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A B S T R A C T

Breast cancer is the most widespread neoplasm among women and early detection of this disease is critical.
Deep learning techniques have become of great interest to improve diagnostic performance. However,
distinguishing between malignant and benign masses in whole mammograms poses a challenge, as they
appear nearly identical to an untrained eye, and the region of interest (ROI) constitutes only a small fraction
of the entire image. In this paper, we propose a framework, parameterized hypercomplex attention maps
(PHAM), to overcome these problems. Specifically, we deploy an augmentation step based on computing
attention maps. Then, the attention maps are used to condition the classification step by constructing a
multi-dimensional input comprised of the original breast cancer image and the corresponding attention map.
In this step, a parameterized hypercomplex neural network (PHNN) is employed to perform breast cancer
classification. The framework offers two main advantages. First, attention maps provide critical information
regarding the ROI and allow the neural model to concentrate on it. Second, the hypercomplex architecture
has the ability to model local relations between input dimensions thanks to hypercomplex algebra rules,
thus properly exploiting the information provided by the attention map. We demonstrate the efficacy of the
proposed framework on both mammography images as well as histopathological ones. We surpass attention-
based state-of-the-art networks and the real-valued counterpart of our approach. The code of our work is
available at https://github.com/ispamm/AttentionBCS.
1. Introduction

Breast cancer is the most common cancer in women worldwide.
While mammography screenings have contributed to reducing mor-
tality, there has been a gradual increase in the incidence rates of
this disease since the mid-2000s [1]. Indeed, the mammography exam
is by no means a perfect imaging test, characterized by a high rate
of false positives and the subsequent need for unnecessary biopsies.
Traditional computer-aided detection (CAD) algorithms fail to improve
diagnostic performance and lead to high recall rates [2]. On the other
hand, deep learning-based CAD systems have been shown to succeed
in assisting clinicians during the reading process, reaching a higher
diagnostic accuracy [3,4]. This has led to an increased interest in this
research area, with a variety of open problems, from reducing the
number of false positives [5] to exploiting the multi-view nature of
mammography [6,7] and so on [8].

Nonetheless, applying deep learning techniques for this kind of
problem still presents challenges. To begin with, the task itself is
much more difficult if compared to the classification of natural images.
Indeed, discriminating between benign and malignant tumors requires
trained and expert radiologists, thus being a far from trivial problem
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also for neural networks [9]. In addition, the region of interest (ROI)
comprises a tiny portion of the entire mammogram. Because of this, it
is hard to detect and, even more importantly, to concentrate on it and
learn to pay particular attention to such a small patch [10]. Finally, the
fine-grained detail that characterizes high-resolution mammograms is
crucial to identifying and correctly diagnosing masses. However, this is
lost due to image resizing, a necessary step in order to train a neural
model efficiently [6].

The attention mechanism has become a successful technique to
handle these kinds of challenges. It allows the network to concentrate
on the most critical regions of the input [11]. Typically, it is found
inside transformer-like architectures [12,13]. However, new strategies
are being developed to endow convolutional neural networks (CNNs)
with attention layers [14,15].

In this paper, we introduce a novel approach to exploit the in-
formation learned by attention layers to address the aforementioned
challenges related to breast cancer screening. We propose a framework
that consists of an attention-map augmentation step and a parame-
terized hypercomplex network as backbone model for breast cancer
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Fig. 1. Top rows: attention maps of INbreast obtained from PatchConvNet fine-
tuned on CBIS-DDSM. Bottom rows: attention maps of CBIS-DDSM obtained from
PatchConvNet fine-tuned on INbreast. The left column comprises mammograms with a
malignant finding, while the right presents negative/benign mammograms.

classification. For simplicity, we refer to it as the parameterized hyper-
complex attention maps (PHAM) framework. In detail, the attention-
map augmentation step consists in computing attention maps for each
cancer image with an already existing model, e.g., PatchConvNet [14],
such as the ones displayed in Fig. 1. Then we employ them as additional
input to the hypercomplex backbone. In this way, we perform a form of
conditioning on the attention map during the classification step. Thus,
we provide the neural network information regarding the abnormal
regions of the breast cancer image, which are most significant for
diagnosis. We exploit the new multi-dimensional input through pa-
rameterized hypercomplex networks. Indeed, these architectures have
the ability to model correlations in multi-dimensional data while also
obtaining a more lightweight network [7,16]. Certainly, quaternion
and generalized hypercomplex networks have gained much interest
in the past few years [17–19]. The success of quaternion neural net-
works (QNNs) is owed to quaternion algebra that allows to model
both global and local relations in input 4D data [20,21]. This, in
turn, allows to learn a more powerful representation in the latent
space [22]. Thereafter, parameterized hypercomplex neural networks
(PHNNs) were introduced in order to bring the advantages of QNNs to
general input domains of any dimensionality 𝑛 [16,19].

