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Abstract: This paper addresses indoor localization using an anchor-based system based on Bluetooth

Low Energy (BLE) 5.0 technology, adopting the Received Signal Strength Indicator (RSSI) for the

distance estimation. Different solutions have been proposed in the scientific literature to improve the

performance of this localization technology, but a detailed performance comparison of these solutions

is still missing. The aim of this work is to make an experimental analysis combining different solutions

for the performance improvement of BLE-based indoor localization, identifying the most effective

one. The considered solutions involve different RSSI signals’ conditioning, the use of anchor–tag

distance estimation techniques, as well as approaches for estimating the unknown tag position.

An experimental campaign was executed in a complex indoor environment, characterized by the

continuous presence in the movement of working staff and numerous obstacles. The exploitation of

multichannel transmission using RSSI signal aggregation techniques showed the greater performance

improvement of the localization system, reducing the positioning error (from 1.5 m to about 1 m).

The other examined solutions have shown a lesser impact in the performance improvement with a

decrease or an increase in the positioning errors, depending on the considered combination of the

adopted solutions.

Keywords: indoor localization; Bluetooth Low Energy; localization solutions

1. Introduction

Indoor localization has become increasingly important in modern applications, from
navigation within large facilities, such as airports and shopping malls [1,2], to quality
controls in the industrial field [3]; to use in medicine for therapeutic monitoring [4]; to
provide location-based services to enhance the user experience [5,6]; to track and monitor
elderly or people with disabilities [7]; to manage the energy consumption based on the occu-
pancy in smart buildings [8]; and to infer occupancy in buildings for crisis management [9].
Indoor localization can be implemented using a variety of technologies, including Wi-Fi,
RFID, Ultra-Wideband, and Bluetooth Low Energy (BLE) [10]. Among these technologies,
thanks to its specific features, BLE has gained significant popularity in different application
fields, including indoor localization. Moreover, the BLE has the advantage of low-power
operation compared to Wi-Fi. The location of devices that use the Wi-Fi network requires
that the device acquire transmission power from the network in a particular location. The
most significant difference to the proposal is that here, it is the device that wants to know
its position that works in advertising mode. In this way, energy is only consumed at the
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time of localization. The BLE was introduced in 2010 as an evolution of classic Bluetooth
technology, starting from the version named Bluetooth 4.0, to be energy efficient with a
low data rate focused in power constrained and low cost devices [11]. One of the key
advantages of using BLE over other indoor localization technologies is its wide availability.
BLE technology is integrated into most modern mobile devices, such as smartphones and
tablets, making it widely accessible and easily adoptable. A BLE device that is used only for
data transmission without receiving data is called a beacon [12]. Beacons are used by large
companies, such as Apple, Google, and Facebook, for the development of new standards
and products, and are also used by academia and industry for indoor localization, proxim-
ity detection, sensing applications, and so on. BLE beacons are inexpensive, small-sized,
low-power devices that allow for easy installation and long battery life. In addition to
the above-mentioned advantages of BLE technology, it also offers a significant increase
in communication range over previous versions [13]. This feature allows for larger areas
to be covered with fewer beacon devices, reducing deployment costs and simplifying the
management of the considered application. All these specific features of the BLE technology
enabled a wide usage in localization systems with an obtainable localization accuracy of
about 1 m [14,15].

The localization systems developed using wireless communication technologies and,
specifically, the BLE, are composed by means of an anchor-based approach [16]. In detail,
the localization system involves the use of some BLE beacons positioned at fixed and known
locations (named anchors) and a tag that is a BLE receiver whose unknown position needs to
be estimated. For an anchor-based localization system, several quantities can be measured
in order to estimate the tag position. For example, approaches based on measures of the
Angle of Arrival (AoA), Time of Flight (ToF), and Received Signal Strength Indicator (RSSI)
are established in the literature. The AoA-based localization techniques offer high accuracy
and is not affected by obstacles or signal reflections [17]. However, it requires expensive
and complex hardware to implement, and the coverage is limited by the need for a direct
line of sight. The ToF-based techniques provide high accuracy and robustness against
interference and noise [18]. However, they require accurate synchronization of anchor
clocks and can be affected by reflections and multiple paths, requiring complex algorithms
for compensation. The RSSI-based technique is affordable and simple to implement with
standard hardware [19]. It has wider coverage and does not require a direct line of sight.
However, RSSI has limited accuracy due to environmental variables and can be subject
to interference [20,21]. Focusing the attention on the RSSI-based techniques applied to
develop localization systems, different solutions have been proposed in the literature to
improve the performance of this technology. Many scientific papers propose processing
solutions, such as RSSI signal aggregation techniques [14], Kalman filtering of the acquired
data [15], transformation models between the RSSI signal and distance [22], and positioning
approaches based on optimization algorithms or Machine Learning (ML) [23].

Despite the wide scientific literature proposing different solutions for BLE indoor
localization based on RSSI technology, it is still unclear which combination of solutions is
the most effective in achieving accurate and reliable localization performance.

