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Abstract
When pandemics like COVID-19 spread around the world, the rapidly evolving situation 
compels officials and executives to take prompt decisions and adapt policies depending on 
the current state of the disease. In this context, it is crucial for policymakers to always have 
a firm grasp on what is the current state of the pandemic, and envision how the number of 
infections and possible deaths is going to evolve shortly. However, as in many other situ-
ations involving compulsory registration of sensitive data from multiple collectors, cases 
might be reported with errors, often with delays deferring an up-to-date view of the state 
of things. Errors in collecting new cases affect the overall mortality, resulting in excess 
deaths reported by official statistics only months later. In this paper, we provide tools for 
evaluating the quality of pandemic mortality data. We accomplish this through a Bayesian 
approach accounting for the excess mortality pandemics might bring with respect to the 
normal level of mortality in the population.
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1  Introduction

Historically, human populations have always dealt with major outbreaks of infectious dis-
eases and effective reaction to these outbreaks has always been sought. The numerous 
black plague outbreaks in Europe in medieval and post-medieval times, the cholera pan-
demic in the late nineteenth- early twentieth century, and the Spanish flu in the early twen-
tieth century are only a few examples in modern history.

However, the COVID-19 pandemic, which brought the world close to a halt in 2020 and 
2021 and killed almost seven million people as of early 2023, has brought to light a new 
reality of a global pandemic never experienced before.

Worldwide governments initially underscored its urgency and their healthcare systems 
were quickly overwhelmed in a tsunami-like fashion. Nearly all of the affected countries 
progressively implemented measures to slow down the spread of the virus, ranging from 
recommending social distancing to introducing national lockdowns of social and economic 
activity.

These measures eventually proved to be effective, allowing numerous countries to relax 
restrictions, in an attempt to gradually return to normality. At the same time, with the threat 
posed by the virus still looming, decision-makers were forced to strike a balance between 
epidemiological risk and allowance of socioeconomic activity. In this type of context, sur-
veillance of the number of new infections, mortality monitoring and quantification of the 
effects of social distancing became increasingly important (Colombo et al. 2020; Kantner 
and Koprucki 2020; Wu et al. 2020), particularly so at the regional level. Given the local 
nature of the phenomenon, such a regional view appears to be of crucial importance. One 
of the difficulties lies in the fact that exact numbers of new infections, reported deaths and 
recoveries from the disease are often available only with a certain probability to be later 
corrected or are reported with a delay of—sometimes—several days. Moreover, there are 
discrepancies among data reported at different levels (regional, provincial, etc.) sometimes 
crucially causing wrong responses to face the pandemic.

Another important aspect to keep in mind is that the deaths due to COVID-19 nation-
wide are underestimated by official data because the deaths of people who have not been 
tested for the disease are not counted. In addition, the pandemic had an indirect effect on 
mortality, preventing timely treatment for other diseases or limiting preventive examina-
tions that could have anticipated critical situations. For all these reasons, official data on 
COVID-19 deaths in some countries were fairly inadequate to measure the effect of the 
pandemic (Covid-19 Excess Mortality Collaborators 2022). In aid of this, the World Health 
Organization (WHO) suggests studying excess mortality to assess the death burden (both 
direct and indirect) of COVID-19. Excess mortality refers to the number of deaths from 
all causes during the pandemic more than what we would have expected under “normal” 
conditions, which is a valid measure of the total effect of the COVID-19 pandemic (Beaney 
et  al. 2020). Worldwide studies on excess mortality have been deepened as reported in 
Msemburi et al. (2023) and Shang et al. (2022).

Multiple model-based mortality estimates have been proposed in the literature, (Beaney 
et al. 2020; Blangiardo et al. 2020; Maruotti et al. 2022; Michelozzi et al. 2020; Achilleos 
et al. 2022) at national, regional and also county level. Several studies have shown a critical 
increase in excess mortality for higher age groups and for males, see, for instance, Giber-
toni et al. (2021).

Excluding COVID-19, the ongoing global disease outbreaks reported by the WHO 
between 7/4/2022 and 7/4/2023 with at least one death are those listed in Table 1. Most 
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of the diseases are endemic, especially in Africa and Asia. Diseases first reported in the 
last 25 years are, apart from Sars-Cov2, Mers-Cov (first reported in 2012), the Nipha 
virus (first reported in 1999) and a new type of hepatitis in children (first reported in 
2022). Of the 16 diseases in an outbreak phase, 3 were first detected in the 18th century 
or before, 3 in the 19th century, 8 in the 20th century and 2 in the first 23 years of the 
21st century.