Thus, in this work, we employ parameterized hypercomplex (PH)
ResNets as the backbone of our framework. In this way, we are able to
capture the correlations between the original breast cancer image and
the corresponding attention map thanks to hypercomplex algebra prop-
erties. Through an experimental analysis conducted on public bench-
mark datasets of mammograms, i.e. CBIS-DDSM [23] and INbreast [24],
and histopathological microscopic images, i.e., BreakHis [25], we show
how the proposed method is able to outperform the real-valued coun-
terpart as well as attention-based state-of-the-art models.

The rest of the paper is organized as follows. Section 2 lays out
an overview of the current related works. Section 3 gives a detailed
description of the proposed framework and the theory behind hyper-
complex networks. Section 4 provides technical details regarding data,
training, and experimental results. Finally, conclusions are drawn in
Section 5.
2

2. Related works

Prior works adopt several different approaches for the task of breast
cancer classification. Owing to the aforementioned problems, many
studies focus on the classification of single patches instead of the
whole mammogram [26–29]. Certainly, by considering the single patch
containing the ROI, there is no need to devise a method for the
network to focus on it since it becomes the main object in the image.
Moreover, the details would be clearly visible even after image resizing,
thus making the classification task much easier compared to whole-
mammogram classification [10]. On the other hand, methods that
directly process the whole mammography image, usually adopt a per-
taining strategy based on either patch-level classification or on natural
images in order to alleviate these problems [5–7,10,30–32]. Instead,
recent approaches for breast cancer classification from histopathology
images involve graph neural networks [33], architectures specifically
tailored for histopathology [3] and transfer learning [34].

More recently, with the success of the transformer [11] and vi-
sion transformer (ViT) [35] architectures, also the medical imaging
community has started to develop architectures based on the former
models [12,13,36]. Indeed, these methods aim to focus the attention
of the neural model on the ROI, which is often small in the medical
scenario, through the self-attention mechanism. However, transformer-
based models are characterized by much less inductive biases which
instead are inherent to convolutions, i.e., locality and translation equiv-
ariance [37,38]. For this reason, many works started to investigate
strategies to incorporate self-attention into convolutional neural net-
works (CNNs). The goal is to maintain its intrinsic inductive biases
and additionally gain the advantages of the attention mechanism.
One of the first popular works introduced a convolutional bottleneck
attention module (CBAM), which can be easily plugged into any CNN to
refine feature maps through the inferred channel and spatial attention
maps [15]. Then, a more recent study proposed an extension of this
module specifically designed for breast cancer classification that is able
to exploit cross-view information [39]. The same strategy is also being
employed for various medical areas such as EEG decoding [40] and
Alzheimer’s disease classification [41]. Finally, Touvron et al. [14]
introduced an attention-based aggregation layer to augment any CNN.
Furthermore, they proposed a patch-based architecture, PatchConvNet,
that allows to obtain higher quality attention maps by keeping the
input resolution constant throughout the network. In this paper, we
take a different approach and employ the pretrained PatchConvNet
to obtain attention maps for mammography images. Then, we exploit
them through parameterized hypercomplex layers in order to overcome
the problems presented in Section 1.

3. Proposed method

In this section, we expound on the proposed method, parame-
terized hypercomplex attention maps (PHAM) framework for breast
cancer detection, depicted in Fig. 2. Initially, we present the theoretical
background of hypercomplex neural networks, followed by a detailed
description of the framework we introduce.

