
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10278-022-00734-4

3D CT‑Inclusive Deep‑Learning Model to Predict Mortality, ICU 
Admittance, and Intubation in COVID‑19 Patients

Alberto Di Napoli1,3 · Emanuela Tagliente2 · Luca Pasquini3,4   · Enrica Cipriano5 · Filomena Pietrantonio5 · 
Piermaria Ortis6 · Simona Curti7 · Alessandro Boellis8 · Teseo Stefanini8 · Antonio Bernardini9 · Chiara Angeletti10 · 
Sofia Chiatamone Ranieri11 · Paola Franchi9 · Ioan Paul Voicu9 · Carlo Capotondi1 · Antonio Napolitano2

Received: 27 May 2022 / Revised: 8 October 2022 / Accepted: 30 October 2022 
© The Author(s) 2022

Abstract 
Chest CT is a useful initial exam in patients with coronavirus disease 2019 (COVID-19) for assessing lung damage. AI-
powered predictive models could be useful to better allocate resources in the midst of the pandemic. Our aim was to build a 
deep-learning (DL) model for COVID-19 outcome prediction inclusive of 3D chest CT images acquired at hospital admis-
sion. This retrospective multicentric study included 1051 patients (mean age 69, SD = 15) who presented to the emergency 
department of three different institutions between 20th March 2020 and 20th January 2021 with COVID-19 confirmed by 
real-time reverse transcriptase polymerase chain reaction (RT-PCR). Chest CT at hospital admission were evaluated by a 3D 
residual neural network algorithm. Training, internal validation, and external validation groups included 608, 153, and 290 
patients, respectively. Images, clinical, and laboratory data were fed into different customizations of a dense neural network 
to choose the best performing architecture for the prediction of mortality, intubation, and intensive care unit (ICU) admission. 
The AI model tested on CT and clinical features displayed accuracy, sensitivity, specificity, and ROC-AUC, respectively, 
of 91.7%, 90.5%, 92.4%, and 95% for the prediction of patient’s mortality; 91.3%, 91.5%, 89.8%, and 95% for intubation; 
and 89.6%, 90.2%, 86.5%, and 94% for ICU admission (internal validation) in the testing cohort. The performance was 
lower in the validation cohort for mortality (71.7%, 55.6%, 74.8%, 72%), intubation (72.6%, 74.7%, 45.7%, 64%), and ICU 
admission (74.7%, 77%, 46%, 70%) prediction. The addition of the available laboratory data led to an increase in sensitivity 
for patient’s mortality (66%) and specificity for intubation and ICU admission (50%, 52%, respectively), while the other 
metrics maintained similar performance results. We present a deep-learning model to predict mortality, ICU admittance, 
and intubation in COVID-19 patients.

Key Points 
• 3D CT-based deep learning model predicted the internal validation set with high accuracy, sensibility and specificity 

(> 90%) mortality, ICU admittance, and intubation in COVID-19 patients.
• The model slightly increased prediction results when laboratory data were added to the analysis, despite data imbalance. 

However, the model accuracy dropped when CT images were not considered in the analysis, implying an important role 
of CT in predicting outcomes.
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Introduction

The use of artificial intelligence (AI) techniques in the 
medical field has increased exponentially in recent years 
[1], with promising results in terms of diagnostic accuracy 
of predictive models based on machine learning and deep-
learning (DL) algorithms [2–4]. Especially in the field of 
radiology, biomedical images proved to be an optimal 
input for AI-powered models thanks to the large amount 
of data available on picture archiving and communication 
systems (PACS) which can provide new information to 
help prognostication, given enough computational power 
[1].