Hence, it is essential to consider the likelihood of future pandemics. These pandem-
ics may arise from various factors, such as global warming, as indicated in Christie 
(2021) where the author highlights the potential emergence of dangerous and unknown 
viruses from the thawing permafrost in Siberia. Additionally, advancements in intensive 

Table 1   Disease outbreaks with at least 1 death reported by WHO

7/4/2022—7/4/2023 (Source: Authors’ calculations from WHO data)

Affected country Last news update Virus (presumed year of first 
reporting)

Case fatal-
ity ratio 
(%)

Deaths per day

Saudi Arabia 7/4/2022 MERS-Cov (2012) 66.67 0.02
Several countries 12/7/2022 Severe acute hepatitis of 

unknown aetiology in children 
(2022)

2.18 0.23

Malawi 9/2/2022 Cholera (19th century) 3.28 3.59
Dem. Rep. of Congo 28/4/2022 Ebola (1976) 100.00 0.02
Australia 28/4/2022 Japanese encephalitis (1871) 12.00 0.02
Qatar 12/5/2022 MERS-Cov (2012) 50.00 0.002
Cameroon 16/5/2022 Cholera (19th century) 2.01 0.73
Iraq 1/6/2022 Crimean-Congo Fever (1940s) 13.40 0.09
African region 10/6/2022 Monkeypox (1970s) 4.69 2.57
Pakistan 17/6/2022 Cholera (19th century) 0.70 0.07
Somalia 20/7/2022 Cholera (19th century) 0.47 0.19
Ghana 22/7/2022 Marburg virus disease (1967) 100.00 2.00
Bangladesh 28/11/2022 Dengue (18th century) 0.43 0.71
Tanzania 12/8/2022 Leptospirosis (18th century) 20.00 0.12
African region 3/1/2023 Yellow fever (17th century) 8.79 0.12
Argentina 5/9/2022 Legionellosis (1977) 36.35 0.25
Uganda 8/12/2022 Ebola disease (Sudan virus) (1976) 38.73 0.72
Nepal 10/10/2022 Dengue (18th century) 0.14 0.14
Haiti 13/12/2022 Cholera (19th century) 2.07 4.35
Pakistan 13/10/2022 Dengue (18th century) 0.24 0.23
Pakistan 17/10/2022 Malaria (Paleogene period) – –
Lebanon 19/10/2022 Cholera (19th century) 11.11 0.29
Mauritania 20/10/2022 Rift Valley fever (early 1900s) 48.94 0.48
Niger 8/2/2023 Meningitis (19th century) 16.22 0.21
Dem. Rep. of Congo 10/2/2023 Cholera (19th century) 0.36 0.31
Bangladesh 17/2/2023 Nipah virus infection (1999) 72.73 0.20
Mozambique 24/2/2023 Cholera (19th century) 0.71 0.23
Equatorial Guinea 25/2/2023 Marburg virus disease (1967) 96.55 0.38
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farming and cultivation techniques pose a significant risk. Moreno-Madriñan and Kon-
towicz (2023) discuss how densely populated farming of single animal species can 
heighten the risk of mutation, re-assortment, and the generation of new pathogens. Fur-
thermore, the escalating trends in migration, urbanization, and global conflicts, as men-
tioned in Hoiby (2020), contribute to the complex landscape.

Given these factors, it becomes evident that addressing the ”data challenge” associated 
with pandemics should be regarded as one of the foremost global priorities. This imperative is 
underscored by the expectation that future pandemics may share similarities with COVID-19 
in terms of rapid spread, contagion rates, and societal impact. It is not a matter of chance that 
during the COVID-19 pandemic, among Western countries, those most hit had problems with 
their data collecting systems. Indeed, the viral characteristics of COVID-19 do not allow a 
clear country comparison for the efficiency of facing the pandemic. In fact, Martínez-Córdoba 
et al. (2021) found that European and American countries were less efficient than South Asian 
and African countries, but they also admitted that this was mainly due to demographic fea-
tures of the populations, hidden mortality in African and South Asian countries and the virus 
hitting mostly the elderly and fragile people. However, other viruses with similar contagion 
speeds and rates but hitting youngsters rather than the elderly might be hard to face if data col-
lection is not efficient.

In this work, our contribution to the literature on the monitoring of pandemics and in par-
ticular of COVID-19 can be summarized as follows. (i) The data collection concerned smaller 
areas where the virus spread than those provided by official statistics. This has allowed us 
to use space-time models in which the spatial component can be better represented and give 
a more appropriate forecasting contribution. (ii) The use of data quality metrics that better 
distinguish the different failures of how the pandemic was addressed allows us to provide 
more stringent information on how to address pandemics similar to COVID-19 in the future. 
Finally, (iii) the use of a model that reparametrizes the classic space-time model in terms of 
re-proportioning the variance (carried out through the choice of priors) allows us to better dis-
tinguish between the effects related to time, space and their interaction.

In this paper, we consider the bias between excess mortality and the official Italian COVID-
19 data in the first 2020 outbreak for evaluating data quality in a space-time context. We 
model this bias following the Bayesian framework where two different quality measures ought 
to be evaluated: (i) the share in the population dying because of a particular infectious disease 
without being officially reported, so large values of this measure represent a worse scenario, 
and (ii) the coverage of the pandemic by health systems, which can be considered an adequate 
indicator of their quality and a proxy for the efficacy of the crisis response. Among the factors 
explaining the bias variability, the focus is on detecting the most important component among 
spatial, temporal and interaction components.

The paper is organized as follows. Section 2 is devoted to a description of the data used, 
and Sect. 3 focuses on proposed metrics for quantifying bias in official death data. In Sect. 4 
we present the spatial, temporal, and spatio-temporal Bayesian model for the proposed met-
rics. The results are displayed in Sect. 5. Finally, Sect. 6 concludes the paper with an overview 
of possible future work.
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2 � Data

To evaluate the data quality of pandemic mortality in general and of COVID-19 mortality 
in particular, we considered two data sources: (i) official data on the pandemic evolution 
considering the essential variables for classic SE(I)RD models (daily or weekly new infec-
tions—i.e. cases—, susceptible, exposed, recovered and deceased people). Often a similar 
data collection starts ad hoc at the request of national and international organisms to face 
the pandemic as was the case for the COVID-19 pandemic. In the following, we refer to 
this data as official data. (ii) National or supranational statistical institute data on popula-
tion mortality. Henceforth, we refer to this data as ISTAT data as our main application will 
be on the Italian case, being ISTAT the Italian national statistical agency.