The main contributions of this work are listed below.

• Provide a methodology for analyzing different techniques that have the greatest impact
on the performance of a BLE-based indoor localization system. In particular, some of
the solutions already proposed in the literature are considered and implemented, also
considering different combination schemes.

• The analysis was carried out via an experimental campaign in a complex indoor
environment characterized by the presence of working staff and numerous obstacles.

• The obtained performance results are compared using different combination schemes
of the analyzed solutions in order to identify the solution (or a combination of them)
that most contributes to the improvement of a BLE-based indoor localization system.

The performed comparative analysis aims to provide a better understanding of the
most effective and reliable solutions for achieving more accurate BLE-based indoor local-
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ization. The proposed methodology could help designers of indoor localization systems in
identifying which techniques should definitely be used in order to meet the performance
requirements of specific applications.

This paper is organized as follows. Section 2 reports a brief description of the used
BLE technology, in particular version 5.0, Section 3 discusses the analyzed localization
solutions for BLE indoor localization, and Section 4 introduces the experimental set-up
used to test the solutions described in Section 3. Finally, the results are shown in Section 5
and the conclusion is provided in Section 6.

2. Brief Notes of BLE 5.0 Technology

Bluetooth Low Energy (BLE) technology has become increasingly popular in the
context of low-power wireless applications. BLE technology offers 40 transmission channels
operating in a 2 MHz frequency band. There are 37 channels for data and 3 channels for
advertising (Ch 37, Ch 38, and Ch 39). The introduction of version 5.0 was a significant
step in improving the functionality offered by this technology. In this Section, the main
benefits and key features of BLE 5.0 technology will be reviewed, with a special focus on its
applications in the context of indoor localization. The key advantages of the BLE 5.0 are
listed below.

• Reduced energy consumption: BLE 5.0 technology is designed to provide very low
power consumption, enabling extended battery life for battery-powered devices. In
fact, in BLE, 5.0 devices can have up to 50% lower power consumption than previous
versions [13].

• Wide coverage: BLE 5.0 offers a significant increase in range over previous versions.
The transmission range can reach up to 200 m in optimal outdoor conditions, en-
abling wider coverage even in indoor environments by reaching coverage distances of
40 m [13]. This translates into greater flexibility in anchor placement and coverage of
larger areas with fewer devices, reducing deployment costs.

• Higher data rates: BLE 5.0 technology supports a data rate of up to 2 Mbps, offering
increased information transfer capability. This data rate allows for large amounts of
data to be sent efficiently, enabling fast and reliable communication among location
devices [13].

BLE devices operating in beacon mode and receiver mode were used in this paper. A
BLE beacon is an autonomous transmitter device that sends periodic signals to transmit
data to surrounding devices [12]. It operates mainly in advertisement mode and transmits
data packets containing information such as beacon identification, transmitted power data,
or other useful information. The BLE beacon is generally powered by a battery and has
a compact, portable, and low-cost design. BLE beacons are commonly used in indoor
localization applications, localization-based marketing, and proximal notifications [24].
On the other hand, a BLE receiver is a device that receives signals transmitted by BLE
beacons or other BLE devices [25]. The BLE receiver can detect, decode, and interpret the
transmitted BLE data packets. It can be integrated into smartphones, tablets, computers,
or other devices capable of supporting BLE connectivity. BLE receivers can detect signals
from beacons and use this information for purposes such as localization.

3. The Analyzed Localization Solutions

In this paper, we propose an anchor-based positioning system for the tag localization
in indoor environments using BLE 5.0 technology. To do this, we use BLE devices oper-
ating in beacon mode as system anchors and a BLE receiver as a tag. Details about the
implementation of the positioning system are provided in Section 4.

The paper aims to carry out a performance analysis of some solutions, detailed below,
adopted in the literature to improve the localization performance typically obtained using
BLE technology. In particular, the analyzed solutions cover the processing of the RSSI
data (measured by the tag for all anchors to evaluate the tag position), the techniques
used to estimate the anchor–tag distances from the RSSI data, and the algorithms used to
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estimate the tag position. More in detail, in this paper, the analyzed solutions were suitably
combined; for each combination, the localization performance was evaluated, and finally, a
comparison in terms of localization performance was carried out.

3.1. Use of Multichannel Transmission

The BLE technology is characterized by the availability of three advertising trans-
mission channels (Ch 37, Ch 38, and Ch 39) to establish the connection between the BLE
devices. The users that develop the BLE-based localization system can define the number
of channels to be used for the purpose. On one hand, the use of only one transmission
channel allows for simple and low consumption localization systems. From the other hand,
the use of multiple transmission channels enable the possibility to make some aggregation
strategies to compensate for interference, improving the localization performance (e.g.,
since the transmission on the three channels takes place with a negligible time interval con-
cerning the tag speed [25], the use of aggregation techniques could reduce the fast-fading
effects and interference with Wi-Fi signals [20]). In addition, repetitive measurement of the
RSSIs on the transmission channels can be used to both increase the localization capabilities
and allow for statistical analysis. Table 1 shows an example of the RSSI values that can be
acquired on all three channels, considering N repeated measurements for each channel.