In 2020/2021, the coronavirus disease 2019 (COVID-
19) pandemic, caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), affected the lives of 
people all over the world with more than 450 million infec-
tions and more than 6 million deaths in over 2 years [1]. 
One of the major problems related to COVID-19 was the 
difficulty of estimating patients’ prognosis in a context of 
sanitary resources shortage. The need of correctly allocat-
ing the available resources to guarantee the best treatment 
possible, with the possibility of rationing care delivery, 
carries important logistical and ethical implications, which 
have been pointed out as a crucial limitation of healthcare 
systems dealing with widespread emergencies [5]. The 
availability of an accurate AI-powered predictive model 
of patient outcome may help achieving fast diagnosis, opti-
mizing resources, and tailor treatment in these scenarios. 
AI models were recently tested to predict COVID-19 out-
come using clinical and laboratory data, with good accu-
racy [6]. Chest CT is considered a useful tool in COVID-
19 assessment, for its high sensitivity in detecting typical 
signs of “ground-glass” opacities, crazy paving pattern, 
and lung consolidations even in subjects with false nega-
tive RT-PCR tests (considered the gold standard) [7, 8]. 
Other CT findings, such as pleural and pericardial effu-
sion, and pulmonary embolism in enhanced chest CT, have 
been also described [9, 10]. Disease severity on chest CT 
correlated with the clinical status of COVID-19 patients 
and was successfully used to predict short-term progres-
sion in recent studies [11, 12]. Chest CT-based DL models 
demonstrated high accuracy in differentiating COVID-19 
from community-acquired pneumonia and non-COVID-
19-related ground-glass opacities [13, 14].

With the above-written premises, this multicentric study 
aims to obtain an accurate predictive 3D CT-inclusive 
model for the outcome of patients affected by COVID-19 
by employing artificial neural networks on chest CT images 
obtained at the first access to the emergency department. 
We aimed at predicting COVID-19 outcomes from a het-
erogeneous population including patients from different 

regions of Italy and images obtained with different scan-
ners. Our hypothesis was that the integration of CT images, 
clinical, and lab data would achieve high accuracy in 
COVID-19 outcome prediction in our model.

Methods

Patients

We retrospectively evaluated patients who accessed the 
emergency department at three Italian hospitals from March 
2020 to February 2021. The study was approved by the local 
ethical committee and patients received written informed 
consent. In case of patients’ inability, informed consent was 
received from the relatives. Data collection and usage were 
compliant with General Data Protection Regulation 2018.

The inclusion criteria were:

•	 Confirmed diagnosis of COVID-19 on RT-PCR;
•	 Availability of chest CT obtained in the emergency setting;
•	 Availability of outcome data;
•	 Availability of ventilation modality data.

Exclusion criteria were:

•	 Poor quality CT images due to motion artifacts or other 
artifacts that could impact image quality;

•	 Undetermined diagnosis;
•	 Patients transferred to other centers for scarcity of 

resources that could interfere with the outcome.

See Fig. 1 for further details.

Clinical and Laboratory Data

Patients’ clinical records were evaluated to assess clinical 
and laboratory data. We evaluated signs and symptoms at 
presentation including fever (body temperature > 37.5 °C), 
dyspnea, cough, ageusia, anosmia, headache, chest pain, 
fatigue, arthralgia, and gastrointestinal symptoms. Comor-
bidities were considered as follows: hypertension, diabetes, 
heart disease (previous myocardial infarction, atrial fibril-
lation, heart failure, others), chronic obstructive pulmonary 
disease (COPD), chronic lung failure, cerebral vasculopathy, 
cancer, immunodeficiency (acquired or congenital), chronic 
renal insufficiency, obesity, and others (including relevant 
comorbidities not specified in the previous categories). We 
collected the following laboratory data acquired at emer-
gency department admission: C-reactive protein, D-dimer, 
erythrocyte sedimentation rate, fibrinogen, white blood cells 
and lymphocytes level, platelets, international normalized 
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ratio (INR), partial thromboplastin time all considered as 
continuous values.

Patient’s outcome was considered a binary variable at the 
time of the analysis (alive or deceased). Patient intensive 
care unit (ICU) recovery and need for intubation were also 
evaluated as binary outcome variables (ICU/non-ICU; intu-
bated/not intubated).