2.1 � Official data

In Italy, official data about deaths related to COVID-19 was reported daily from the 24th 
of February 2020 to the 30th of October 2022, at the European Union NUTS-2 level (i.e. 
regions), by the Italian Ministry of Health. While information about new cases was also 
published at the more refined NUTS-3 level (i.e. provinces), the number of daily COVID-
19 new deaths was not officially available at this level. Nevertheless, it was possible to 
reconstruct the time series of COVID-19 at NUTS-3 level indirectly, using other official 
sources like regional authorities’ daily bulletins on provincial new cases, hospitalization 
and deaths and other information sources (Ferrari et  al. 2021). Bulletins were published 
by most of the region authorities in a pdf format so we were able to scrape data from these 
documents and retrieve the data of interest for the majority of the Italian provinces.

Table 2 presents an example to understand the difference between the ISS-ISTAT offi-
cially daily reported data on COVID-19 deaths in the Marche region and data on COVID-
19 deaths reported on the regional bulletin which was scraped from the Marche regional 
government website. It can be noted from the example that ISS-ISTAT death data were 
always reported with a bit of delay compared to the bulletin data until a revision after two 
or three days.

In March 2022, ISTAT published data from Istituto Superiore di Sanità (ISS - the main 
public health institute in Italy) about the monthly evolution of COVID-19 deaths in each 
province. Using the regional weekly trends, it was possible to reconstruct an estimate for 
the weekly provincial COVID-19 officially reported deaths for the provinces which were 
missing from the scraped data (for example, the Lombardy region authority never pub-
lished daily bulletins on provincial deaths). This technique has also been applied for some 
provinces for which the data had been scraped but the discrepancy with this monthly report 
was significant for some provinces, especially those experiencing low levels of mortality.

Official data about deaths caused by COVID-19 is assumed to have been subject to 
delays, errors, inconsistencies between reporting protocols, etc. Moreover, it is sensible to 
assume that the data is affected by a systematic underestimation and is therefore biased as 
an estimate for actual COVID-19-related deaths: especially in the first pandemic stages, 
testing and care were not available for all people infected with the disease, and the official 
data only reflected the share of people that went through at least a minimal contact with 
the health system (Castaldi et al. 2020, 2021; Rivieccio et al. 2021). Of course, this bias is 
supposed to change over time, as well as space, and, in general, it is assumed to be directly 
proportional to the severity of the pandemic.
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Additionally, COVID-19 did not only cause deaths directly because of infection, but the 
burden on the health system caused by the pandemic prevented to cure of other diseases 
and accidents, causing indirect deaths of other individuals as well. Although lockdown 
measures might have prevented some of these ”traditional” causes of death, this aspect 
should nevertheless be taken into account when assessing the impact on mortality caused 
by COVID-19.

2.2 � ISTAT data

Each year, ISTAT provides a daily record of deaths reported in each municipality of Italy.1 
In this study, the ISTAT data is aggregated weekly by province: this is because the cor-
responding COVID-19 official data is affected by strong seasonality over the weekdays. 
This detailed time series data can help to estimate the actual deaths in 2020 caused by 
COVID-19, both directly and indirectly. A straightforward way to estimate this is through 
the concept of ”excess mortality”, i.e. the excess between the 2020 overall mortality and 
the average in the previous few years.

In this work, it is proposed to use a 5-year window for the period 2015-2019 to repre-
sent the stable mortality level. The excess mortality is then found by subtracting this stable 
level from the 2020 deaths data, in each province and week of the year. While the 2015-
2019 average will be smoother, the 2020 time series is subject to a greater amount of noise, 

Table 2   Example of differences in reporting daily deaths between ISTAT-ISS data and regional bulletin 
data

Date Deaths reported by regional bulletins Provinces Total from bul-
letins

Total from 
ISTAT-ISS

Diff.

Ancona Pesaro Fermo Ascoli Macerata

(1) (2) (3) (4) (5) (6)=sum[(1):(5)] (7) (8)=(7)-(6)

12/3/2020 2 3 0 0 0 5 4 – 1
13/3/2020 1 7 0 1 0 9 5 – 4
14/3/2020 6 3 0 0 1 10 9 – 1
15/3/2020 2 9 0 0 0 11 10 – 1
16/3/2020 0 9 1 0 2 12 11 – 1
17/3/2020 10 7 1 1 3 22 11 – 11
18/3/2020 2 18 0 0 3 23 23 0
19/3/2020 6 13 1 0 2 22 23 + 1
20/3/2020 6 11 0 0 0 17 22 + 5
21/3/2020 3 27 0 0 0 30 17 – 13
22/3/2020 5 14 0 0 0 19 30 + 11
23/3/2020 11 13 1 0 3 28 19 – 9
24/3/2020 11 16 0 0 5 32 28 – 4
25/3/2020 7 11 0 1 4 23 56 + 33
Total 72 161 4 3 23 263 269 + 5

1  Source: https://​www.​istat.​it/​en/​archi​vio/​268504.

https://www.istat.it/en/archivio/268504
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so we decided to apply minimal smoothing, consisting of a 3-week moving average, to 
make it more stable.

