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Rationale: The anatomical substrate of skeletal muscle autonomic innervation has
remained underappreciated since it was described many decades ago. As such,
the structural and functional features of muscle sympathetic innervation are
largely undetermined in both physiology and pathology, mainly due to
methodological limitations in the histopathological analysis of small neuronal
fibers in tissue samples. Amyotrophic lateral sclerosis (ALS) is a fatal
neuromuscular disease which mainly targets motor neurons, and despite
autonomic symptoms occurring in a significant fraction of patients, peripheral
sympathetic neurons (SNs) are generally considered unaffected and, as such,
poorly studied.

Purpose: In this research, we compared sympathetic innervation of normal and
ALSmuscles, through structural analysis of the sympathetic network in human and
murine tissue samples.

Methods and Results: We first refined tissue processing to circumvent
methodological limitations interfering with the detection of muscle
sympathetic innervation. The optimized “Neuro Detection Protocol” (NDP) was
validated in human muscle biopsies, demonstrating that SNs innervate, at high
density, both blood vessels and skeletal myofibers, independent of the fiber
metabolic type. Subsequently, NDP was exploited to analyze sympathetic
innervation in muscles of SOD1G93A mice, a preclinical ALS model. Our data
show that ALS murine muscles display SN denervation, which has already
initiated at the early disease stage and worsened during aging. SN
degeneration was also observed in muscles of MLC/SOD1G93A mice, with
muscle specific expression of the SOD1G93A mutant gene. Notably, similar
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alterations in SNs were observed in muscle biopsies from an ALS patient, carrying
the SOD1G93A mutation.

Conclusion:We set up a protocol for the analysis of murine and, more importantly,
humanmuscle sympathetic innervation. Our results indicate that SNs are additional
cell types compromised in ALS and suggest that dysfunctional SOD1G93A muscles
affect their sympathetic innervation.

KEYWORDS

amyotrophic lateral sclerosis, sympathetic neurons, skeletal muscle innervation, SOD1G93A

mutation, sympathetic neurodegeneration

1 Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular
disorder, hallmarked by motor neuron (MN) degeneration, with
progressive weakness of voluntary muscles and respiratory
failure, the latter representing the main cause of death, which
typically occurs within 4–5 years from diagnosis. The highly
heterogeneous presentation of ALS is not entirely predictable
by the disease cause, which may be sporadic (s) or familial (f)
(Couratier et al., 2016; Grollemund et al., 2019; Tarlarini et al.,
2019). ALS-linked mutations, responsible for fALS forms, have
been identified in more than 30 genes, including SOD1 (which
accounts for up to 12%–23% of fALS) (Bosco et al., 2010), TDP-43
(Sreedharan et al., 2008), FUS (Vance et al., 2009), and C9ORF72
(Smith et al., 2013). At the time being, the pathogenesis of ALS is
elusive and an mechanistic insight is strikingly poor, resulting in
the absence of mechanism-driven therapies capable of preventing
or attenuating the dramatic disease progression (Karch et al.,
2009; Milanese et al., 2014; Tripolszki et al., 2017; Mejzini et al.,
2019).

For several decades after its early description, ALS has been
regarded as the result of a pathologic process confined to MNs.
Recently, however, evidence of non-neuronal cell types directly
participating in disease development upheld the definition of a
“multicellular” disorder. The concept, mainly emerging from the
studies on monogenic fALS, is forwarded upon appreciation that
while disease mutations can lead to toxic gain-of-function in
MNs, the neuronal fate (i.e., degeneration and death) is
influenced by the expression of mutations in cells which
interact, with various biological roles, with MNs, including
astrocytes (Clement et al., 2003; Yamanaka et al., 2008; Ziff
et al., 2022). Remarkably, while transgenic mice ubiquitously
expressing fALS-associated SOD1 mutants (e.g., G93A, G37R,
and G85R) develop a rapidly progressive disease, with lower MN
degeneration, reminiscent of human ALS (Gurney et al., 1994;
Dal Canto and Gurney, 1995; Wong et al., 1995; Mourelatos et al.,
1996; Bruijn et al., 1997), selective expression of the same
mutations in MNs did not cause significant cell death. Along
the same lines, modulation of the cytotoxic effects of the
SOD1 mutation in glial cells was suggested to prevent MN
death in the context of ALS (Pramatarova et al., 2001;
Ambrożkiewicz et al., 2022; Perez-Gonzalez et al., 2022). The
converging evidence suggests that the progression of the
pathologic phenotype in fALS requires coordinated expression
of the disease mutation in both MNs and non-neuronal cells,
including oligodendrocytes (Kang et al., 2013), astrocytes