Imaging Acquisition and Evaluation

Images were evaluated by radiologists in each center (ADN, 
AB, IPV, PF) with the aim of assessing image quality and 
looking for COVID-19-induced alterations. Ground-glass 
opacities, interstitial thickening (including crazy paving), 
lung consolidation, and pleural effusion were considered 
among the CT findings of COVID-19, as done in previ-
ous studies [15–17]. We included negative chest CT as 

well, if the patient was hospitalized, for the sake of model 
generalizability.

Imaging Pre‑processing

The CT volumes were obtained for all the enrolled patients 
in DICOM format. To extract lung parenchyma from chest 
CT slices, we installed a pre-trained model from a GitHub 
project (https://​github.​com/​JoHof/​lungm​ask), based on 
U-net architecture for segmentation of anatomic structures 
[18]. After this implementation, the mask was applied on 
the CT slices covering the lung parenchyma volume. Due 
to computational cost issues, all volumes where resampled 
to a final volume of sixteen slices by the use of a Nibabel 
processing function, which resample each input voxel with x, 
y, and z dimensions to output voxel with x’, y’, and z’ dimen-
sions. In particular, x’ = x and y’ = y, while z’ was obtained 

Fig. 1   Flow diagram starting 
from enrolled patients to the 
final model set of patients. 
A number of samples are 
expressed as follows: n° of 
patients with mortality out-
come/n° of patients with ICU 
outcome/n° of patients with 
intubation outcome
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by rescaling the z voxel dimension to obtain a determined 
lower number of output slices [19], as shown in the formula:

in which Dimz corresponds to the z-axes dimension of the 
entire input image and N the number of slices to obtain as 
output.

The output image slices were finally reduced to eight after 
removing the slices that did not contain useful information 
for model training. In particular, slices with effective CT pix-
els’ counting and CT background pixels’ counting ratio over 
70% were deleted. These steps are summarized in Fig. 2, 
including an example of the final patient’s volume. To rap-
idly processing and analyze such a large dataset, and to unify 
the size of CT slices, we rescaled all of them to 256 × 256 
pixels, avoiding distortion by rearranging the elements of 
the affine matrix based on the initial and final dimensions of 
the axial slice. The Nilearn and Nibabel [19] libraries were 
adopted for CT slice pre-processing and the entire code was 
written in Python v.3.8 [20].

Neural Network Architecture

We used a 3D residual neural network (3D-ResNet) (Fig. 3a) 
with an input layer of 256 × 256 × 8 × 1 dimensions; in each 
convolutional neural network (CNN) framework, there was 
a 3D convolution layer followed by batch normalization and 
max pooling layer, the latter with a pull size of 3 × 3 × 3 (con-
sidered the 3D convolution block), then four identity blocks, 

z
�

=
Dimz × z

N − 1

each one characterized by two 3D convolution blocks and 
a shortcut (see Fig. 3b). Finally, a global average pooling 
precedes the dense layer of 256 neurons, the dropout layer, 
and the final output layer. The convolutional layers were 
used for feature extraction, and a rectified linear unit (ReLU) 
function was used to activate the outcome of neurons. In the 
output layer, two softmax nodes were set to calculate two 
probability scores of each task with an input CT volume. 
Since the deceased, ICU, and intubated classes represented, 
respectively, 29%, 14%, and 12% of the entire CT group data-
set; 28.7%, 14%, and 12% of the entire CT group dataset 
integrated with clinical information; and 28%, 13.5%, and 
12% of the entire CT group with clinical information includ-
ing laboratory data, we considered our groups unbalanced. 
Due to imbalance issues, we decided to assign an importance 
weight to each instance to adapt its effect on learning. In par-
ticular, weights were assigned using the Scikit Learn library 
[20] that assign them according to the formula:

where wj is the weight value for the class j (0/1), n° sam-
plestot is the total amount of samples including training and 
test, n° samplesj is the total amount of samples of the class 
j (0/1), and n° classes is the number of classes to predict. 
Due to the retrospective nature of the study, not all patients 
had the same outcomes to be investigated for prediction. 
Patients from two centers were used as training and test-
ing groups, and patients from the third hospital served as 
external validation.