Table 1. RSSI measured by the tag for each anchor.

Samples Ch 37 Ch 38 Ch 39

1 RSSI37,1 RSSI38,1 RSSI39,1

2 RSSI37,2 RSSI38,2 RSSI39,2
...

...
...

...
i RSSI37,i RSSI38,i RSSI39,i
...

...
...

...
N RSSI37,N RSSI38,N RSSI39,N

In order to exploit multichannel transmission as a method of improving the perfor-
mance, in this paper, we compare three different techniques [14] to aggregate the RSSI
measured by the three advertising transmission channels as described below.

1. Maximum technique

In this case, the aggregated data coincides with the maximum RSSI measured on the
three transmission channels

RSSImax,i = max{RSSI37,i, RSSI38,i, RSSI39,i}, (1)

where i denotes the i-th repeated measurement. In the rest of the paper, we will refer
to this technique as the max technique.

2. Mean technique

The second adopted technique aggregates the data, considering the arithmetic average
of the measured RSSI on the three transmission channels

RSSImean,i =
39

∑
j=37

RSSIj,i

3
, (2)

where i denotes the i-th repeated measurement. In the rest of the paper, we will refer
to this technique as the mean technique.

3. Maximum ratio combining technique

With the principle of the maximum ratio combining technique, a weighted average is
carried out on the RSSI measured by the three transmission channels
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RSSImrc,i =
39

∑
j=37

RSSIj,i − RSSImin

∑
39
h=37 RSSIh,i − RSSImin

RSSIj,i (3)

where i denotes the i-th repeated measurement. Consequently, the channel with the
highest (lowest) RSSI will have the highest (lowest) weight in the computation of
the aggregated RSSI. The RSSImin value is a constant that represents the receiver
sensitivity taken from the datasheet of the adopted BLE device. In the rest of the
paper, we will refer to this technique as the mrc technique.

Due to the complexity of indoor environments, the measured RSSI data are not reliable
due to the presence of obstacles that lead to reflections, attenuation, and multipath effects.
To mitigate these problems, data filtering techniques [26] are used to increase the goodness
of the RSSI data, allowing us to smooth them from any outliers present in the measurements.

3.2. RSSI Filtering

A very important conditioning to be performed on signals before processing them
is filtering. In fact, this operation is represented by a transformation function on the
spectral structure of the input signal with the purpose of eliminating some unwanted
components while leaving others untouched. In the scenario considered in this paper,
different types of filters can be used (low-pass, moving average, Savitzky–Golay, etc.).
Among the filtering techniques present in the literature, the Kalman filter is considered
in the proposed performance analysis since it has proved to be more suitable for solving
localization problems also in the static scenario [15,27,28]. The Kalman filter represents a
state estimator applicable to a stochastic system. In detail, in the following is reported the
stationary linear model in discrete time of the system to be filtered.

{

x(k + 1) = x(k) + w(k)

y(k) = x(k) + v(k)
(4)

where

• k represents the the discrete time instant;
• x represents the filtered RSSI data (state variable);
• w represents the process noise;
• y represents the measured RSSI data (output variable);
• v represents the measurement noise.

The Kalman filter involves the execution of two phases: the prediction and the update.
The equations to execute these phases are applied to the stationary linear model reported
in (4).

In particular, for the prediction phase in which an estimate of the state variable is
carried out based on the system model, we have the following equations:

x̄(k + 1) = x̂(k) (5)

P̄(k + 1) = P(k) + Rw (6)

where x̂(k) and x̄(k) represent the a posteriori and a priori estimate of the state variable,
respectively; P(k) and P̄(k) represent the a posteriori and a priori state covariance estimate,
respectively; and Rw represents the process noise covariance matrix.

The update operation that connects the noisy measurements to the state current
estimate is described by the measurement update equations:

K(k) =
P̄(k)

Rv + P̄(k)
(7)
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x̂(k) = x̄(k) + K(k)(y(k)− x̄(k)) (8)

P(k) = (1 − K(k))P̄(k) (9)

where K(k) represents the Kalman filter gain and Rv represents the measurement noise
covariance matrix. The initial values of x̄(0) and P̄(0) and the setting values of the Rw

and Rv matrices are provided in Section 5. It is worth noting that the unknown of the
problem is represented by x̂(k), because it is the state estimate at instant k that also uses the
measurements at the same instant.

In the localization scenario considered in this paper (static, as will be discussed in
subsequent Sections), the Kalman filter is used to estimate noisy constant quantities (RSSI).
This represents a simplified case in which to apply the Kalman filter, as it finds its fullest
application in dynamic localization scenarios in which a motion dynamics model must
be considered.

3.3. Distance Estimation

For the estimation of the distances among each anchor and the tag, two different
approaches are used in this paper.