3.1. Parameterized hypercomplex models

Quaternion neural networks (QNNs) are models that operate in an
extension of complex numbers C, namely the quaternion domain Q. A
quaternion is defined as 𝑞 = 𝑞0 + 𝑞1𝚤 + 𝑞2𝚥 + 𝑞3�̂�, in which 𝑞𝑖 ∈ R, with
𝑖 = 0,… , 3, are the real coefficients and 𝚤, 𝚥, �̂� ∈ Q are the imaginary
units. The product between two imaginary units is not commutative,
thus the Hamilton product has been introduced to properly model the
multiplication of two quaternions. Thanks to this product, the weight
matrix and the input can be encapsulated into a quaternion as

𝐖 = 𝐖0 +𝐖1𝚤 +𝐖2𝚥 +𝐖3�̂� (1)

𝐱 = 𝐱0 + 𝐱1𝚤 + 𝐱2𝚥 + 𝐱3�̂�.
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Fig. 2. PHAM framework. On the left, the attention-map augmentation step is depicted. Herein, attention maps are computed offline with the fine-tuned PatchConvNet model.
Then, they are used to perform a form of conditioning on the hypercomplex model. On the right, a PHResNet with 𝑛 = 2 for mammography images (𝑛 = 4 for histopathology
images) is employed as the backbone to perform breast cancer classification. It is able to model relations between breast cancer images and attention maps, as can be seen in the
visualization of the PHC layer.
Then the convolution between them is defined as follows:
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In this way, the filter submatrices 𝐖𝑖, 𝑖 = 0,… , 3 in Eq. (2) are
shared between each dimension of the input 𝐱. This property brings
two main advantages. Firstly, the number of parameters is reduced by
1∕4, thus yielding a much lighter model with respect to the real-valued
counterpart. Secondly, by sharing weights between input dimensions,
the neural model is endowed with the ability to model local relations.
Therefore, QNNs, in addition to modeling global relations as stan-
dard neural networks are able to do, also capture correlations among
channels by treating the input as a unique entity. Instead, real-valued
networks assign different weights to different dimensions, thus treating
them independently when they are actually correlated. Indeed, this
additional information, which networks in the real domain fail to grasp,
allows quaternion models to learn a more powerful representation of
the data and yield more accurate predictions as a result.

However, in order to extend this approach to inputs of any dimen-
sionality 𝑛D, instead of being limited to 4D inputs, a generalization
in the hypercomplex domain H was introduced, i.e., parameterized
hypercomplex neural networks (PHNNs) [16,19]. In this case, the filter
weight matrix 𝐖 is expressed as a parameterized sum of Kronecker
products [16]:

𝐖 =
𝑛
∑

𝑖=0
𝐀𝑖 ⊗ 𝐅𝑖, (3)

where 𝑛 defines the number domain in which the network operates
(e.g., 𝑛 = 4 corresponds to the quaternion domain) and can be chosen
freely in order to best represent the input data. While matrices 𝐀𝑖
and 𝐅𝑖 encode the algebra rules and the weight filters, respectively,
both learned during training. With this formulation, the advantages of
quaternion models are maintained, thus still leveraging hypercomplex
algebra properties to model latent relations among channels, while
reducing the number of free parameters by 1∕𝑛.

3.2. Parameterized hypercomplex attention maps (PHAM)

We design the parameterized hypercomplex attention maps (PHAM)
framework as follows. We define an augmentation operation based on
the computation of attention maps for each input image. Then we use
3

them to condition the hypercomplex model during training to improve
the classification performance of breast cancer. The relations among the
original images and the relative attention maps are exploited through
parameterized hypercomplex models thanks to their aforementioned
properties.

Indeed, any neural method can be easily defined in the hypercom-
plex domain [16], therefore in this paper, we deploy parameterized
hypercomplex ResNets (PHResNets). In such a manner, the standard
residual block 𝐲 =  (𝐱) + 𝐱, where  is composed of interleaving
convolutional layers, batch normalization (BN) and ReLu activation
function, becomes:

 (𝐱) = BN (PHC (ReLU (BN (PHC (𝐱))))) . (4)

Herein, PHC refers to parameterized hypercomplex convolutions, with
the weight matrix defined as in Eq. (3), and 𝐱 is the multidimen-
sional input composed of breast cancer images and the corresponding
attention map.