wj =
n◦samplestot

n◦classes × n◦samplesj

Fig. 2   Preprocessing steps: a starting from CT volumes acquisitions, b axial resampling to eight final slices, lung mask extraction, and intensity 
normalization were computed before c training and validation on both internal and external dataset
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First, only CT images were fed to the model, then we 
analyzed two sub-groups of patients: one with clinical fea-
tures alone and the other one with the addiction of labora-
tory data. We considered the model performance on the 
testing group as an internal validation. A randomly split 
into ten set of training dataset and test dataset was per-
formed with a size ratio of 4:1, as previously reported. For 
each set, we choose a different randomization and patients’ 
shuffling was implemented. The COVID-19 patients 
from the third hospital were used as external independ-
ent validation of the model. Parameter optimization was 
implemented including different combination of the num-
ber of learning filters for each convoluted layer; several 
optimizers and learning rates were tested (Supplementary 
Table 1). The accuracy (ACC), sensitivity (SENS), and 
specificity (SPEC) positive and negative predictive values 
(PPV, NPV), Matthew Correlation Coefficient (MCC), and 
F1-score were computed for all validation groups (train-
ing, test/internal, external).

Accuracy =
TP + TN

TP + TN + FP + FN

PPV =
TP

TP + FP

The receiving operator characteristic (ROC) curves were 
plotted (Supplementary Figures) and area under the curve 
(AUC) values reported. We also integrated our model with 
clinical information including age, sex, comorbidities, symp-
toms, and laboratory tests to build another less complex archi-
tecture. The clinical features with non-binary values (labora-
tory exams and age) were normalized according that equation:

NPV =
TN

TN + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

MCC =
TP × TN − FP × FN

√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

F1 − score =
2 × PPV × Sensitivity

PPV + Sensitivity

F =
f − fmin

fmax − fmin

Fig. 3   a 3D ResNet architecture block diagram; b identity block explication
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where F is the normalized value of the feature; f, fmin, and 
fmax are the minimum and maximum value over all patients 
with that feature, respectively. To investigate the influence of 
clinical information on model performance, we extracted the 
256 neuron layer of the best 3D model previously selected 
and we added age, gender, laboratory tests, comorbidities, 
and symptoms columns. We obtained a final matrix with 282 
total features (277 without laboratory tests). Before model 
training, we applied oversampling technique on training 
group to overcome imbalance issues and avoid a number of 
predictor parameters higher than number of participant with 
outcome [21]. We tested dense neural networks with differ-
ent settings of layers (Supplementary Figures for details). 
The same parameter optimization already mentioned was 
implemented. The best performing model was selected 
according to highest ACC, SENS, and SPEC values that are 
indicative for single-class accuracy prediction, due to their 
technical definition [22]. The same metrics abovementioned 
were evaluated for this model giving internal and external 
validation. For model training, we used an Intel(R) Xeon(R) 
Silver 4116 central processing unit, 25 GB of RAM and two 
NVIDIA GeForce RTX 3090, and Keras v.2.3.2 library. Dur-
ing all models training, Keras Callbacks API (https://​keras.​
io/​about/) were implemented to reduce overfitting [23].

Results

All demographics of the patient groups (patients with CT, 
clinical features, and laboratory data) are outlined in Table 1 
and in Supplementary Table 2. Specifics regarding the group 
sets for each performed training can be found in Table 2.

Mortality Prediction

DL evaluation results are outlined in Table 1. CT examples 
of correctly and non-correctly predicted outcomes are shown 
in Figs. 4 and 5.

The analysis with CT images alone resulted in accuracy 
of 68.3%, sensitivity of 28%, specificity of 89.7%, and PPV 
and NPV of 70.5% and 59.3% respectively; results for exter-
nal validation are as follows: accuracy of 80.4%, sensitiv-
ity of 28.7%, specificity of 90.4%, PPV and NPV of 86.8% 
and 38%. Adding sex, age, symptoms, and comorbidities 
to our model led to the following results: accuracy 91.7%, 
sensitivity 90.5%, specificity 92.4%, PPV and NPV 94.8% 
and 86.2%; the external validation results were as follows: 
accuracy 71.73%, sensitivity of 55.6%, specificity of 74.8%, 
PPV and NPV of 90% and 29.8% (see Table 3 for other 
metrics evaluated).

