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In 2013, Xylella fastidiosa (Xf) was detected for the first time in Apulia and, subsequently,
recognized as the causal agent of the olive quick decline syndrome (OQDS). To
contain the disease, the olive germplasm was evaluated for resistance to Xf, identifying
cultivars with different susceptibility to the pathogen. Regarding this, the resistant
cultivar Leccino has generally a lower bacterial titer compared with the susceptible
cultivar Ogliarola salentina. Among biomolecules, lipids could have a pivotal role
in the interaction of Xf with its host. In the grapevine Pierce’s disease, fatty acid
molecules, the diffusible signaling factors (DSFs), act as regulators of Xf lifestyle and
are crucial for its virulence. Other lipid compounds derived from fatty acid oxidation,
namely, oxylipins, can affect, in vitro, biofilm formation in Xf subsp. pauca (Xfp)
strain De Donno, that is, the strain causing OQDS. In this study, we combined high-
performance liquid chromatography-mass spectrometry-MS-based targeted lipidomics
with supervised learning algorithms (random forest, support vector machine, and neural
networks) to classify olive tree samples from Salento. The dataset included samples
from either OQDS-positive or OQDS-negative olive trees belonging either to cultivar
Ogliarola salentina or Leccino treated or not with the zinc-copper-citric acid biocomplex
Dentamet R©. We built classifiers using the relative differences in lipid species able to
discriminate olive tree samples, namely, (1) infected and non-infected, (2) belonging to
different cultivars, and (3) treated or untreated with Dentamet R©. Lipid entities emerging
as predictors of the thesis are free fatty acids (C16:1, C18:1, C18:2, C18:3); the
LOX-derived oxylipins 9- and 13-HPOD/TrE; the DOX-derived oxylipin 10-HPOME; and
diacylglyceride DAG36:4(18:1/18:3).
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INTRODUCTION

Xylella fastidiosa (Xf ) was detected for the first time in Europe in
the Salento area of Apulia, and, subsequently, it was recognized
as the causal agent of a novel devastating disease, representing a
serious threat to the local agriculture economy and biodiversity,
that is, the olive quick decline syndrome (OQDS). This disease
was characterized by severe branch desiccation and rapid death
of olive trees. Initial field observations tentatively attributed this
novel and rapid-spreading disease to a variety of biotic and
abiotic causes (Martelli, 2016), before revealing the presence of
the quarantine pathogen Xf subsp. pauca (Xfp) strain De Donno
(Saponari et al., 2013). The most severely affected olives are
the century-old trees of local cultivars (cvs) Cellina di Nardò
and Ogliarola salentina, which are highly susceptible (Saponari
et al., 2019), cv Leccino shows mild branch dieback despite being
adjacent to or close to orchards with severe OQDS symptoms
(Giampetruzzi et al., 2016; Saponari et al., 2019).

To unveil the molecular events involved in this interaction,
a transcriptome profiling of the xylem tissues from twigs
of Xfp-naturally infected and non-infected plants of both
cultivars was conducted. Xfp is perceived and elicits a different
transcriptome response in the two cultivars; currently, cv Leccino
upregulates genes encoding receptor-like kinases and receptor-
like proteins, involved in pathogen recognition, whereas cv
Ogliarola salentina does not (Giampetruzzi et al., 2016). Most
recently, Xfp artificial infection of the model plant Nicotiana spp.
activates hydrolases/hydrolase inhibitors, serine proteases, metal
transferases, and triggers cell death-like phenotypes in plants
(Sertedakis et al., 2021). Alongside transcriptomics, metabolomic
studies focused on OQDS are gaining momentum and find
some secondary metabolites as infection biomarkers (Girelli
et al., 2019; Nicolì et al., 2019; Vergine et al., 2020). These
analyses fail to consider lipid classes as an important target
to study this interaction. Lipids appear to be central in the
interaction Xf displayed with its host. In the literature, it is
reported that lipids, such as cis-2-monounsaturated fatty acids,
named diffusible signaling factors (DSFs) act as regulators of Xf
lifestyle in Pierce’s disease of the grapevine. Specifically, DSFs
allow the switch from a planktonic stage, typical of endophytic
lifestyle and useful to spread within xylem vessels, to a sessile
stage, in which the pathogen can form a biofilm that eventually
blocks the xylem sap flux. As stated above, this mechanism has
been proved regarding the grapevine Pierce’s disease caused by
Xf subsp. fastidiosa strain Temecula1 (Newman et al., 2004;
Chatterjee et al., 2008; Lindow et al., 2014; Ionescu et al., 2016),
and it is not unlikely that Xfp strain De Donno provokes OQDS
symptoms in the same way (Scala et al., 2020). In Pseudomonas
aeruginosa, other lipids, namely, the Oxylipins, act as hormones
for controlling the switch among the different stages of the
bacterial lifestyle, namely, dispersal and adherent biofilm phases
(Martínez and Campos-Gómez, 2016; Martínez et al., 2019)
and noteworthy, oxylipins, in vitro, affect biofilm formation in
Xfp strain De Donno (Scala et al., 2020). In addition, 10 lipid
entities are recognized as possible OQDS infection biomarkers
in Ogliarola salentina. These molecules are identified through
subsequent use of untargeted and targeted high-performance

liquid chromatography (HPLC) coupled mass spectrometry,
namely, they are oxylipins deriving from lipoxygenase (LOX) and
dioxygenase (DOX) activity, free fatty acids, and diacylglycerols
(Scala et al., 2020). LOX and DOX catalyze the polyunsaturated
fatty acid (PUFA) dioxygenation. Oxygenation may occur at
several positions along the carbon chain.