Since no other relevant information is available, this excess mortality can be imputed to 
COVID-19 and be an estimate for the actual number of deaths caused by COVID-19, both 
directly and indirectly. Indeed, in many works the indirect contribution of the excess mor-
tality due to COVID-19 is highlighted, see, for example, Dorrucci et al. (2021); Achilleos 
et al. (2022); Modig et al. (2021) and Vanella et al. (2021). Mixing this estimate for the 
actual number of deaths with the official data allows us to create measures for the under-
reporting bias present in official figures. Such metrics can be interpreted as a proxy for 
the quality of the health system response to the crisis and to assess how this evolved and 
changed over time and space. In the end, the spatial distribution of these metrics can be 
extremely useful for the policy-maker to identify hotspots from the health system network, 
with the best and worst response to the emergency. Finally, studying the local policies and 
procedures implemented in those highlighted areas can help in the definition of best prac-
tices for future emergencies and pandemics.

2.3 � Time window

In this study, we consider the period starting from the first day of COVID-19 official data 
release in Italy (February 24, 2020) until May 11, 2020, after 11 weeks, when the first 
national lockdown was lifted in Italy. We opted to consider this first wave window, as 
underreporting and overall data quality are at their lowest at the beginning of a pandemic 
for obvious reasons, and they tend to improve over time.

3 � Proposed metrics

In the context of what ? have defined as ”pandemetrics”, correctly reporting and monitor-
ing the evolution of pandemics is indeed a hard task, especially when pandemics spread 
suddenly and little is known about the origin, mode of transmission, triggering factors, etc. 
as was the case with the COVID-19 pandemic. Regarding the years in which this pandemic 
developed (2020–2022, mainly), there was enormous scientific production on many aspects 
of it, especially in finding ways to slow down its spread. One of the aims of this production 
also concerned errors in the detection and timing of the main elements that characterize 
the evolution of a pandemic. For example, ? provide a stable tool for monitoring current 
infection levels in situations involving compulsory registration of sensitive data and when 
cases are reported with delay to a central register, with this delay deferring an up-to-date 
view of the state of things. ? explored the powerful interaction of demography and current 
age-specific mortality for COVID-19, which is also something we used in our analysis. The 
analyses on evaluating errors in monitoring and reporting cases, recoveries and deaths are 
important as a criterion to decide which containment measures are appropriate (see, for 
example, ? to understand how a cross-country comparison about errors in collecting and 
analysing data can help in improving pandemic forecasting).

In our work, the metrics to be defined aim to provide an estimate for the under-reporting 
mortality bias that the official data has been subject to. However, there is no unique way to 
define such bias. Here, two different metrics with different interpretations for the policy-
makers are proposed.
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3.1 � Additive bias bA

Let Dij be the actual deaths in province i and week j due to COVID-19, either directly 
or indirectly. Let D̂ij be the officially reported total number of deaths in province i and 
week j, which exceeds the average deaths of the previous 5 years in the same week 
and province. Let Yij be the officially reported number of COVID-19-related deaths in 
province i and week j. Finally, let POPi be the average population in province i along 
the considered period. The additive bias is built starting from the difference between 
the actual mortality Dij∕POPi and the official mortality Yij∕POPi . This bias is defined as 
”additive” because it must be added to the official mortality to get the unbiased value:

Although, at least theoretically, we have that Dij ≥ Yij , b̃A,ij can take in practice negative 
values because D̂ij can take values lower than Yij and even be negative by design. Moreover, 
even assuming that D̂ij correctly estimates Dij , errors and delays potentially can occur in 
the reporting of Yij . Negative values of b̃A,ij can be removed and/or treated as 0.

In terms of interpretation, b̃A defines the share of the population that died because 
of COVID-19 without being reported in the official data, so large values represent a 
negative scenario. Its trend over time and space (but not its magnitude) is a rough proxy 
for the part of the pandemic that was concealed and undetected by the public admin-
istration. Also, it can be roughly interpreted for an individual in a population as the 
risk of dying because of COVID-19 before having access to the healthcare system due 
to capacity limits: this is, of course, dangerous for the population, since access to the 
healthcare system reduces the consequent risk of dying because of the disease. How-
ever, it is a personal risk because it does not consider the severity of the outbreak at 
each point in time and space, but it only assesses the remaining part of the pandemic 
that was unfortunately missed by the competent authorities.

For example, individuals from two populations with the same b̃
A
 have the same indi-

vidual risk of dying of COVID-19 outside of the healthcare system, but the system itself 
may have to deal with two very different situations in terms of the level of spread of the 
disease: hence, the same value of b̃

A
 can be considered a satisfactory result in one set-

ting but utterly unsatisfactory in others.
Overall, the bias can be interpreted as the damage or impact of under-reporting on 

the population’s well-being, but it is not an appropriate indicator of the quality of the 
healthcare system. In order to make this metric comparable with the metric bM which 
will be presented in the next Section, scaling is applied to the original formula:

3.2 � Multiplicative bias bM

The ratio between Yij and Dij assesses the probability of a COVID-19-related death being 
officially reported. To transform it into a biased metric, the complementary probability 

b̃A,ij =
D̂ij − Yij

POPi

bA,ij = 1000 ⋅ b̃A,ij = 1000 ⋅
D̂ij − Yij

POPi
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of not being reported is considered instead and called bMij
 . This is equivalent to the addi-

tive bias divided by the excess mortality rate:

This metric should also theoretically be bounded between 0 and 1, but for the same issues 
cited before, it can exceed these boundaries. Again, a larger bias indicates a bad situation. 
Regarding its interpretation, bM measures the coverage of the pandemic by the healthcare 
system, thus it is an adequate indicator of its quality and a proxy for the efficacy of the cri-
sis response.