Attention maps are a visualization of what the attention layer has
learned during training [14]. We propose to exploit this information
in image form, i.e., we augment the dataset with the attention maps,
inspired by the similar utilization of heatmaps in recent works [6,42].
More in detail, to compute the attention maps we deploy the recent
PatchConvNet [14], since it allows to obtain high-resolution attention
maps thanks to its non-hierarchical design. As the network is initially
trained on ImageNet, direct utilization for medical images is not feasi-
ble. Thus, we first perform a fine-tuning step on a breast cancer dataset
and thereafter we apply the fine-tuned model to infer attention maps
on other breast cancer databases. Then, we construct the augmented
dataset in which each sample is composed of the original mammograms
or histopathological images and the corresponding attention maps,
considering them as a single multi-dimensional input. In this way, the
attention map conditions the training process by emphasizing the most
critical portion of the image. This allows the neural network to focus
on these crucial areas, thereby enhancing its predictive capabilities and
leading to improved performance.

To conclude, when processing images corresponding to mammo-
grams, the input 𝐱 in Eq. (4) has two dimensions. The first represents
the mammogram and the second corresponds to the attention map. We
set the hyperparameter 𝑛 = 2 and operate in the complex domain C
in order to capture relations between them. On the other hand, when
considering histopathological images, we set 𝑛 = 4, thus operating in

the quaternion domain. This choice aligns with the fact that histology
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Table 1
Results on the test sets of the INbreast and CBIS-DDSM datasets. Attention maps (AM)
are obtained from PatchConvNet fine-tuned on CBIS-DDSM (top) and INbreast (bottom),
respectively. Results in bold and underlined correspond to the best and second best.

Dataset Model Params PH AM AUC

INbreast

ResNet18 11M ✗ ✗ 0.480 ± 0.070
ResNet18+CBAM [39] 11M ✗ ✗ 0.491 ± 0.135
PatchConvNet [14] 24M ✗ ✗ 0.806 ± 0.218
ResNet18 11M ✗ ✓ 0.840 ± 0.027
ResNet18+CBAM [15] 11M ✗ ✓ 0.847 ± 0.018
PHResNet18 (𝑛 = 2) 5M ✓ ✓ 0.852 ± 0.037

CBIS-DDSM
ResNet18 11M ✗ ✗ 0.659 ± 0.008
ResNet18 11M ✗ ✓ 0.694 ± 0.034
PHResNet18 (𝑛 = 2) 5M ✓ ✓ 0.725 ± 0.027

images are stored in RGB format, comprising 3 channels, plus the
additional attention map. According to the aforementioned discussions,
by endowing the architecture with PHC layers, we can better leverage
the attention maps. Indeed, thanks to hypercomplex algebra properties,
the hypercomplex network has the ability to capture local relations
between original breast cancer images and the respective maps. In
this way, we truly exploit the additional information contained in the
attention maps, unlike real-valued networks which fail to model local
relations [20].

4. Experimental evaluation

4.1. Data

We validate our proposed approach on publicly available datasets
of mammography, CBIS-DDSM [23] and INbreast [24], and histopathol-
ogy, BreakHis [25], widely used in literature [3,10].

The Curated Breast Imaging Subset of the Digital Database for
Screening Mammography (CBIS-DDSM) [23] consists of scanned film
mammography images standardized in the DICOM format. It provides
biopsy-proven pathology labels, which can be either benign or malig-
nant. We utilize the official training and testing data splits and obtain
the validation split by performing an additional stratified partition of
the training set, for a total of 991 images for training, 240 for validation
and 361 for testing.

On the other hand, INbreast [24] is a much smaller database consist-
ing of 410 full-filed digital mammography images. Pathological labels
are not available but instead, it provides BI-RADS classification from
which we extract binary labels by considering categories 1 and 2 as
negative, and 4, 5 and 6 as positive, discarding category 3 [10]. We split
the dataset in a stratified fashion and take 20% of images for validation
and testing, respectively.

The third dataset, the Breast Cancer Histopathological Image Classi-
fication (BreakHis) [25], consists of 9109 microscopic images of breast
tissue at four different magnifying factors, i.e., 40X, 100X, 200X and
400X. BreakHis is divided into two main groups, that is benign and
malignant tumors. We create different sets for training, validation
and testing by splitting the dataset patient-wise in order to avoid
information-leaking, taking 20% for the two latter sets.

The same preprocessing is applied for all datasets: images are re-
sized to 384 × 384 and standardized. Data augmentation operations are
applied for training images only, i.e., random horizontal and vertical
flips and a random rotation of degrees taken from (−10◦,+10◦).