(Clement et al., 2003; Haidet-Phillips et al., 2011), and
microglia (Milanese et al., 2014; Quek et al., 2022), advanced
the hypothesis that mutation-dependent neurotoxicity
originates, with diverse mechanisms, by alterations in the
cellular environment surrounding MNs. Interestingly, recent
findings of the Musarò Laboratory, exploiting cell-specific
targeting of the SOD1 ALS mutation G93A, demonstrated that
the aberrant activation of redox cascades in skeletal myocytes
underlies an additional mechanism, leading to morphological
alterations in the neuromuscular presynaptic terminals and
neuromuscular junction (NMJ) dismantlement (Dobrowolny
et al., 2018). To further increase the complexity of the ALS
picture, SOD1G93A mice have shown defects in cell-to-cell
adhesion between the endothelial cells of the blood–spinal
cord barrier, and a recent study supports a central
contribution of the SOD1-mutant-mediated endothelial
damage to disease initiation that may accumulate prior to MN
degeneration and neurovascular inflammatory response (Zhong
et al., 2008). Such an already wide spectrum of cells participating
in the disease may further extend upon appreciation that
subclinical alterations in autonomic control of organ functions
are frequently present in ALS patients and that the early
manifestations of ALS occur in peripheral tissues and involve
muscle atrophy and weakness, NMJ alterations, and metabolic
changes (Shimizu et al., 1994; Baltadzhieva et al., 2005; Pavlovic
et al., 2010; Merico and Cavinato, 2011; Shimizu et al., 2011;
Shimizu, 2013; Dalla Vecchia et al., 2015; De Maria et al., 2015;
Piccione et al., 2015; Nolano et al., 2017; Rosenbohm et al., 2017;
Pimentel et al., 2019; Silveira et al., 2022). Analysis of heart rate
variability (HRV) (Pimentel et al., 2019; Brown et al., 2022) and
systolic arterial pressure variability (SAPV) revealed altered
sympatho-vagal balance (Moreau et al., 2012; Xia et al., 2022),
and microneurography demonstrated a reduced spontaneous
activity of sympathetic efferences in sciatic nerves, suggestive
of neurodegeneration (Donadio and Liguori, 2015). The same
trial has demonstrated that SOD1G93A mice show a 24% decrease
in TH expression in adrenal glands (Kandinov et al., 2013).
Although it is long known that sympathetic axons, running
within motor nerves, project to skeletal muscles and interact
with both myocytes and vasculature (Boeke, 1909a; Boeke, 1909b;
Boeke, 1913; Barker and Saito, 1981; Chan-Palay et al., 1982;
Tadaki et al., 1995; Grasby et al., 1997), and the architecture and
function of such non-myelinated adrenergic fibers are commonly
disregarded. Only recently, high-resolution immunofluorescence
imaging and in vivo second messenger microscopy of nerves and
muscles have shown that catecholamine-releasing sympathetic
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varicosities, which contact the myocyte sarcolemma in proximity
to the NMJ (Khan et al., 2016; Straka et al., 2018), activate
myocyte β-adrenergic receptors (β-ARs), influencing muscle
performance, intracellular protein turnover, and NMJ
homeostasis (Rudolf et al., 2014; Khan et al., 2016; Rodrigues
A. C. Z. et al., 2019; Rodrigues A. Z. C. et al., 2019; Rodrigues
et al., 2021a; Rodrigues et al., 2021b; Delbono et al., 2021; Wang
et al., 2022). Remarkably, we found that retrograde neurotrophic
signaling from target cells to sympathetic neurons (SNs) is
required to maintain autonomic innervation of highly
innervated organs like the heart (Dobrowolny et al., 2018;
Dokshokova et al., 2022), surmising that the interruption of
bidirectional trophic communication between sympathetic
nerves and muscles may negatively synergize on innervation.

Collectively, evidence suggests that autonomic neurons, which
were considered uninjured in the classic disease description, may
indeed be additional targets in ALS, but this has remained largely
unexplored.

On these bases, in this study, we aimed to characterize the state
of sympathetic innervation of different skeletal muscles and
determine whether the arrangement and cellular morphology of
SNs are altered in ALS. To reach this goal, we refined an
immunofluorescence method to reveal sympathetic nerves,
which we applied to muscle tissue samples from wild-type and
SOD1G93A ALS mice, at different disease stages. Results were
compared with those obtained from muscles of mice carrying
the SOD1G93A mutation selectively in the skeletal muscle (MLC/
SOD1G93A mice) and controlled with the analysis of sympathetic
innervation in muscle biopsies from control healthy subjects and
ALS patients.

2 Methods

2.1 Ethical approval

Experimental procedures in murine models have been approved
by the Ministry of Health (Ufficio VI), in compliance with the
Animal Welfare Legislation (protocols A06E0.N.ERD and
A06E0.18). All procedures were performed by trained personnel
with documented formal training and previous experience in
experimental animal handling and care. All procedures were
refined prior to initiating the study, and the number of animals
was calculated to use the least number of animals sufficient to
achieve statistical significance, according to sample power
calculations.

2.2 Origin and source of animals

We used 2- and 5-month-old B6SJ-Tg(SOD1G93A)1Gur/J
transgenic male mice (Charles River), 5-month-old MLC/
SOD1G93A male mice (Dobrowolny et al., 2018), and age- and
sex-matched littermate controls. Animals were maintained in
individually ventilated cages in an authorized animal facility
(authorization numbers 609/2015-PR and 864/2020-PR) under a
12:12 h light/dark cycle at a controlled temperature and allowed
access to water and food ad libitum.

2.3 Muscle fixation and
immunofluorescence analysis on thin
murine muscle sections

Mice were sacrificed by cervical dislocation, and the hind-leg
muscles were carefully excised, fixed in 1% paraformaldehyde (PFA)
for 30 min at room temperature (RT), dehydrated in a sucrose
gradient, and frozen in liquid nitrogen. A cryostat (Leica CM 1850,
Leica Microsystems GmbH, Wetzlar, Germany) was used to obtain
10-μm muscle sections, and the sections were processed for
immunofluorescence, following the protocol described by Straka
et al. (2018). Primary antibodies used in this study are listed in
Supplementary Table S1.