The quality of the response is assumed to have been at least partially correlated to the 
evolving severity of the pandemic, e.g., a good emergency policy might nevertheless have 
performed poorly at the peak of the pandemic, while an ill-advised response policy may 
have exceeded expectations because of the negligibility of the crisis in the corresponding 
territory. As such, bM may take into account this aspect by relating bA,ij to the severity of 
the epidemic, i.e. Dij.

3.3 � Comparison

To better understand the difference between the two proposed metrics, their trend can be 
compared over time for the whole Italian territory. Figure  1 shows the metrics obtained 
using the raw data sources from ISTAT and the official COVID-19 bulletins. It is clear to 
see that the two trends are starkly different from each other.

On the one hand, bA has a bell-shaped trend, evidently correlated with the officially 
reported COVID-19 mortality (dashed line in the plot). As expected, this suggests that 
underreporting is a bigger issue during the worst period of a crisis, while the reported data 
becomes less biased as the situation is progressively better managed. However, bA only 
evaluates the severity of the underreporting and does not capture the goodness of the 
reporting system despite the severity of the crisis.

bM,ij = 1 −
Yij

D̂ij

=
bA,ij

D̂ij∕POPij

Fig. 1   Temporal trend of b
A
 and b

M
 for Italy. The dashed line in the left-hand plot represents the official 

COVID-19 reported mortality per 1000 people
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Alternatively, bM has a very different trend. A steady improvement is in fact what is 
expected from a metric evaluating the quality of the reported data, as it is sensible to 
assume that the data-collecting mechanism steadily improves over time because of the 
increase in resources and staff allocated to the task. Moreover, a metric capturing this 
aspect should not be influenced by the trend of the epidemic. Contrary to bA , bM appears to 
have both these desirable properties.

We can conclude that the analysis of both metrics can be useful for policymakers but 
that they must be carefully interpreted. bA evaluates the magnitude of the underestima-
tion in the data in absolute terms and thus it conveys information about how many people 
affected by the epidemic are not captured by the healthcare system: as such, a large value 
always suggests a more dangerous scenario. On the other hand, bM assesses instead the 
share of the epidemic that is not captured and thus it highlights the quality of the reporting 
system itself rather than the gravity of the situation: therefore, a large value suggests that 
the system is failing to capture most of the epidemic casualties but does not directly says 
nothing about the size of the phenomenon, and thus its associated health risk.

4 � Model

Our model aims to consider the spatial, temporal and spatio-temporal structures (as well as 
potential fixed effects) for bA,ij and bM,ij (Franco-Villoria et al. 2022). The objectives of such 
models are: (i) assessing the overall spatial distribution of these quality indicators on the 
Italian territory, as well as the temporal trend in the first wave of COVID-19; (ii) assessing 
the significance of the interaction structure in the model; (iii) estimating the importance 
of each of these components, including also the contribution of the potential fixed effects.

The chosen specification is a Latent Gaussian Model (LGM) on the logit transformation 
of the response with random effects. LGMs are additive regression models. In the Bayes-
ian setting, LGMs have three components: a data model p(y|x,�) (i.e. the likelihood), a 
process model p(x|�) (i.e. the density of a random Gaussian field x , given the parameter � , 
with x having Markov properties, i.e., for some i ≠ j , xi and xj are independent on x−ij ), and 
a parameter model p(�) (Rue et al. 2009). In our case we have:

where b is one of the two metrics presented in Sect. 3, � represents the mean value at all 
times and spaces, ui and vj respectively represent the spatial and temporal main effects, and 
wij is the interaction random effect. This structure allows us to clearly distinguish between 
the three main sources of variation under investigation, i.e. a spatial association, a changing 
pattern over time, and an interaction between these two elements.

(1)b = [b1,1, ..., b1,j, ..., b1,J , ..., bi,1, ..., bi,J , ..., bI,1, ..., bI,J]
T

(2)logit(b)|�, �2
�
∼ NI⋅J(�, �

2
�
I)

(3)� = � + �u(II ⊗ 1J)u + �v(1I ⊗ IJ)v + �ww

(4)u = [u1, ..., uI]
T ∼ NI(0,�u) v = [v1, ..., vJ]

T ∼ NJ(0,�v)

(5)w = [w1,1, ...,w1,J , ...,wI,1, ...,wI,J]
T ∼ NI⋅J(0,�w = �u ⊗ �v)
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The parameters of this model are �, �,�u,�v,�w, �� , while the covariance matrices 
�u and �v respectively define appropriate spatial and temporal models and are treated as 
fixed and known. The covariance matrix of the interaction term is defined as the Kronecker 
product of the covariance matrix of the two main effects, following the work of Knorr-Held 
(Knorr-Held 2000).

