̄ P/2

2 p̄2 − q̄ P/2
1 p̄1) + β ′ 2γ

4
.

(5.39)

Focusing, now, on the soft model in the 1-RSB assumption in the case of P-spin interactions
(Eq. 5.34), if we set λ = β

′
N 1−P/2, using the definition (5.31), we can get the relations

(
β

(1)
G

)2 P
2

(
q̄(1)
G

)P−1 = N1−P/2β
′
q̄ P/2
1 ,

(
β

(2)
G

)2 P
2

(
q̄(2)
G

)P−1 = N1−P/2β
′
q̄ P/2
2 . (5.40)

Thus, in the thermodynamic limit, for P > 2 the quenched pressure for the soft model in the
1-RSB assumption reads as

γ N P−2A(P)
Gauss(β, β

(1)
G , β

(2)
G ) −γβ

′

2
N P/2−1 N→∞−−−−−→

P>2
γβ ′2 1

4
q̄ P
2 − γβ ′2 1

4
θ
(
q̄ P
2 − q̄ P

1

)

+γβ ′2 1

2P
θ
(
q̄ P
2 − q̄ P

1

)
− γβ ′2 1

2P
q̄ P
2 . (5.41)

Moreover, the last term of (5.36) becomes

γβ
′
N P/2−1 2 − P

4P

[
p̄2q̄

P/2
2 − θ

(
p̄2q̄

P/2
2 − p̄1q̄

P/2
1

)]
N→∞−−−−−→
P>2

−γβ ′2 1
4
q̄ P
2

+γβ ′2 1
4
θ
(
q̄ P
2 − q̄ P

2

)
+ γβ ′2 1

2P
q̄ P
2 − γβ ′2 1

2P
θ
(
q̄ P
2 − q̄ P

2

)
.

(5.42)

So putting all together in relation (5.36), for P > 2 in the thermodynamic limit, we have

A(P)
NN (β

′
, γ ) = A(P)(1RSB)

SK (β
′
, β

′√
γ , β

′√
γ ) . (5.43)
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6 Conclusions and Outlooks

In this paper we focused on replica symmetry breaking in dense Hebbian networks (namely
generalized Hopfield networks whose neural dialogues are broader than pairwise) and we
gave both mathematical instruments to address this phenomenon as well as physical insights.
In particular, regarding the methodology, we adapted to these dense networks two differ-
ent approaches, the first consists in constructing effective PDE—the transport equation in
particular—in the space of the coupling constants and then relying upon the arsenal of mathe-
matical results available in PDE theory while the second is a generalization of the celebrated
Guerra’s interpolation scheme [43, 44], more grounded on Probability Theory. Whatever
the route, at the end of the calculations, we obtained a set of self-consistent equations for
the order parameters whose solutions trace their evolution in the control parameter space,
ultimately allowing the construction of phase diagrams that we provided both at the replica
symmetric level and under one step of replica symmetry breaking level of description.

Restricting to the Baldi-Venkatesh regime [19], i.e. the high storage regime for dense
networks, at first we recovered in the replica symmetric scenario, the Gardner’s picture [41]
(achieved in the eighties via heuristic techniques, i.e. the replica trick) in every detail, even
the scaling of the divergence of the critical storage γc(P) ∼ P/ ln(P) as P → ∞, then
we inspected the replica symmetry breaking phenomenon just at the first step of symmetry
breaking: as expected, the critical storage is mildly affected by RSB, however a glance at
the phase diagrams in the two frameworks (RS and 1-RSB) immediately reveals that the
spin-glass phase (that naively shrinks to zero in the RS picture) gets stabilized and actually
enlarged by the RSB phenomenon.

Indeed the type of glassiness underlying these networks is rather different w.r.t. the type of
glassiness of the standard Hopfield neural network. The quenched statistical pressure (or free
energy) of the latter can be written (both in the RS and 1-RSB scenarios) as a weighted linear
combination of the quenched statistical pressures of two spin glasses, one being the hard
spin glass (the Sherrington–Kirkpatrick model) and the other being the soft spin glass (the
Gaussianmodel).However, this is no longer true in dense networkswhere the soft contribution
disappears: as the Sherrington–Kirkpatrick model is full-RSB (it is the harmonic oscillator
for Parisi theory) while the Gaussian model is solely replica symmetric, the disappearance of
the soft contribution makes dense networks different w.r.t. the Hopfield reference. A subtle
point is that, in the 1-RSB picture for neural networks, the ziqqurat prescription introduced
in [24, 61] (that naturally generalizes Parisi’s ansatz to the case) breaks the permutational-
invariance both for q12 as well as for p12: the breaking of self-averaging of p12 is not
a property of the pairwise Gaussian spin-glass per se, but—rather—a consequence of the
interactions among these spin glasses (interactions that shines in the integral representation
of the partition function of these Hebbian neural networks, see e.g. eq. (5.4)), hence for the
soft overlap the transition is not spontaneous, but driven by the hard one [22] in the shallow
limit.