• The first approach is made by means of an empirical path loss propagation model
based on a logarithmic relationship between the measured RSSI and the distance (10).
The estimate of the distance d is performed by measuring the RSSI and inverting (10),
as shown in (11). The values of A and n must be estimated during a calibration phase:
A represents the measured RSSI when d = 1 and n identifies the path loss exponent.

RSSI = A − 10n · log(d) (10)

d = 10
A−RSSI

10n (11)

• The second approach is based on a Machine Learning (ML) model, as detailed in the
Section 3.4.

The RSSI used for the distance estimation can be the raw measured values or the
conditioned ones, applying the aggregation techniques and/or the RSSI filtering described
in Sections 3.1 and 3.2, respectively.

3.4. Positioning Approaches

Three different approaches are analyzed in this paper for the estimation of the un-
known position: the first is based on numerical optimization, the second uses an ML model
integrated with solving an optimization problem, and finally, the last one is completely
based on an ML model.

1. Numerical optimization

In this case, we define the unknown tag position ϑ̂ = [x̂t, ŷt]T as the result of a
minimization process defined in (12), where the objective function F(ϑ) is defined
in (13).

ϑ̂ = arg min
ϑ

F(ϑ) (12)

F(ϑ) =
M

∑
i=1

[d̃i − di(ϑ)]
2 (13)

In (13), M indicates the number of anchors used in the experimental set-up, d̃i indicates
the estimated distance between the i − th anchor and the tag, while di(ϑ) represents
the theoretical distance between the i − th anchor and the tag if the tag position is
equal to ϑ. Therefore, ϑ̂ is obtained by minimizing the error between the measured
and the theoretical quantity for each anchor considered in the experimental set-up.
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The minimization problem is solved by the Nelder–Mead algorithm [29]. In the rest
of the paper, we will refer to this approach as the numerical optimization approach.

2. Assisted-ML approach

The ML approaches use a regression model based on a two-layer Feed-Forward
Neural Network (FNN). The structure of the adopted FNN is shown in Figure 1 and
it was designed in the MATLAB environment. Details about the FNN are given in
the following:

• the input is represented by the aggregate RSSI, obtained with any of the algo-
rithms described in Section 3.1 and filtered; the size of the RSSI vector is equal to
the number of anchors installed in the experimental set-up;

• the hidden layer consists of 20 neurons. It was explored by the authors that
this choice represents a good compromise between the computational cost and
accurate estimation performance obtained with the FNN considered;

• the activation functions of the hidden layer and the output layer are sigmoid and
linear, respectively;

• the type of result is represented by the estimated distances between the tag
and each anchor used in the experimental set-up; therefore, the number of
neurons in the output layer coincides with the number of anchors present in the
experimental set-up.

This approach uses the designed FNN to estimate the RSSI-distance model and, sub-
sequently minimizing an objective function (applying the numerical optimization
described above), derives the unknown tag position (see left in Figure 1). Conse-
quently, in the rest of the paper, we will refer to this approach as the assisted-ML
approach, since only a part of the problem is solved through the use of ML models.

Tag
position

Numerical
optimization

Anchor-tag
distances

Tag
position

FNN
assisted

FNN
full

RSSI

Assisted-ML
approach

Full-ML
approach

Input

Result

Output layer
output neurons

Hidden layer
hidden neurons

FNN

Figure 1. Structure adopted two-layer Feed-Forward Neural Network (FNN) and schematic repre-

sentations of the Assisted-ML and Full-ML approaches.

3. Full-ML approach

The FNN described in Figure 1 is used to directly obtain the tag position (see right
in Figure 1). Given the RSSI vector as input, it returns the tag position in Cartesian
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coordinates as a result. Consequently, in this case, the output layer of the FNN consists
of two neurons associated with the size of the results (x and y coordinates).

As described in Figure 1, both ML-based approaches take the aggregated and filtered
RSSI signal as input and aim to estimate the unknown position of the tag. To do this,
the assisted-ML approach uses FNN to estimate the anchor–tag distances, and then it is
necessary to use the numerical optimization approach to estimate the unknown position
of the tag. Instead, using the full-ML approach via FNN directly obtains the unknown
position of the tag from the input.

4. Adopted Experimental Set-Up

This section reports the main features of the adopted BLE devices and provides
details on the implementation of the experimental set-up for the tag localization in an
indoor environment.

Blue Gecko Wireless System on Chip (SoC) devices provided by Silicon Labs are used
to develop the experimental set-up. Specifically, the devices belong to the EFR32BG13
family [30] and are compatible with the BLE 5.0 standard. Table 2 summarizes the main
features of the adopted devices. Furthermore, a Wireless Starter Kit (WSK) mainboard is
used to program the devices in the different operating modes, using the Simplicity Studio
software (https://www.silabs.com/developers/simplicity-studio, accessed on 1 December
2023). Once the devices have been programmed, to allow for their autonomous operation
(without using the WSK mainboard), a suitable PCB board has been designed and realized
as shown in Figure 2. In detail, the board has been designed to debug the code loaded
on the BLE device, but it also allows for different power supply strategies, including both
battery-powered and energy-harvesting systems. Thanks to the PCB board, in previous
work [31], the BLE devices used to build the experimental set-up were characterized from
an energetic point of view. In the future, the ability to use an energy harvesting system as a
power source could remove the problems associated with recharging or replacing batteries.