The analysis of patients with laboratory data led to a fur-
ther increase in sensitivity (66%) and all metrics are reported 

in Table 3. We tested the impact of CT images on our model 
by running an analysis with only age, sex, comorbidity, and 
symptoms with the following results on the internal vali-
dation: accuracy 66%, sensitivity 53.7%, specificity 72.5%, 
PPV and NPV 75% and 50.8%, MCC 0.26, F1-score 62.6%. 

Table 1   Summary of demographics, comorbidities, symptoms, and 
outcomes of patients admitted with SARS-CoV-2

STD standard deviation, ICU intensive care unit, COPD chronic 
obstructive pulmonary disease

Demographics

Age 69 years (22-102)
Sex 628 M / 403 F

Symptoms

Dyspnoea 797 (77.3%)
Cough 444 (43%)
Ageusia 50 (4.8%)
Anosmia 66 (6.4%)
Chest pain 96 (9.3%)
Headache 46 (4.5%)
Fatigue 228 (22%)
Arthralgia 93 (9%)
Gastrointestinal symptoms 94 (9%)
Fever (>37.5°) 515 (50%)

Comorbidities

Hypertension 472 (45.7%)
Diabetes 199 (19.3%)
Heart Disease (Previous myocardial 

infarction)
746 (72.3%)

Heart Disease (Atrial fibrillation) 226 (22%)
Heart Disease (Hearth failure) 59 (5.7%)
COPD 120 (11.6%)
Chronic lung failure 17 (1.6%)
Cerebral vasculopathy 86 (8.3%)
Cancer 74 (7.2%)
Chronic renal insufficiency 88 (8.5%)
Immunodeficiency 19 (1.8%)
Obesity 212 (20.5%)

Outcomes

Deaths 296 (28.7%)
Number of days prior to death 14 ± 12.5 (mean ± STD)
Survived 735 (71.3%)
Recovery days 20 ± 14.3 (mean ± STD)
Intubated 125 (12.2%) 
Number of days intubated 20.2 ± 15.2 (mean ± STD)
ICU 144 (14%)

21 not intubated (15%)
Number of days spent in ICU 21.2 ± 17.6 (mean ± STD)
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While the external validation of the same analysis produced 
the following results: accuracy 76.8%, sensitivity 11.5%, 
specificity 89%, PPV and NPV 84% and 16%, MCC 0.005, 
F1-score 20.2%.

Intubation Prediction

The analysis with only CT images led to the following 
results: accuracy 70.3%, sensitivity 75%, specificity 

41.7%, PPV and NPV 22.4% and 88.6%. Adding sex, age, 
symptoms, and comorbidities to our model led to the fol-
lowing results: accuracy 91.3%, sensitivity 91.5%, speci-
ficity 89.8%, PPV and NPV 64.3% and 98.3%; external 
validation with accuracy of 72.6%, sensitivity of 74.7%, 
specificity of 45.7%, PPV and NPV of 12.4% and 94.7% 
(see Table 3 for other metrics evaluated). The analysis of 
patients with laboratory data led to a further increase in 
specificity (50%) and all metrics are reported in Table 3. 

Fig. 4   CT examples of patients 
correctly predicted in a survi-
vor, b intubation, and c ICU 
admission prediction
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We tested the impact of CT images on the internal val-
idation of our model by running an analysis with only 
age, sex, comorbidity, and symptoms with the follow-
ing results: accuracy 64%, sensitivity 62.6%, specific-
ity 71.3%, PPV and NPV 28.4% and 91.8%, MCC 0.26, 
F1-score 40%. While the external validation of the same 
analysis produced the following results: accuracy 68.7%, 
sensitivity 71.3%, specificity 34.3%, PPV and NPV 8.8% 
and 93.4%, MCC 0.03, F1-score 16%.