In this study, we combined high-performance liquid
chromatography-mass spectrometry (HPLC-MS)-based targeted
lipidomics with supervised learning algorithms, that is, random
forest (RF), support vector machine (SVM), and neural networks
(NNet), to assess in robust manner biomarkers for different
conditions in the field. The analyzed dataset included olive tree
samples from three different places in Apulia divided equally
between cv Ogliarola salentina and cv Leccino. The samples
are (1) asymptomatic trees, (2) symptomatic trees, and (3)
symptomatic trees treated with Dentamet R©. Dentamet R© is a
citric acid-zinc-copper-based mixture, a promising biocomplex
to control OQDS symptoms (Scortichini et al., 2018). We
hypothesized that the relative differences in some lipid species,
selected according to our previous studies, can be used to
discriminate among olive tree samples (1) positive or negative
to Xf infection, regardless of the cultivar; (2) belonging to
different cultivars; and (c) treated or untreated with Dentamet R©.
The ability to discriminate diseased and healthy plants through
lipid entities opens different scenarios, namely, employ these
molecules as biochemical diagnostic markers, develop a non-
destructive diagnosis tool (since oxylipins are precursors of
volatile organic compounds), and apply these molecules in
defense strategies.

MATERIALS AND METHODS

Study Site and Sampling Procedures
Sampling was carried out in the Salento area, in July 2020, on
66 individuals of Olea europaea cv Ogliarola salentina (O) and
cv Leccino (L), from three locations, namely, Nardò, Galatone
(Lecce province), and Lizzano (Taranto province), in Apulia
region, whose coordinates are 40◦24′06.7′′N 17◦26′10.4′′E,
40◦11′19.2′′N 18◦01′18.3′′E, 40◦09′19.1′′N 18◦03′44.0′′E; an
equal number of samples for each cultivar were collected
(Table 1). The design was completely randomized. Trees were,
respectively, OQDS asymptomatic (OQDS-), showing OQDS
symptoms (OQDS +) and OQDS + treated with Dentamet R©.
Trees were identified as symptomatic or asymptomatic following
the criteria previously reported (Giampetruzzi et al., 2016).
The samples consisted of 1- or 2-year-old twigs (ca. 0.5 cm
in diameter) from which cuttings of 15–20 cm were prepared.
Concerning symptomatic trees, cuttings come from “the
portions close but unaffected by the withering and desiccation
phenomena” (Giampetruzzi et al., 2016). Xylem tissue was then
recovered, after removing the bark, and processed. The obtained
66 samples were separately lyophilized. Samples OQDS +,
OQDS-, and OQDS + treated with Dentamet R© were molecularly
assayed via real-time PCR (Harper et al., 2010, European Plant
and Protection Organization, 2016) in three technical replicates
to verify the presence of Xf.
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TABLE 1 | Summary of X, H, and X treated with Dentamet R© samples. X denotes
samples in which X. fastidiosa is present, H denotes samples in which
X. fastidiosa is absent, DX indicates olive trees treated with Dentamet R© in which
X. fastidiosa is present.

Cultivar X DX H

Leccino (L) 14 11 8

Ogliarola (O) 12 11 10

Total 26 22 18

High-Performance Liquid
Chromatography-Mass
Spectrometry/MS
Xylem tissue (1.0 g) was recovered, and lipids extraction and
analysis were performed as previously reported (Scala et al.,
2018). Samples were assayed with the internal reference standards
glyceryl tripalmitate d31 and 9-HODEd4. The analysis was
carried out at a final concentration of 2 µM. The samples
were analyzed (fragmentation analysis) by LC-MS/MS (Triple
Quadrupole; 6420 Agilent Technologies, United States), adopting
multiple reaction monitoring (MRM) methods following Scala
et al. (2018). The mass spectrometry analyses were performed
in technical duplicate. MRM data were processed using the
Mass Hunter Quantitative software (B.07.00 version, Agilent
Technologies, United States). Integrated peak areas were
normalized upon Internal Standard Peak Area/max (Internal
Standard Peak Area). Several comparisons were assessed among
samples named Xf positive vs. Xf negative (X vs. H); cv Ogliarola
salentina Xf positive vs. cv Ogliarola salentina Xf negative (OX
vs. OH); cv Leccino Xf positive vs. cv Leccino Xf negative (LX vs.
LH); cv Ogliarola salentina vs. cv Leccino (O vs. L); cv Ogliarola
salentina Xf positive vs. cv Leccino Xf positive (OX vs. LX); cv
Ogliarola salentina Xf negative vs. cv Leccino Xf negative (OH vs.
LH); cv Ogliarola salentina Xf positive and cv Leccino Xf positive
treated with Dentamet R© vs. cv Ogliarola salentina Xf positive and
cv Leccino Xf positive untreated with Dentamet R© (DX vs. NDX).

Bioinformatic Analysis of RNAseq Data
RNAseq analysis was performed on data published in
Giampetruzzi et al. (2016) obtained from three Xf -infected
Ogliarola salentina (OX), three Xf-infected Leccino (LX), two
healthy Ogliarola salentina (OH), and two healthy Leccino
(LH). The files available online1 were used for our targeted
transcriptome analysis. Bioconductor’s DESeq2 R package 1.10.1
was used to evaluate the differential expression. The software
uses the Benjamini and Hochberg procedure to obtain the
p-values indicative of the false discovery rate. P-values less than
0.05 were used to identify differentially expressed genes. The
differential gene expression was analyzed in X vs. H, OX vs. OH,
LX vs. LH, O vs. L, OX vs. LX, and OH vs. LH.