4.1 � Temporal component specification

The existing literature on model components is wide and articulated, especially in pan-
demic monitoring and prediction. For example, ? considered data on confirmed and recov-
ered cases and deaths, the growth rate and the trend of COVID-19 infections in Australia, 
Italy and the UK. ? employed machine learning models to understand the correlation 
between population movements and virus spread and to predict possible new outbreaks. ? 
relaxed the Normality assumption for modelling COVID-19 data, but focused exclusively 
on temporal effects.

Our model temporal component specification aims to retrieve the main temporal pattern 
behind the response and assess the impact of this factor. Hence, a Random Walk model of 
order 1 could be a simple but flexible choice, appropriate for the goal of the project:

Note that this is not assumed to be the actual temporal model behind the data but it is 
exclusively used because of its convenience (see Franco-Villoria et al. (2022) for details on 
this).

4.2 � Spatial component specification

One of the most popular models for lattice data is the ICAR model (Besag 1974; Besag 
et al. 1991), which consists of an improper Normal distribution for the spatial component, 
defined using a square symmetric matrix M with only non-negative entries and a null diag-
onal, and a corresponding diagonal matrix D where dp,q =

∑
q mp,q.

The weights mp,q represent the neighbourhood structure between the spatial areas, and are 
usually based on the adjacency matrix, according to which regions that share a border are 
assigned mp,q = 1 and 0 otherwise. This approach is appropriate when adjacency is the 
most reliable factor providing information about the potential association between regions. 
However, it can be argued that other variables should be considered instead, whenever they 
are more reasonable estimators of the actual connection between different areas. Adjacency 
matrices often consider geographical factors inappropriately: e.g. islands are isolated from 
the mainland, while geographical barriers such as mountains are ignored.

This is particularly relevant in the context of epidemiology, where the main factor caus-
ing spatial association is human mobility. This is considered the prevalent factor behind 
spatial association so traditional definitions of the weight matrix M, such as adjacency or 
distance-based matrices are unable to capture factors such as commuting routes, physical 
boundaries, air and highways traffic, metropolitan areas, etc.

Hence, it is proposed to replace the traditional adjacency matrix with smartphone 
location data, which estimates the average commuting of individuals between two 

v ∼ NJ(0,�v = �RW1).

u ∼ NI

(
0;�u = (�� − �

−�
�)−1D−1

)
.
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provinces, no matter their actual geographical location. The spatial weight matrix used 
in this application was derived starting from data provided by Pepe et al. (2020), who 
built a daily time series of an origin–destination flow matrix processing smartphones’ 
location data across Italy. The daily matrices from 18th January to 21st February 2020 
were averaged to create a mean matrix representing the average mobility across prov-
inces before the beginning of the COVID-19 outbreak. The matrices were built to have 
rows summing to 1, including the within-province mobility. To respect the conditions 
necessary for the CAR model, the diagonal entries were set to 0 and the remaining 
entries were normalised through a division by row sum. The origin–destination matrix 
was not symmetric as the flows were directional: hence, the inward and outward flow 
between two provinces were averaged to obtain an appropriate M.

The only disadvantage of this approach consists of the loss of the sparsity of the 
matrix. To obtain a matrix sparse enough for computation efficiency, it was chosen to 
consider only the last quintile, i.e. the highest 20% of the weights, assuming the impact 
of smaller associations irrelevant. The resulting weights can be visualized in Fig. 2: it 
is clear how this weight matrix is an improvement concerning the naive adjacency one, 
as it can recognize important industrial hubs and big cities, as well as air and sea traffic, 
giving an overall accurate representation of the spatial structure.

Fig. 2   Mobility-based weight matrix in log scale
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A snippet of M for the provinces of Lombardy is represented in Fig. 3. The Lombardy 
region has been one of those most affected by the COVID-19 pandemic. Furthermore, 
however, there has been a very heterogeneous situation if we consider its provinces: there 
have been very affected provinces and others where the situation has been not so dramatic. 
Finally, the first hotspot occurred in a municipality in the South of the region. This snippet 
shows how the smartphone location data precisely reconstructs human mobility patterns 
not only at the national level but also locally.

4.3 � Prior specification

In terms of prior specification, we take an approach similar to that of (Franco-Villoria et al. 
2022), built on the innovative hierarchical variance decomposition method introduced by 
(Fuglstad et  al. 2020), employed in the context of spatio-temporal epidemiological data. 
The method is based on a reparametrization of the variance parameters in terms of a single 
total variance and a set of proportions, defined through a decomposition tree. In this set-
ting, it becomes easier to translate prior assumptions on the parameters into prior distribu-
tions and hyperparameters. Moreover, it gives more intuitive results in the posterior analy-
sis, as the parameters are already set as adimensional proportional contributions, rather 
than variances or standard deviations.