2.4 Human muscle biopsy processing and
immunofluorescence analysis

Muscle biopsies were collected after obtaining written informed
consent, using an open biopsy procedure. For ALS patients, biopsies
were taken from either the biceps or vastus lateralis muscles, while
for control subjects, biopsies were taken from vastus lateralis. A
subset of biopsies was fixed in 1% PFA for 30 min at RT, dehydrated
in a sucrose gradient, and frozen in liquid nitrogen. A cryostat (Leica
CM 1850, Leica Microsystems GmbH, Wetzlar, Germany) was used
to obtain 10-μmmuscle sections, and the sections were processed for
immunofluorescence, following the protocol described by Straka
et al. (2018). Primary antibodies used in this study are listed in
Supplementary Table S1.

2.5 Whole-mount immunofluorescence of
murine muscle fibers and confocal
microscopy analysis

A subset of murine muscles was processed with whole-mount
immunofluorescence. In detail, muscles were briefly fixed in 4%
PFA. Fiber bundles were dissected, incubated in 50 mM NH4Cl
for 30 min at RT, and permeabilized with 0.5% Triton X-100 for
4 h at RT. Fibers were incubated with anti-tyrosine hydroxylase
(TH) overnight at 4°C. Once washed in phosphate-buffered saline
(PBS), fibers were incubated with the appropriate secondary
antibody for 2 h at RT (Straka et al., 2018) and subsequently
with Alexa Fluor 488-conjugated α-bungarotoxin (1:200,
Invitrogen) for 2 h at RT. Fibers were analyzed using the
confocal microscope (Leica TCS SP5, Leica Microsystems,
Germany), equipped with LAS AF software, using a ×63/
1.25 oil objective. Z-stacks were generated from images taken
at 0.4-μm intervals, and maximum intensity projections and 3D
reconstructions were obtained using ImageJ software (version
1.53q, National Institutes of Health, Bethesda, MD,
United States).

2.6 Morphometric analyses

In murine muscles, the sympathetic neuron density was
calculated in six non-consecutive longitudinal sections from
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both murine and human muscles. For each section, eight
randomly chosen images were acquired and analyzed using
ImageJ software (version 1.53q, National Institutes of Health,
Bethesda, MD, United States). Neuronal density was expressed
as the percentage of a muscle area occupied by TH-positive
fibers.

2.7 Statistical analysis

Statistical analysis was performed using GraphPad Prism 9. The
normality of data distribution was assessed with the Shapiro–Wilk
test. The unpaired t-test (for two groups) or one-way ANOVA (for
three or more groups), with Kruskal–Wallis and Dunnett’s tests, was

FIGURE 1
Histopathology of normal murine muscles processed with Neuron Detection Protocol (NDP). (A, B) Hematoxylin–eosin staining of mouse tibialis
anterior sections that underwent standard cryopreservation (A) or NDP (B). (C, D) Immunofluorescence analysis of cryopreserved (C) vs.NDP-processed
(D) tibialis anterior sections, co-stained with antibodies to sarcomeric α-actinin (red) and smooth muscle actin (SMA, green). Nuclei were counterstained
with DAPI (blue). (E, F) Immunofluorescence analysis of cryopreserved (E) vs.NDP-processed (F) tibialis anterior sections, stainedwith an antibody to
tyrosine hydroxylase (TH, green). The right panels show high magnifications of the white boxes in the left images. We analyzed 16 muscles (n =
8 cryopreserved and n = 8 processed with NDP) harvested from eight adult C57BL6/J male mice.
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used for normally distributed data. The unpaired t-test withWelch’s
correction was used to compare two groups with normally
distributed data and unequal variance. A p-value < 0.05 was
considered statistically significant.

3 Results

3.1 Optimization of tissue processing for
sympathetic neuron detection inmurine and
human skeletal muscles

The identification of structural neuropathological alterations in
skeletal muscles has frequently been overlooked for the difficulties in
preserving the small and fragile neuronal processes in commonly
used standard histological preparations (i.e., muscle biopsies). Our
experience with the assessment of cardiac sympathetic innervation
in thin sections prompted us to refine tissue processing protocols,
previously used in heart and skeletal muscles (Zaglia et al., 2013;
Straka et al., 2018), to inspect the topology of SN processes in murine
hind-limb muscles (i.e., tibialis anterior, soleus, gastrocnemius, and
quadriceps), using confocal immunofluorescence. To this aim,
muscles were harvested from adult C57BL6/J mice and fixed with
different PFA concentrations (1, 2 e 4%, v:v in PBS) and fixation
time (from 10 min to 2 h, at room temperature), dehydrated in a
sucrose gradient, and frozen in liquid nitrogen. Longitudinal thin
cryosections were subsequently analyzed upon hematoxylin–eosin
staining and confocal immunofluorescence with sarcomere and
neuronal markers, including small fiber-specific markers
(i.e., tyrosine hydroxylase), revealing that 1% PFA fixation for
30 min is the most suited combination to allow optimal tissue
preservation and fluorescence microscopy imaging. Such
processing protocols [which we here referred to as Neuron
Detection Protocol (NDP), for readability] allow preservation of
tissue morphology and architecture, including the interactions
among myocytes, vascular bed, neurons, and interstitium (Figures
1A, B; Supplementary Figure S1). Figure 1 shows that by comparing
panels C (cryopreserved section) and D (fixed section), α-actinin-
stained sarcomeres are more regularly distributed along the myocyte
length and resolved with the lower background signal and higher
image contrast in fixed sections. In addition, while neurofilament-
positive neurons are detectable with both processing protocols,
small-sized and fragile structures, such as TH-positive SN
processes, were intact and almost exclusively detectable in fixed
muscle sections (Figures 1E, F; Supplementary Figure S2). As further
usefulness, aggressive tissue unmasking is not required
(i.e., microwave unmasking) for immunofluorescence, and the
protocol overcomes the need to adjust PFA concentration and
fixation time for different muscle types, as the chosen parameters
were applicable to both small- (i.e., soleus) and large-sized
(i.e., gastrocnemius and quadriceps) murine muscles.