Statistics and Machine Learning
Univariate statistical analysis and machine learning methods
were used to assess differences in lipid profiles for each

1http://trace.ncbi.nlm.nih.gov/Traces/sra/

comparison, aiming at identifying biomarkers for the different
conditions (Xf positivity, cultivar, Dentamet R© treatment).
Univariate statistical analysis consisted the calculation of fold
change and p-values (Wilcoxon Mann-Whitney test) for each
lipid compound between two conditions. Biomarker candidates
were identified as most statistically significant compounds (p-
value < 0.05) and most fold-changed compounds (fc ≥ 1.5
vs. fc ≤ 1/1.5). For machine learning analysis, normalized
compound areas were scaled and centered. Biomarker candidates
were identified through recursive feature elimination based
on RF algorithm using five times 10-fold-cross-validation to
validate results, and setting the search for the 10 best predictors.
Predictors were used in constructing supervised learning models
for each comparison. RF, SVM, and NNet were chosen. Each
model was trained on a 60% subset of the whole dataset,
and validation of the training set was performed through 10-
fold-cross-validation repeated five times. Features’ importance
was evaluated. Receiver-operating characteristic curves were
computed, to compare models, to identify the best probability
threshold, and above all to assess the goodness of fit of the model.
The trained models were applied on test sets, corresponding to
the 40% of datasets not used in training. Metrics were computed
on models applied on test sets to confirm their performances.
Analysis was performed through R (version 4.0.2), using packages
“stats” (R Core Team, 2020) and “caret” (Kuhn, 2020). Dataset
splitting, machine learning pipeline, and metrics computation are
graphically explained in Supplementary Figures 1–3.

RESULTS

Samples Classification
The whole dataset (66 specimens equally belonging to cv
Ogliarola salentina, O, and cv Leccino, L) sampled in three
localities of Apulia (Nardò, Lizzano, and Galatone) were clustered
as OQDS +, that is, olive trees showing symptoms of OQDS
(sampled in Nardò); OQDS-, asymptomatic olive trees (sampled
in Lizzano) and olive trees showing symptoms of OQDS and

TABLE 2 | Statistically significant compounds (X vs. H). P-value < 0.05
(Wilcoxon-Mann-Whitney test). Fold change ≥1.5 or ≤1/1.5. AUC (area under the
curve) value of predictors selected by machine learning analysis (see Figure 1,
Supplementary Figures 4,5 A–C and Supplementary Tables 1, 2).

Compounds Fold change log2fc p-Value log10p AUC

DAG36:4(18:1/18:3) 4.111 2.040 6.72E-16 15.173 0.966301

C18:2 13.243 3.727 4.31E-15 14.366 0.956113

C18:3 7.886 2.979 2.15E-14 13.667 0.934169

C18:1 7.888 2.980 7.86E-14 13.105 0.922414

13-HOTrE 2.978 1.575 3.45E-10 9.462 0.880094

9-HODE 2.290 1.195 1.72E-08 7.765 0.85181

13-HODE 3.180 1.669 1.52E-08 7.817 0.846395

9,10-DiHOME 3.235 1.694 1.62E-08 7.791

9-HOTrE 2.451 1.293 7.28E-07 6.138

9-OxoODE 1.576 0.657 4.90E-07 6.310

9-OxoOTrE 1.653 0.725 1.33E-05 4.878
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FIGURE 1 | Xf-positive vs. Xf-negative (X vs. H) analysis of the lipid dataset. The left panel shows statistically significant compounds: on the x-axis, there is the
−log10(p-value), on the y-axis compound names. The vertical dashed lines correspond to, respectively, −log10(0.05), −log10(0.01), and −log10(0.001).
Compounds under the first threshold are represented as transparent, compounds above the threshold are in full colors. Circle dimensions are proportional to fold
changes. On the right panel, x-axis there is the log2(fold-change), on the y-axis compound names. The right panel points out compounds with the biggest fold
changes, represented in full colors, while compounds with a fold change ≥1.5 or ≤1.5 are transparent. Circle dimension is proportional to −log10(p-value).
RF-based feature selection is used to obtain the top five predictors for machine learning analysis and, after five times 10-fold-cross-validation, the chosen features
are indicated in Supplementary Figure 4 and Supplementary Table 2. These features are used to train three learning models based on different algorithms: RF,
SVM, and NNet. The models are validated through 10-fold-cross-validation five times, and they all are performing well, with AUCs > 0.9: RF is the best model
(Supplementary Figures 5A–C). The importance of the selected features (Supplementary Table 2) in X vs. H classification task is confirmed by applying the
trained models on the test set with a default threshold of 0.5. The metrics for RF are very good, while SVM and NNET are less performing even though significant
(Supplementary Table 1). phosphatidylglycerol (PG), phosphatidylcholine (PC), monoacylglycerol (MAG), diacylglycerol (DAG), stearic acid (C18:0), oleic acid
(C18:1), linoleic acid (C18:2), linolenic acid (C18:3), palmitic acid (C16:0), palmitoleic acid (C16:1), oxo-octadecatrienoic acid (OxoOTrE), oxo-octadecenoic acid
(OxoODE), hydroperoxyoctatrienoic acid (HOTrE), hydroxyoctadecenoic acid (HODE), (DiHOME), hydroperoxyoctamonoenoic acid (HpOME). Notation for FAs and
oxylipins (OM/D/TrE) is reported as indicating the carbon number (CN) and the number of double bond (DB) equivalents (e.g., C18:1 is oleic acid and HODE is
hydroxyoctadecenoic).

treated with Dentamet R© (sampled in Galatone). We aimed to
classify these samples according to the presence or absence of Xf.
This was assessed by real-time PCR (Harper et al., 2010). Results
(Table 1) indicated that in 26 OQDS + samples (14 L and 12
O) Xf was present (from here named LX or OX); in 22 samples
treated with Dentamet R© (11 L and 11 O) Xf was present (from
here named DX); in 18 OQDS- samples (8 L and 10 O) Xf was
absent (from here named LH or OH).