Fig. 3   Entries of M for the subset of rows and columns representing the provinces of Lombardy
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As in (Franco-Villoria et al. 2022), here we choose to define the first split to separate the 
main from the interaction term, and secondly, the spatial and temporal effects are divided. 
This results in a new reparametrization of the three original variances �2

u
, �2

v
, �2

w
 into a total 

residual variance V, the proportion � of this V given by the interaction term, and the pro-
portion � of main effects variance imputable to the spatial effect. The prior specification 
is then chosen on this new set of parameters.Specifically, the Integrated Nested Laplace 
Approximation (INLA) default prior on variance parameters is assumed on �2

�
 , which is 

gamma with shape parameter 1 and rate parameter 5e−5 . The INLA approach implements 
Laplace’s method approximation to solve nasty integrals by Taylor expansion around the 
mode with a nested version of it to get the posterior of interest in a computationally feasi-
ble way. Details are, for example, in (?). Then, we chose a Uniform on � , and a Penalized 
Complexity (PC) prior (Simpson et al. 2017) on � with base model �0 = 0 , and a PC prior 
on V with base model V0 = 0:

5 � Results

5.1 � Fitting the models for bA and bM

The models were fitted in R using the INLA package (Rue et al. 2009). The same model 
was fitted for bA and bM , specifically using UA = UM = 0.1 . The INLA R implementation is 
presented in the Appendix.

First of all, the different contributions of the random components to the total variability 
can be assessed considering the marginal posterior distribution of proportions of total vari-
ance V, see Fig. 4. For both bA and bM , it appears that the spatial component is the most rel-
evant, followed by the interaction effect, while the temporal trend explains a much smaller 
share of the total variability. This shows how the multiplicative bias bM might be more 
correlated with the specific policies put in place during the crisis period (and differently 
throughout Italy), than with the intrinsic characteristics of local areas, such as the popula-
tion density, which may instead be more correlated with bA.

Secondly, the posterior means of the random effects offer a summary of the different 
contributions to the response. Figure  5 shows the posterior mean of the spatial random 
effects over the provinces of Italy. Regarding bA , provinces in Northern Italy experienced a 
larger share of underreported deaths concerning the overall population. However, the spa-
tial distribution completely changes for bM , as most of the Northern provinces show small 
values, while the highest effects are found in Southern and North-Eastern provinces. These 
figures display how the two metrics measure very different quantities, with bM being much 
more consistent with the literature on the spatial distribution of health system quality indi-
cators in Italy.

𝜎2
u
, 𝜎2

v
, 𝜎2

w
⟶ V ,𝜙,𝜓

� =
√
V
�√

1 − 𝜓

�√
1 − 𝜙(II ⊗ 1J)u +

√
𝜙(1I ⊗ IJ)v

�
+
√
𝜓w

�

V ∼ PC0(U, 𝛼 = 0.05)

𝜙 ∼ Unif (0, 1)

𝜓 ∼ PC0(𝜆𝜓 = 1)

𝜎2
𝜖
∼ Inv-Gamma(1, 5e−5).
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Concerning the temporal pattern, the two metrics also show differences. Figure  6 
shows that the indicator bA performed the worst at the peak of the ”official” pandemic 
evolution, plus a delay due to the fact that deaths are considered instead of cases. Hence, 
this confirms the assumption that bA is related to the level of stress of the health system, 
rather than to the quality of its response to a certain amount of stress.

Fig. 4   Posterior densities of the variance parameters as proportions of the total residual variance V in the b
A
 

and b
M

 models

Fig. 5   Posterior mean of the spatial random effects u on b
A
 and b

M
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The results for bM are again completely different. Figure  6, red curve, shows that its 
level is at its maximum at the beginning of the data reporting period and then, the quality 
level of the emergency response increases as the COVID-19 situation is taken more and 
more seriously and more effective policies and practices are put in place. Of course, this 
shows how the official data are unreliable, not only in magnitude but also in their trend, 
and should not be used rawly to evaluate the evolution of a pandemic, particularly at the 
beginning of the reporting period, as the quality of the official data tends to improve sig-
nificantly, i.e. a decrease in the bM indicator.

While the temporal and spatial effects can offer a general evaluation of the overall evo-
lution, the interaction factor seems to play a vital role in the total variability, as shown in 
Fig. 4. Therefore, any conclusion on the behaviour of individual provinces must be drawn 
on the basis of the entire linear predictor.

In Table  3 and 4 we considered the posterior distribution of the fitted values repara-
metrized in the original scale of the b metrics, through a logistic transformation. In Table 3 
the 10 provinces having reached the highest bA value during the considered period are 
listed, whereas in Table 4 the 10 provinces experiencing the biggest change for bM between 
the start and the end of the period are displayed.

5.2 � Clustering for the bM indicator

To classify provinces based on the bM metric, i.e. a data quality indicator, clustering was 
applied to the posterior means of the fitted values from our model presented in equations 1 
and following. Specifically, partitional clustering using a dynamic time warping distance 
was chosen as an appropriate partitioning method for time series (Sardá-Espinosa, 2017). 
The posterior mean of the fitted values for each province was computed to form the time 

Fig. 6   Posterior mean of the temporal random effect for b
A
 and b

M
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series, to remove the residual noise present in the original raw data. Evaluating different 
performance metrics, the optimal cluster number was found to be 4. Figure 7 shows the 4 
different classes and their centroid, ordered by best to worst overall performance.