We thus tested whether such variants of fixation protocol are
suitable for processing and histological analysis of human muscle
biopsies, a procedure widely used in the diagnostic workup of
neuromuscular diseases, including ALS. To this aim, we
compared tissue morphology and immunofluorescence staining
in 1 mm3 biopsies from healthy volunteers, which underwent
either direct freezing or tissue processing as described previously

for murine muscles (see Methods section). Remarkably, muscles
prepared with our optimized protocol appeared structurally intact
and better preserved than the conventionally processed
counterparts. Figure 2 shows that the application of “NDP”
allowed more detailed immunofluorescence imaging of human
muscle cytoarchitecture, which is well suited for the
histopathological study of sarcomeres and innervation, including
that mediated by small fibers, such as SNs. Notably, the latter
appears to be almost absent in biopsies that underwent standard
processing.

Thus, NDP represents a useful strategy for comprehensive
morphological analysis of muscle samples and the assessment of
both myocyte and non-myocyte components, including the poorly
studied sympathetic nerves, in both preclinical models and human
biopsies.

3.2 Sympathetic innervation of different
murine hind-limb muscles

We thus applied the muscle processing protocol, described
previously, to analyze the microanatomy of sympathetic
innervation in different muscles (i.e., tibialis anterior, soleus,
gastrocnemius, and quadriceps) of wild-type mice. Confocal co-
immunofluorescence using anti-TH in combination with
antibodies to either smooth muscle actin or sarcomeric α-
actinin was used to label vascular smooth muscle cells and
muscle sarcomeres, respectively. In line with the previous
research (Khan et al., 2016; Straka et al., 2018), SN processes
were found in all muscle types analyzed, both around blood vessels
and in close apposition with skeletal myocytes, although the
interaction between the sections of SN processes and these two
target structures appeared to be different (Figures 3A–C;
Supplementary Figure S3). Indeed, while vessel-interacting SN
processes embrace the vascular wall, the muscle-interacting SN
processes accompany the myocyte fiber for most of its length and,
as previously described by Straka et al. (2018), are in close contact
with the sarcolemma in correspondence to the NMJ (Figures
3D–F). After delineating the SN topology, we assessed the
density of sympathetic innervation in different muscles, with
morphometric analysis of immunofluorescence images. The
fractional area of the muscle section occupied by SNs varied
among the different muscles analyzed and was the highest in
the quadriceps and lower in soleus and gastrocnemius
(Figure 4A). To determine whether such differences could be
attributed to the different muscle fiber types, anti-TH-stained
sections were labeled with isoform-specific antibodies for
myosin, to discriminate slow vs. IIa and IIb fast fibers. As
shown in Figure 4B, muscle SNs establish a similar interaction
regardless of the fiber metabolic type.

Upon determining the morphology of muscle sympathetic
efferences in mice, we sought to verify whether human muscles
displayed similar features. To this aim, we performed confocal
immunofluorescence on muscle biopsies collected from healthy
volunteers, which confirmed the general aspects of sympathetic
innervation topology, with some neuronal processes sprouted
around blood vessels and others in close apposition with muscle
fibers (Figure 5).
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3.3 Sympathetic neuropathology in muscles
from ALS (SOD1G93A) mice

A growing number of reports suggests that catecholaminergic
signaling is required for the maintenance of muscle health, and
impaired SN/skeletal myocyte communication has been described in
several neuromuscular disorders (Rudolf et al., 2013; Rudolf et al.,
2014; Khan et al., 2016; Rodrigues A. C. Z. et al., 2019; Rodrigues A.
Z. C. et al., 2019; Rodrigues et al., 2021a; Rodrigues et al., 2021b;
Delbono et al., 2021). The observation that SNs are in structural and
functional connection with MNs and skeletal muscles prompted us
to test whether SNs could be abnormal in ALS, a fatal
neurodegenerative disease associated with MN degeneration,
muscle atrophy, and paralysis, with unexplained signs of

subclinical dysautonomia (Shimizu et al., 1994; Baltadzhieva
et al., 2005; Pavlovic et al., 2010; Merico and Cavinato, 2011;
Shimizu et al., 2011; Shimizu, 2013; Dalla Vecchia et al., 2015;
De Maria et al., 2015; Piccione et al., 2015; Nolano et al., 2017;
Rosenbohm et al., 2017; Pimentel et al., 2019; Silveira et al., 2022). To
ascertain our hypothesis, we assessed the state of sympathetic
innervation in skeletal muscles from SOD1G93A mice, a well-
accepted preclinical model of ALS (Gurney et al., 1994). First, we
processed isolated muscle fibers (i.e., tibialis anterior, soleus,
quadriceps, and gastrocnemius) from control and SOD1G93A ALS
transgenic mice that were harvested at an advanced disease stage
(5 months) and characterized by MN degeneration and muscle
paralysis (Chiu et al., 1995; Fischer et al., 2004). Three-dimensional
imaging revealed that, in ALS muscles, SNs interacting with the