Lipidomic Analysis
Xf-positive vs. Xf-negative (X vs. H): Oxylipins,
Diffusible Signaling Factor, and DAG as Hallmarks of
Infection
The RF, SVM, and NNeT models chosen for the analysis
of the lipid dataset are reported in Supplementary Table 1.
Statistically significant compounds (Table 2 and Figure 1)

are 9-LOX derived oxylipins [9-hydroxyoctadecenoic acid
(9-HODE), 9-hydroperoxyoctatrienoic acid (9-HOTrE), 9-
OxoODE, 9-OxoOTrE, 9,10-DiHOME], 13-LOX-derived
oxylipins [13-hydroxyoctadecenoic acid (13-HODE), 13-
hydroperoxyoctatrienoic acid (13-HOTrE)], free fatty acids
(C16:1, C18:1, C18:2, C18:3), and diacylglycerols (DAG36:4
with two C18:2 or with C18:1/C18:3 moieties, DAG36:3 with
C18:1/C18:2 moieties). The chosen features for machine learning
are reported in Supplementary Figure 4 and Supplementary
Table 2. The models were performing well, with the area under
the curves (AUCs) close to 1 and RF was the best model for the
training set and the test set (Supplementary Figures 5A–C and
Supplementary Table 2).

Among these, 9- and 13-oxylipins, the C18 unsaturated fatty
acids, and the DAG36:4 (18:1/18:3) had the most evident fold
change in the X samples. The results showed the increase in 9-
LOX and 13-LOX oxylipins, together with the increase in C18:1,
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C18:2, and DAG36:4 (18:1/18:3). These results were consistent
with HPLC/MS-MS-targeted analysis performed on olive pools
(120 adult trees of Ogliarola salentina naturally infected or not
with Xf) from Salento in 2017 (Scala et al., 2020).

Xf-Positive vs. Xf-Negative in Ogliarola (OX vs. OH)
Comparison Highlighted 13-Oxylipins
The 13-oxylipins resulted as the most discriminant entities
instead of DAG (check for comparison Table 3 and
Supplementary Figure 6). The chosen features for machine
learning are indicated in Supplementary Figure 7 and
Supplementary Table 3. The model was validated through
10-fold-cross-validation for five times, and they all were
performing well, with AUCs = 1 for SVM and NNet,
which outperformed RF, having anyway an AUC close to 1
(Supplementary Figures 8A–C). The importance of the selected
features in Xf -positive/Xf -negative classification task was
confirmed by applying the trained models on the test set with
a default threshold of 0.5. The metrics were excellent for all
models, with a sensitivity = 1 and a balanced accuracy of 0.94
(Supplementary Table 1).

Xf-Positive vs. Xf-Negative in Leccino (LX vs. LH)
Comparison Highlighted 13-Oxylipins, C18 Mono-
and Polyunsaturated Fatty Acid, and DAG
The univariate analysis for the LX vs. LH comparison revealed
pretty the same results as X vs. H and OX vs. OH comparison
(Table 4 and Supplementary Figure 9). The chosen features
for machine learning are indicated in Supplementary Figure 10
and Supplementary Table 4. RF and SVM-trained models were
perfect classifiers, outperforming NNet, which was close to the
perfect classifier (Supplementary Figures 11A–C). Nevertheless,
these models had performed worse on the test set, with a

TABLE 3 | Statistically significant compounds (OX vs. OH). p-Value < 0.05
(Wilcoxon-Mann-Whitney test). Fold change ≥1.5 or ≤1/1.5. AUC (area under the
curve) value of predictors selected by machine learning analysis (see
Supplementary Figures 6–8 A–C and Supplementary Tables 1, 3).

Compounds Fold change log2fc p-value log10p AUC

13-HODE 3.517399 1.814509 7.86E-14 13.104845 1

13-HOTrE 3.483829 1.800674 1.03E-13 12.9886274 1

DAG36:4
(18:1/18:3)

5.120636 2.356323 3.30E-15 14.4820751 1

C18:1 10.550776 3.399277 4.50E-14 13.3467288 0.994048

C18:2 14.746962 3.882346 2.83E-13 12.5480291 0.994048

C18:3 9.806813 3.293784 1.33E-13 12.87454 0.994048

DAG36:4
(18:2/18:2)

1.576154 0.656408 1.34E-14 13.873581 0.994048

DAG36:3
(18:2/18:1)

1.686752 0.754248 5.96E-14 13.2246473 0.991071

9-HODE 2.040263 1.028755 3.35E-09 8.47536291 0.979167

9,10-DiHOME 3.656860 1.870605 0.000182 3.73997161

9-HOTrE 2.438763 1.286149 2.59E-06 5.58742431

9-OxoOTrE 1.620215 0.696185 0.005434 2.26487146

C16:1 1.597930 0.676205 5.95E-05 4.22537613

TABLE 4 | Statistically significant compounds (LX vs. LH). P-value < 0.05
(Wilcoxon-Mann-Whitney test). Fold change ≥1.5 or ≤1/1.5. AUC (area under the
curve) value of predictors selected by machine learning analysis (see
Supplementary Figures 9–11 A–C and Supplementary Tables 1, 4).