To test the localization solutions to be analyzed in this paper (as described in Section 3),
a suitable experimental set-up was developed inside the Instrumentation and Measurement
Laboratory (IML) of the University of Beira Interior, Covilhã, Portugal, as shown in Figure 3.
The localization domain identified by the laboratory considers an area of about 30 m2. The
positioning system consists of six anchors placed in a fixed and known position and a
tag free to move within the localization domain. The anchors were powered by batteries
and their positions within the localization domain are shown in Table 3. The transmission
power level considered for the anchors has been set as equal to -16 dBm. The tag was
connected to a PC via a USB interface to be powered and to transfer the RSSI measurements
sensed from each anchor.

Table 2. Main features of the adopted Bluetooth devices.

Device code EFR32BG13P632F512GM48-D

Supported protocol BLE 5.0

Operating band 2402–2480 MHz

Maximum transmit power +10 dBm

Sensitivity (RSSImin) −94 dBm

Integrated antenna Printed inverted–F

MCU 32–bit 40 MHz ARM Cortex–M4

Flash memory 512 kB

RAM 64 kB

Main integrated functionality Debug and packet trace; Advanced Energy Monitoring; Virtual COM Port

https://www.silabs.com/developers/simplicity-studio
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Figure 2. Adopted BLE device with dedicated PCB board.

Figure 3. Localization domain inside the Instrumentation and Measurement Laboratory (IML) of the

University of Beira Interior, Covilhã, Portugal.

Table 3. Positions of the anchors inside the localization domain.

Anchors x [m] y [m]

A1 0 0
A2 2.5 0
A3 5 0
A4 5 3
A5 2.5 6
A6 0 3

5. Obtained Results

In this section, the considered localization solutions are combined and tested via the
implemented experimental set-up. It should be noted that the localization domain used to
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carry out the experimental tests, i.e., IML, constitutes a real scenario in which the typical
problems of indoor environments can be encountered. In fact, inside the IML, there are
constantly people, interfering signals such as Wi-Fi, obstacles, and walls that can affect the
transmission and reception of BLE signals with behavior that is not constant over time.

Some aspects related to the examined procedures and described in Section 3 are
initially discussed, also providing numerical details about some parameters considered
within the analyzed techniques. Subsequently, the results of localization tests using different
combinations of the considered procedures are shown.

5.1. Preliminary Considerations

1. Multichannel transmission and aggregation techniques

Initially, we want to discuss the use of the analyzed aggregation techniques to exploit
multichannel transmission. This represents the first processing operation on the
acquired signals within the localization procedures, typically adopted in the literature,
considered in this paper. We need to specify the value of the RSSImin parameter
in order to compute the mrc algorithm. Based on the datasheet of the considered
devices [30], the value of RSSImin is −94 dBm.
Figure 4 shows an example of the RSSI signals that can be acquired between an
anchor and the tag. In particular, the raw RSSI signals acquired on the three primary
transmission channels and the aggregate signals obtained with the three aggregation
algorithms are shown. The acquisitions were carried out, keeping the anchor and tag
stationary, and the considered anchor–tag distances are 2.7 m and 5.2 m for Figure 4a,b,
respectively. About eighty acquisition samples were collected. Some considerations
are highlighted below.

• Acquired signals may exhibit high variability. This is shown by the signal Ch 38
in Figure 4a which presents a difference between the maximum and minimum
values of 13 dB. Obviously, due to the complexity of indoor environments, this
variability makes the localization process inaccurate.

• The max algorithm sometimes coincides with the signal present on a single chan-
nel (as shown in Figure 4a), while other times, it alternates the selection among
different channels (as shown in Figure 4b). So, the max algorithm considers more
signals if they are close to each other, otherwise it selects only the values of the
signal with higher intensity.

• Unlike the max algorithm, the mean and mrc algorithms always consider the
characteristics of all three primary transmission channels. The difference between
the two algorithms is that in one case, a simple average is performed (mean
algorithm), while on the other hand, a weighted average is performed in which
the lower intensity signal has a lower weight than the higher intensity signals
(mrc algorithm).

• The localization process can be affected by the choices made in the number of
the adopted transmission channels, by the chosen transmission channels (if less
than the available ones), and by the aggregation algorithm to be used for the
combination of the RSSI signals.