FIGURE 2
Histopathology of healthy human muscles processed with Neuron Detection Protocol . (A, B) Confocal immunofluorescence analysis of
cryopreserved (A) vs. NDP-processed (B) sections of vastus lateralis muscle biopsies from healthy subjects, stained with an antibody to sarcomeric α-
actinin (red). Nuclei were counterstained with DAPI (blue). (C, D) Confocal immunofluorescence analysis of cryopreserved (C) vs. NDP-processed (D)
sections of vastus lateralis muscle biopsies from healthy subjects, stained with an antibody to tyrosine hydroxylase (TH, green). Nuclei were
counterstained with DAPI (blue). Arrows in (D) indicate sympathetic neurons (SNs). We analyzed muscle biopsies from five healthy controls.
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FIGURE 3
Sympathetic innervation topology in normal murine muscles. (A–C) Confocal immunofluorescence in muscle sections of tibialis anterior (A),
gastrocnemius (B), and soleus (C), processed with NDP, co-stained with antibodies to tyrosine hydroxylase (TH, green) and sarcomeric α-actinin (red).
Nuclei were counterstained with DAPI (blue). (D–F) Three-dimensional rendering of confocal optical sections of isolated muscle fibers from tibialis
anterior (D), gastrocnemius (E), and soleus (F) that underwent whole-mount immunofluorescence with Alexa Fluor 488-conjugated bungarotoxin
(BTX, green) and an antibody to tyrosine hydroxylase (TH, red). We analyzed muscles harvested from eight adult C57BL/6J male mice.
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NMJ, which were as expected altered in size and density (Dupuis and
Loeffler, 2009), were almost undetectable, with only very few thin
and fragmented TH-positive processes (Figure 6).

To define whether SN alterations are selectively evident at the
advanced disease stage or SNs are already altered at the stage before an
overt disease and to relate SN degeneration with disease progression,
we thus compared SN density of thin sections of muscles from
SOD1G93A mice, at 2 and 5 months of age, corresponding to early
and advanced stages of disease (Chiu et al., 1995; Fischer et al., 2004).
We here provided a comprehensive morphometric evaluation of
muscle sympathetic innervation in sections, co-stained with anti-
TH and anti-sarcomeric actinin, of quadriceps, which, based on our
previous analyses (see Figure 5), has the highest sympathetic
innervation density. Our results show that significant sympathetic

denervation occurs in SOD1G93A quadriceps, with a global decrease in
SN innervation density at an early timepoint and a complete
denervation in the overt disease phase (Figures 7A, B). Similar
results were obtained in different muscles, including soleus, tibialis
anterior, and gastrocnemius, identifying sympathetic neuropathology
as an additional disease process in ALS.

3.4 Sympathetic neuropathology in muscles
from mice with muscle-restricted SOD1G93A

expression

Muscle sympathetic degeneration in SOD1G93A mice may be
attributed to 1) the direct neurotoxic effect of SOD1G93A mutation

FIGURE 4
Characterization of sympathetic innervation in different muscle types from normal mice. (A) Quantification of sympathetic innervation density in
different muscles, evaluated as the fractional area occupied by TH-positive fibers. Bars indicate s.d. Differences among groups were determined using
Kruskal–Wallis and Dunnett’s tests for multiple comparisons (**, p < 0.01. Each value plotted in the graph represents the average neuronal density
calculated from different images acquired from one individual muscle, as detailed in the Methods section. For each muscle type, we analyzed
12 samples, harvested from six different adult C57BL6/J male mice). (B) Confocal immunofluorescence in NDP-processed tibialis anterior sections, co-
stained with antibodies to tyrosine hydroxylase (TH) in combination with anti-myosin-I (left panel), anti-myosin-IIa (middle panel), and anti-myosin-IIb
(right panel).
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on SNs, 2) an indirect effect of ALS muscles on innervating neurons,
or 3) a combination of both events. Based on our previous
demonstration that muscle-restricted expression of SOD1G93A leads
to alterations at the spinal cord level and reminisces some of the
disease phenotype, we compared the state of sympathetic innervation
in muscle-specific MLC/SOD1G93A vs. ubiquitous-SOD1G93A mice.
Muscles were analyzed at 5 months of age, a stage characterized, in
MLC/SOD1G93A mice, by muscle atrophy, NMJ dismantlement,
metabolic alteration, and microglia activation (Dobrowolny et al.,
2018). Interestingly, confocal immunofluorescence imaging and
morphometric analysis showed that MLC/SOD1G93A muscles have
altered SN process morphology and decreased sympathetic

innervation density, which were qualitatively and quantitatively
comparable to those observed in muscles from SOD1G93A mice
(Figure 8).