Compounds Fold change log2fc p-value colog10p AUC

DAG36:4
(18:1/18:3)

3.233282 1.692999 1.62E-06 5.78981954 1

C18:2 11.613076 3.537678 4.42E-07 6.35451662 0.993333

C18:3 6.468369 2.693402 2.89E-05 4.53927894 0.933333

13-HODE 3.132053 1.647109 1.70E-07 6.76949541 0.926667

C18:1 6.159419 2.622794 0.000168 3.77516304 0.88

9-OxoOTrE 1.697533 0.763439 0.000782 3.10683115 0.786667

9-HOTrE 2.692495 1.428944 0.00032 3.49479644 0.776667

13-HOTrE 2.519389 1.333074 0.006039 2.21901933

9,10-
DiHOME

2.823605 1.497538 0.000168 3.77516304

9-HODE 2.465888 1.302107 0.006613 2.17958842

9-OxoODE 1.749028 0.806554 0.013275 1.87697959

TABLE 5 | Statistically significant compounds (O vs., L). P-value < 0.05
(Wilcoxon-Mann-Whitney test). Fold change ≥1.5 or ≤1/1.5. AUC (area under the
curve) value of predictors selected by machine learning analysis (see
Supplementary Figures 12–14 A–C and Supplementary Tables 1, 5).

Compounds Fold change log2fc p-value Colog10p AUC

13-HODE 2.831960 1.501801 2.93E-13 12.5337425 0.92125

C18:2 0.653510 –0.613718 0.036505 1.43764782 0.547188

C18:3 0.594873 –0.749347 0.020159 1.69552099 0.540313

default threshold of 0.5, if compared with the previously analyzed
comparisons (Supplementary Table 1).

Ogliarola vs. Leccino (O vs. L) Discriminated by
13-Oxylipins and C18 Polyunsaturated Fatty Acids
The statistically significant compounds (Table 5 and
Supplementary Figure 12) were 9-LOX- and 13-LOX-derived
oxylipins (9-HOTrE, 13-HODE) and free fatty acids (C18:0,
C18:1, C18:2, C18:3). Oxylipins had a positive fold change, while
fatty acids had a negative one. 13-HODE seemed to be the lipidic
discriminant between the two cultivars. The chosen features
for machine learning are shown in Supplementary Figure 13
and Supplementary Table 5. The models were performing well,
with AUCs > 0.9 (Supplementary Figures 14A–C). RF was the
best model for the training set and performed very well also
on test set, with a default threshold of 0.5, but SVM and NNet
outperformed RF on the test set, with NNet being close to the
perfect classifier (specificity = 0.96, sensitivity = 1, precision = 1,
balanced accuracy = 0.98) (Supplementary Table 1).

Ogliarola vs. Leccino Xf-Positives (OX vs. LX)
Discriminated by 13-HODE
The statistically significant compound (Table 6 and
Supplementary Figure 15) was 13-HODE. Other compounds,
such as 9-oxylipins (e.g., 9-HOTrE) and P/UFA, had a
fold change and a statistical significance near the range
imposed. Nevertheless, these and other compounds were
the chosen features by machine learning as reported also
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TABLE 6 | Statistically significant compounds (OX vs. LX). p-Value < 0.05
(Wilcoxon-Mann-Whitney test). Fold change ≥1.5 or ≤1/1.5. AUC (area under the
curve) value of predictors selected by machine learning analysis (see
Supplementary Figures 15–17 A–C and Supplementary Tables 1, 6).

Compounds Fold change log2fc p-value Colog10p AUC

13-HODE 3.019481 1.594301 6.08E-14 13.2160983 0.982143

TABLE 7 | Statistically significant compounds (OH vs. LH). p-Value < 0.05
(Wilcoxon-Mann-Whitney test). Fold change ≥1.5 or ≤1/1.5. AUC (area under the
curve) value of predictors selected by machine learning analysis (see
Supplementary Figures 18–20 A–C and Supplementary Tables 1, 7).

Compounds Fold change log2fc p-value Colog10p AUC

13-HODE 2.688685 1.426901 2.74E-10 9.56276094 1

9-HOTrE 1.622176 0.697931 2.74E-10 9.56276094 1

C18:1 0.442457 –1.176392 0.001028 2.98812671 0.916667

C18:2 0.558336 –0.840796 0.012294 1.91032049 0.908333

C18:3 0.428582 –1.222357 0.000186 3.72953922 0.883333

in Supplementary Figure 16 and Supplementary Table 6.
The models were performing well with AUCs close to 1
(Supplementary Figures 17A–C). SVM was the best model
for the training set, while NNet was the best on the test set
(Supplementary Table 1).

Ogliarola vs. Leccino Xf-Negatives (OH vs. LH)
Discriminated by 9- and 13-Oxylipins and Reduction
of C18 Polyunsaturated Fatty Acids
The statistically significant compounds (Table 7 and
Supplementary Figure 18) were 9-LOX- and 13-
LOX-derived oxylipins (9-HOTrE, 13-HODE), free
fatty acids (C18:1, C18:2, C18:3), and diacylglycerols
DAG36:3(18:2/18:1), DAG36:4(18:1/18:3), DAG36:4(18:2/18:2),
and DAG36:2(18:1/18:1). Anyway, as for O vs. L and OX vs.
LX, also in OH vs. LH comparison DAGs had few relevant
folds change and only oxylipins had a fold change >1.5. This
was true for 13-HODE considering all cultivar comparisons,
while for 9-HOTrE this was true only in the OH vs. LH
comparison. The chosen features for machine learning were
C16:1, C18:1, C18:3, 9-HOTrE, 13-HODE, 10-HpOME,
DAG36:2(18:2/18:0), DAG36:3(18:2/18:1), DAG36:4(18:1/18:3),
and DAG36:4(18:2/18:2) as reported also in Supplementary
Figure 19 and Supplementary Table 7. RF was very close
to the perfect classifier upon training test (Supplementary
Figures 20A–C), but SVM and NNet were the perfect classifiers
on the test set (Supplementary Table 1).