The inspection of replica symmetry breaking phenomenon in dense networks in the high
resolution regime [8]—rather than in the high storage regime—is entirely missing at present:
we plan to report in a separate paper investigations in that regime.
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Appendix A: Proof of TheoremOne

In this appendix we provide the explicit calculations behind the proof of Theorem 1.

Proof Since the potential VN (t, r) vanishes in the thermodynamical limit, we solve the
following transport equation

∂A(P)
RS

∂t
− β ′q̄ P/2

(
∂A(P)

RS

∂x

)
− P

2
β ′γ p̄q̄ P/2−1

(
∂A(P)

RS

∂ y

)
− β ′(1 − q̄ P/2)

(
∂A(P)

RS

∂z

)

− P

2
β ′m̄ P−1

(
∂A(P)

RS

∂w

)
= − P − 1

2
β ′m̄ P − P β ′γ

4
p̄q̄

P/2−1
(1 − q̄),

(A.1)

We compute the solution using the characteristic method on the transport equation:

A(P)
RS (t, r) = A(P)

RS (0, r − ṙt) + S(t, r)t . (A.2)

where ṙ = (ẋ, ẏ, ż, ẇ). Along the characteristics, the fictitiousmotion in the (t, r) time-space
is linear and returns

x = x0 − β ′q̄ P/2t y = y0 − P

2
β ′γ p̄q̄ P/2−1t

z = z0 − β ′(1 − q̄ P/2)t w = w0 − P

2
β ′m̄ P−1t

(A.3)

where r0 = (x0, y0, z0, w0) = (x(t = 0), y(t = 0), z(t = 0), w(t = 0)). The Cauchy
condition at t = 0 is given by a direct computation at finite N as

A(P)(0, r − ṙt) = A(P)(0, r0) = 1

N
E

{∑

{σ }

∫
Dτ exp

[
w0N m(σ ) +

√
x0N 1−P/2

K∑

μ>1

J̃μτμ

+√
y0

N∑

i=1

Jiσi + z0N 1−P/2

2

K∑

μ>1

τ 2μ − β ′γ
2

Na+1−P/2
]}

= 1

N
E ln

{∑

{σ }
exp

[∑

i

(w0 + √
y0 Ji )σi

]}

+ 1

N
E ln

{ K∏

μ>1

∫
dτμ√
2π

e(1−z0N1−P/2)τ 2μ/2+
√

x0N1−P/2 J̃ μτμ

}
− β ′γ

2
Na−P/2

= ln 2 − β ′γ
2

Na−P/2 + 〈
ln cosh

[
w0 + J

√
y0
]〉
J − K

2N
ln
(
1 − z0N

1−P/2
)

+ K

2N

x0N 1−P/2

1 − z0N 1−P/2 . (A.4)

Giving the suitable values of parameters, namely t = 1 and r = 0 we have the following

A(P)(γ, β) := ln 2 − β ′γ
2

Na−P/2 +
〈
ln cosh

[
P

2
β ′m̄ P−1 + Y

√
β ′γ P

2
p̄q̄ P/2−1

]〉

Y

− P − 1

2
β ′m̄ P − β ′γ

4
P p̄q̄ P/2−1(1 − q̄) − γ N

a−1

2
ln
(
1 − β ′N 1−P/2

(
1 − q̄

P/2
))

+γ Na−P/2

2

β ′q̄ P/2

1 − β ′N 1−P/2 (1 − q̄ P/2 ) .