3.5 Sympathetic innervation is altered in
human SOD1G93A ALS muscle

To evaluate whether the impaired muscle sympathetic
innervation, observed in ALS mice, is also recognizable in
patients, we performed a proof-of-concept analysis on muscle
biopsies from a control healthy subject vs. a patient diagnosed

FIGURE 5
Sympathetic innervation topology in healthy human muscles. (A, B) Confocal immunofluorescence in sections of human vastus lateralis biopsies,
processed with NDP and co-stained with antibodies to tyrosine hydroxylase (TH, green) and sarcomeric α-actinin (red). Nuclei were counterstained with
DAPI (blue). Right images show high magnifications of the white boxes in the left panels. Arrows in (A, B) indicate sympathetic neurons. We analyzed
muscle biopsies from five healthy controls.
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with ALS caused by SOD1G93A mutation, with chronic neurogenic
atrophy and myopathic signs. Muscle biopsies were processed with
NDP, and thin sections were stained with sarcomeric α-actinin- and
TH-specific antibodies. Notably, confocal immunofluorescence
evidenced, in ALS muscle, a dramatic alteration in the
morphology of SN processes, which appeared fragmented with
reduced axonal sprouting, all features strikingly similar to those
observed in SOD1G93A and MLC/SOD1G93A murine muscles
(Figure 9A). Moreover, innervation density appeared to be
significantly reduced, and these data were confirmed by the
quantification of the muscle area occupied by SN processes
(Figure 9B), which was roughly to the same degree as what was
observed in the preclinical ALS models.

4 Discussion

ALS is primarily associated with the degeneration of MNs,
which plays a critical role in the development of the typical
symptoms of the disease (Gurney et al., 1994; Tarlarini et al.,
2019; Corcia et al., 2021). Although MN death is believed to
result from a combination of rather unspecific mechanisms,
including protein accumulation, mitochondrial dysfunction, and
oxidative stress, the disease shows remarkable cell specificity, as

the number of primary neuronal targets is relatively small (Karch
et al., 2009; Milanese et al., 2014; Mejzini et al., 2019). Peripheral
autonomic neurons, including sympathetic and parasympathetic
types, form a largely represented population in most body tissues
(Scalco et al., 2021) but are generally considered unaltered in ALS,
despite clinical evidence accruing that autonomic symptoms can be
revealed in a significant fraction of patients. Interestingly, SNs
interact with skeletal myofibers and have recently been shown to
impinge on both neuromuscular transmission and myocyte
proteostasis (Khan et al., 2016; Straka et al., 2021; Wang et al.,
2022), both of which are key processes in ALS-associated
neuromuscular failure and myopathy (Khan et al., 2016;
Dobrowolny et al., 2018). This prompted us to address whether
SNs may be additional neuronal types affected in ALS. We first
aimed to circumvent methodological limitations which may
interfere with the detection of muscle sympathetic innervation,
by refining the tissue processing procedures to allow optimal
preservation of the complex tissue architecture and cytological
features of the diverse cell types forming the muscle, including
the small and fragile SNs. The protocol was thus validated in muscle
tissues harvested from mouse and human muscle biopsies and
subsequently applied to define the topology and density of
sympathetic innervation and neuro-muscular interactions in
different hind-limb muscle fragments. Furthermore, we exploited
the protocol to analyze sympathetic innervation in muscles from
SOD1G93A mice, a commonly studied preclinical ALS model, and
from fALS patients, collectively showing that muscle SN processes
appear degenerated, when already at early disease stages, and may
thus be regarded as an additional cell type affected in the disease.

The autonomic nervous system, which is formed by the
sympathetic and parasympathetic branches, controls over organism
homeostasis by continuously delivering regulatory inputs to almost all
the innervated tissues. In the case of neuro-muscular interactions,
autonomic neurons, and in particular SNs, have long been shown to
innervate both the working myocardium and skeletal muscles (Straka
et al., 2018; Pianca et al., 2019; Di Bona et al., 2020). In the heart, the
effects of neurogenic regulation are undoubted and manifest with the
perceptible increase in rate and contraction force, during physiological
(e.g., emotions and exercise) or pathological (e.g., pressure overload
and hypovolemia) stresses (Zaglia andMongillo, 2017; Franzoso et al.,
2022). Despite the effects of sympathetic activation on the
cardiovascular system reflecting on important clinical consequences
(i.e., syncope and arrhythmias) and yielding several methods to infer
neuronal function (e.g., blood pressure, heart rate variability,
cardiovascular effect of postural changes, scintigraphy, and PET),
the characteristics of myocardial sympathetic innervation were only
recently appreciated upon investigation of cardiac neurons with
enhanced tools and refined techniques (for reviews on the topic,
see Di Bona et al., 2020; Scalco et al., 2021). Recent findings have
included the appreciation of the unexpected density of heart
innervation (Pianca et al., 2019), the mechanisms of hetero-cellular
neuro-cardiac communication (Prando et al., 2018; Dokshokova et al.,
2022), and additional constitutive roles of SNs in the modulation of
cell division, proteostasis, and electrophysiology (Ogawa et al., 1992;
Kanevskij et al., 2002; O’Connell et al., 2003; Zaglia et al., 2013;
Kreipke and Birren, 2015; Pianca et al., 2019).