In conclusion, the information acquired on the three primary transmission channels
contribute, all or in part, depending on the adopted aggregation algorithm, to the
formation of an overall aggregate signal to be processed.
The particular configuration of the room or the building, and the aspects of radio
propagation of signal, such as the environment conditions, the obstacles, and the
interference due to reflections, have an impact on the level of the signals received. Also,
the particular characteristics of the hardware used, namely, the transmitter output
power, the sensitivity of the receiver, and the antenna gains, can influence the results.
Therefore, by considering another environment configuration (room/building), or
using a different hardware setup, can lead to different values of RSSI, although it does
not compromise the generality and the applicability of the methodology proposed.
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2. The effect of the filtering procedure

As shown in Figure 4a, variability of the acquired signals is present both on the RSSI
values coming from the single transmission channel, and on the RSSI values obtained
after the application of the aggregation algorithms. The shown variability is the reason
for which even if the aggregation algorithms are applied, the RSSI signals are typically
filtered. In Figure 5, it is shown an example of the effect of the Kalman filtering
approach described in Section 3.2, applied to the signal aggregated by means of the
mean aggregation algorithm. The acquisitions were carried out keeping the anchor
and tag stationary at a distance equal to 2.7 m. It is noted how all the oscillations
present on the aggregate signal are reduced on the filtered signal and how any drift
of the aggregate signal in the filtered signal is slowed down. The filtering operation
also allows for the discard of possible outliers present in the measurements. As far as
the specific settings of the adopted filter, x̄(0) and P̄(0) have been set as equal to y(0)
(i.e., the first available RSSI measurement) and to 1, respectively; while, via empirical
tests, the values of Rw and Rv have been determined as equal to 1 and 1/20. This is a
common practice when it is necessary to set the parameters of the Kalman filter, as
highlighted in [14]. It can be seen that in our procedure, the model has more weight
than the measurement process, since the filter is applied to estimate a quantity (RSSI)
that is ideally constant.

3. Calibration and training of the distance/position estimation

Some considerations can be made on both the estimation of distances/positions from
the RSSI data and the quality of the calibration/training procedures depending on
the chosen distance/estimation approaches. As far as distance estimation using the
empirical path loss propagation model described in Section 3.3, the RSSI–distance
relationship has to be estimated via a preliminary calibration phase. The calibration
phase is made by means of an experimental campaign carried out using all the anchors
installed in the experimental set-up (see Figure 3). In particular, sixteen training points
located within the localization domain were considered. Figure 6 shows the schematic
diagram of the identified training points (the training points in the center of the
localization domain have not been considered because this area is occupied by a
work table, see Figure 3). For each training point, 100 repeated RSSI measurements
were performed for each anchor in different times and with environmental conditions.
It is important to note that all data used for calibration comes exclusively from
experimental tests and there are no data augmentation procedures via numerically
simulated training points. In fact, in our opinion, the numerical generation of data, in
a complex scenario such as the indoor one where propagation problems are not kept
under control, is not reliable given the difficulty in identifying an accurate model for
predicting signals.
RSSI–distance relationships were estimated for each anchor of the experimental set-up
using the experimental campaign performed in the calibration phase. In detail, for
each anchor, the experimental data were fitted with an analytical model given by (11).
Figure 7 shows an example of the result obtained for one of the considered anchors
(A2 in Figure 6) using the RSSI data aggregated with the maximum algorithm and
filtered. In this example, a Root Mean Square Error (RMSE) of 1.0658 m, a maximum
error of 2.3395 m, and a coefficient of determination R2 of 0.7224 were obtained on
the entire calibration curve shown in Figure 7. The obtained results in terms of the
coefficients of the model (11) are equal to A = −51.58 and n = 2.18. By examining
Figure 7, it is possible to highlight, as the expected linear behavior of the relationship
between the distance and the RSSI (in logarithmic scale) is not perfectly satisfied. This
is also confirmed by a low value of the coefficient of determination R2. This is caused
by the complexity of the indoor environments with several obstacles and interference
signals. The effect is a reduction on the expected accuracy in the tag localization.
As discussed in Section 3.4, the ML models-based positioning approaches use FNNs
(different depending on the specific approach) that need to be trained. The train-
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ing phase took place with the experimental data obtained during the calibration
phase described above. After an arrangement of the collected measurement data,
1600 training points (observations) were obtained for each anchor to be used for the
FNN training phase. All available training points have been divided as follows: 70%
for training, 15% for validation, and 15% for testing. The FNNs were trained in the
MATLAB environment, in which a loss function based on the Mean Squared Error
(MSE) was used for training, validation, and testing procedures. Figures 8 and 9
show the obtained results in terms of regression plots for the assisted-ML and full-ML
approaches, respectively. Furthermore, Tables 4 and 5 summarize the results in terms
of the used number of observations, MSE, and coefficient of determination R2 for
training, validation, and testing. The obtained results show good linearity for all used
datasets and for both proposed approaches.
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Figure 4. Examples of measured RSSI on the three primary transmission channels (Ch 37, Ch 38,

and Ch 39) and adopting the three aggregation techniques (max algorithm, mean algorithm, and

mrc algorithm) described in Section 3.1, considering a single anchor-tag pair: (a) anchor-tag distance

equal to 2.7 m; (b) anchor-tag distance equal to 5.2 m.
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Figure 5. Example of filtering an aggregate signal with mean algorithm.
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Figure 6. Location of the training points for the calibration phase.

Table 4. Training results for each dataset for the assisted-ML approach.