Dentamet R© Treated vs. Untreated Xf-Positives (DX vs.
NDX) Discriminated by Modulation of Lipoxygenase
and Dioxygenase Oxylipins
The statistically significant compounds (Table 8 and
Supplementary Figure 21) were 9-LOX- and 13-LOX-derived
oxylipins (9-OxoODE, 9-HOTrE,13HOTrE, 12,13-DiHOME),
free fatty acids (C16:0, C18:0, C18:1), 10DOX-derived
oxylipins (10-HpOME), monoacylglycerols (MAG18:0), and
diacylglycerols [DAG36:3(18:2/18:1)]. Only oxylipins had a

TABLE 8 | Statistically significant compounds (DX vs. NDX). P-value < 0.05
(Wilcoxon-Mann-Whitney test). Fold change ≥1.5 or ≤1/1.5. AUC (area under the
curve) value of predictors selected by machine learning analysis (see
Supplementary Figures 21–23 A–C and Supplementary Tables 1, 8).

Compounds Fold change log2fc p-value Colog10p AUC

12,13-DiHOME 0.575100 − 0.798116 1.88E-13 12.725417 0.914352

DAG36:4
(18:1/18:3)

1.149619 0.201155 0.006161 2.210325 0.912616

DAG36:3
(18:2/18:1)

1.180973 0.239975 1.25E-12 11.902883 0.912616

13-HOTrE 0.7022324 − 0.509980 0.022419 1.6493758 0.810185

10-HpOME 0.454825 − 1.136617 2.49E-07 6.6034695 0.769676

9-OxoODE 1.587522 0.666776 0.000122 3.9136477 0.768519

C18:0 0.705027 − 0.504250 8.52E-07 6.0693574 0.744213

C16:0 0.729496 − 0.455027 0.000619 3.2079756 0.726852

13-HODE 0.522108985 − 0.937577 0.009958 2.001846 0.616898

C18:1 1.314170 0.394152 0.03267 1.4858567 0.607639

9-HOTrE 2.146936 1.102279 5.81E-06 5.2359543

9,10-DiHOME 0.694181 − 0.526616 0.03451 1.4620545

MAG18:0 0.994803 − 0.007517 0.00024 3.6202988

fold change ≥1.5 or ≤1.5. Precisely, 9-OxoODE and 9-HOTrE
were positively increased, while 13-HODE, 13-HOTrE, 12,13-
DiHOME, and 10-HpOME were decreased. The decrease in
10-HpOME could be a cue of Dentamet R© action against Xf
vitality. As well as the decrease in 13-HODE and 13-HOTrE and
the increase in 9-HOTrE, that is, the LOX-derived oxylipins.
The alteration (↓10-HpOME; ↓13-HOD/TrE; ↑9-HOD/TrE)
of these compounds in the Dentamet R©-treated samples could
be correlated with the beneficial effects of this treatment. The
chosen features for machine learning were C16:0, C18:0, C18:1, 9-
OxoODE, 13-HODE, 13-HOTrE,12,13-DiHOME, 10-HpOME,
DAG36:3(18:2/18:1), and DAG36:4(18:2/18:2) as indicated in
Supplementary Figure 22 and Supplementary Table 8. RF and
NNet were very close to the perfect classifier upon training test
(Supplementary Figures 23A–C), and they were the perfect
classifier on the test set (Supplementary Table 1).

Bioinformatic Analysis of RNAseq Data
Files
For bioinformatic analysis, we used RNAseq files from the
published study (Giampetruzzi et al., 2016), available online(see
text footnote 1). The authors performed a global transcriptomic
analysis to assess the differences between cultivars (Ogliarola
salentina and Leccino) and between Xf-positive and -negative
samples (Giampetruzzi et al., 2016). Starting from these files,
we performed a targeted transcriptomic analysis focusing
on the lipid metabolism-related genes. Several comparisons
were assessed among the samples, namely, X vs. H, OX
vs. OH, LX vs. LH, O vs. L, OX vs. LX, and OH vs.
LH. The analysis revealed that, in the X vs. H comparison,
the lipid genes pathways of the olive samples appeared
severely altered in consequence of Xf presence. In particular,
(1) acyltransferases, putatively involved in the synthesis of
phosphatidic acid (PA, a well-known plant defense modulator);
(2) phospholipases, active in providing free fatty acids and
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FIGURE 2 | Volcano plot of X vs. H comparison. X-axis: log2 of genes fold change. Y-axis: −log10 of the adjusted p-value. The vertical red dashed line is set on
x = 0, separating downregulated genes (left side) from upregulated (right side). The horizontal red dashed line is set on y = −log100.05, as a threshold for statistically
significant genes. The gene names reported in the volcano plot are filtrated from the RNA-seq data available in the de novo.cnag.cat Olea europea directory
(https://denovo.cnag.cat/olive_data?fid~=~161#block-likable-page-title). The annotation is carried out by gene ontology guidelines as reported in Giampetruzzi
et al., 2016. Starting from the protein annotation dataset, we design a subset by functional category to find gene’s transcripts involved in the fatty acid metabolism,
including the hypothetical ones.

other signal molecules (such as PA and glycerol-3-phosphate;
Siebers et al., 2016); and (3) lipoxygenases, active in transforming
PUFA into antimicrobial or hormonal molecules (such as
jasmonates; Wasternack, 2007; Figure 2). The analysis of
the OX vs. LX comparison revealed at least two 13-LOX
upregulated and two 9-LOX downregulated in Ogliarola
salentina compared to Leccino (Supplementary Table 9 and
Supplementary Figure 24).