(A.5)
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Now, expanding the two last member of (A.5) for large value of N , (remembering the
conditions a ≥ 1 and P ≥ 2 given in Definition 1) it is possible to write the expression

A(P)(γ, β) := ln 2 +
〈
ln cosh

[
P

2
β ′m̄ P−1 + Y

√
β ′γ P

2
p̄q̄ P/2−1

]〉

Y

− P − 1

2
β ′m̄ P − β ′γ P

4
p̄q̄ P/2−1(1 − q̄) + 1

4
Na+1−Pγβ ′2 (1 − q̄ P

)
+ O

(
Na−P

)
.

(A.6)

Thus, since we need that, in the thermodynamic limit, the quenched statistical pressure must
be intensive in N (we want that the terms inO(Na−P ) vanish), it is necessary to ensure that

a ≤ P − 1 (A.7)

Moreover, it is easy to check that the only no trivial case is a = P − 1, otherwise our model
turns into a ferromagnet [39] with polynomial interaction of degree P .

So, if we consider P ≥ 4 (since we have rescaled N P/2−1 p̄ in p̄), the previous expression
reads as

A(P)(γ, β) := ln 2 +
〈
ln cosh

[
P

2
β ′m̄ P−1 + Y

√
β ′γ P

2
p̄q̄ P/2−1
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− P − 1

2
β ′m̄ P − β ′γ P

4
p̄q̄ P/2−1(1 − q̄) + 1

4
γβ ′2 (1 − q̄ P

)
+ O (

N−1) ;
(A.8)

in the thermodynamics limit (N → ∞) the correction terms will vanish. ��

Appendix B: Proof of Proposition 2

Hereafter we give all the details regarding the proof of Proposition 2.

Proof Similar to the case RS (2.18–2.19) and we have for a = 1, 2

〈p12qP/2
12 〉a =

P/2∑

k=1

(
P
2
k

)
q̄ P/2−k
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)
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2
q̄ P/2−1
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2
q̄ P/2
a p̄a (B.1)

where we use �Xa = X − X̄a . Now, starting to evaluate explicitly ∂
∂tA

(P)
N by using (2.45–

2.50) we write
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∂t
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〈(m1 − m̄)k 〉m̄ P−k + m̄ P (1 − P) + Pm̄P−1〈m1〉

]
+ β

′
K

2N P/2

{
〈p11〉

∂
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⎡

⎣
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⎡

⎣
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∂
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⎦
}
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=VN (t, r) + S(t, r) + β
′
P

2
m̄ P−1∂wA(P)

N + β
′
q̄ P/2
1 ∂x (1)A(P)

N + β
′
(q̄ P/2

2 − q̄ P/2
1 )∂x (2)A(P)

N

+ β
′
K P

2N P/2 p̄1q̄
P/2−1
1 ∂y(1)A(P)

N + β
′
K P

2N P/2 ( p̄2q̄
P/2−1
2 − p̄1q̄

P/2−1
1 )∂y(2)A(P)

N + β
′
(1 − q̄ P/2

2 )∂zA(P)
N

(B.2)

Thus, by placing

ẋ (1) = −β
′
q̄ P/2
1 (B.3)

ẋ (2) = −β
′
(q̄ P/2

2 − q̄ P/2
1 ) (B.4)

ẏ(1) = − β
′
K P

2N P/2 p̄1q̄
P/2−1
1 (B.5)

ẏ(2) = − β
′
K P

2N P/2 ( p̄2q̄
P/2−1
2 − p̄1q̄

P/2−1
1 ) (B.6)

ż = −β
′
(1 − q̄ P/2

2 ) (B.7)

ẇ = −β
′
P

2
m̄ P−1 (B.8)

and Na−P/2 p̄2, Na−P/2 p̄1 with p̄2, p̄1 we reach the thesis.

Appendix C: Proof of Theorem 2

In this section we provide all the details regarding the proof of Theorem 2.

Proof Since the potential VN (t, r) vanishes in the thermodynamical limit, we can apply
Remark 9 and solve the following equation

∂tA(P) + ẋ(1)∂x1A(P) + ẋ(2)∂x2A(P) + ẏ(1)∂y1A(P) + ẏ(2)∂y2A(P) + ż∂zA(P) + ẇ∂wA(P)

+ż∂zA(P) + ẇ∂wA(P) = β
′
m̄ P (1 − P)

2
− β

′
γ (θ − 1)

P

2
p̄2q̄

P/2
2 + β

′
γ θ

P

2
p̄1q̄

P/2
1 − β

′
γ
P

2
p̄2q̄

P/2−1
2 .