The evidence that SNs are present in skeletal muscles dates over
a century ago (Boeke, 1909a; Boeke, 1909b; Boeke, 1913), but the

FIGURE 6
Three-dimensional reconstruction of the sympathetic neuron
network in normal vs. SOD1G93A muscle fibers. Three-dimensional-
rendering of SNs and NMJ in confocal optical sections of whole
muscle fibers isolated from the tibialis anterior of a 5-month-old
control (top panel) or SOD1G93A (bottom panel) mice, processed as
described by Straka et al. (2018), and whole-mount stained with Alexa
Fluor 488-conjugated bungarotoxin (BTX, green) and an antibody to
tyrosine hydroxylase (TH, red). Images are representative of the
analysis of n = 6 control muscles and n = 6 SOD1G93A muscles,
harvested from n = 6 control mice and n = 6 ALS mice, respectively.
Scale bars (x, y, and z) correspond to 15 μm.
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FIGURE 7
Sympathetic neuropathology in SOD1G93A ALSmuscles. (A)Confocal immunofluorescence of quadriceps sections from 2- and 5-month-old control
and SOD1G93A mice, NDP processed and co-stained with antibodies to sarcomeric α-actinin (left panels, green) and tyrosine hydroxylase (TH, middle
panels, red). The right panels show themerged images. (B)Quantification of sympathetic innervation density in quadriceps from control and ALSmice, at
different disease stages. SN density was evaluated as the fractional area occupied by TH-positive fibers. Bars indicate s.d. Differences among groups
were determined using a one-way ANOVAwith Dunnett’s test formultiple comparisons (*, p <0.05; **, p < 0.01; ****, p <0.0001; each value plotted in the
graph represents the average neuronal density calculated from different images acquired from one individual muscle, as detailed in the Methods section.
For each group, we analyzed eight muscles harvested from four different mice).
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main targets of muscle-innervating neurons remained, for a long
time, confined to blood vessels. Although innervation of intra- and
extra-fusal fibers of several muscles was observed in the early 1980s
(Barker and Saito, 1981), the lack of evident effects of SNs on
myocyte function and pathology and the disagreement on
experimental findings have somewhat detracted from progress in
sympatho-muscular research. Only recently, muscle SNs were
reappraised, and the use of improved methodologies (e.g.,
imaging and transgenic mice) undoubtedly demonstrated that, in
addition to vascular cells, a still undetermined fraction of SN
processes also targets skeletal myofibers and is poised to control
a broad range of muscle functions beyond blood perfusion,
including neuro-muscular synaptic transmission, proteostasis, and
intracellular protein trafficking (Khan et al., 2016; Straka et al., 2018;
2021; Rodrigues A. C. Z. et al., 2019; Rodrigues A. Z. C. et al., 2019;
Rodrigues et al., 2021a; Rodrigues et al., 2021b; Delbono et al., 2021;
Wang et al., 2022). In addition, the evidence of the biochemical and
structural effects of sympathectomy, as well as those of
pharmacological modulation of the molecular targets of SNs in
myocytes (i.e., β-adrenergic receptors) (Navegantes et al., 2002;
Rudolf et al., 2013; Wang et al., 2022) further supports the
existence of a population of SNs interacting with muscle cells.

Despite the evidence of such diverse roles of muscle SNs in
physiology, and the numerous indications of their involvement in

myopathies and neuro-muscular disorders, progress in understanding
muscle autonomic control has been discontinuous (Edgeworth, 1930;
Schara et al., 2009; Lashley et al., 2010; Liewluck et al., 2011;Meinen et al.,
2012; Finlayson et al., 2013; Rudolf et al., 2013; Khan et al., 2016; Clausen
et al., 2018; McMacken et al., 2018; 2019; Webster et al., 2020; Delbono
et al., 2021). Such disregard may have been influenced by the
methodological problems which hindered the transparent detection
of SNs in muscles. In contrast with the heart, where SNs dominate
the neuronal population of the myocardial landscape, in muscles, the
stage is taken by larger-sized MNs, which underlay voluntary control of
contraction (Mendell, 2005). However, we and others observed that
preservation of the thin and fragile SNs within the tissue, for analytical
purposes, requires dedicated processing protocols in both skeletal and
cardiac muscles, and as such, commonly used histological routines may
lead to underappreciation of the SN population. In the first place,
physical–chemical factors are associated with the tissue, in which
preparation may affect SN cytoarchitecture. SN processes are made
of small-sized unmyelinated fibers (Zaglia andMongillo, 2017; Franzoso
et al., 2022), and the absence of a lipid layer is expected to increase
vulnerability to the effects of freezing, e.g., ice crystal formation, which
would only minimally impinge on MN axons or the firm structure of
muscle cytoskeleton. Notably, in muscles processed with conventional
cryopreservation, residual SNs appear in proximity to blood vessels,
which may be explained by uneven freezing-dependent deterioration on