ICU Admission Prediction

The analysis with only CT images led to the following 
results: accuracy 75.3%, sensitivity 84%, specificity 37%, 
PPV and NPV 38% and 86.8%. Adding sex, age, symptoms, 
and comorbidities to our model led to the following results: 
accuracy 89.6%, sensitivity 90%, specificity 86.5%, PPV and 
NPV 65.6% and 97%; the external validation results were as 
follows: accuracy 74.7%, sensitivity of 77%, specificity of 

Fig. 5   CT examples of patients 
not-correctly predicted in a sur-
vivor, b intubation, and c ICU 
admission prediction
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46%, PPV and NPV of 13.4% and 95% (see Table 3 for other 
metrics evaluated). The analysis of patients with laboratory 
data led to a further increase in specificity (52%) and all 
metrics are reported in Table 3. We tested the impact of CT 
images on the internal validation of our model by running 
an analysis with only age, sex, comorbidity, and symptoms 
with the following results: accuracy 60%, sensitivity 57.5%, 
specificity 70%, PPV and NPV 20.7% and 92.4%, MCC 
0.19, F1-score 30.4%. While the external validation of the 
same analysis produced the following results: accuracy 76%, 
sensitivity 79%, specificity 36%, PPV and NPV 11.7% and 
94%, MCC 0.09, F1-score 20.4%.

Discussion

The COVID-19 pandemic represents an ideal scenario for 
AI applications. The need of rapid diagnosis and effective 
allocation of the available resources to guarantee the best 
treatment possible [5] opens the way for taking advantage 
of predictive models to optimize patient care in this critical 

scenario. As a consequence, numerous AI-powered predic-
tive models have populated the literature in the past 2 years 
[6, 13, 14]. However, strong reproducibility and general-
izability across different patient populations and different 
centers are needed to translate theoretical models into the 
clinical practice. Recent studies have advocated about the 
importance of standard guidelines and quality assessment of 
AI studies in radiology [24, 25]. External validation appears 
to be an important step in AI research, representing the pillar 
for widespread clinical application [26]. To our knowledge, 
the present study represents the first attempt in building a DL 
3D CT-inclusive prediction model on COVID-19 patients 
and validating the results with internal and external valida-
tion, including patients from multiple centers and different 
scanners. In particular, training and test were performed on 
one vendor scanners in two different centers; external valida-
tion was performed on a second vendor scanner in the third 
center.

Our model succeeded in predicting mortality, ICU 
admission, and intubation with a remarkable accuracy of 
91.7%, 91.3%, and 89.6% when age, sex, symptoms, and 

Table 3   Summary results reported for each predicted outcomes and kind of validation

ACC​ accuracy, SENS sensitivity, SPEC specificity, PPV positive predictive value, NPV negative predictive value, ROC-AUC​ receiving opera-
tor characteristic – area under the curve, MCC Matthew correlation coefficient, CT computerized tomography features, CT + CF computerized 
tomography features and clinical features except laboratory data, AI artificial intelligence, CT + CF + LD computerized tomography features, 
clinical features, and laboratory data, CF + LD clinical features and laboratory data

Outcomes AI model Validation ACC​ SENS SPEC PPV NPV ROC-AUC​ MCC F1-score

Mortality CT Internal 68.3% 28% 89.7% 70.5% 59.3% 77% 0.23 40%
External 80.4% 28.7% 90.4% 86.8% 38% 70% 0.22 43%

CT + CF Internal 91.7% 90.5% 92.4% 94.8% 86.2% 95% 0.82 92.6%
External 71.7% 55.6% 74.8% 90% 29.8% 72% 0.25 68.7%

CT + CF + LD Internal 92.7% 90.5% 93.7% 95% 88.7% 96% 0.84 92.7
External 70.2% 66% 71% 91.2% 31.6% 74% 0.3 76.6%