(C.1)

We use the characteristic method to solve it and, after one body computation in the similar
way as RS assumption, we find the explicit solution

A(P) = 1

θ
E1

{
lnE2 cosh

θ

(
β

′ P

2
m̄ P−1 +

√
β

′
γ P p̄1q̄

P/2−1
1 J (1) +

√
β

′
γ P( p̄2q̄

P/2−1
2 − p̄1q̄

P/2−1
1 )J (2)

)}

+ γβ
′
Na−P/2q̄ P/2

1

2
[
1 − β

′ N 1−P/2(1 − q̄ P/2
2 ) − θβ

′ N 1−P/2(q̄ P/2
2 − q̄ P/2

1 )
]

+ ln 2 + γ Na−1

2
ln(1 − β

′
N 1−P/2(1 − q̄ P/2

2 ))
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+ γ Na−1

2θ
ln

(
1 − β

′
N 1−P/2(1 − q̄ P/2

2 )

1 − β
′ N 1−P/2(1 − q̄ P/2

2 ) − θβ
′ N 1−P/2(q̄ P/2

2 − q̄ P/2
1 ))

)
− β ′γ

2
Na−P/2

+ β
′

2
m̄ P (1 − P) − β

′
γ (θ − 1)

P

2
q̄ P/2
2 p̄2 + β

′
γ θ

P

2
q̄ P/2
1 p̄1. (C.2)

Expanding some factors of (C.2) for large value of N , (remembering the conditions a ≥ 1
and P ≥ 2) it is possible to write the following expression for the quenched pressure

A(P) = ln 2 + β
′
γ Na−P/2 + 1

θ
E1 lnE2 cosh

θ g(J, m̄) − Na+1−P β
′

4
γ P p̄2q̄

P/2−1
2 + β

′

2
m̄ P (1 − P)

− θ(P − 1)
β

′
γ

4
(q̄ P/2

2 p̄2 − q̄ P/2
1 p̄1) + 1

4
β

′ 2
γ. (C.3)

Similar to RS assumption, a must satisfy the condition a = P−1 and the previous expression
for even P ≥ 4 reads as

A(P) = ln 2 + 1

θ
E1 lnE2 cosh

θ g(J, m̄) − γβ
′

4
q̄ P/2−1
2 p̄2

(
P − (P − 1)q̄2

)

+ β
′

2
m̄ P (1 − P) − θ(P − 1)

β
′
γ

4
(q̄ P/2

2 p̄2 − q̄ P/2
1 p̄1) + 1

4
β

′2
γ + O(N−1) (C.4)

in the thermodynamics limit (N → ∞) the correction terms will vanish.

Appendix D: Proof of Lemma 2

We prove only (2.44) regarding Lemma 2, being the proofs for the others obtained in the
same way. First of all, using (2.43) we see that

∂tAN = β
′

2
〈mP

1 〉 +
√

β
′

N P−1

1

2N
√
t
E0E1E2

⎡

⎣W2

∑

i,μ

ξ
μ
i ω(σi1 . . . σiP/2τμ)

⎤

⎦ (D.1)

Now, using Stein’s lemma (2.16), we may rewrite the second member of (D.1) as
√

β
′

N P−1

1

2N
√
t

∑

i,μ

E0E1E2

[
∂η

μ
i

(
W2ω(σi1 . . . σiP/2τμ)

)]
= D1 + D2 + D3 (D.2)

Let’s investigate those three terms:

D1 =
√

β
′

N P−1
1

2N
√
t

∑
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E0E1E2

[
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12 〉2
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(D.3)

D2 =
√

β
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1

2N
√
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∑

i,μ

E0E1E2

⎡

⎣ω(σi1 . . . σiP/2τμ)

∂
η
μ
i
Zθ
2

E2

(
Zθ
2

)

⎤

⎦

= β
′
θ
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∑
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{
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[
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(
W2ω(σi1 . . . σiP/2τμ)2

)]}
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′
K

2N P/2
θ〈p12qP/2

12 〉2 (D.4)
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D3 =
√

β
′

N P−1
1

2N
√
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i,μ

E0E1E2

⎡
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θ
∂
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)

⎤
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θ
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[
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K
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〈
p12q
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〉
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(D.5)

Putting (D.3), (D.4) and (D.5) inside (D.2), and (D.2) inside (D.1) we find (2.44).
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