FIGURE 8
Sympathetic neuropathology in MLC/SOD1G93A muscles. (A) Confocal immunofluorescence of quadriceps sections, processed with NDP, from 5-
month-old MLC/SOD1G93A mice. Sections were co-stained with antibodies to sarcomeric α-actinin (left panels, green) and tyrosine hydroxylase (TH,
middle panels, red). The right panels show the merged images. (B) Quantification of sympathetic innervation density in quadriceps from 5-month-old
control, SOD1G93A, and MLC/SOD1G93A mice. SN density was evaluated as the fractional area occupied by TH-positive fibers. Bars indicate s.d.
Differences among groups were determined using a one-way ANOVA with Dunnett’s test for multiple comparisons (*, p < 0.05; **, p < 0.01; ****, p <
0.0001; each value plotted in the graph represents the average neuronal density calculated from the different images acquired from one individual
muscle, as detailed in the Methods section. For each group, we analyzed eight muscles harvested from four different mice).
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SNs in different tissue micro-contexts. While chemical fixation,
commonly using aldehyde compounds, overcomes cryopreservation
artefacts, it is well known that antigen unmasking in thin sections is
a critical step required to exploit the sensitivity of immunostaining for
the detection of specific cellular structures or types. Like
cryopreservation, antigen unmasking may also lead to tissue
deterioration and disappearance of the small and weakly reactive SN
structures in the muscle section. In addition, most available markers,
used for subtype-specific neuronal identification, are raised against
highly diffusible epitopes that require immobilization for native tissue
retention. The detection of SNs demands, therefore, to avoid the loss of
cellular integrity, as occurring upon cryopreservation or aggressive
antigen unmasking processes, on the one hand, and sufficient
fixation for the retention of endogenous protein distribution, on the
other hand. We previously reported that, in cardiac muscle samples, a
brief chemical fixation accompanied by a delicate tissue permeabilization
is critical to avoid the loss of immunoreactivity of both neurons and
cellular membranes (Prando et al., 2018; Pianca et al., 2019).

By applying such protocols to the study of intact muscle
fragments, we showed that SNs innervate the muscle at a density

much higher than what would be revealed with conventional tissue
processing. Such notable differences between the number of SNs
identified in samples processed with these precautions, compared to
those processed with standard protocols (cryopreservation), may
justify why SN innervation of muscles has only rarely been
accounted for. While the study was not designed to address the
relationship between sympathetic innervation and the diverse
metabolic myofiber subtypes, the comparable density of SN
processes, measured in both fast and slow fibers, in different
muscles, allowed to exclude that neurons are a primary driver of
metabolic fiber type, at least under basal conditions. The highly
heterogenous innervation observed between diverse muscle types
(Figure 4A) suggests, therefore, to seek for other possible reasons
and effects, influencing both structural and functional neuro-
muscular interactions. The considerable effect on SN
quantification, achieved by finely tuning tissue processing, may
also explain how the histopathological inspection of muscle
biopsies, using protocols tailored to the analysis of myocyte and
MNs, has failed to reveal differences in sympathetic innervation in
muscles affected by neuro-muscular diseases, including ALS. In this

FIGURE 9
Sympathetic neuropathology in human SOD1G93A muscle. (A) Confocal immunofluorescence in sections of NDP-processed vastus lateralis muscle
biopsies from a control subject (male, 55 years, HyperCPKemia) and a fALS patient (male, 58 years, SOD1G93A mutation). Sections were co-stained with
antibodies to tyrosine hydroxylase (TH, red) and sarcomeric α-actinin (green). (B) Quantification of sympathetic innervation density in muscle biopsies
from control and ALS subjects in (A). SN density was evaluated as the fractional area occupied by TH-positive fibers. Bars indicate s.d. Differences
among groups were determined using an unpaired t-test (**, p < 0.01; values plotted in the graph represent the average neuronal density in n = 6 non-
consecutive sections of muscle biopsy).
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study, we show that experimental and human muscles harboring the
fALSmutation, SOD1G93A, feature morphologically altered SNs, with
a reduced density of neuronal processes and signs consistent with
autonomic neurodegeneration. Although the study is observational,
the analysis of murine muscles at different disease stages indicates
that SN degeneration is shared among different muscles and sets
early during ALS progression, before the appearance of other
clinical/pathological signs. Whether SNs degenerate due to a cell
autonomous effect of the ALS mutation, or for the secondary effect
of the ALSmuscle environment on neuronal tropism will specifically
be the subsequent research object. However, the evidence that SNs
were degenerated in muscles of both ubiquitously restricted and
muscle-restricted SOD1G93A transgenic mice, the latter displaying a
primary genetic defect selectively in skeletal muscle, supports that
mutation-harboring ALS muscles, in addition to MNs (Dobrowolny
et al., 2018), may negatively impact sympathetic innervation. Thus,
our findings demonstrate that SNs are an additional cell type
affected in ALS and directs the efforts toward the understanding
of how they may contribute to disease pathogenesis and whether
their modulation may positively impact autonomic symptoms,
modifying the clinical progression of the disease.

5 Limitations

The current study shows that exploitation of refined
histopathological assessment identifies sympathetic
neuropathology in skeletal muscles of ALS patients and animal
models. The study is not designed to reveal the mechanisms of SN
degeneration, as it relies on the detection of morpho-structural
abnormalities through immunofluorescence, and although
supported by accurate tissue morphometry, analyses have been
performed on a small number of human biopsies and ALS
animal models. As such, results cannot be generalized to all
disease genotypes and types, but the concept uncovered here may
represent a starting point for deeper research on the mechanisms of
neuropathology and more thorough investigation of the cellular
basis of autonomic involvement across different ALS forms.
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