CF + LD Internal 66% 53.7% 72.5% 75% 50.8% 71% 0.26 62.6%
External 76.8% 11.5% 89% 84% 16% 45% 0.005 20.2%

Intubation CT Internal 70.3% 75% 41.7% 22.4% 88.6% 63% 0.14 34.5%
External 71.9% 75.4% 30% 9.3% 92.8% 53% 0.03 16.6%

CT + CF Internal 91.3% 91.5% 89.8% 64.3% 98.3% 95% 0.71 75.5%
External 72.6% 74.7% 45.7% 12.4% 94.7% 64% 0.12 21.3%

CT + CF + LD Internal 90% 90% 90.3% 60% 98.3% 95% 0.7 72%
External 70.7% 72.3% 50% 12.6% 95% 66% 0.3 21.5%

CF + LD Internal 64% 62.6% 71.3% 28.4% 91.8% 68% 0.26 40%
External 68.7% 71.3% 34.3% 8.8% 93.4% 51% 0.03 16%

ICU admission CT Internal 75.3% 84% 37% 38% 86.8% 73% 0.21 52.3%
External 80% 84% 30% 15.5% 93.8% 63% 0.11 26%

CT + CF Internal 89.6% 90% 86.5% 65.6% 97% 94% 0.69 76%
External 74.7% 77% 46% 13.4% 95% 70% 0.14 23%

CT + CF + LD Internal 89% 89% 86.7% 60.7% 97.7% 94% 0.66 72%
External 73% 74.6% 52% 14% 95.2% 69% 0.16 24%

CF + LD Internal 60% 57.5% 70% 20.7% 92.4% 73% 0.19 30.4%
External 76% 79% 36% 11.7% 94% 57% 0.09 20.4
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comorbidities were added to the analysis. However, the 
model accuracy for the same outcomes dropped signifi-
cantly in the external validation cohort: mortality 71.73%, 
ICU admission 74.7%, and intubation 72.6%.

Chest CT is a useful exam, although not routinely admin-
istered at presentation, in COVID-19 patients to assess lung 
involvement, possible complications, and sometimes as a 
diagnostic test for its high sensitivity to recognize interstitial 
pneumonitis [7, 10, 27]. Chest CT correlates with clinical 
severity [12, 28], especially when a quantitative approach 
is applied [29, 30], which makes it a potential candidate to 
support COVID-19 predictive models. In fact, CT-based DL 
models have been proven effective to distinguish COVID-19 
subtypes and other types of pneumonia [13, 31]. CT imag-
ing is expected to contain valuable information for patient’s 
outcome, thus to serve as a base for AI analysis. However, 
even though numerous studies used AI models to predict 
patients’ outcome [6], only two included chest CT images 
and DL methods [32, 33]. Fang et al. developed an artificial 
neural network to perform lung lobes and pulmonary opaci-
ties segmentation, which served to compute a severity score 
and predict mortality through another machine-learning 
algorithm. The model achieved moderate accuracy, with an 
AUC of 0.74 [32]. Similarly to our research, Ning et al. cre-
ated a DL model based on a single, manually segmented, 
2D chest CT slice for mortality prediction of COVID-19 
patients taken from two different hospitals, with reported 
accuracy of 76.41% [33]. This result was improved by inte-
grating the model with laboratory data (78.73%) [33]. For 
the same reasons, we aimed at building an integrated model 
with imaging and clinical data to boost performance. Due 
to data imbalance, we opted for adding other clinical infor-
mation such as age, sex, comorbidities, and symptoms at 
presentation, which led to superior results in mortality pre-
diction in the internal validation cohort: accuracy 91.7%, 
sensitivity 90.5%, specificity 92.4%. It is known, in fact, 
that certain comorbidities are associated with increased 
risk of mortality [34]. Nevertheless, we decided to analyze 
the sub-group of patients with available laboratory data. 
Although the reduced number of patients and the above 
cited imbalance, and although the introduction of a different 
type of values (continuous vs. binary), the performance in 
mortality prediction remained elevated in the internal vali-
dation cohort (accuracy 92.8%, sensitivity 91.6%, specific-
ity 93.3%). These results could underlie an important role 
of laboratory data in outcome prediction. Nonetheless, it 
is important to remark the strong imbalance in the dataset 
as one of the limitations of the study since a proper com-
parison between the analysis with and without laboratory 
data cannot be made. Other studies reported the impact of 
symptoms, comorbidities, and CT abnormalities as predic-
tors for hospitalization and need of mechanical ventilation 
[6, 35]. Similarly, our results improved significantly when all 