DISCUSSION

Previous studies (Scala et al., 2020) compared Xf -positive and
Xf -negative olive sample pools, identifying putative infection
biomarkers in cv Ogliarola salentina: the compounds were
oleic/linoleic/linolenic acid-deriving oxylipins [(9-HODE;
9-HOTrE; 13-HODE; 13-HOTrE; 13-oxo-octadecenoic acid
(13-oxoODE); 10-hydroxyoctadecenoic acid (10-HODE); 10-
hydroperoxyoctamonoenoic acid (10-HpOME)], unsaturated
fatty acids (oleic acid—C18:1; linoleic acid—C18:2); and
diacylglycerol [DAG36:4 (18:1/18:3)]. Oleic acid is among the
modulators of quorum sensing in Xf while DAG-associated

compounds (e.g., DAG 36:2) establish an appropriate
defense response by inducing defense-signaling molecules
(Siebers et al., 2016; Scala et al., 2020). Oleic acid-derived
DOX-oxylipins have been reported to moderate the lifestyle
of P. aeruginosa (Martínez and Campos-Gómez, 2016), and to
affect in vitro biofilm formation in Xf (Scala et al., 2020). As
regards LOX-derived products, 9- and 13-oxylipins proved to
modulate biofilm formation in vitro (Scala et al., 2020), at least at
the tested concentrations (8 µM to 0.8 mM).

With this study we aim to search for the lipid determinants
related to Xf infection, olive tree cvs [Ogliarola salentina (O)—
susceptible to OQDS and Leccino (L)—resistant to OQDS]
and treatment with Dentamet R© under open field conditions.
Regarding this, we study a big dataset represented by 66
olive trees (Table 1) belonging to the two cultivars, which
are healthy (H), naturally infected by Xf (X), and, specifically
to this latter, treated or not with Dentamet R© (DX; Scortichini
et al., 2018; Tatulli et al., 2021). RF, SVM, and NNet are
applied successfully in lipidomic data analysis to build robust
models for infection, cultivar, and treatment discrimination and
biomarker selection. 9- and 13-LOX-derived oxylipins, free fatty
acids (C16:1, C18:1, C18:2, C18:3), and some diacylglycerols
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FIGURE 3 | Proposed outline of the lipid metabolism in the two cultivars Ogliarola salentina (O) and Leccino (L) in healthy (H) and in X. fastidiosa-infected (X) olive
trees; these latter treated (DX) or untreated (NDX) with Dentamet R©. Complex lipids (e.g., diacylglycerides) cleaved by lipases produce free fatty acids (e.g.,
oleic/linoleic/linolenic acids) that, in turn, are oxidized by enzymes like lipoxygenases (LOX) and dioxygenases (DOX; LDS) and epoxygenases (EpOX) to produce
oxylipins [e.g., 9-hydroxyoctadecenoic acid (9-HODE) and 10-hydroperoxyoctamonoenoic acid (10HpOME)].

[especially DAG36:4(18:1/18:3)] are revealed as predictors of the
different thesis.

In olive trees, we provided a scenario of lipid pathways
leading to the formation of oxylipins during the infection in
the Ogliarola salentina (Scala et al., 2020). This study confirms
the importance of these lipid pathways using a new set of trials
including (Leccino) and treatment able to alleviate OQDS. The
comparison of the dataset of infected (X) vs. non-infected (H)
olive trees confirms biomarkers of the X. fastidiosa infection
and suggests their position in the complex lipid pathway as
illustrated in Figure 3. Complex lipids, such as diacylglycerides,
appear crucial in several pathosystems for the onset of plant
defenses (Siebers et al., 2016). DAG36:4(18:1, 18:3) is induced
by Xf (up to approximately fivefolds). Complex lipids provide a

substrate for lipases/esterases to produce active compounds, such
as oxylipins and hormones. LesA, a lipase/esterase produced by
different subspecies of Xf, is among the most secreted virulence
factor during the interaction with the hosts (Nascimento et al.,
2016; de Souza et al., 2020). The bioinformatic analysis (Figure 2)
on the RNAseq data of Giampetruzzi et al. (2016) indicates that
several lipases are differentially expressed in olive trees infected
by Xf. This result suggests that in X vs. H the increase in C18:1,
C18:2, and C18:3 could derive from DAGs and by lipases activity
(Figures 2, 3). These free fatty acids are active molecules in
plant defenses, and C18:1 modulates the expression of genes with
antivirulence activity in several bacteria (Chowdhury et al., 2021).
C18:2 possesses an antibiofilm effect in humans’ pathogenic
bacteria (Lee et al., 2017) while C18:3 is the main substrate
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for the synthesis of the defense-hormones jasmonates relevant
even in Pierce’s disease (Choi et al., 2013; Siebers et al., 2016).
The accumulation of these P/UFA appears related to the defense
reaction of olive trees against Xf. Nonetheless, oleic, linolenic,
and linolenic acids are substrates for the synthesis of hormone-
like oxylipins. These compounds have already been recognized
as crucial in controlling the lifestyle of P. aeruginosa (Martínez
and Campos-Gómez, 2016). Xf infection triggers the expression
of several fatty acid oxidases in olive trees, that is LOX, DOX, and
CYP450 monooxygenases (Giampetruzzi et al., 2016). Oxylipins
derived from the LOX pathway, such as 9/13-HOD/TrE, and
from epoxygenases, such as 9,10 diHOME, are triggered in
OQDS trees (Figures 1, 3) while others are depressed (i.e.,
9-oxoOD/TrE). This picture is a sort of “oxylipins signature”
of the infection. The oxylipins that increase during infection
(Table 2) could affect Xylella lifestyle (i.e., promoter of biofilm),
have antibacterial activity (Mundt et al., 2003), and promote
oxidative stress (9,10-di HOME; Gabbs et al., 2015). The oxylipins
that decrease in the infected samples (e.g., 9-oxoODE and
9-oxoOTrE) are plant growth promoters and enhancers of
resistance to multiple stresses (Ihara et al., 2021; Table 2 and
Figure 3).