4.2. Validation metrics

To validate the experiments conducted on datasets of mammogram
images we utilize the area under the ROC curve (AUC), as it is the
primary metric employed in the literature [5,6,10]. It provides a mea-
sure of the predictive ability of a classifier at different probability
thresholds, taking into account the trade-off between true positive
4

Fig. 3. ROC curve corresponding to the best run of models with AM for experiments
conducted on INbreast and CBIS-DDSM datasets.

Fig. 4. Confusion matrices of models with AM for experiments on INbreast and
CBIS-DDSM.

and false positive rates. For the second set of experiments, the metric
adopted in the original paper is the accuracy [25], thus we also utilize
it for evaluating the performance of the proposed approach on the
BreakHis dataset.

4.3. Training and architecture details

ResNet-based architectures are trained with the Adam optimizer
[43], which is a variant of Stochastic Gradient Descent [44] with
adaptive moment estimation, a learning rate of 10−5 and weight decay
at 5 × 10−4. The number of epochs is set to 100 and we early stop
the training when the AUC on the validation data does not improve
for 20 epochs. Instead, PatchConvNet is fine-tuned with the Lamb
optimizer [45], a variant of Adam that provides a strategy for adapting
the learning rate in large batch settings. We set the learning rate at
5 × 10−4 and weight decay at 10−2, following the recipe for fine-
tuning experiments of the original paper. Moreover, we employ the
s60 configuration of PatchConvNet, which consists of an embedding
dimension of 384 and 60 repeated blocks in the trunk [14]. Finally,
for hypercomplex models, we employ ResNet18 and ResNet50 in the
hypercomplex domain for the first and second sets of experiments,
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Table 2
Results on the test set of the BreakHis dataset at magnification factors 100X, 200X,
and 400X. Attention maps (AM) are obtained from PatchConvNet fine-tuned at
magnification factor 40X. Results in bold and underlined correspond to the best and
second best, respectively.

Magnifying
factor

Model Params PH AM Accuracy (%)

100X

ResNet50 16M ✗ ✗ 0.696 ± 0.108
PHResNet50 (𝑛 = 3) 5M ✓ ✗ 0.767 ± 0.074
ResNet50 16M ✗ ✓ 0.809 ± 0.016
PHResNet50 (𝑛 = 4) 4M ✓ ✓ 0.821 ± 0.027

200X

ResNet50 16M ✗ ✗ 0.743 ± 0.020
PHResNet50 (𝑛 = 3) 5M ✓ ✗ 0.753 ± 0.057
ResNet50 16M ✗ ✓ 0.766 ± 0.007
PHResNet50 (𝑛 = 4) 4M ✓ ✓ 0.781 ± 0.016

400X

ResNet50 16M ✗ ✗ 0.714 ± 0.043
PHResNet50 (𝑛 = 3) 5M ✓ ✗ 0.730 ± 0.027
ResNet50 16M ✗ ✓ 0.746 ± 0.018
PHResNet50 (𝑛 = 4) 4M ✓ ✓ 0.765 ± 0.008

respectively, as BreakHis is a much larger dataset compared to INbreast
and CBIS-DDSM.