these information were considered. Furthermore, when CT 
images were excluded from the model, the accuracy dropped 
impressively to 66%, 64%, and 60% in predicting mortality, 
ICU admission, and intubation. This result implies that CT 
imaging contains highly valuable data on patient’s status and 
should not be excluded from the algorithm implementation.

Chieregato et  al. recently reported a hybrid machine 
learning/deep learning predictive model for COVID-19 
based on CT images, laboratory, and clinical data [15]. The 
authors achieved similar results to our study in the predic-
tion of COVID-19 outcome, without performing an external 
validation of their accuracy values. Despite achieving prom-
ising results in the preliminary analyses, the performance 
of our model for all the outcomes decreased in the external 
validation cohort. The most significant decrease was seen in 
specificity and NPV. The performance dropout can be par-
tially explained with the heterogeneity of the population and 
scanning techniques, which is in line with the normal setting 
of patient care in real-life scenarios. On the other hand, the 
result points to limited generalizability. This aspect appears 
a crucial limitation of many currently available AI models, 
which affects their potential use in the clinical practice [36].

In a pandemic setting, hospital overcrowding, paucity of 
ICU beds, and ventilation devices represent the main chal-
lenges for resource managing [37], often leading to critical 
decision-making [5, 38]. Similarly to previous quantitative 
CT analysis studies [39, 40], our model could predict ICU 
admission and need for intubation with very high accuracy, 
sensitivity, and specificity when tested internally (89.6% and 
91.3%, 90% and 91.5%, and 86.5% and 89.8%, respectively). 
However, the performance was not equally reproduced in the 
external validation. AI models may offer some advantages 
in a critical setting compared to quantitative evaluations 
performed by radiologists, due to the promise of delivering 
rapid and operator-independent results. Nevertheless, such 
advantages can be overshadowed by limited reproducibil-
ity and generalizability across different centers and patient 
populations, which is a pre-requisite for clinical use. In this 
respect, one of the future challenges is the standardization of 
DL algorithms across multiple centers and their validation 
with prospective data to achieve adequate predictive accu-
racy for meaningful clinical application [39, 40].

This study has some limitations. Due to retrospective 
design, we encountered imbalance on different outcomes 
caused by sporadic lack of information and transfer to other 
facilities. To compensate this shortcoming, part of the miss-
ing data was gathered through directly contacting patients 
or relatives. One of the greatest imbalances of the present 
research was the lower representation of deceased patients 
compared to the ones who survived, although previous stud-
ies encountered similar issues [32, 33]. In a retrospective 
study, laboratory data are usually imbalanced. Consequently, 
as stated before, our sub-group analysis cannot be properly 
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compared with the whole cohort. Future directions include 
reproducing our results in larger and more uniform cohorts. 
Another consideration should be done on the different tim-
ing of presentation at the hospital after the positive on RT-
PCR result (range 0–9 days; mean 5 days), which could have 
affected severity of CT findings; we deliberately did not 
consider this variable since we meant to address real-world 
problems, recreating an everyday pandemic setting. The 
images of the external validation cohort were acquired with 
a scanner of a different vendor from the training and internal 
validation cohorts. This fact affected model performance on 
the external group, confirming the need of a larger dataset of 
CT from all existing vendors to achieve optimal prediction 
results. Lastly, we decided to include pleural effusion into 
the analysis although, if conspicuous, it could have masked 
other lung alteration because we considered it as a possible 
finding in COVID-19 patients and it has been correlated with 
outcome in a recent meta-analysis [41].
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