Table 3   Top 10 provinces with 
highest peak of 

b
A

 according to 

the model

Province Peak Week Maximum

Cremona 4 0.62
Bergamo 4 0.59
Lodi 3 0.36
Parma 4 0.33
Brescia 5 0.33
Piacenza 4 0.33
Lecco 5 0.25
Vercelli 5 0.24
Biella 5 0.21
Alessandria 5 0.21

Table 4   Top 10 provinces with 
respect to 

b
M

 biggest change 

between Week 1 and Week 11

Province Difference

Trento − 0.78
Imperia − 0.75
Lucca − 0.75
Chieti − 0.74
Forli-Cesena − 0.74
Torino − 0.73
Massa Carrara − 0.72
Bolzano − 0.72
Pescara − 0.70
Ravenna − 0.70

Fig. 7   Posterior mean of fitted values divided into 4 clusters with corresponding centroids in the provinces 
of Aosta, Rimini, Catanzaro, and Cosenza
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The first cluster, coloured in green, includes all the provinces with a steady and relevant 
decrease over time. The red cluster identifies the worst-behaved class, as the index bM , 
being already high at the beginning of the period, is mostly stable, and does not display 
significant signs of improvement during this wave.

The other two clusters represent intermediate behaviours and they are more ambiguous 
and heterogeneous. First, the orange cluster identifies provinces that performed better than 
the ones in the red cluster, but worse than the green provinces, because of a much lower 
rate of decrease. There are two main subtypes of trends in this cluster. Most of the prov-
inces display an initial decrease, followed by a mild rise in the last few weeks, which could 
be a sign of a decline in alertness and a possible relaxation of some emergency measures 
initially put in place. Few provinces in the same cluster followed an inverse pattern, with 
an initial stable level of bM followed by a quite steep improvement (e.g. Udine, Pordenone, 
Verona, Belluno, Vicenza, Padova, Venezia, Treviso), as if the severity of the pandemic 
was downplayed after the initial shock. The two groups have in common an insufficient 
degree of vigilance and promptness in dealing with a pandemic emergency, which became 
manifest as either a delay in putting in place effective response policies or a relaxation of 
the same way too early.

For the yellow group, the general trend, followed by the majority of the units in this 
cluster, is decreasing but more slowly than for the green provinces, hence indicating a 
worse performance in data reporting. However, looking more closely, we can identify a 
small subgroup of provinces in this cluster that displays an unusual concave U-shape trend: 
Sondrio, Verbano-Cusio-Ossola, Monza e della Brianza, Varese, Lecco, Como. The areas 
with this distinct behaviour are all located in North-West Italy and all fall into this class 
because they do not tend to reach extremes, either positive or negative, but are more or 
less stable around the 0.4 threshold. One hypothesis to explain this behaviour could be 
that these provinces might have experienced an actual delay in the spread of the pandemic 
concerning the general evolution, which might have led the peak to be shifted later than 
the other provinces, for about 5 or 6 weeks. This delay was probably responsible for keep-
ing bM low even in the worst moments for these provinces, as they had a temporal advan-
tage consisting of all the experience and knowledge accumulated and shared by the other 
regional health system administrations over the first few weeks.

The map presented in Fig. 8 summarizes the cluster assignments over the Italian prov-
inces, along with the location of the first COVID-19 hotspot in Italy in Codogno, Lodi. At 
first glance, it may seem counter-intuitive that areas closer to the first outbreak performed 
better than the ones far away. However, it may be that provinces in the North considered 
the emergency more seriously and sooner than the rest of Italy, as they perceived the risks 
earlier and may have put in place effective response protocols before the Southern areas.

6 � Conclusions and future work

In this study, we considered two metrics to evaluate the quality of pandemic official data. 
This has been achieved using a measure of excess mortality registered during a pandemic 
period, concerning the average level in the previous years. While the metric bA is a proxy 
for the underestimation of the pandemic severity, it has been shown how bM can be used 
as a quality indicator of the health system in terms of monitoring the pandemic situation 
and reporting accurately the data. Both metrics were smoothed through a spatio-tempo-
ral model, which highlighted the importance of the spatial components in the variability 
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of both responses. Results for bM are consistent with the assumptions about data quality: 
in particular, the general temporal trend shows a steady decrease and it is in line with an 
improvement in the data quality in the first period of reporting.

Finally, the Italian provinces were grouped based on the bM indicator fitted values, to 
classify them into clusters of different quality levels. This could be extremely useful for 
policymakers, since it offers an overview of the reporting performance of the different 
health systems and may suggest strategies employed locally, which may become best prac-
tices for future pandemics.

Future work will entail an implementation of the quality metrics to other pandemics and 
nations. We may be interested in comparing the overall data quality between nations facing 
the same pandemic, rather than within a single nation. For the Italian case, the time series 
could be extended to the following waves if official data about COVID-19 were available at 
the provincial level. Covariates related to the health system could be included in the mod-
els as fixed effects, to check whether they reduce the spatial variability and may explain the 
bM metric.

In conclusion, the multiplicative bias is the main proposal of this work and it con-
sists of a simple metric that could in theory be computed with a short delay, i.e. as soon 

Fig. 8   Provinces by cluster (represented with four colours) and the city of Codogno (in the province of 
Lodi) marked by a black dot
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as registered deaths are aggregated by the governmental institutes for official statistics. 
Monitoring this indicator could help identify which areas display better results and per-
formance in terms of the response to the pandemic, as well as areas where the severity 
of the situation is underestimated. This type of information could significantly acceler-
ate the process of identification of effective and ineffective protocols and prevention 
measures, which consequently may save many lives down the line.

Appendix

INLA implementation

The model presented in Eqs.  1 and following has been fitted using INLA (Rue et  al. 
2009) and the code has been implemented following the one presented in the Supple-
mentary Material of Franco-Villoria et al. (2022).
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