4.4. Experiments and results

The first set of experiments is conducted on datasets of mammog-
raphy exams. Specifically, in the first step, we fine-tune the Patch-
ConvNet architecture on CBIS-DDSM utilizing the available ImageNet
weights [14]. As a second step, we operate the model at inference
time to obtain the attention maps on INbreast. Finally, we train the
hypercomplex network, i.e. PHResNet18 (𝑛 = 2) with the conditioning
provided by the attention map, which from here on we denote with AM.
We compare the results of our approach against a baseline ResNet18
without AM, state-of-the-art methods, and the real-valued counterpart
of the proposed framework, i.e., ResNet18 with AM. Notably, we do
not need to test PHResNet18 without AM, as in that case the pa-
rameter 𝑛 would be set to 1, which is equivalent to its real-valued
counterpart, i.e. ResNet18 [16]. The first state-of-the-art method we
consider is the cross-view attention module (CvAM) designed for multi-
view analysis of mammography, which is integrated inside a ResNet
architecture [39]. In order to compare it with our method, we utilize
the single-view equivalent of this approach, which is the CBAM module
integrated in the same fashion as described in the original paper [39].
The second state-of-the-art network for comparison is PatchConvNet
itself, directly fine-tuned on INbreast. The mean AUC over 5 runs
is reported in Table 1 together with the number of parameters of
each network. Evidently, our approach in both hypercomplex and real
domains outperforms both baseline and state-of-the-art methods. This
shows that the proposed strategy for exploiting such knowledge is
effective, thus resulting in more performant classifiers. Moreover, the
proposed framework produces the most discriminant model, i.e. PHRes-
Net with AM, which yields an AUC of 0.852. It is also important to
note that it achieves such result with just 5M parameters, that is 1∕5
of PatchConvNet. This is thanks to hypercomplex algebra rules which
allow modeling local relations between input dimensions, thus grasping
correspondences among mammogram and attention map. To conclude,
even though the main gain is attained by including attention maps,
by introducing hypercomplex algebra the performance is still slightly
improved but with a much lighter model. Thereafter, we also perform
the same experimental evaluation as described above but with the
two datasets switched. Thus, PatchConvNet is fine-tuned on INbreast,
then the attention maps for CBIS-DDSM are inferred and used to train
the different networks. The results reported in the bottom part of
Table 1 support our theory, this time even attaining much more gain
from the introduction of hypercomplex algebra, i.e., from 0.694 to
0.725. Furthermore, the ROC curve for experiments in both datasets
5

Fig. 5. Confusion matrices of models with AM for experiments on BreakHis.

is depicted in Fig. 3 and is in accordance with the values presented in
Table 1.

The second set of experiments is conducted on histopathological
microscopic images of tumor tissue at different magnifying factors.
In detail, we fine-tune PatchConvNet on images at a magnification
factor of 40X and then we utilize it at inference time to compute
attention maps for the remaining magnifying factors, i.e. 100X, 200X,
and 400X. Finally, we train PHResNet50 with AM on the latter datasets
and compare it against a vanilla ResNet50, PHResNet50 with 𝑛 = 3
(since they are RGB images, i.e. with three channels), and the real-
valued respective of our method, i.e., ResNet50 with AM. The results
are reported in Table 2, showing the average of the accuracy over 3
runs and the standard deviation. Firstly, as expected, the advantage
brought by hypercomplex algebra can be seen in both scenarios with
and without AM. In both cases, the mean accuracy is improved and
the models are comprised of only 5M and 4M parameters, for 𝑛 = 3
and 𝑛 = 4, respectively. Secondly, the experiments demonstrate how
attention maps are generalized for different magnifying factors, thus
improving the performance in every case. The hypercomplex network
yields the best accuracy for each scenario with a quarter of the parame-
ters with respect to its counterpart in the real domain. Thus, we further
demonstrate the efficacy of the proposed framework on microscopic
images at different magnification factors of tumor tissue in addition
to X-ray mammogram exams. Finally, for both sets of experiments, we
illustrate the respective confusion matrices in Figs. 4 and 5. We can see
that in every case either the number of false negatives or false positives
is reduced by the PH model, aligning with the results of Tables 1 and
2.

To conclude, Table 1 also includes different ablation experiments as
the gain from each proposed component, i.e. conditioning on attention
maps (AM) and hypercomplex algebra (PH) is shown. In fact, we test
a baseline ResNet, then ResNet with AM and finally, we add hyper-
complex algebra with PHResNet with AM. Table 2 also presents the
experiment with hypercomplex algebra and without AM, i.e. PHResNet
with 𝑛 = 3.
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5. Conclusions

In this paper, we have proposed a novel framework to exploit
the information learned by the attention mechanism. We build an
augmented dataset where each sample comprises the original image
and the respective attention map. This new multi-dimensional input
is used to condition the training of a PHResNet which handles it as a
single unit. Thanks to hypercomplex algebra properties, the PH model
has the capacity to capture latent relations between the original breast
cancer image and the attention map. In this way, we effectively exploit
the additional information provided by conditioning on the attention
map regarding the location of the tumor region, shifting the focus
of the network on it. We demonstrate the validity of the proposed
framework on breast cancer datasets comprising mammography exams
and histopathological microscopic images. Our approach outperforms
attention-based state-of-the-art architectures and the real-valued coun-
terpart of the proposed technique. In future works, we aim to overcome
the limitations of the proposed framework which requires a fine-tuning
step of a network such as PatchConvNet due to the domain difference
between natural and medical images.
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