Observation MSE [m2] R2

Training 1098 4.3666 × 10−7 1.0000
Validation 235 1.1190 × 10−5 1.0000
Test 235 6.1233 × 10−5 1.0000

Table 5. Training results for each dataset for the full-ML approach.

Observation MSE [m2] R2

Training 1098 4.9483 × 10−4 0.9999

Validation 235 8.3280 × 10−4 0.9998

Test 235 9.0197 × 10−4 0.9998
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Figure 7. Example of RSSI−distance relationship obtained for anchor A2 and using the RSSI data

aggregated with the maximum algorithm and filtered.
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       (c)        (d) 

 

Figure 8. Example of a regression plot obtained for the assisted-ML approach in the following cases:

(a) training dataset; (b) validation dataset; (c) test dataset; and (d) all datasets.
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      (a)        (b) 
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Figure 9. Example of a regression plot obtained for the full-ML approach in the following cases:

(a) training dataset; (b) validation dataset; (c) test dataset; and (d) all datasets.

5.2. Positioning Results

To verify the localization performance of the considered procedures, a testing phase
was carried out. Specifically, as shown in Figure 10, 31 positioning points were considered.
For each positioning point, 10 repeated RSSI measurements were collected for each trans-
mission channel, resulting in an available dataset consisting of 930 RSSI measurements for
each anchor.

Since the purpose of the paper is to compare the effectiveness of all the considered
procedures described in Section 3, the way they were combined is reported below.

• case #1 –> no aggregation, no filtering: no conditioning on the acquired signals is
carried out. During the calibration phase, the propagation models are estimated for
each transmission channel (Ch 37, Ch 38, and Ch 39) using the empirical path loss
propagation models. During the testing phase, the obtained propagation models
are used to estimate anchor–tag distances, and the estimation of the unknown tag
positions is carried out via the numerical optimization approach.

• case #2 –> no aggregation, yes filtering: the signals from the transmission channels
(Ch 37, Ch 38, and Ch 39) are filtered. During the calibration phase, they are used
to estimate the propagation models for each transmission channel (Ch 37, Ch 38,
and Ch 39) using the empirical path loss propagation models. During the testing
phase, the obtained propagation models are used to estimate anchor–tag distances,
and the estimation of the unknown tag positions is carried out via the numerical
optimization approach.
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• case #3 –> yes aggregation, no filtering: the signals from the transmission channels
(Ch 37, Ch 38, and Ch 39) are aggregated with all aggregation algorithm (max, mean,
and mrc). During the calibration phase, they are used to estimate the propagation
models for each aggregation algorithm (max, mean, and mrc) using the empirical path
loss propagation models. During the testing phase, the obtained propagation models
are used to estimate anchor–tag distances, and the estimation of the unknown tag
positions is carried out via the numerical optimization approach.

• case #4 –> yes aggregation, yes filtering: the signals from the transmission channels
(Ch 37, Ch 38, and Ch 39) are aggregated with all aggregation algorithm (max, mean,
and mrc) and filtered. During the calibration phase, they are used to estimate the
propagation models for each aggregation algorithm (max, mean, and mrc) using
the empirical path loss propagation models. During the testing phase, the obtained
propagation models are used to estimate anchor–tag distances, and the estimation of
the unknown tag positions is carried out via the numerical optimization approach.

• case #5 –> assisted-ML: the signals from the transmission channels (Ch 37, Ch 38,
and Ch 39) are aggregated with all aggregation algorithms (max, mean, and mrc)
and filtered. During the calibration phase, they are used to train the FNN used in
the assisted-ML approach, for each aggregation algorithm (max, mean, and mrc).
During the testing phase, the trained FNNs are used to estimate anchor–tag distances,
and the estimation of the unknown tag positions is carried out via the numerical
optimization approach.

• case #6 –> full–ML: the signals from the transmission channels (Ch 37, Ch 38, and Ch
39) are aggregated with all aggregation algorithm (max, mean, and mrc) and filtered.
During the calibration phase, they are used to train the FNN used in the full-ML
approach, for each aggregation algorithm (max, mean, and mrc). During the testing
phase, the trained FNNs are used to directly estimate the unknown tag positions.
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Figure 10. Location of the positioning points for the testing phase.

All these procedures were applied to the full experimental dataset of unknown tag po-
sitions (310 positioning points). To evaluate the performance of each considered procedure
(cases #1 to #6), the positioning error ε has been used. It defines the distance between the
true and estimated position of the tag, respectively. The mathematical definition is given
by (14) where ε represents the Euclidean distance, while [xt, yt]T and [x̂t, ŷt]T represent the
Cartesian coordinates of the true and estimated position of the tag, respectively.
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ε =
√

(xt − x̂t)2 + (yt − ŷt)2 (14)

Finally, for each considered case, the mean positioning errors (εµ) and the corre-
sponding uncertainties on all the analyzed positioning points were estimated. Figure 11
summarizes the obtained results.
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Figure 11. Obtained localization performance in terms of mean positioning errors (εµ) and uncertainty

on the mean positioning error, for each considered procedures.