Focusing on the Ogliarola salentina versus Leccino
comparisons (O vs. L or OX vs. LX or OH vs. LH), other
lipid entities discriminate the two cultivars, namely, the different
accumulation of LOX-oxylipins and of P/UFA. We can speculate
that the higher degree of 13-oxylipins with Xf infection appears
as varietal traits of Ogliarola salentina at least in comparison
with Leccino (Table 6). The two varieties differ even in the
healthy status; specifically, 13-HODE and 9-HOTrE are higher,
whereas P/UFA are lower in OH vs. LH (Table 7). Xf could find
a “lipid profile” in healthy trees that support susceptibility of
Ogliarola salentina compared to Leccino. Probably, these lipids
are essential in modulating the occurrence of OQDS symptoms.

After Xf infection, 9-LOX-derived oxylipins do not
significantly differentiate the two cultivars (Supplementary
Figure 15) while 13-oxylipins are confirmed as Xf infection
biomarker of Ogliarola salentina. Bioinformatic analysis of
RNAseq data of Giampetruzzi et al. (2016) supports this result,
namely, at least two hypothetical 9-lox are found downregulated
and two 13-lox upregulated in Xf -infected samples, that is, OX
vs. LX. Vellosillo et al. (2007) found that the inactivation of the 9-
LOX signaling pathway augmented bacterial growth and reduced
the activation of the salicylic acid-inducible defense genes in
Arabidopsis infected with P. syringae pv. tomato (Pst) DC3000.
In the same pathosystem, Vicente et al. (2012) demonstrated that
9-LOX derivatives promote plant defenses-reducing bacterial
symptoms. The role of the 13-HODE is trickier to explain since
few information on its role in the plant-bacteria interaction is
available. This oxylipin in mammals has a cell proliferative effect
and an antibacterial activity against human bacterial pathogens,
such as Staphylococcus aureus (Mundt et al., 2003). Moreover,
in our previous study, the 13-HODE behaves as a promoter of
biofilming in Xf (Scala et al., 2020).

The results of the lipidomic analysis of the DX samples suggest
that Dentamet R© can reshape lipid profile in the Xf -infected olive
trees. Besides, Dentamet R© reduces the load of Xf into infected

samples and OQDS symptoms (Tatulli et al., 2021). Dentamet’s
effect results are evident in the decrease in 13-HODE, 13-HOTrE
(putatively of plant origin) and 10-HpOME (probably of bacterial
origin), and an increase in 9-HOTrE. Thus, we can figure out
that Dentamet R© reduces the bacterial titer and causes a general
reassortment of the oxylipin pathways in olive trees as well as in
Xf. Even though the decrease in 10-HpOME – a bacterial oxylipin
(Martínez and Campos-Gómez, 2016) – could be a cue to explain
the action of Dentamet R© against Xf vitality, less trivial appear the
up-/downmodulation of the other LOX-oxylipins. The decrease
in 13-LOX and the increase in 9-LOX products in Dentamet R©-
treated samples should be further investigated. The reported
beneficial effect of Dentamet R© on infected trees could be due, in
addition to the bactericidal activity of this compound (Scortichini
et al., 2018; Tatulli et al., 2021), to the capability of this treatment
to enhance plant defenses via 9-oxylipins (Vicente et al., 2012).

Previous metabolomic studies about Xf -infected olive trees
were focused on secondary metabolites and found azelaic acid
(AZA; Nicolì et al., 2019) and quinic acid (Girelli et al., 2019) as Xf
infection biomarkers. Notably, AZA can be synthesized via ROS
acting on C18 membrane lipids (Vlot et al., 2021), supporting
our findings in the X vs. H comparison that clearly indicate the
accumulation of C18.

It is evident that the combinational usage of multiple
univariate, multivariate, and machine learning methods
may provide more comprehensive information for a global
understanding of the metabolomics or other “omics” data. This
study suggests that machine learning algorithms could empower
the research of biomarkers of different biological systems,
combining the precise information from HPLC-MS/MS with
fined-tuned prediction models. Owing to the great potential
of this approach, prospective studies are needed to broaden
its application to a larger scale, maybe switching from HPLC-
MS/MS to the faster DI-MS/MS, in combination with molecular
techniques, never forgetting that the use of machine learning
algorithms is case-sensitive and requires careful evaluation
before applying them to a particular task. Moreover, lox genes
can be factors in modulating olive trees defenses to Xf and can
be a target for plant-bacteria interaction study in the model
organism as Arabidopsis.
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