In all the considered cases the mean positioning error is always lower than 1.6 m with
a maximum uncertainty of 0.06 m. The worst performance, with a mean positioning error
of about 1.6 m, are obtained in the first two analyzed cases, case #1 and case #2. In both
these cases, multichannel transmission was not exploited since no aggregation algorithm
was applied. The filtering effect does not allow any localization improvement since the
performances are very similar between case #1 and case #2. In addition, it is possible to
highlight, as the chosen transmission channel does not have any significant effect on the
localization performance. Regarding the other analyzed cases, we obtain consistently better
performance compared with case #1 and case #2 (about 1.0 m as the mean positioning
error). The key contribution to achieve the performance improvement is related to the use
of the aggregation algorithms. In fact, all four cases (from case #3 to case #6) apply the three
considered aggregation algorithms. As far as the used aggregation algorithm, there is no
trend towards improvement. In some cases, it is better to use the max algorithm (cases #3
and #4); in others, the mean or the mrc algorithm, depending on the used ML approach.
Regarding the comparison among the considered positioning procedures, it is necessary to
refer to cases #4, #5, and #6 as they share the same operating conditions (RSSI measurements
are aggregated with all the considered aggregation algorithms and filtered). Having fixed
the operating conditions, in case #4, the empirical path loss propagation model is used to
estimate the anchor–tag distances and then the numerical optimization algorithm is used to
estimate the unknown tag positions. In case #5, the anchor–tag distances are estimated via
the FNN employed in the ML-assisted approach, and then via the numerical optimization
algorithm, the unknown tag positions were estimated. Finally, in case #6, via the FNN
employed in the full-ML approach, the unknown tag position were directly estimated
from the RSSI measurements. Using the mean as the aggregation algorithm, the assisted-
ML approach guarantees the best performance compared to the previous ones, while it
exhibits worse performance using max and mrc as aggregation algorithms. Of course, these
considerations are valid with respect to the adopted conditions of algorithm setting and the
considered testing scenario. Anyway, a limited performance variation (mean positioning
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error) can be observed. In all the considered cases (cases from #1 to #6), a limited variation
in the uncertainty of the mean positioning error was observed, not allowing any relation
with the chosen procedures.

5.3. Discussion

The proposed analysis highlighted as the localization performance using BLE tech-
nologies are strictly connected on the use of multiple transmission channels that enable the
application of aggregation algorithms. If a worse performance is acceptable, it is possible to
apply a single transmission channel, and no suitable choices on the transmission channel
to be used have to be made. If a better performance is needed, the multiple transmission
channel must be enabled and the choice of the positioning algorithms can be substantially
made, considering the minimum computational cost. The suggested methodology may as-
sist indoor localization system designers in determining which solutions must be employed
to satisfy the demands of particular applications in terms of performance.

Certainly, several activities can be carried out in the future to extend the methodology
proposed in this paper. For example, a more exhaustive analysis concerns the execution of
the experimental campaign in larger working environments, or varying the density and
the geometric placement of beacons within the localization domain and verifying whether
the claimed best solutions remain so as these conditions vary. Other important activities
include conducting experimental tests in a dynamic localization context and testing the
generality of the considered techniques (especially ML-based approaches) by considering
greater variability in the data used for both training and testing. Such variability could
come from experimental campaigns carried out on different working environments. In
addition, it is possible to consider improved versions of the considered and implemented
solutions (e.g., regarding the propagation model or neural network), but also to add other
techniques (e.g., regarding filtering or positioning) which are not considered in this paper.

6. Conclusions

In the framework of the localization techniques based on Bluetooth Low Energy (BLE)
5.0 technology using the Received Signal Strength Indicator (RSSI), different solutions have
been proposed in the literature to improve the localization performance. An experimental
campaign in a complex indoor environment was carried out to identify the solution (or
a combination of them) that most contributes to the improvement of BLE-based indoor
localization systems. The obtained results showed that the exploitation of multichannel
transmission through the use of RSSI signal aggregation techniques is the most crucial
aspect for achieving optimal performance. The multichannel approach, based on combining
RSSI signals from the different transmission channels (Ch 37, Ch 38, and Ch 39), takes full
advantage of the potential of BLE 5.0 technology, allowing us to reduce the positioning
error of about 35% (from 1.5 m to 1 m). Other solutions have been considered and analyzed,
also in combination among them: the RSSI signal filtering; distance estimation adopting an
empirical propagation model or Machine Learning (ML); numerical optimization; and ML
models for estimating the unknown position of the tag. These solutions have showed a
lesser impact in the improvement of the localization accuracy with an increase or a decrease
in the positioning error that goes from 2% to 23%, depending on the combination of the
used solutions. The results of this analysis can be useful for the designers to choose the
solutions to be implemented, depending on the target accuracy of the localization system
to be developed. Certainly, the obtained results have full validity for the conditions tested
and considered in this paper, but they might be subject to variations considering other
operating conditions.
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